Peri-ictal ECG changes in childhood epilepsy: implications for detection systems.

Katrien Jansen¹, Carolina Varon²,³, Sabine Van Huffel²,³, Lieven Lagae¹

¹Pediatric neurology, University Hospitals Leuven, Belgium
²KU Leuven, Department of Electrical Engineering-ESAT, SCD-SISTA, Leuven, Belgium
³iMinds Future Health Department, Leuven, Belgium

Corresponding author

Lieven Lagae
Department of Pediatric Neurology
University Hospitals Leuven
Herestraat 49, 3000 Leuven, Belgium
Tel +32 16 343845
Fax +32 16 343842
e-mail: lieven.lagae@uzleuven.be

Word count:
3410

Running title:

Peri-ictal tachycardia in childhood epilepsy.

Key words: seizure, heart rate, tachycardia, childhood epilepsy, seizure detection
Abstract

Introduction

Early detection of seizures could reduce associated morbidity and mortality and improve the quality of life in patients with epilepsy. In this study, the aim is to investigate whether ictal tachycardia is present in focal and generalized epileptic seizures in children. We try to predict in which type of seizures tachycardia can be identified before actual seizure onset.

Methods

ECG segments in 80 seizures were analyzed in time and frequency domain before and after onset of epileptic seizures on EEG. These ECG parameters were analyzed to find the most informative ones that can be used for seizure detection. The algorithm of Leutmezer et al. was used to find the temporal relationship between the change in heart rate and seizure onset.

Results

In time domain the mean RR shows a significant difference before compared to after onset of the seizure in the focal seizures. This can be observed in temporal lobe seizures as well as frontal lobe seizures. Calculation of mean RR interval has a high specificity for detection of ictal heart rate changes. Pre-ictal heart rate changes are observed in 70% of the partial seizures.

Conclusion

Ictal heart rate changes are present only in partial seizures in this childhood epilepsy study. The changes can be observed in temporal lobe seizures as well as frontal lobe seizures. Heart rate changes precede seizure onset in 70% of the focal seizures, making seizure detection and closed loop systems a possible therapeutic alternative in the population of refractory epilepsy in childhood.

Introduction

Epilepsy is a chronic neurological condition characterized by recurrent epileptic seizures. A lot of morbidity and also mortality in epilepsy is due to seizures [1]. The phenomenon sudden unexpected death in epilepsy patients (SUDEP) is the most important epilepsy-related mode of death and is the
leading cause of death in people with chronic uncontrolled epilepsy [2,3]. Apart from SUDEP, mortality and morbidity as a result of seizure-related events eg accidents, drowning,... is frequent. As the occurrence of seizures is unpredictable, much effort is put into trying to predict or early detect seizures. Detection of seizures could be very helpful in the development of warning systems but also in novel treatment strategies. The ultimate goal is to detect seizures and achieve termination of seizure activity through “closed loop” systems [4,5]. This implies early or pre-ictal detection of seizures.

The autonomic nervous system is the control part of the nervous system. The autonomic nervous system has an important representation in the central nervous system and epileptic seizures are often associated with changes in autonomic function [6,7]. These changes can occur at the same time but also before and after the actual seizure onset on EEG. Activation of the central autonomic centers by spreading of epileptic discharges during a seizure is thought to be responsible for the pre-ictal autonomic symptoms. At the time of the clinical seizure, motor activity and stress responses probably contribute to the ictal autonomic symptoms.

Heart rate can be measured relatively easily and is therefore an interesting parameter for long-term monitoring. The peri-ictal heart rate changes can be of use in seizure detection systems, as illustrated in figure 1. In this case, seizures could be identified with the use of ECG alone. Ictal tachycardia is probably the best studied autonomic phenomenon in epilepsy [8,9]. However, most studies on the presence of ictal tachycardia were conducted in adults with refractory temporal lobe seizures as a predominant seizure type[11-19].

Figure 1

Upper part: heart rate pattern (green line) showing sudden increase in heart rate at the moment of seizure onset (time-scale 1 hour/page)

Lower part: EEG onset of seizure (red line) and accompanying tachycardia (time-scale 10 sec/page).
In this study, the first aim is to investigate if ictal tachycardia is present in focal and generalized epileptic seizures in children. In the seizures with ictal tachycardia, we will try to define the most sensitive EKG parameter for detection of tachycardia that could be useful in seizure detection systems in the future. A final aim was to better define in which seizure types pre-ictal ECG changes could be identified.

Methods

Seizures were selected retrospectively from patients admitted to the epilepsy clinic UZ Leuven. All patients were admitted for 24 hour video EEG because of refractory epilepsy. Video/EEG recordings were obtained using the 10-20 International System of Electrode Placement. EEG recordings were reviewed by 2 independent EEG specialists. Onset of seizures were annotated based on EEG and video. Lead II ECG was measured simultaneously with a sampling rate of 250 Hz. After preprocessing of the ECG signal, 5 minutes of lead II ECG were extracted, starting 3 minutes before the onset of each seizure. Results were visually inspected to ensure that no QRS-complex was missed.

In the first part of the analysis, data were split into 2 segments: baseline (3 minutes) and ictal (2 minutes). Parameters in time and frequency domain were calculated and compared according to the standards of the Task Force (Task Force). In time domain we analyzed heart rate for both segments using mean RR interval, standard deviation of all normal to normal intervals (SDNN) reflecting all the cyclic components responsible for variability in the period of recording and the square root of the mean of the sum of the squares of differences between adjacent NN intervals (RMSSD), estimating high frequency variations in heart rate. Serial autocorrelation was used as another method to show how the samples of the RR interval time series cross-correlate at different time points. In frequency domain power spectra of the RR intervals were calculated. Statistical differences were determined by the Kruskal-Wallis test and p<0.001 was considered statistically significant.

Next, we wanted to identify the most informative ECG parameter to discriminate the data sets before and after the onset of seizures. To find the best predictive features, Kruskal-Wallis was used and features were selected that give a p value < 0.05.

In the last part of the analysis, the algorithm proposed in Leutmezer et al. was used to find the temporal relation of ictal heart rate changes to EEG seizure onset [17]. This method enables dynamic ECG analysis at the transition from the interictal to the ictal state. Using this methodology we can automatically identify heart rate changes that were seizure related. In this way, we can correlate the start of ECG changes with the EEG onset of the seizure and define the temporal relationship.
Results

80 seizures were selected, 40 with focal onset, 40 with generalized onset. Generalized seizures were tonic, tonic-clonic or myoclonic. In the seizures with focal onset, 20 were originating from the frontal lobe and 20 from the temporal lobe.

In the temporal lobe seizures 11 were left sided in onset and 9 right sided.

Mean age of the patients was 9.2 years (range 3-16), male/female ratio was 1.9, 1-3 seizures were selected from a total of 35 patients.

1. Analysis of ECG segments before and after encephalographic onset of seizure

In the first part of the analysis, data were split into a baseline segment, before seizure onset on EEG, and an ictal segment, after seizure onset on EEG. In time domain the mean RR decreases after onset of the seizure in the focal seizures. The difference in mean RR is statistically significant (p<0.001). SDNN was computed but showed no clear difference, RMSSD indicates a difference between the two segments with p=0.049. There were no statistical significant differences observed in the generalized seizures. In frequency domain, no statistical significant differences were observed in the power spectra of both types of seizures.

In the serial autocorrelation coefficient, we have the same findings. Serial autocorrelation shows a significant difference for partial seizures but not for generalized seizures (p<0.001).

Figure 2 shows our findings for the 3 groups, frontal lobe seizures, temporal lobe seizures and generalized seizures. Fig 2. In more detail, ictal bradycardia was noted in 5 patients, 3 with temporal lobe seizures and 2 with frontal lobe seizures. All these seizures were left sided in onset.
Figure 2: Significant difference in mean RR interval before (B) and after (A) seizures onset in frontal (F) as well as temporal lobe(T) epilepsy. No difference was found in generalized seizures (G).

*p<0.01, **p<0.01

The sets of heart rate parameters that were used for our first analysis (RR, SDNN, RMSSD, serial autocorrelation and power spectra of RR) were compared for sensitivity and specificity in partial seizures.

We examined 3 possible combinations of parameters:

A first set contains all time and frequency domain parameters with a p-value<0.05. A second set combines mean RR interval and serial correlation and RR interval alone is a third possibility. This classification shows that mean RR provides the best specificity whereas a combination of parameters can improve sensitivity in partial seizures. However, important to note is that sensitivity remains low., whatever parameters was included.

<table>
<thead>
<tr>
<th>features</th>
<th>sensitivity</th>
<th>specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time and frequency <0.05</td>
<td>0.56</td>
<td>0.91</td>
</tr>
<tr>
<td>mean RR and serial correlation</td>
<td>0.31</td>
<td>0.93</td>
</tr>
<tr>
<td>mean RR</td>
<td>0.43</td>
<td>0.95</td>
</tr>
</tbody>
</table>

2. Heart rate changes at the onset of the focal seizures

In the second part of the analysis we used the algorithm of Leutmezer to find the temporal relationship of ictal heart rate changes to seizure onset on EEG. As the heart rate changes were not present in patients with generalized seizures, we used only the focal seizures for this analysis. We could confirm that the majority of the focal seizures present a typical pattern after use of the algorithm as described by Leutmezer and this pattern is shown in the figure. Figure 3. After identification of the breakpoint in heart rate we compared the onset of the ictal heart rate changes with the onset of the seizure on EEG. In 70% of the focal seizures we found a pre-ictal onset of heart rate changes. 8% showed a pre-ictal bradycardia, 62% showed a pre-ictal tachycardia. Looking at the temporal relationship between the heart rate changes and seizure onset on EEG, we found that the
time lag has a mean of 3.59 seconds (range 0.2-29 seconds). 20% of the focal seizures had an ictal onset of heart rate changes whereas in 10% ECG changes were only noted after EEG onset of the seizure.

![Figure 3: example of significant decrease in RR interval at the onset of the seizure showing the “heart rate breakpoint” at the transition from pre-ictal steady state phase to ictal tachycardia phase according to the algorithm of Leutmezer et al.](image)

Discussion

Higher brain systems have a descending control on autonomic outflow from the brainstem to the heart. The insula and prefrontal cortex are thought to represent the autonomic nervous system at the cortical level and can influence the output of the medullary reflex centers [20,21]. Input from the insula can give rise to an excitatory “pressor” or inhibitory “depressor” response at the cardiac level. There is evidence of a hemispheric specific organisation of this response as shown in the depth electrode studies by Oppenheimer with the pressor response lateralized to the right and depressor response to the left hemisphere [22].

In patients with seizures, epileptic discharges are thought to propagate to the central autonomic network and change or disturb normal autonomic control of vital cardiac functions. This activation of central autonomic nervous system is responsible for the peri-ictal autonomic cardiac symptoms observed in epilepsy patients. As we know heart rate changes can precede the clinical and encephalographic seizure onset, early detection of these changes can have an application in seizure detection systems.

Ictal tachycardia in adults has been reported in up to 100% of the seizures, taking into account that in most of the studies, focus is on focal seizures alone or more specifically temporal lobe seizures, as
these are the most refractory in adult epilepsy. An overview of the papers on this issue is presented in the table. Table

These results are comparable with the findings in our study. Ictal tachycardia is present in 90% of the children with focal seizures originating from the temporal lobe or frontal lobe. Temporal and frontal lobe structures are anatomically closely interconnected with the central autonomic network, so spreading to these regions are most likely to induce autonomic changes. In generalized seizures there is a trend towards faster heart rate after seizure onset, but difference between the ECG segments before and after seizure onset was not statistically significant.

Looking at the heart rate changes in more detail, we found ictal bradycardia in 5 partial seizures, 3 originating from the temporal lobe and 2 from the frontal lobe. All these seizures were left sided in origin, consistent with the hemispheric specific findings in stimulation studies [22]. These studies show a lateralization with depressor response to the left hemisphere. However, other studies on lateralization showed contradictory results. The pattern of seizure spread, presence of a lesion and hand dominance are probably factors influencing ictal cardiovascular response and explaining in part the different results in previous studies [23-25].

Early detection of seizures is becoming an important issue in epilepsy. Acute changes in heart rate or respiration can be the first manifestation of a seizure. Early detection of seizures is important in the development of closed loop systems. These novel systems aim to abort seizures with immediate therapeutic measures at the onset of the seizure. Therefore, identification of these early autonomic manifestations in seizures can contribute in developing new treatment strategies based on seizure detection for patients with refractory seizures.

From our results we can confirm that ictal heart rate changes can be clearly found in focal seizures in childhood originating from the temporal lobe as well as the frontal lobe, but not in generalized seizures. Due to relatively small sample size, difference between mesial and lateral temporal lobe seizures could not be made. The heart rate changes preceded the seizure onset on EEG in 70% of the cases, making seizure detection and development of closed loop systems a possible therapeutic alternative in refractory focal seizures in childhood. However, in previous reports, sinus tachycardia preceded seizure onset on surface EEG for an average in 18.7 seconds [6,14,17]. In our study population, time lag was only 3.59 seconds, making the time window to react very short.

Calculation of the mean RR has a high specificity (0.95) for detection of seizures. However, we need a combination of more parameters to improve sensitivity which remains quite low (0.43). In addition, in generalized seizures tachycardia alone is not useful for seizure detection. In this subpopulation, a
combination of parameters will improve sensitivity and specificity and the use of for instance accelerometers seems promising [4,26].

Conclusion

Ictal heart rate changes are present in seizures in childhood epilepsy. The changes can be observed in temporal lobe seizures as well as frontal lobe seizures, but not in generalized seizures. Heart rate changes precede seizure onset in 70% of the focal seizures, making seizure detection and closed loop systems a possible therapeutic alternative in childhood epilepsy. However, sensitivity of ECG changes remains low and the time lag between pre-ictal heart rate changes and actual seizure onset is very short.

<table>
<thead>
<tr>
<th>Adult/children</th>
<th>Seizure type</th>
<th>Ictal findings</th>
<th>Pre-ictal findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marshall et al. 1983</td>
<td>adults</td>
<td>TLE</td>
<td>Ictal tachycardia 64%</td>
</tr>
<tr>
<td>Blumhardt et al. 1986</td>
<td>adults</td>
<td>TLE</td>
<td>Ictal tachycardia 92%</td>
</tr>
<tr>
<td>Keilson et al. 1989</td>
<td>adults</td>
<td>Refractory seizures</td>
<td>Ictal tachycardia 96%</td>
</tr>
<tr>
<td>Galimberti et al. 1996</td>
<td>adults</td>
<td>Partial seizures</td>
<td>Ictal tachycardia 49%</td>
</tr>
<tr>
<td>Schernthaner et al. 1999</td>
<td>adults</td>
<td>Partial seizures</td>
<td>Ictal tachycardia 82.5%</td>
</tr>
<tr>
<td>Garcia et al. 2001</td>
<td>adults</td>
<td>Partial seizures</td>
<td>Ictal tachycardia 32%</td>
</tr>
<tr>
<td>Zijlmans et al. 2002</td>
<td>adults</td>
<td>Refractory seizures</td>
<td>Ictal tachycardia 73%</td>
</tr>
<tr>
<td>Leutmezer et al. 2003</td>
<td>adults</td>
<td>Most pronounced TLE</td>
<td>Ictal tachycardia 86.9%</td>
</tr>
<tr>
<td>Di Gennaro et al. 2004</td>
<td>adults</td>
<td>TLE</td>
<td>Ictal tachycardia 92%</td>
</tr>
</tbody>
</table>
Table Studies on presence of ictal/pre-ictal tachycardia in patients with refractory epilepsy

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Seizure Type</th>
<th>Ictal tachycardia (%)</th>
<th>Preictal (x/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayer et al. 2004</td>
<td>children</td>
<td>TLE</td>
<td>98%</td>
<td>20/71</td>
</tr>
<tr>
<td>Moseley et al. 2011</td>
<td>adults</td>
<td>Refractory seizures</td>
<td>57%</td>
<td></td>
</tr>
<tr>
<td>Isik et al. 2012</td>
<td>children</td>
<td>Refractory seizures</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Acknowledgements

This research was supported by: Research Council KUL: GOA MaNet, PFV/10/002 (OPTEC), IDO 08/013 Autism, several PhD/postdoc \& fellow grants; Flemish Government: FWO: PhD/postdoc grants, projects: G.0427.10N (Integrated EEG-fMRI), G.0108.11 (Compressed Sensing) G.0869.12N (Tumor imaging); IWT: TBM070713-Accelero, TBM070706-IOTA3, TBM080658-MRI (EEG-fMRI), TBM110697-NeoGuard, PhD Grants; IBBT; Flanders Care: Demonstratie project Tele-Rehab III (2012-2014); Belgian Federal Science Policy Office: IUAP P7/ (DYSCO, 'Dynamical systems, control and optimization', 2012-2017); ESA AO-PGPF-01, PRODEX (CardioControl) C4000103224; EU: RECAP 209G within INTERREG IVB NWE programme, EU HIP Trial FP7-HEALTH/ 2007-2013 (n° 260777)

References

