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Preface

The Force will be with you, always - Obi-Wan Kenobi to Luke Skywalker

Forces: Then & Now

The ability of human mind to learn from old experiences, to string them
logically as cause and effect, to develop meaningful patterns and then to be
able to alter the cause to manipulate the effect in its favor has been the reason
behind mankind’s continuing prosperity and dominance over other life forms
on earth.

One experience out of the many layers accumulated over 200,000 years of
existence of Homosapiens has been the ability to cause and perform motion
in many forms. Motion, which in modern thought is understood as change
in position, speed, direction, shape or configuration or abstractly a change in
“State”.

The questions attached -
• “What is motion ? ”

• “Why is there motion ? ”

• “ How is there motion ? ”
sound today ridiculously simple-minded.

Yet, we thrive on the accumulated systematic thought process which has been
ongoing since wo/man exerted her/his curious mind on nature and natural
process.

We start with the Greeks, who are known to have developed the notion that
nature is comprehensible through logic. And among the Greeks was Aristotle
- “The Philosopher”. For him - Motion is the problem of force and vice versa.
Aristotle, who gave the description of nature in terms of four fundamental
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ii PREFACE

elements, believed that - Each element has its natural motion and its
necessary destination of a natural state.

Thus mud, constituted of water and earth, if dropped, follows the path of the
dominant element - earth and seeks its natural state at the center of the earth.

The core of his idea was the following: motion is caused, when a force is
exerted by an agent and ceases as soon as the acting force stops too. Any
body constrained out of its natural state, on the removal of the constraint will
execute motion until it reaches its natural state.

Archimedes, a physicist and engineer in modern terms, was one of the first to
see rest and not just motion worthy of attention. He concluded that the natural
state of a body is one where - opposing forces balance (this was probably one
of the first understandings of superposition of forces ) [6] and an unbalance of
forces causes motion out of the equilibrium or stable state.

Figure 1: Give me a place to stand and I will move the earth - Archimedes on
the lever.

Two thousand years later Galileo Galilei, a pioneer experimentalist from Padua
threw canon balls from the crow’s nest of moving ships, dropped them down
high towers and along inclined planes to discover laws and test conjectures. His
observations told him-

A body set in motion continues in its state of motion, without the aid of any
force and unless there are forces which resist its motion. This he called inertia.

Galileo understood that the state of a body in constant velocity was equivalent
to its state at rest and both did not require application of force. Here was
created a digression from Aristotelian thought that a natural state of a body is
the state of rest and that for a body to continue in a state of motion requires
constant application of force.

Fifty year had passed when Isaac Newton presented the three famous laws of
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motion in his thesis Philosophiæ Naturalis Principia Mathematica and together
with it also gave the Universal Law of Gravitation. These laws related force to
mass and to the concept of momentum. They also presented a new and then
uncomfortable scenario, since the laws of gravitation were interactions acting
over a distance.

Today our knowledge about forces is far more detailed and sophisticated. We
know that forces can not only cause motion but forces hold matter together.
The gravitational force keep us from floating away into space and keeps the
earth orbiting around the sun. We have managed to systematize our knowledge
about forces and have grouped them into 4 fundamental categories

• Gravitation

• Electromagnetism

• Strong Nuclear Interactions

• Weak Nuclear Interactions

These forces hold electrons inside an atom; protons and neutrons inside a
nucleus and cause the radioactive decay of certain nuclei.

We further understand that different forces act at various range or distances and
have very different strengths. E.g. gravitational force between nucleons inside
an atom is almost negligible compared to the nuclear interaction between them.
On the other hand at astronomical distances gravity is the most significant force
holding our solar system together.

We have also encountered forces which do not fall in the above categories. Their
action does not depend on the atomic or chemical nature of objects exerting
them or being exerted on. Rather, these are forces that exist only at certain
scales of description and not on others. These forces do not have a microscopic
meaning and manifest only at mesoscopic and macroscopic scales. Such forces
form the subject matter of our interest in this work. They depend on and
originate from the action of large numbers.

To understand the origin of such forces we pass over into the realm of
Thermodynamics and Statistical physics. In Chapter 1 we discuss the definition
of effective forces coming from a thermodynamic point of view and then look at
their statistical interpretation. We discuss some problems that make a similar
definition difficult in nonequilibrium.

Chapter 2 deals with basic theory of stochastic processes and in particular time-
dependent Markov process and Arrhenius rate law. The application of time-
dependent dynamics is seen in the context of the No-go theorem in Chapter
3.
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Chapter 4 is a review of the Large Deviation Theory and its applications in
statistical mechanics. We discuss its particular application in Markov processes.
The Large Deviation rate functions can be related to effective potentials and
forces in equilibrium. We discuss this with the help of an example: The
Entropic Spring

We end with a more serious study of statistical forces and try to extract
some of their general characteristics with the help of exploratory models. We
discuss how to derive effective dynamics of a slow parameter using systematic
coarse graining methods like the Projection operator technique. We apply these
arguments to derive the buoyant force in granular matter.

We look at nonequilibrium extensions of Statistical forces with the help of a
Markov jump model of coupled systems on 3 state space and a diffusion model
of the Rouse polymer.
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Abstract

In this work we present a few general and some specific aspects of effective
dynamics of macroscopic observables, obtained through the study of some
models. The work presented here is based on results already published in
[92, 95, 96].

It is usually observed that time-dependence in external driving is sufficient
to generate non-zero effective currents. We discuss the peculiarities of some
special time-dependent driving, where the effective, time-averaged current in
the system remains zero. This we call the No-go theorem. We compare this
with the usual time-dependence seen, say in case of ratchets, which do create
non-zero time averaged currents.

The purpose of statistical physics is to build connections between microscopic
variables (which are enormous in number and usually fast in “speed”) and the
macroscopic variables (usually fewer and slower compared to the microscopic
variables). Much can be inferred about the microscopic state of a system from
the nature of a well defined macroscopic observable defined on it. Hence, the
temperature of a gas is a pointer towards the average of the squares of the
velocities of the molecules of the gas. The main question which drives this
thesis work is : How the effective dynamics is connected to the microscopic or
the internal description in nonequilibrium ?

Forces in the internal dynamics can induce effective forces and result in currents
in the effective description. We are interested in the direct question about, how
to arrive at these effective forces and currents starting from the microscopic
picture. The inverse question is of greater interest about, given the effective
forces and currents how one can reconstruct aspects of the internal dynamics
and the potentials and forces acting here.

In our explorations, we visit the questions: “Is Archimedes’ Law true for
granular matter ? ” In the pretext of this question, we discuss various regimes
where granular matter behaves like fluids and the systematic corrections that
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viii ABSTRACT

appear when it behaves like a solid instead. We show that the forces exerted
by the granular system on the colloids immersed in them are different in the
different regimes. We present the emergence of a drag force in the far-from-fluid
regime.

We enter into the realm of nonequilibrium with the aid the very relevant
subject of Rouse polymer dynamics. The motion of a tagged monomer in
nonequilibrium conditions has been widely studied in the polymer physics
community, yet the nonequilibrium (as far as we know) has always been on
the coarse grained effective level of the tagged monomer. We explore in this
work, the significance of nonequilibrium force like shearing, when it exists in the
bath instead. Making a distinction between out-of-equilibrium in the system
or in its environment is of importance when building models to describe the
behavior of tagged particles in nonequilibrium baths e.g., the motion of a
macromolecule inside a living cell. The breaking of detailed balance in the
bath not only leads to the violation of the first fluctuation-dissipation relation
but also leads to the breaking of local detailed balance and hence violation
of the second fluctuation-dissipation relation. The corrections to the second
fluctuation-dissipation relation is a still an open topic of research.

We also explore how effective dynamics is in general influenced by breaking
of detailed balance in the bath. And what one can infer about the bath by
looking at the nonequilibrium statistical forces.



Beknopte samenvatting

In deze tekst staat de studie centraal van enkele effectieve dyamica’s in
de niet-evenwichts statistische mechanica.We bestuderen zowel specifieke als
algemene en meer conceptuele aspecten binnen bepaalde modellen. Het hier
gepresenteerde werk vindt zijn grondslag terug in al gepubliceerde resultaten
[92, 95, 96].

Eén van de fundamentele gevolgen van het uit evenwicht drijven van een
systeem is het optreden van stromen. Echter, opdat er zich een netto
effective stroom zou voordoen in een systeem is het niet voldoende dat de
potentiaal tijdsafhankelijk is. We bestuderen daarom enkele speciale gevallen
van tijdsafhankelijke potentialen (en velden) waarbij er geen netto gemiddelde
stroom geproduceerd wordt. We noemen dat ook wel het No-go theorema.
We maken ook de vergelijking met enkele gekende tijdsafhankelijkheden (zoals
bijvoorbeeld in ratchets) die w’el een effectieve (tijdsgemiddelde) stroom
induceren.

Het doel van statistische mechanica is een brug te bouwen tussen de
microscopische beschrijving, waar het aantal variabelen meestal erg groot is,
en de macroscopische beschrijving door middel van meestal een klein aantal
variablen. Zo geeft de temperatuur van een gas (in evenwicht) informatie over
de gemiddelde snelheid van de gasdeeltjes. De motivatie voor deze thesis is
het beter willen verstaan van hoe informatie omtrent de effectieve dynamica
van bepaalde observabelen zoals stroom zich relateert met de microscopische
beschrijving van het onderliggende systeem.
Zo kan men zich bijvoorbeeld de vraag stellen of de wet van Archimedes ook
geldig is voor granulaire systemen. Granulaire system kunnen zich gedragen
als vloeistoffen maar ook als vaste stoffen. Intuitief kan men zich de overgang
tussen beide regimes op de volgende manier voorstellen: zonder het aanbrengen
van externe krachten staan alle deeltjes stil en gedraagt het granulair systeem
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zich als een vaste stof. Begint men het granulair systeem te schudden door
het aanleggen van externe krachten, dan zal het vloeistofkarakter zich meer
en meer manifesteren. Krachten die door een granulair systeem op colloidale
deeltjes uitgeoefend worden, hangen dan ook in sterke mate af van het regime
waarin het granulaire systeem zich bevindt.

Het bestuderen van de dynamica van een Rouse-polymeer brengt ons bij niet-
evenwichtsfysica. In de literatuur wordt wrijving van deeltjes in een reservoir
meestal beschreven door een effectieve kracht die men aanbrengt op het deeltje.
Dat is het gecombineerde effect van de omliggende baddeeltjes op het gekozen
doeldeeltje. Hier willen we een stap verder gaan, namelijk door in plaats van
een kracht op het doeldeeltje aan te brengen, enkel een kracht op de baddeeltjes
aan te leggen. Dat geeft aanleiding tot een effectieve kracht op het doeldeeltje.
De microscopische dynamica wordt in evenwicht gegeven door de Boltzmann-
verdeling (via de voorwaarde van microscopische reversibilieit of detailed
balance). De effectieve dynamica van een deeltje is simpelweg het wegintegreren
van de vrijheidsgraden van het reservoir. Buiten evenwicht echter is de
stationaire verdeling niet gekend, er is geen detailed balance. We bestuderen
daarom ook hoe het breken van deze conditie de effectieve dynamica van deeltjes
beïnvloed. In het bijzonder willen we weten of de daarbij geïnduceerde niet-
evenwichts statistische krachten belangrijke informatie omtrent het reservoir
bevatten.
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Chapter 1

Introduction

In all affairs it’s a healthy thing now and then to hang a question mark on
the things you have long taken for granted. - Bertrand Russell (Philosopher,
Mathematician)

It’s not a silly question if you can’t answer it. - Jostein Gaarder, Sophie’s
World

1.1 Thermodynamics

The world accessible to human senses, even the depths where our microscopes
can dig into, is made of not one, two or tens but close to 1023 number of
particles. To be able to describe this world and navigate through it we need
a language appropriate to its size. For instance, on a warm day you let the
windows of your rooms open to let some cool air in. The knowledge that the air
outside is cooler than the air in your room precedes your judgment that leaving
the windows open would eventually cool your room. Irrespective of which city
(village) in the world you live in and its corresponding air quality, you would
expect the same outcome.

Heat flows from high temperature to low temperature. Food cooks faster in a
pressure cooker. Gas expands when heated at a constant pressure. Experiences
that remain true no matter the chemical nature or the atomic structure of the
constituents involved.

1
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The set of principles which govern such phenomena in systems with a large
number of particles fall under Thermodynamics. The laws of thermodynamics
describe the state of a system in terms of - not the details of position and
momentum of the individual particles constituting it, but rather in terms
of global parameters like pressure P , volume V , temperature T , number of
particles n. The change in state of a system is dictated by quantities like
internal energy U , work W , heat Q, entropy S, free energy F .

Assuming that the laws of thermodynamics and the various relations between
global parameters are known, we want to talk about the forces which are exerted
by and exerted on these systems. Just as Aristotle spoke of a natural state
of a system and the natural motion as the change in the state of the system
until it reaches its natural state. The thermodynamic “natural state” of a
system is called its equilibrium state. Away from equilibrium, thermodynamic
forces act to evolve the system state towards equilibrium. The second law of
thermodynamics tells us that for an isolated system equilibrium is defined as
the state which has maximum entropy and a system would spontaneously evolve
towards this state. If the system is in contact with an environment, with which
it exchanges energy, the equilibrium state is the one for which the free energy
is minimized, such that the entropy of the universe is maximized.

If dSu is the change in entropy of the universe, which consists of the system,
with entropy change dS and the environment with entropy change dSE, then

dSu = dS + dSE

For fixed volume and number of particles of the environment, the changes in
entropy of the system and the environment, when there is no work done, are:

dS ≥ 1

T
dU, dSE ≥ 1

T
dUE

where dU is the change in energy of the system in contact with an environment
at fixed temperature T . Since the energy in the universe is conserved, the
energy change in the system is negative of the change in energy of the
environment dUE,

dU = −dUE

dSE ≥ 1
T − dU > −dS. Therefore,
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dSu ≥ 1

T
(dU − TdS)

≥ 1

T
dF (1.1)

where dF is the change in Helmholtz free energy

F := U − TS (1.2)

of a system. Hence, for an arbitrary system with fixed volume, temperature
and number of particles, the direction of increasing entropy of the universe
dSu > 0 is the same as decreasing the Helmholtz free energy dF < 0.

There are other markers of the equilibrium state, depending on the manner
in which the system interacts with its environment. E.g., if in addition to
exchanging heat at constant temperature, there is change in volume V of the
system at constant pressure P , the entropy of the universe is maximized when
the Gibbs free energy

G := U + PV − TS

is minimized.

The free energies are in general called Thermodynamic Potentials and are
general indicators towards the direction of evolution.

We can also define a Grand Potential

φ := U − TS − µN

In chemical reactions and systems with two or more phases in equilibrium, the
constituent number of particles in each subsystem can change. The increase in
the Gibbs free energy of a system on addition of one particle while temperature
and pressure are held fixed is called the chemical potential µ of the system.

1.1.1 Thermodynamic Forces and Generalized displacements

Given the definitions of the thermodynamic potentials above and using the first
law of thermodynamics, we arrive at the following expression for the change in
internal energy of the system
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Figure 1.1: Free Energy Landscape in configuration space

dU = TdS − PdV + µdN

where PdV is the mechanical work done by the system and −µdN is the
chemical work. Using this expression in eq. (1.2) yields the following identities

S = −
(

∂F
∂T

)

V,N

P = −
(

∂F
∂V

)

T,N

µ =

(

∂F
∂N

)

T,V

(1.3)

Pressure P and chemical potential µ are the thermodynamic forces associated
with the generalized displacements in volume V and number of particles N .
Figure 1.1 makes the action of these forces quite apparent. The thermodynamic
forces drive the system in the direction which minimizes its free energy. In the
state where the free energy is minimized, the force is zero.
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Example: Consider N particles of supersaturated steam in a box of volume V ,
maintained at temperature T . In equilibrium what is the number of particles
which remain in vapor state and how many particles condense into liquid state
?

For a system at constant temperature and volume the appropriate thermody-
namic potential to consider is the Helmholtz free energy

dF = −PdV + µdN

Assuming that the total volume V is equal to the volume of the water vapor.
If Ns and Nl are the number of steam and liquid particles respectively, then
N = Ns +Nl and dNs = −dNl. If the chemical potentials of liquid and steam
are µl and µs respectively, then

µdN = µsdNs + µldNl

= (µs − µl)dNs (1.4)

Using eq. (1.3), at constant T and V

µs − µl =

(

∂F
∂Ns

)

T,V

In equilibrium, the free energy is minimum, thus in equilibrium the number of
liquid and water vapor particles are such that the chemical potentials of liquid
and water vapor are equal.

µs = µl

in equilibrium.

We conclude that an imbalance in thermodynamic forces cause generalized
displacements in the direction where thermodynamic potentials are minimized.

The formalism of forces in Equilibrium Thermodynamics is very well under-
stood. It is nevertheless true that the validity of Equilibrium Thermodynamics
is strictly limited. It requires systems to transition between equilibrium states
and the dynamics to be either reversible or at least non-dissipative. This
formalism does not apply to most machines, motors and chemical reactions
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which undergo irreversible changes at finite speeds, with dissipative forces like
the frictional force acting on them.

Some developments have been made to describe irreversible processes, away
from equilibrium, still using principles close to Equilibrium Thermodynamics.
These developments are summed up under Nonequilibrium Thermodynamics.
The purpose of the next section is not to be an extensive discussion on the
principles and results of Nonequilibrium Thermodynamics, but to illustrate
the usage of forces in nonequilibrium situations.

1.2 Nonequilibrium Thermodynamics (NET)- Fluxes

and Forces

The purpose of NET is to study the change in state of a system, not only
through its initial and final values, but to monitor the behavior as a function
of time. It describes the approach to equilibrium, through irreversible paths,
of a system that has been driven far from equilibrium.

NET is based on the assumption of local equilibrium, which widely stated, says
that a system which is undergoing fluxes or currents and is out of equilibrium
can be split into many subsystems each of which is assumed to be small
enough to be locally in equilibrium. In other words, the time of relaxation
to equilibrium of each subsystem is assumed to be much smaller than the time
of relaxation of relevant observables. This assumption is of course not valid
for systems like polymers in which the time of relaxation of each subsystem is
comparable to the whole system.

NET also assumes that all quantities defined in equilibrium retain their
meaning in nonequilibrium, like entropy, temperature; but they are allowed
to change with time and space. Together with these assumptions, there exists
also an empirical relation between fluxes and forces which is a starting point
of NET. This relation is similar to the equilibrium thermodynamic equations.

1.2.1 Transport Equations

The three famous transport equations (Fourier’s Law, Fick’s Law and Ohm’s
Law) have been proposed from experimental considerations and are as follows:

q = −λ∇T (1.5a)

J = −D∇c (1.5b)
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I = σ∇ψ (1.5c)

These equations state that the heat flux q (amount of energy flowing per unit
time per unit area through a conductor), matter flux J and charge flux I are
related linearly to thermodynamic forces which are caused by inhomogeneities
in temperature T , mass concentration c and electric potential ψ. The constants
of proportionality are λ, the material’s thermal conductivity, D, the diffusion
constant and σ, the charge conductivity.

In general,

Jα =
∑

β

Lαβ∇Xβ

where Jα are the generalized fluxes and ∇Xβ are the generalized forces, which
are changes in some intensive variables Xβ and which can again be represented
as gradients of some generalized free energies with respect to some extensive
variables, in the same manner as in equilibrium thermodynamics.

1.3 Statistical forces - It is an elementary matter
(of numbers)

Thermodynamics describes the macroscopic world around us - in terms of
macro observables such as pressure, temperature, volume etc. The Laws of
Thermodynamics dictate the relations between various macroscopic quantities
and the manner and direction in which change in them could occur to be
consistent with observations (reality). Yet, these laws of Thermodynamics
must be a consequence of the intense activity of atoms and molecules at the
microscopic scale. Hence, to be able to truly appreciate what the laws of
thermodynamic tell us, as well as to be able to understand and predict the
behavior of systems on which the aspects of equilibrium thermodynamics are
not applicable any more, it is paramount that we explore the relations between
the microscopic and macroscopic world.

Statistical mechanics is the link between the microscopic “invisibles” and the
macroscopic “visibles” ( observables).

Consider an mole (1023) non-interacting gas particles (i.e. an ideal gas) released
into the corner of a large room. If we follow the motion of each of these particles
separately, nothing spectacular happens. Each particle follows its trajectory
unscrupulously. Yet, instead if we forget about individual particles for a while
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and focus our attention on the number density of particles in the room, we
notice that the density has evolved from almost a delta function, concentrated
at the corner of the room to a uniform density spread across the volume.

Why did this happen ? – It is a simple matter of numbers. In the lack of any
biasing forces, like gravity, acting on the gas particles, there are on average
more particles moving from the corner to the rest of the volume than vice
versa.

Hence there seems to be a trend on average towards uniform density. There
is an apparent lack of force to push this trend, but the statistical world is a
democratic world and the power of numbers prevails. We would like to define
a force called Statistical force to reflect the tendency of the system to relax
towards the state of maximum entropy.

How could you measure this force ? – Like any force, this force can be measured
by its action on a probe. As a probe, we introduce a wall which constrains
the motion of the particles along a certain direction. From our experience of
thermodynamics we know that the gas particles do exert a force on the wall,
which on a unit area we call pressure of the gas. We will arrive later at the
conclusion that this force is statistical in nature.

1.3.1 Entropy - The link

In the year 1877, Ludwig Boltzmann was able to establish the link between the
microscopic world and the macroscopic world through his famous equation

S = kB logΩ

He connected the thermodynamic entropy S to the phase space volume Ω (or
the probability ) of the macrostate. kB is the Boltzmann constant.

Microstate: The microscopic description of the system is given in terms of
its microstate (represented by η). For a system of N gas particles in a room
of volume V , the microstate of the system is a point in 6N dimensional phase
space - 3 dimensions each of position and momentum.

Macrostate: The macrostate describes the observable state of the system. It
could be total energy, total angular momentum etc.

Volume of the Macrostate: is the volume in phase space, occupied by all
those microstates which have a given value for the macroscopic observable.
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The most probable state or equivalently the equilibrium (macro)state is the one
for which the volume in phase space Ω is maximum.

This is indeed consistent with our thermodynamical definition of equilibrium
state, which maximizes the entropy of the universe.

Following these considerations further, for a system in contact with a heat bath
at temperature T , one comes to the conclusion that for a fixed temperature and
volume, in equilibrium the microstates are distributed with a Gibbs-Boltzmann
probability distribution (P ()):

P (Es) =
1

Z(β)
e−βEs

Z(β) =
∫

e−βEsdΩ is called the partition function, β = 1
kBT is called inverse

temperature.

The average energy of the system

Ē =

∫

P (Es)EsdΩ = − ∂

∂β
logZ(β)

is the internal energy U we speak about in thermodynamics. As is quite
clear from the equation above, the average energy does not depend on the
microscopic details of the gas particle dynamics, but only on some global
properties of the system.

For a system at constant temperature, the pressure in the microstate s is given
by πs = − ∂Es

∂V .

The average pressure of the system in equilibrium state is then

P̄ =

∫

πsP (Es)dΩ

After some manipulations we find that the average pressure

P̄ =
1

β

(

∂

∂V
logZ

)

T

is also a statistical quantity.

The statistical entropy S = −kB

∫

P (Es)logP(Es)dΩ can be derived from
similar arguments and making use of the thermodynamics relations
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dU = TdS − PdV

The free energy F̄ = Ē − TS can be calculated using these expressions and we
find back again the relation between the statistical force P̄ and the free energy
F̄

P̄ = −
(

∂F̄
∂V

)

T

We see that in general the Statistical observables P̄ , Ē etc. are obtained from
the microstate η, by an appropriate averaging out or coarse graining of
the microstates, with some probabilistic weights.

We thus propose, in general, for a joint system with a generalized macro
variable X and micro variables η distributed according to the joint probability
distribution ρ(η,X) the Statistical force on the macro variable, is given by

FStat(X) =

∫

ρX(η)

(

−∂H(X, η)

∂X

)

dη (1.6)

where H(X, η) is the joint energy of the {X, η} system and ρX(η) is the
probability density of the microstate η, for a fixed value of the macro variable
at X .

In Equilibrium

The statistical force which the microscopic degrees of freedom exert on the
macroscopic degrees of freedom results when a coupling is inserted between
the two systems. This coupling would in practice be some kind of constraint
on the microscopic dynamics in presence of the macroscopic system. E.g., if
the macroscopic observable is the mean value of the microscopic variables (η),
then the phase space of the micro variables is confined to a subspace of the
available phase space such that their mean is fixed to X . In general, to find
the new stationary distribution of the micro variables under constraint is not
trivial. When working with systems with an equilibrium dynamics though, life
is a lot simpler. One can show that new stationary distribution ρX(η), the
probability of the microscopic state η for a given value of the macro observable,
X is simply equal to conditional probability ρ(η|X) of the old joint distribution
ρ(η,X) being in this subspace.

ρX(η) = ρ(X |η)
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Hence, in equilibrium ρX(η) = e−βH(X,η)

Z(β)

Substituting this in eq. (1.6) gives us back the thermodynamic definition of
forces

FStat(X) = − ∂F̄
∂X

as gradients of generalized thermodynamic potentials.

In Nonequilibrium

It has been shown in [14] that when the microscopic dynamics is out of
equilibrium, then in general

ρX(η) 6= ρ(X |η)

Thus, we do not have a simple way to relate Statistical forces with the
thermodynamic potentials.

A simple example

Consider a particle hopping on a ring with N sites (i). The jump rates are
asymmetric with the rate to jump clockwise as p and anti-clockwise as q. For
all rates such that p 6= q, the dynamics is non equilibrium and there is a
non-zero current

j(i, i+ 1) =
p− q

N

flowing through it.

The stationary distribution ρ(i) = 1
N is a constant.

Suppose now we constrain the dynamics by taking away one site, say m, from
the ring. The motion is now confined to a subspace of the original phase space.
The stationary distribution of the new process with rates p, q for all sites
i 6= m and zero for jumps into and out of site m, can be calculated by solving
the Master equation with the new rates. We find that

ρm(i) =

{

1
Z (p/q)i if i 6= m

0 otherwise
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where Z =

N−1
∑

i=1

(p/q)i

The dynamics is infarct turned into detailed balance now.

On the other hand, the conditional probability of the joint system under
constraint is

ρ(i|m) =

{

1
N−1 if i 6= m

0 otherwise

This example clear shows that out-of-equilibrium there is no simple way to
relate the original dynamics to the new constrained dynamics. When p = q we
get back the equality between the two cases in equilibrium.

Further discussion on the nature of statistical forces with some examples has
been made in Chapters 5 and 6. Parts of the discussions about thermodynamics
and statistical physics in this chapter have been inspired from [60, 117, 85].
Some historical parts were taken from [120].



Chapter 2

Stochastic processes and
Markov systems

A man must have chaos yet within him to be able to give birth to a dancing
star.

- Friedrich Nietzsche, Thus Spake Zarathustra

Who could ever calculate the path of a molecule? How do we know that the
creations of the worlds are not determined by the falling grains of sand?

- Victor Hugo, Les Miserables

2.1 Introduction

Classical uncertainty came naturally to human thought from the idea that we
are too small and the universe is too large and interrelated for a thorough
deterministic description. Anything from hydrogen atom to baseball is tinged,
to a greater or lesser degree, with uncertainty. This uncertainty may lie in
defining their initial conditions or in their dynamics itself. This uncertainty is
a result of insufficient information about the workings of a system and is due
to the choice of coarse-graining or macroscopic definition which we attach to
the variables describing the system.

13
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Classical uncertainty is a result of insufficient information. Think of the
question, what will be the outcome of one single experiment of coin toss, Heads
or Tails ? Or which number out of one to six would appear on the face of
die in one throw ? These are physical phenomena governed by Newtonian
Mechanics and we can give a precise answer to these questions, if we have
information about the initial state of the coin or the die (its configuration in
three dimensional space), initial velocity and angular momentum imparted to
it, the force of gravity, of course the impact on the dynamics due to the millions
of surrounding air particles as well as the force and the nature of impact once
it touches the ground. Even for very simple questions like above, there seems
to be a lot of considerations to be accounted for.

We handle these matters in a more pragmatic but “imprecise” manner, in the
language of probability. We ask the question whether the coin or die is fair,
and if that is so, then we evoke the arguments of symmetry to say that since
the two faces of the coin are equivalent for all practical purposes and all the six
faces of the die are dynamically similar, there is a one in two chance of seeing
Heads as an outcome of a coin flip and one in six chance of seeing say number
two as an outcome of a die throw.

To predict the probabilities of various states which a system could acquire, it is
important to know beforehand not only the nature of the system but also the
nature of the experiment due to be performed. Certainly, some experiments
are designed in a way that only a subset of states in the total state space are
accessible.

While posing the question, what the probability is of a Heads or Tails in an
experiment of coin toss, it is not enough to say that the two faces of the coin
are equivalent, but one must also mention the mechanism of the flip. If the flip
is such that the coin can take all possible orientations in 3-D space then for a
significant area of the coin circumference, there exists a non-zero probability of
the coin landing on its edge rather than on any of the two faces. Mahadevan
and Yong in [97] show that there is more to the story than the said “fairness”
of the coin. They visited the question of a “fair” three sided coin (non-zero
thickness), and showed that the probability is a function of the aspect ratio 1

and angle between the angular momentum vector and initial orientation of the
normal to the coin face. They also showed that a fair three sided coin must
have an aspect ratio of 1/

√
3.

While formulating a problem probabilistically, the state of the system is
described by a random variable which can take any value out of a set called
the state space, with a certain probability. In the next section (2.2) we shall go
through a short historical overview of random processes in physics. In section

1. ratio of its width to its height
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2.3 we will start with a mathematical formulation of stochastic process and in
section 2.4 we shall study in detail the nature of Markov systems. In chapter
3.2 we shall look at an intriguing application of time-dependent Markov process
in molecular machines.

2.2 Historical Elements

The theory of stochastic processes, at least in terms of its application to physics,
was accelerated with the twentieth century explanations of peculiar character
in motions of the particles of pollen in water, first observed as early as 1785
by Dutch physician Jan Ingenhousz and later rediscovered and studied in some
detail by Scottish botanist Robert Brown in 1827 [54, 23]. At about the same
time, in 1822, Joseph Fourier came up with the heat conduction equation, on
the basis of which A. Fick set up the diffusion equation in 1855 [51].

A. Einstein’s ingenious microscopic derivation of the diffusion equation:
Concerning the motion as required by the molecular-kinetic theory of heat,
of particles suspended in liquids at rest [40, 41, 42] in 1905-1906 provided
a description of the perpetual motion of small particles immersed in a fluid.
In developing his theory Einstein developed many concepts which are, today,
fundamental in the study of stochastic processes. Using modern terminology,
he introduced the Markov chain model, discussed in section 2.4 to study the
motion of a particle.

Paul Langevin in 1908, was the first to apply Newton’s second law to
a “Brownian particle” [84], on which the total force included a random
component. His approach was based on single-stochastic realizations of the
process. Subramaniam Chandrasekhar in 1943 was able to solve several
dynamical problems in terms of random variables that evolved according to
Langevin’s version of F = ma [26]. The approaches of Langevin and Einstein
represent the two main approaches in the theory of stochastic processes.

The synthesis of the approaches leading to the understanding of how the
properties of stochastic motions are connected to deterministic dynamics of the
system and its heat bath were understood much later in works by Mark Kac,
Robert Zwanzig and others [73, 55, 130]. The theory of stochastic processes was
developed during the 20th century by several mathematicians and physicists
including Fokker, Planck, Kramers, Klein, Wiener, Kolmogorov, Itô, Doob
[53, 109, 78, 108, 80, 68, 37, 72, 87, 38].
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2.3 Stochastic process

A random variable is a quantity that under given conditions(of experiment)
can assume different values (outcome). It does not matter whether the
randomness is intrinsic or unavoidable or an artifact of our ignorance.

A state space is the set of all possible outcomes of an experiment. Also called
sample space or configuration space and is denoted by Ω.

Examples

• The possible outcomes of the experiment of tossing a coin are H and T. The
sample space is Ω = {H,T }.

• The possible outcomes of the experiment of throwing a die are 1, 2, 3, 4, 5 and
6. The sample space is Ω = {1, 2, 3, 4, 5, 6}. These are discrete random
variables, which can take only countable number of values.

• The velocity of a Brownian particle in a colloidal solution is a continuous
random variable. The sample space is Ω = R

3. This is a continuous
random variable, which can take an uncountable number of values.

The word stochastic comes from the Greek word στóλoç, which means “aim”.
It also denotes a target stick; the pattern of arrows around a target stick stuck
in a hillside is representative of what is stochastic.

A stochastic process: The time evolution of a random variable is called a
random or stochastic process. Thus if X is a random variable, then {Xt}t∈T

denotes a stochastic process. For brevity, we will also denote a stochastic
process as X(t). T is to be interpreted as time and is a subset of (−∞,∞).
When T = N, then {Xt}t∈T is said to be a discrete time process and when
T = R , then it is said to be a continuous time process.

Example 1.3.2:

• Discrete time process: A process in which the increment in time is
deterministic and regular. The demand per week of a certain service over
time, the closing price of HSBC stock between the period Dec. 2013 and Dec.
2014.

• continuous time process: A process in which the increment in time is
stochastic and is itself governed by a probability density. The amount of
radioactive uranium present on the earth’s surface, number of cars in the
city center between 08:00 and 10:00 in the morning.
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2.3.1 Assigning probability and trajectories

A random variable X is completely specified by the range of values x it can
assume and the probability P (x) with which each value is assumed. That
is to say, that the probabilities P (X = x) for all possible values x tells us
everything there is to know about the random variable X . These probabilities
are evaluated by conducting the same experiment several number of times and
then counting the relative number f(x) for each outcome x. According to the
statistical interpretation of probability, the relative number or frequency f(x)
approaches P (x) in the limit of an indefinitely large number of experiments.

A stochastic trajectory

Every stochastic variable can be viewed as a function of two variables: t and
ω. One single realization of a stochastic process is called a trajectory. A given
trajectory is denoted as ω = (xt)0≤t≤T . If x0 is the initial state of the system,
then we denote by dPx0(ω) the probability density for the system to follow
the trajectory ω over time T . The expected value of a random variable or
any observable which is a function of the trajectory is defined as an average
over all possible trajectories(which are all possible paths or manifestations of a
system starting from the same initial condition). It is written mathematically
as follows:

〈g(ω)〉x0 =

∫

dPx0(ω)g(ω) (2.1)

where one integrates(or sums depending on the nature of time) over all possible
trajectories starting from x0 at time zero. For more general description of
trajectories and their properties I refer you to their discussion in [126, 90].

2.4 Markov process

2.4.1 Introduction

The efforts of probabilists of the first half of the 20th century had been mostly
dedicated(the problem of foundations aside), to the study of independence:
sums of independent random variables. After independent variables, the
simplest type of random evolution is Markovian dependence(named after A.A.
Markov, 1906). Andrey Markov, a Russian mathematician produced the first
results [98] (1906) for these processes, purely theoretically with the aim to
extend the law of large numbers to dependent events. A generalization to
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countably infinite state spaces was given by Kolmogorov (1936) [79]. In 1913,
Markov applied his findings for the first time to the first 20,000 letters of
Pushkin’s Eugene Onegin [110].

As an example of a Markov process, consider the successive states of a deck of
cards that is being shuffled. For predicting the order of cards after shuffling,
all useful information is included in (complete) knowledge of the current state
of the deck; if this is known, knowledge of previous states does not bring more
information about the accuracy of the prediction. Most examples of random
evolution given by nature are Markovian, or become Markovian by a suitable
interpretation of the words “current state” and “complete knowledge”.

The theory of Markov processes divides into sub-theories, processes where the
time increment is discrete is called a Markov chain. Processes which update
on continuous time but the state space is discrete are called continuous time
Markov processes (e.g. Random Walk on a lattice).

Diffusion is a continuous time Random Walk where a continuum limit is taken
for the lattice spacing ( e.g. Brownian motion).

The stochastic process {Xt}t∈T takes values in a set S - the state space. Usually,
S will be either N (as in the case of branching processes) or Z (random walks).
Sometimes, a more general, but still countable, state space Ω will be needed for
e.g. the configurations of a molecule while it goes through a cycle(this example
will be discussed in much detail in Chapter 3.2). A generic element of S will
be denoted by i or j.

Markov state models and their extensions are important tools for modeling
thermodynamic processes of open systems [75] and they find numerous
applications in chemical kinetics [107, 46, 20] and in bio-chemistry [82].

2.4.2 Markov process - Continuous time

In this section we shall go through the basic definitions and properties of a
continuous time Markov process.

The Markov Property

Simply put, a stochastic process has the Markov property if its future evolution
depends only on its current position, not on how it got there. Here is a more
precise mathematical definition.

Definition A stochastic process {Xt}t∈R taking values in a countable state
space S is called a Markov process (or said to have the Markov property) if
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P [X(tn) = in|X(tn−1) = in−1;X(tn−2) = in−2; . . . ;X(t0) = i0] =

P [X(tn) = in|X(tn−1) = in−1] (2.2)

for all tn > tn−1 > · · · > t0 ∈ R, all i0, i1, . . . , in ∈ S, whenever the two
conditional probabilities are well defined, i.e., when

P [X(tn) = in| . . . ;X(t1) = i1;X(t0) = i0] > 0

Given the state of the system at time t is i, the probability that between time
[t, t+ dt] it will jump to state i′ is given by

P (i′|i, t)dt = wt(i, i
′)dt+ O(dt)2

wt(i, i
′) is the transition rate for the jump. We assume that the probability of

more than one jump in the time interval [t, t+ dt] is of O(dt)2 and is therefore
negligible.

The probability to not jump within this time interval is then given by

P (i|i, t)dt = 1 −
∑

i′ 6=i

wt(i, i
′)dt+ O(dt)2

λt(i) =
∑

i′ 6=i

wt(i, i
′) is the escape rate associated with each state i ∈ S at time

t.

Given the transition rate wt and the escape rate λt, we can now write down
the finite time probability that the system stays in state i for time t2 − t1 and
would jump in the time interval [t2 + dt2] from state i to i′. For this we divide
the time interval t2 − t1 into n parts each of size k = (t2 − t1)/n, then we write
down the finite time probability as the product of probabilities that the system
does not make a jump from state i in any of the n time intervals from t1 to t2
and the probability that the system jumps in the time interval [t2, t2 + dt2] to
state i′. In the limit of large n, the length of each interval k becomes very small,
so that we can assume that the escape rate in each sub interval is constant.

P (i′, t2|i, t1)dt2 = wt2 (i, i′)dt2

n
∏

r=0

[1 − λt1+rk(i)k] (2.3)
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We can rewrite the right hand side with the help of the following equation, for
very small k

exp

(

n
∑

r=0

log [1 − λt1+rk(i)k]

)

= exp

(

n
∑

r=0

−λt1+rk(i)k

)

Rewriting (2.3), we get

P (i′, t2|i, t1)dt2 = wt2 (i, i′)dt2 exp

(

−
∫ t2

t1

λu(i)du

)

(2.4)

Hence the finite time probability that the system remains in state i for a time
t2 − t1 after which it jumps out of state i is

P (t2|i, t1)dt2 = λt2 (i)exp

(

−
∫ t2

t1

λu(i)du

)

dt2 (2.5)

This is the probability distribution of the waiting time in state i.

The probability of transition from i to i′ is given by

pt2(i, i′) =
P (i′, t2|i, t1)

P (t2|i, t1)
(2.6)

=
wt2 (i, i′) exp

(

−
∫ t2

t1
λu(i)du

)

dt2

λt2 (i) exp
(

−
∫ t2

t1
λu(i)du

)

dt2

=
wt2 (i, i′)

λt2 (i)

∑

j∈S

pij = 1; pii = 0
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Figure 2.1: Representation of a continuous-time Markov process

Probability of a stochastic trajectory

The figure 2.1 illustrates an example of a continuous-time stochastic process.
A random process X(t) starts in an initial state i0 at time t = 0 and stays in
this state until some time t0. In the interval [t0 + dt0] it makes a transition to
a different state i1. It stays in this state for time t1 − t0 after which it jumps to
a state i2. The trajectory ω = (X(t), t ≥ 0) of the state of the system which is
undergoing a continuous-time Markov jump process is assumed to be piecewise
constant.

The jump times (t0, t1, t2, · · · , tn) and the corresponding sequence of states
(i0, i1, i2, · · · , in) are sufficient to completely specify the trajectory of the state
of the system.

The initial probability density from which the initial state of the system is
sampled is

µ(0) = {µi(0) = P (X(0) = i) : i ∈ S}

Using the finite-time probabilities (2.4) and the transition rates and transition
probabilities, one can write down the probability of a given trajectory ω
between 0 ≤ t ≤ T as
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dPµ0 (ω) = µ0(i0)

n−1
∏

r=0

[

wtr+1 (ir, ir+1)exp

(

−
∫ tr+1

tr

λu(ir)du

)

dtr+1

]

× exp

(

−
∫ T

tn

λu(in)du

)

(2.7)

A stochastic process is called time-homogeneous when,

P (i′, t+ τ ; i, t) = P (i′, τ ; i, 0) for all i′, i, τ, t

which from now on can be written as P (i′, i; τ)

On the other hand, a process is called time-inhomogeneous, if the transition
probability P (i′, t+ τ ; i, t) depends on both times t and t+ τ and not just on
the time interval τ .

A time inhomogeneous process is also called a time-dependent Markov process.
In further sections, we are going to focus our attention mainly on time-
dependent Markov processes and discuss the various known properties of
Markov systems for time-dependent dynamics i.e., the transition probability
and escape probability density depend on time.
Time-dependence can be assumed when parameters governing the dynamics
depend on time. The rates of chemical reaction depending on the concentration
of reactants or Brownian motors which are governed by time-varying external
parameters are examples of time-dependent dynamics.

2.4.3 Generator of a Continuous-Time Markov process

So far and in the sections below, we discussed the continuous-time Markov
process in the more intuitive language of trajectories and probabilities of
trajectories. Here we would like to make a small excursion into a different
formalism to treat Markov processes.

There exists a more algebraic way to treat Markov processes which is done
in terms of matrices and generators. The transition probability P (Xt1+t2 =
i′|Xt1 = i) is represented by a matrix P t1

t1+t2
. Each entry in the matrix is

the transition probability P t1
t1+t2

(i, i′). For a time-homogeneous process the
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transition matrix depends only on the difference between the initial and the
final times. Thus, P (i, i′)t1

t1+t2
= Pt2(i, i′). From here we can reach the property

of a semi group

Pt1+t2 = Pt1Pt2

The generator

The generator is defined as the infinitesimal transition matrix

L† = lim
s→0

[Ps − I]

s
(2.8)

where I is the identity.

The time-evolution of the transition matrix is hence given by

dPt

dt
= lim

s→0

Pt+s − Pt

s

and using the semi-group property of the transition matrices and definition
(2.8) one is able to write down the forward Kolmogorov equation

dPt

dt
= L†Pt (2.9)

which leads us to the result
Pt = eL†t

If the probability distribution on space S is denoted by µt , then its finite
time-evolution is given by the equation

dµt

dt
= L†µt (2.10)

and
µ(t) = L†µ(0)

Equation (2.10) is the equivalent of the Master equation discussed in section
2.4.5.
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L†µt(i) =
∑

i′

[w(i′, i)µ(i′) − w(i, i′)µ(i)]

The backward generator is defined as follows

∑

i

g(i)L†f(i) =
∑

i

f(i)Lg(i) (2.11)

where f and g are arbitrary functions defined on S. The backward generator
acts on a function f in the following manner

Lf(i) =
∑

i′

wi,i′ [f(i′) − f(i)]

The right hand side of this equation is the change in the value of function f
times the rate of that change. Hence, the backward generator governs the time
evolution of function f as follows

d

dt
〈f(it)〉µ0 = 〈Lf(it)〉µ0 (2.12)

whose solution is
〈f(it)〉µ0 =

∑

i

µ0(i)etLf(i)

2.4.4 Embedded Markov chain

Consider a continuous time Markov process X(t) defined on the state space
S, whose dynamics is governed by the escape rates λ(t) and the transition
probability pij . If tn denotes the time of the last transition, we define Yn :=
X(t+n ) as the state right after the nth transition. The set Y = {Yn} is called
the Embedded Markov chain corresponding to the Markov process X(t).

For every state Ym = i, the probability of transition to an arbitrary state j ∈ S
is pij . The waiting times do not play a role in the dynamics of the Y process.

The process Y (t) is again a Markov process, since the probability of jump at
any time is governed only by the current state of the system.

Governed by the transition probability pij , there exists a probability density
µi(t) of every state i ∈ S such that:
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∑

i

pij(t)µi(t) = µj(t)

Periodic Markov process

The Markov process X(t) is a periodic if ∃ T ∈ R:

the conditional probability of transition

℘ij(t+ τ, t) = P (Xt+τ = j|Xt = i)

is periodic.

℘ij(t+ τ, t) = ℘ij(t+ T + τ, t+ T ), ∀ i, j ∈ S, ∀ t, τ (2.13)

This implies that the escape rate λi(t) and the transition probability pij(t) are
periodic as well.

℘ij(t+ T + τ, t+ T ) = ℘ij(t+ τ, t), ∀ i, j ∈ S, ∀ t, τ

λi(t+ T + τ, t+ T )pij(t+ T + τ) = λi(t+ τ, t)pij(t+ τ)

⇒

λi(t+ T + τ, t+ T ) = λi(t+ τ, t); pij(t+ T + τ) = pij(t+ τ) ∀ i, j ∈ S, ∀ t, τ
(2.14)

For a Periodic Markov process, the corresponding Embedded Markov
chain is homogeneous

We construct the Embedded Markov chain

Y = {Xt = i,Xt+T = j,Xt+2T = k, . . .}

The probability of transition for this process is pij(t), which we have shown in
(2.14) is periodic.

pij(t) = pij(t+ T )

It follows from this equation that the Embedded Markov chain Y is
homogeneous.
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2.4.5 The Master equation

The master equation describes the time evolution of the single-time probability

µi(t) =
∑

j

pji(t)µj(0) to occupy a state i. We choose the time interval of

transition ∆t small enough so that the Markov jump process can make utmost
one transition in this time interval. wkj∆t is the probability that the process
moves from k to j in the time interval ∆t. The conditional probability is then

µi(t+ ∆t) ≈
(

1 −
∑

k

wik(t)∆t

)

µi(t) +
∑

k

wki(t)µk(t)∆t + o(∆t)2 (2.15)

for small ∆t. The term in the parentheses is the probability that if the system
is in state i at time t then it remains there through the time interval ∆t. There
is an unrestricted summation over k since wii(t) = 0. The second term is the
probability to jump in time interval ∆t from k to i.

Expanding the left hand side of this equation to first order in ∆t and eventually
taking the limit ∆t → 0, we find that µi(t) is evolving according to the Master
equation

d

dt
µi(t) =

∑

k

[µk(t)wki(t) − µi(t)wik(t)] (2.16)

The first term on the left hand side is the gain in probability from transitions
into state i while the second term is the loss in probability from transitions
from state i to other states. This equation is also called the forward equation.

Probability current

The above equation can be rewritten in form of a continuity equation for
probability density. The left hand side is the time rate of change of the
probability density for the system to be in state i. The right hand side is
the net probability in unit time that the system makes a jump into state i.
The quantity

[µi(t)wik(t) − µk(t)wki(t)] = jik(t)

is the probability current. And the equation (2.16) is rewritten as

d

dt
µi(t) +

∑

k 6=i

jik(t) = 0 (2.17)
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2.4.6 Stationarity & Detailed Balance dynamics

Definition: A Markov process is called stationary or steady state, if the single-
time probability density µj(t) is time-independent. A system can initially start
in a non-stationary density and evolve over time to stationarity such that
the probability density of each state in space becomes a constant. Under
the assumption that every configuration can be reached from every other
configuration, the dynamics is ergodic and has a unique stationary solution,

µst ≡ lim
t→∞

µ(t)

A time-dependent Markov process does not reach a stationary state asymptot-
ically. In other words, ∃ no µi(t) which satisfies the equation

d

dt
µi(t) = 0

On the other hand, there exist processes which are time dependent but whose
dynamics is detailed balance.

Detailed Balance dynamics

Let us assume that the time-dependence of the rates wij(t) lies entirely in
parameter α(t), which could be an external constraint like temperature β(t),
or a time-dependent potential U(t).

A time dependent Markov process whose transition probability is governed by
rates wij(t) as defined above and on which no other sources of non-equilibrium
such as non-gradient forces (time dependent or time independent) act, we say
obeys a detailed balance dynamics.

At any time t, the probability distribution for this process is the Gibbs
distribution parametrized by the value of the parameter at time t, α(t) = α.

µα
i =

e−βEα
i

Zα

The distribution µα
i (t) satisfies detailed balance at each possible value that α(t)

assumes.

µα
i w

α
ik = µα

kw
α
ki (2.18)

∀ i, j ∈ S
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2.4.7 Arrhenius rate law

To end this chapter we look at the most frequently used form for the transition
rates. The Arrhenius law was introduced by Swedish scientist Svante Arrhenius
in 1884. It is an empirical law used to model the temperature dependence of
transition rates. Historically it has been most used to model rates of chemical
reactions and was motivated by the observation that most reaction rates at
room temperature double with every 10℃ rise in temperature. The Arrhenius
rate law is given as follows

kβ(i, j) = A(i, j)e−βEa(i,j) (2.19)

In terms of chemical reactions, k is the total number of transitions from
i to j which occur in unit time. A(i, j), the pre-exponential factor called
frequency factor, is the number of collisions that occur in unit time between the
reactant molecules which could lead to a reaction (depending e.g. on the right
orientation of the molecules). Only those collisions would lead to a transition
which would also have energy greater than a critical energy. The activation
energy labeled as Ea(i, j) is the minimum energy required for a transition i
to j to occur. The activation energy can be externally controlled. In case of
chemical reactions it is usually lowered by the introduction of a catalyst. The
exponential factor denotes the probability that a given collision would lead to
a transition. This probability rises with increase in temperature for a postie
activation energy.

The frequency factor A(i, j) = A(j, i) is assumed to be symmetric for a forward
and reverse reaction, since the number of collisions would depend on the
concentration of reactants and temperature, which are the same for reactions
in both directions. The activation energy on the other hand is asymmetric and
changes according to the direction in which the reaction proceeds.

To be illustrative, let us imagine the system to be a point in an energy landscape
as seen in (Fig 1.1). The troughs are the energies (Ei, Ej) of the stable
configurations (i, j) and the crests are the potential barriers (∆(ij)) through
which the system has to go through to reach the next stable configuration. The
activation energy for the transition i to j is given by Ea(i, j) = ∆(ij) −Ei and
the transition rates are given by,

kβ(i, j) = A(i, j)eβ(∆(ij)−Ei)

The activation energy can be positive, negative or zero. A negative activation
has been observed by Stiller and Müller in [67] and is displayed by systems
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Figure 2.2: Free energy landscape depicting activation energy

where the probability of reaction falls with the increase in temperature. It is
mostly seen in chemical reactions where a molecule needs to be trapped in a
potential well before it combines with another molecule, with an increase in
temperature it gets harder to trap the molecule and hence the reaction rate
reduces.

To make a comparison with the Markovian transition rates wij , we again look
at the ratio of the forward and reverse rates given from local detailed balance
as

wij

wji
= e−β(U(j)−U(i))

From the above equation, one conclude that the transition rates have the form

wjk = Ae− β
2 (U(j)−U(i)) (2.20)

where A, a symmetric function, is a proportionality constant which would
depend on the nature of the particles and the dynamics of the system.

If the frequency factor A := Ae− β
2 (U(i)+U(j)), the transition rates (2.20) can be

rewritten in the Arrehenius form:

wij = Aije
βU(i) (2.21)
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This form is more useful since as opposed to transition probabilities and escape
rates, activation energy is an experimentally measurable quantity and can be
controlled externally.



Chapter 3

Molecular machines & the
No-go Theorem

3.1 Molecular motors: An introduction

Much of all cell behavior and architecture depends on the directed transport
of macromolecules. Molecular motors are little machines which are responsible
for much of the biological functions such as muscle contraction, cell movement,
transport of intracellular cargo and extracellular motion such as bacterial cilia
and flagella, certain signal transduction pathways, cell division (mitosis and
meiosis) [15, 77, 116, 21, 22]

Though, these molecular motors work on very different mechanisms and
have very different purposes, the process by which they convert energy from
stored adenosine triphosphate into motion (kinetic energy) follows a common
structure. Molecular motors, in response to either external or internal stimuli,
convert the energy stored in the cell into useful work, where work is defined
as a displacement (change in position), rotation or change in configuration
such that after a full cycle, when the motor comes back to its original state,
the task performed is not undone [125, 24]. The study of the design and
function of molecular motors is essential in not only understanding the cell
structure and function but is also primary in the development of artificial
nanostructures that can act as molecular machines. These nanaostructures are

31
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essential towards the construction of sensors, transporters and smart materials
[62, 63, 127, 12, 2]. Richard Feynman, in his 1959 lecture, There’s plenty of
room at the bottom, at the California Institute of Technology, had envisioned
of machines of nanodimensions which could be controlled externally [50, 49]

Artificial molecular machines fueled either photo &/or electrochemically [76, 52,
86, 61], have already been tried out experimentally. Experiments performed
by Leigh et. al show a slow rotary molecular motor in which a full 360°
unidirectional movement around a central axis is observed.

3.1.1 The Experiment

Here, we will elaborate into the workings of one of these artificial motors, to
have a better idea on how they actually function. This would also lead to
simplicity in visualizing the mathematical model which we aim to build around
molecular machines, discussed in Section 3.2.1.

We look here at the experiments performed by Leigh et al. [86], with an
artificial molecular rotor, which is a molecule undergoing unidirectional 120°
intramolecular rotation around a single bond is studied.

A [2]catenane 1 in which one ring moves around 3 different binding sites, as
shown schematically in Fig 3.1 is considered. Through a series of chemical
reactions, the binding energy Ka of two sites A and B can be altered, such that
at any given point in the cycle, the ring preferentially binds to one of the 3
sites. In practice this is done by applying an external time dependent stimulus.
The periodic change in the binding energy, creates a time dependent global
minimum of energy for the smaller ring, which follows this change in minimum
with time. Over a course of several cycles, it was observed that although the
ring changes its position in response to the external stimulus in discrete steps,
the route it takes to get there is not directionally biased. Over a complete
sequence an equal number of times it goes from A through C in one direction
and the opposite. Hence the time averaged current through several sequences
in zero.

On the other hand, when the same experiment is performed with a [3]catenane
see figure 3.2, which has two instead of one interlocking ring, a non-zero time
averaged current in the anti-clockwise direction was observed. The affinities
of the two rings and the external stimulus are chosen in such a fashion that
each ring is able to block the motion of the other in a particular direction, but

1. A mechanically interlocked molecular architecture consisting of two or more interlocked
cyclic macromolecules
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Figure 3.1: Stimuli induced sequential motion of a macrocycle between 3
different binding sites in a [2]catenane. Figure has been reproduced from [86].

only transiently to allow 360° rotation around the macrocycle. The presence
of such time dependent barriers prevents net motion in both directions.

In case of the [2]catenane, the time dependent external stimulus was changing
the energy minima alone, without introducing a time dependent barrier against
motion in any direction and no time averaged current was observed. In the
experiment with [3]catenane, by using 2 rings, a time dependent barrier was
introduced together with the time dependent change in energy minima and a
net current in a particular direction was observed.

The principle

behind this experiment and others concerning artificial motors is the following:
The motion in molecular machines is brought about by external (often time
dependent) stimuli. The time dependent stimuli work to keep the global
minimum in the state space of the molecular machine varying. Thus the
molecule constantly finds itself in energetically unfavorable conformations
from which it escapes due to the thermal fluctuations in the bath around
it. The molecule, thus in response to the external stimuli is driven along
the macrostates to a new global minimum, in the kinetically most accessible
direction. It is thus relevant, in attempts to synthesize and control artificial
molecular motors, to understand the relation between external pumping and
creation of systematic flows.



34 MOLECULAR MACHINES & THE NO-GO THEOREM

Figure 3.2: Stimuli induced unidirectional rotation in a 4 state [3]catenane.
Figure has been reproduced from [86].

Thouless created a mathematical model [123], for electronic pumping. Astu-
mian and Derényi [10] studied charge transfer from a lower to a higher chemical
potential by varying the gate and portal energies. Astumian also analyzed
the adiabatic regime of ion pumping in externally driven protein structures
[8] and in a molecular motor based on a three-ring catenane [9]. A general
theory of adiabatic pumps in terms of geometrical phase was proposed by
Sinitsyn and Nemenman [121]. Chernyak and Sinitsyn [28] have discovered
that the adiabatic pumping currents become quantized at low temperatures.
Generalizations beyond adiabatic regimes are so far limited to Markov models.
The derivations and results which follow are taken from our work in [92].
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3.2 The No-go theorem

We model the dynamics here as a Markov state system for which the transitions
between states i and j have an Arrhenius-type time-dependence (2.4.7)

wt(i, j) = A(i, j)eβGt(i), A(i, j) = A(j, i) (3.1)

with periodic time-dependent energy wells Gt(i) and the constant energy
barriers as represented by the symmetric factors A(i, j).

The No-go theorem states that for rates defined in this manner, the time-
averaged current J(i, j) along every transition i → j is zero. As a result, no
net work can be done with such protocol.

Rahav, Horowitz and Jarzynski [111] were the first to give a no-go theorem
for jump processes with non-adiabatic pumping and generalization to diffusion
processes [64]. This was further studied and systematized by Chernyak and
Sinitsyn [27]. We present here the shortest general proof of this result (Section
3.2.2), which at the same time also applies to classes of non-Markov models
(Section 3.3). At the end we put the result into a broader context by showing
that the time-dependent protocol under consideration, in arbitrary (in general
nonequilibrium) systems, modifies all currents by a global multiplicative factor
(Section 3.5). We start with the general set-up in terms of a Markov jump
process.

3.2.1 The Model

The various chemo-mechanical configurations that the motor can exist in are
labeled as i, j, . . . and constitute a finite state space Ω. These long-lived or
metastable states locally minimize a given free-energy landscape Gα(i) under
equilibrium. They can be regarded as nodes of a stochastic network and an
allowed transition is denoted by an edge (ij). The index α is a parameter
which can be externally manipulated and which varies the depth of the local
free-energy minimum G(i). In general, it quantifies the time-dependence of the
dynamics. We assume that the dynamics is detailed balance. This means that
for a fixed value of the external parameter α, the system evolves, over time, to
the global minimum of the free-energy landscape Gα(i).

This is in contrast with a non-detailed balance dynamics where even for fixed
external parameters, the system can never relax to equilibrium. An example
of non-detailed balance dynamics is a metal rod held between two heat baths at
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different temperatures. The temperature difference between the heat baths held
fixed, there is a constant, non-zero current across the metal bar.

The existence of a detailed balance dynamics implies that the rates satisfy the
condition

e−βGα(i)wα(i, j) = e−βGα(j)wα(j, i) (3.2)

The transition rate in general is given as

wt(i, j) = A(i, j)eGα(t)(i), A(i, j) = e−∆(i,j) (3.3)

β is assumed to be unity.

The effective barrier height ∆(i, j) = ∆(j, i), defines the Arrhenius prefactor.
We can see that given our definitions of the free-energy minima Gα(t) and
the barrier heights ∆(i, j), the activation energy for the transition i → j is
Eα(t)(i, j) = −Gα(t)(i)+∆(i, j). We assume that the heights of the barriers and
the energy minima can be independently manipulated. Fig 3.3 illustrates the
energy wells and barriers which are time dependent and can be independently
manipulated.

If ρt is the instantaneous distribution function and jt(i, j), the instantaneous
current between states i and j, then they satisfy the Master equation

d

dt
ρt(i) = −

∑

j

jt(i, j) (3.4)

jt(i, j) = ρt(i)wt(i, j) − ρt(j)wt(j, i) (3.5)

When the protocol α(t) is periodic in time, we expect to find that ρt itself
becomes periodic in time, at least for sufficiently large times t. In any event,
we can define the time-averaged current

J(i, j) = lim
T →∞

1

T

∫ T

0

jt(i, j)dt (3.6)

3.2.2 The proof of No-go theorem

The No-go theorem states that for some specific types of time-dependence — in
general for those considered in (3.3), where the energy wells are time-dependent
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but the energy barriers are time-independent, the long-time average of current
(3.6) equals zero for all pairs of states i, j.

Thinking of independent particles hopping on the network over i → j with
rate wt(i, j), the no-go refers to having no net time-averaged flow of particles
between any two nodes i and j, i.e. J(i, j) = 0 for all pairs i, j ∈ Ω.

We now come to our formulation of the no-go theorem. Consider the class of
Markov jump processes with states i, j, . . . as in Section 3.2.1. For all bonds
(ij) in our stochastic network that are part of a loop in the network we require
that the time-dependence in the transition rates is of the form

wt(i, j) = λt(i)p(i, j) (3.7)

where λt(i) =
∑

j

wt(i, j) is the time-dependent escape rate and p(i, j) is a

time-independent transition probability; p(i, j) ≥ 0,
∑

j

p(i, j) = 1. We assume

that the matrix [p(i, j)] is irreducible so that there is a unique left eigenvector
ρ for eigenvalue 1:

∑

i ρ(i)p(i, j) = ρ(j). (That is automatically so when the
network of states is connected via p(i, j) > 0 - Perron-Frobenius theorem.)

We also assume that the corresponding embedded Markov chain (as described
in Section 2.4.4, whose transition rates are just transition probabilities p(i, j))
is detailed balance, i.e., for some potential V ,

e−V (i)p(i, j) = e−V (j)p(j, i) (3.8)

so that in fact ρ(i) ∝ e−V (i). Finally, we suppose that the limit

̟(i) := lim
T →∞

1

T

∫ T

0

ρt(i)λt(i)dt (3.9)

exists. That is automatically satisfied (shown below) when the time-
dependence is periodic but, clearly that is not strictly necessary.

When the time-dependence is periodic with a period T : ρt = ρt+T ; λt =
λt+T , ∀ t, we can rewrite time T = nT + s, where the limit T → ∞
translates to n → ∞. Hence
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̟(i) = lim
n→∞

1

nT + s

∫ nT +s

0

ρt(i)λt(i)dt

= lim
n→∞

n

nT + s

∫ T

0

ρt(i)λt(i)dt + lim
n→∞

1

nT + s

∫ nT +s

nT

ρt(i)λt(i)dt

(3.10)

In the second integral, making a change of variables t′ = t− nT we arrive
at

lim
n→∞

1

nT + s

[

∫ nT +s

nT

ρt(i)λt(i)dt =

∫ s

0

ρt′(i)λt′ (i)dt′

]

The integral

∫ s

0

ρt′(i)λt′(i)dt′

is finite, hence the limit n → ∞ of the right hand term is zero.

Hence,

̟(i) = lim
n→∞

n

nT + s

∫ T

0

ρt(i)λt(i)dt

which in the n going to infinity limit is finite.

̟(i) =
1

T

∫ T

0

ρt(x)λt(x)dt

The no-go theorem is now easily proven as follows. The full time evolution is
obtained by solving (3.4) & (3.5). The time integral of the former gives

lim
T

1

T

∫ T

0

dρt

dt
= −

∑

j

J(i, j) = 0 (3.11)
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Figure 3.3: The free energy landscape; at two times t and t′

and
J(i, j) = ̟(i)p(i, j) − ̟(j)p(j, i) (3.12)

where we have inserted condition (3.7) and definition (3.9). Using (3.11) in
(3.12)

∑

j

̟(j)p(j, i) = ̟(i)

which is the stationary Master equation for a time-independent Markov chain
with (unnormalized) distribution ̟ and current J . By irreducibility and by
detailed balance of the embedded Markov chain (3.8), the equations (3.11) and
(3.12) have the unique solution

̟(i) ∝ e−V (i), J(i, j) = 0 (all pairs) (3.13)

as was to be proven.

The conditions (3.7), (3.8) are just equivalent to (3.2), (3.3) and hence the above
theorem can immediately be applied to this situation. Specifically, for a system
with free energy wells Gα(i) and effective energy barriers ∆(i, j) = ∆(j, i) as
in (3.3), we consider an arbitrary cyclic path α(t) = α(t+T ) with some period
T . Keeping the energy barriers constant, the condition (3.7) is verified with
time-dependent escape rates
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λt(i) = eGα(t)(i)
∑

j

e−∆(i,j)

and time-independent transition probabilities

p(i, j) =
e−∆(i,j)

∑

j e
−∆(i,j)

satisfying detailed balance (3.8) for V (i) = −log





∑

j

e−∆(i,j)



.

In conclusion, the essential ingredients are two-fold. First, the original time-
dependent jump process is detailed balanced for each fixed t and secondly, the
transition rates can be decomposed into a product of time-dependent escape
rates λt(i) and time-independent transition probabilities p(i, j). The idea of the
proof above, at least for a periodic time-dependence, is that the time-averaged
current in the original system (3.3) exactly coincides with the stationary current
in a temporally coarse-grained system with transition probabilities p(i, j). As
the original process is detailed balanced for each fixed time, the stationary
coarse-grained process is time-reversal symmetric and therefore the net current
in the original process vanishes.

As a final comment, it is important to realize that the vanishing of the net (i.e.,
time-averaged) current, J(i, j) = 0, does not imply that jt(i, j) = 0 at each
time, unless the process runs in the quasistatic regime. Related to that, the
overall dissipation does remain nonzero in general. For this it suffices to look
at the time-averaged entropy flux (discussed in [93])

1

T

∫ T

0

σtdt =
1

2T

∑

i,j

∫ T

0

jt(i, j) log

(

wα(t)(i, j)

wα(t)(j, i)

)

dt ≥ 0

where the equality holds in the quasistatic or the adiabatic limit, when the
external parameter α(t) is varied very slowly with time, such that ρ(i) ∝
e−βGα(t)(i).

3.3 Non-Markov generalization

We would like to extend the proof of the No-go theorem to systems whose
dynamics is non-Markovian. In Section (2.4.2), we had defined Markov
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processes as those processes for which the waiting times was exponentially
distributed. The exponential distribution of waiting times imply that the
escape rate λt depends only on the present configuration of the system. And
there is no dependence on the path which the system took since the start of
the experiment. But many biophysical and biochemical processes are believed
to be essentially non-Markovian for a natural choice of states [57] and hence
the extension of the No-go theorem to non-Markovian dynamics is essential to
the understanding of such processes.

The memory of a non-Markovian dynamics can go from the last occupied state:
“short” to the last several occupied states: “long”. Here, we consider a jump
process for which the main change with respect to the Markov case consists in
its dependence on the time t0 of the previous jump. In that way, given that the
system is in state x at time t since its last jump to i at t0, the probability that
the next jump occurs within the time-interval [t, t+ dt] is given by λ(i; t0, t)dt.
(The Markov case corresponds to λ(i; t0, t) = λt(i)). The probability rate that
the next jump goes to j is then

w(i, t0; j, t) = λ(i; t0, t)p(i, j) (3.14)

generalizing the time-dependent Markov transition rates (3.7). We keep the
same assumptions on the transition matrix [p(i, j)], with its most important
property being the condition of detailed balance (3.8). The p(i, j) define what
is often called the embedded Markov chain. The complication of the memory
present in the escape rates λ(i; t0, t) turns out to be irrelevant for our proof of
the no-go, as we now show.

The probability density that at time t the system is found in state i and that
the last jump before t occurred within [t0, t0 + dt0] is denoted by ρ(i; t0, t)dt0 -
it relates to the standard single-time distribution as

ρt(i) =

∫ t

0

ρ(i; t0, t)dt0 (3.15)

The mean current j(i, t0; j, t)dt0 counts the expected rate of (directed) jumps
i → j at time t when the previous jump occurred in [t0, t0 + dt0]:

j(i, t0; j, t) = ρ(i; t0, t)w(i, t0; j, t) − ρ(j; t0, t)w(j, t0; i, t) (3.16)

It is related to the standard mean current as

jt(i, j) =

∫ t

0

j(i, t0; j, t)dt0 (3.17)
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Differentiating (3.15) with respect to t and using the relation (3.16), the single-
time quantities ρt and jt satisfy the balance equation

dρt(i)

dt
+
∑

j

jt(i, j) = 0 (3.18)

We proceed analogously as in the Markov case. We assume that the limiting
quantities

̟(i) = lim
T

1

T

∫ T

0

t
∑

0

ρ(i; t0, t)λ(i; t0, t)dt0dt (3.19)

J(i, j) = lim
T

1

T

∫ T

0

jt(i, j)dt (3.20)

are well defined. Then again,

J(i, j) = ̟(i)p(i, j) − ̟(j)p(j, i) (3.21)

and from integrating (3.18),

∑

j

J(i, j) = 0 (3.22)

By detailed balance (3.8) we reach the conclusion J(i, j) = 0 which ends
the proof. As before, time-homogeneity and detailed balance of the embedded
Markov chain imply that the net flux through any pair (ij) asymptotically goes
to zero.

To end this proof we would like to point out two important features of the
No-go theorem.

3.4 Flashing ratchet & Geometry of Network

The No-go theorem is only valid for some specific types of time-dependence -
in general for those considered in (3.3). Though the rates are satisfying the
condition of detailed balance (3.2) for each fixed value of the parameter α,
there is no a priori reason why there could not arise a net current J(i, j) in the
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process with time-dependent α(t). In fact, that is exactly what happens in so
called flashing (and other) ratchets where the change in the potential landscape
produces a net flow of particles [112]. For example, a system (like a ratchet)
with transition rates

w̃t(i, j) = A(i, j)e− 1
2 [Gt(j)−Gt(i)], A(i, j) = A(j, i) (3.23)

also satisfies detailed balance (3.2) for each fixed time t and can be written
analogous to (3.3) as

w̃t(i, j) = eGt(i)−∆t(i,j) (3.24)

but the effective barriers ∆t(i, j) = [Gt(i) +Gt(j)]/2 − logA(i, j) have become
time-dependent. See figure 3.4

Figure 3.4: Flashing ratchet: Both the energy wells and barriers are time-
dependent

Within the framework of the no-go theorem there is absolutely no reason now
that the net currents would be identically zero (unless further symmetries are
imposed).

Secondly, the geometry of the stochastic network is certainly relevant for the

possible generation of a current. In fact, the net current
∫ T

0
jt(i, j)dt over

any edge (ij) connecting two otherwise disconnected subgraphs is a total time-
difference of the form NT (i, j) − N0(i, j) and hence automatically approaches
zero when time-averaged as in (3.6). Thus wt(i, j) can be arbitrary (= no
restriction) over such a “bridge”. The restricted form of time-dependence as in
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Figure 3.5: Time averaged current between states 3 and 4 is zero.

(3.3) is only required over those edges (ij) which belong to a loop. See figure
3.5.

3.5 Non-equilibrium generalization

A natural question arises how the long-time characteristics of a general
nonequilibrium system with steady currents already present, modify when
an extra time-dependence affecting only the energy wells or escape rates like
in (3.7) is applied. We answer here that question by generalizing the above
argument, restricting ourselves to the case of jump processes. This will throw
more light into the nature and robustness of no-go theorems.

As before in (3.3) we start from transition rates

wt(i, j) = w(i, j)eGt(i) (3.25)

with time-dependent energy function Gt(i) = Gα(t)(i). The time-independent
rates w(i, j) are no longer detailed balance. We can assume a time-
homogeneous non-equilibrium process with the reference stationary state ρs(i)
and the steady state current

js(i, j) = ρs(i)w(i, j) − ρs(j)w(j, i),
∑

j

js(i, j) = 0 (3.26)

The long-time averaged current of the time-dependent process is
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J(i, j) = lim
T

1

T

∫ T

0

jt(i, j)dt

= ̟(i)w(i, j) −̟(j)w(j, i)

with

̟(i) = lim
T

1

T

∫ T

0

ρt(i)e
Gt(i)dt (3.27)

and satisfying the stationarity condition in all nodes:

∑

j

J(i, j) = 0 (3.28)

By the assumed irreducibility of the equations (3.27) & (3.28) have a unique
solution in the form

̟(i) = ρs(i), J(i, j) = js(i, j) (3.29)

with the normalization

Ω = lim
T

1

T

∑

i

∫ T

0

ρt(i)e
Gt(i)dt (3.30)

Hence, we have arrived at an important conclusion: For the time-dependent
protocols under consideration, the time averaged current (3.27) is merely a
global multiplicative factor of the reference steady current. If the latter is zero,
there is also no resulting pumped current and we recover the original results.





Chapter 4

Large Deviation Theory:
Entropy, Free Energy &
Statistical force

The probable is what usually happens. - Aristotle

When you have eliminated the impossible, whatever remains, however improb-
able, must be the truth.

- Sherlock Holmes in The Sign of the Four

4.1 Introductory examples

The theory of large deviations refers to fluctuations of a macroscopic quantity,
related to a stochastic process, from its typical value. This could be deviation
of an empirical average taken over some distribution from its theoretical
expectation or the deviation of an empirical trajectory (or empirical vector,
in case of discrete time) ω0≤t≤τ over time from the most probable one or the
deviation of an empirical probability distribution over states from its typical
distribution.

47
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We start with a few examples to illustrate the meaning and significance of LDT.
The first example is a heuristic one.

Example 4.1.1: Uniform Sample Mean Assume that a dice is thrown
6 times resulting in the following result: (4, 4, 2, 1, 5, 6). Then, the empirical
average is given by

1

6
(4 + 4 + 2 + 1 + 5 + 6) = 4.16

and the empirical distribution is given by

(

1

6
,
1

6
, 0,

2

6
,

1

6
,

1

6

)

The theoretical distribution for a dice on the other hand is

1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6

and the theoretical mean being 3.5. The deviation of the empirical mean
from the theoretical value is non zero for a small number of trials. And the
probability of deviations from the theoretical distribution and mean becomes
small with the system size or increase in the number of trials.

How fast the probability of deviations from the typical outcomes disappears is
the subject matter of Large Deviation Theory, which shows that many (but not
all) systems show an exponential decay in the probability of large deviations
with system size.

In equilibrium statistical physics, the rate of decay has been related to the
entropy, relative entropy or free energy of the system.

The next example indicates the function and meaning of these rate functions
in case of identically distributed Gaussian variables. The theory of Large
Deviations discussed in this chapter is heavily based on a brilliant review on
the subject by Touchette [124].

Example 4.1.2: Gaussian Sample Mean The random variable Xi takes
values x ∈ R from a distribution (4.1), which is Gaussian with mean µ and
standard deviation σ . We ask the question, what is the probability that the
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empirical mean of the n random variables will deviate from their theoretical
mean µ.

p(x)dx =
1√

2πσ2
e−(x−µ)2/2σ2

dx (4.1)

Let us denote the sample mean after n trials by

Sn =
1

n

n
∑

i=1

Xi

The probability density of Sn can be written as an integral:

p(Sn = s) =

∫

Rn

δ(Sn(x) − s)p(x)dx (4.2)

x = (x1, x2, . . . , xn) is a random vector in Rn, and

p(x) = p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn) is the joint probability density.

Replacing the expression for p(xi) from (4.1) into the above equation (4.2).
The probability density of the empirical mean is given by:

p(Sn = s) =

√

n

2πσ2
e−n(s−µ)2/2σ2

(4.3)

For a large deviation approximation (n → ∞), the multiplicative factor of√
n which grows much slower than the exponential decay, is ignored, thereby

obtaining the large deviation result,

p(Sn = s) ≈ e−nJ(s), J(s) =
(s− µ)2

2σ2
(4.4)

J(s) the rate factor gives a detailed description of the fluctuations of Sn around
its typical value. It displays some features which are generally true. J(s) is
convex and has a single minimum and zero at µ the theoretical mean. As the
value of n rises the system converges probabilistically to the mean value µ and
we can say that Sn obeys the Law of Large numbers,

lim
n→∞

P (Sn ∈ [µ− δ, µ+ δ]) = 1, ∀ δ > 0
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The third example deals with large deviations in probability distributions.

Example 4.1.3: Consider a sequence of IID random variables, X =
(x1, x2, . . . , xn), drawn from a state space Λ = (1, 2, . . . , q) with a probability
distribution P (xi = j) = ρj . For a given experiment of n trials, the empirical
distribution of states is given by:

lj =
1

n

n
∑

i=1

δxi,j (4.5)

Hence, there exists a normalized vector of size q giving relative frequencies:

Ln(X) = (Ln,1(X), Ln,2(X), . . . , Ln,q(X)),
∑

j∈Λ

Ln,j(X) = 1

for all X ∈ Λn

The empirical vector Ln is distributed according to the distribution

P (Ln = l) =
n!

q
∏

j=1

(nlj)!

q
∏

j=1

(ρj)nlj (4.6)

l = (l1, l2, . . . , lq)

Using Stirling’s approximation we can extract a large deviation approximation:

log(P (Ln = l)) ≈



nlog(n) − n−
q
∑

j=1

(nlj)log(nlj) − nlj



+

q
∑

j=1

nlj log(ρj)

Using the normalization condition

q
∑

j=1

lj = 1, we reach

P (Ln = l) ≈ e−nIρ(l), Iρ =

q
∑

j=1

lj log
lj
ρj

(4.7)

The rate function Iρ is called the relative entropy or the Kullback-Leibler
distance between the probability vectors ρ and l. Next we illustrate that the
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rate function is convex, positive and has its minimum and zero at l = ρ. This
implies that as the system size increases, the most probable value of the random
variable l is ρ, and the probability of any other fluctuating configurations decay
exponentially to zero.

We will be proving some of these properties below for this particular example.
Before we lay down the proofs, here are a few definitions and known results
which we will employ in our proofs.

• A function f(x) is convex if for any real numbers x1 < x2, each point on
the line segment joining (x1, f(x1)) and (x2, f(x2)) lies either above or on
the curve f . Algebraically, this implies the following:

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2), λ ∈ [0, 1]

Figure 4.1: Convex function f(x)

• Jensen’s Inequality

In the context of probability theory it is generally stated as follows: If X is
a random variable and f(X) is a convex function:

f(〈X〉) ≤ 〈f(X)〉,
〈〉 denotes expectation value with respect to some distribution. For a concave
function Jensen’s Inequality reverses itself.



52 LARGE DEVIATION THEORY: ENTROPY, FREE ENERGY & STATISTICAL FORCE

• Log-Sum Inequality

For non-negative numbers (a1, a2, . . . , an) and (b1, b2, . . . , bn),

n
∑

i=1

ai log

(

ai

bi

)

≥ (
n
∑

i=1

ai) log













n
∑

i=1

ai

n
∑

i=1

bi













with equality holding iff, ai

bi
is a constant.

Proof: The function f(x) = x log(x) is a convex function. Hence, applying
Jensen’s inequality on this function:

∑

i

αif(xi) ≥ f(
∑

i

αixi), αi > 0,
∑

i

αi = 1

Assume that ai, bi > 0, then setting αi = bi/
∑

i

bi and xi = ai/bi, we obtain

the log-sum inequality.

We next present, with proof some general features of the rate function I.

• Relative Entropy is non-negative

Using the log-sum inequality, with aj = lj and bj = ρj

Iρ(l) =
∑

j∈Λ

lj log

(

lj
ρj

)

≥ (
∑

j∈Λ

lj) log









∑

j∈Λ

lj

∑

j∈Λ

ρj









using log-sum inequality

= 0, Since
∑

j∈Λ

lj =
∑

j∈Λ

ρj = 1 (4.8)
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• Relative Entropy is convex

To show the convexity of the relative entropy we employ two probability mass
functions l1 and l2 and need to show that

Iρ(λl1 + (1 − λ)l2) ≤ λIρ(l1) + (1 − λ)Iρ(l2) i.e.

q
∑

j=1

(λlj1 + (1 − λ)lj2) log

(

λlj1 + (1 − λ)lj2

ρj

)

≤ λ

q
∑

j=1

lj1 log
lj1

ρj

+ (1 − λ)

q
∑

j=1

log
lj2

ρj
(4.9)

Using the log-sum inequality with a1 = λlj1, a2 = (1 − λ)lj2, b1 = λρj ,
b2 = (1 − λ)ρj , then

(λlj1 + (1 − λ)lj2) log

(

λlj1 + (1 − λ)lj2

ρj

)

≤ λlj1 log
λlj1

λρj

+ (1 − λ)lj2 log
(1 − λ)lj2

(1 − λ)ρj

Summing the two sides of the inequality over all j we reach the desired result.
Given the non-negativity of the relative entropy and its strictly convex nature,
one can safely say that the zero of Iρ(l) at l = ρ is its unique minimum.

After having demonstrated the meaning and function of the LDT through these
simple examples, we can proceed to formally introduce the LDT, with some
general results.
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4.2 The Large Deviation principle

In this section we present a formal definition of the principle of large deviation
and state some general theorems with examples.

We have established with the few examples above that for several systems
the deviation of macroscopic variables from their typical configuration decays
exponentially in the limit of large system size or large number of trials.
Formally, this limit can be spoken of as follows. Let Xn be a random variable
with n denoting the system size which eventually is taken to infinity, then we
talk about P (Xn ∈ G), the probability that Xn takes on a value in set G. This
probability is said to satisfy a large deviation principle if the limit,

lim
n→∞

− 1

n
log P (Xn ∈ G) = IG (4.10)

exists. Or in other words P (Xn ∈ G) ≈ e−nIG is the dominant behavior of
P (Xn ∈ G) in the n large limit. IG is a positive constant which depends on
the system parameters and constraints.

In case of a continuous state space, we use probability density and the principle
takes the following form:

P (Xn ∈ [x, x + dx]) ≈ e−nI(x)dx, to be written as P(Xn ∈ dx) ≍ e−nI(x)dx

The relation an ≍ bn denotes that an and bn are equal upto first order in their
exponents.

lim
n→∞

1

n
log an = lim

n→∞

1

n
log bn

To establish that a large deviation principle exists and from there to calculate
the rate function can be achieved if one can calculate the probability
distribution of the random variable. And then applying a Stirling’s kind of
approximation leads us to the asymptotic behavior of the probability density.
But to be able to write down the probability distribution for a general stochastic
process or to be able to apply a Stirling’s kind of approximation is not always
possible, like in case of continuous variables or for random variables which are
non-IID. Here, we present a fundamental result of the large deviation theory,
which serves as a general criterion to find if the large deviation principle is
satisfied and to derive the rate function.
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4.2.1 Gärtner-Ellis theorem

For a real random variable Xn, we define a scaled cumulant generating function
by the limit

λ(k) = lim
n→∞

1

n
log 〈enkXn 〉, k ∈ R (4.11)

〈enkXn 〉 =

∫

R

enkXnP (Xn ∈ dx) (4.12)

The Gärtner-Ellis theorem states that if λ(k) exists and is differentiable for all
k ∈ R, then Xn satisfies a large deviation principle,

P (Xn ∈ dx) ≍ e−nI(x)dx

with I(x) given by

I(x) = supk∈R
[kx− λ(k)] (4.13)

The symbol “sup” stands for “supremum of”, which for all practical purposes
takes the same meaning as “maximum of” here. The transform defined by
(4.13) is called the Legendre-Fenchel transform of λ(k).

Once we assume that the existence of λ(k) guarantees a large deviation
principle, we can substitute the asymptotic form of the probability density
into the expectation expression (4.12). Next, the integral can be approximated
with the maximum of kx− I(x). This is called the saddle point approximation.
Therefore,

〈enkXn 〉 ≍ exp{n supx∈R
[kx− I(x)]}

This relation when used in (4.11) renders,

λ(k) = supx∈R
[kx− I(x)]

Legendre-Fenchel transform can be inverted when λ(k) is everywhere differen-
tiable, giving us the result (4.13).
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We state here without proving that λ(k) is always convex. And for a
differentiable and convex generating function, the Legendre-Fenchel transform
reduces to the better known, Legendre transform.

Also, noteworthy are the following properties:

1. λ(0) = 0

2. λ′(0) = limn→∞
〈XnenkXn 〉

〈enkXn 〉
|k=0 = limn→∞〈Xn〉,

which for IID sample mean reduces to 〈X〉
3. Similarly, λ′′(0) = limn→∞ n[〈X2

n〉 − 〈Xn〉2]

which for IID sample mean reduces to var(X).

We will now illustrate the power of the Gärtner-Ellis theorem using two
examples which we visited in the last section.

Example 4.2.1: The Gaussian Sample Mean: Consider again, the
sample mean Sn of random variables Xi which are randomly picked from a
Gaussian distribution. The cumulant generating function

λ(k) = lim
n→∞

1

n
log〈exp

(

k

n
∑

i=1

Xi

)

〉 = lim
n→∞

1

n
log

n
∏

i=1

〈ekXi 〉 =
1

n
log (〈ekX〉)n

since Xi are independent IIDs

For a Gaussian distribution the expectation value

log 〈ekX〉 = µk +
1

2
σ2k2 = λ(k)

Since, λ is everywhere differentiable, the rate function I(s) is calculated by
ordinary calculus. The maximum is reached at k = (s−µ)/σ2. Hence the rate
function

I(s) = k(s)s− λ(k(s)) =
(s− µ)2

2σ2
, s ∈ R

The sample mean of Gaussian distributed random variables Xn asymptotically
equals µ, for a large sample size.

Our second application of the Gärtner-Ellis theorem is on random variables
which are vectors defined in Rd, d > 1. These results on vector random variables
are put under the name Sanov’s theorem
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Example 4.2.2: Recall example 4.1.2 of a sequence of n IID random variables
X = (x1, x2, . . . , xn) in a finite set Λ distributed as P (x = j) = ρj , j ∈ Λ.
We had calculated the probability distribution P (Ln = l) associated with the
empirical vector Ln defined as

Ln,j(x) =
1

n

n
∑

i=1

δxi,j, j ∈ Λ

The vector Ln has |Λ| = q components and is a set of probability distributions
on Λ.

To find the large deviations of Ln, we consider the extension to vector space
of the Gärtner-Ellis theorem. This is done by replacing the product kXn by a
dot product k · Ln, where k is now a vector in Rd.

Using the Gärtner-Ellis theorem, the expression for λ(k) is given below

λ(k) = lim
n→∞

1

n
log 〈exp

(

n

d
∑

j=1

kjLnj

)

〉

= lim
n→∞

1

n
log 〈exp



n
∑

j∈Λ

kj
1

n

n
∑

i=1

δxi,j



〉

= lim
n→∞

1

n
log 〈exp





∑

j∈Λ

kj(δx1,j + δx2,j · · · + δxn,j)



〉

= lim
n→∞

1

n
log (〈exp





∑

j∈Λ

kj(δx,j)



〉)n , since xi are IID random variables

= log





∑

j∈Λ

ρje
kj



 (4.14)

Given that λ is analytic in k, using the Gärtner-Ellis theorem we conclude that
a large deviation principle holds for Ln with the rate function given by

I(l) = sup
k
[k · l − λ(k)] = k(l) · l − λ(k(l))
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where k(l) is the unique root of the equation ∇λ(k) = l thus yielding the rate
functions

I(l) =
∑

j∈Λ

lj log
lj
ρj

the relative entropy of the system.

Next we would study the application of LDT on another class of stochastic
processes which are instrumental in the study of dynamical processes in
statistical mechanics.

Markov processes

Example 4.2.3: Large deviation Theory as known today was formulated by
Donsker and Varadhan [36, 34, 35] for Markov processes. We start of with a
simple example. Consider a sequence of bits x = (x1, x2, . . . , xn); xi ∈ {0, 1}
which form a Markov chain defined by

P (x) = P (x1, x2, . . . , xn) = ρ(x1)
n
∏

i=1

π(xi|xi−1)

Here ρ(x1) is the probability distribution of the initial state x1, and π(xi|xi−1)
is the conditional probability of state xi given the current state is xi−1. The
transition matrix Π is defined as

Π =

(

π(0|0) π(0|1)
π(1|0) π(1|1)

)

=

(

1 − α α
α 1 − α

)

with α ∈ (0, 1)

The Large Deviation principle for the sample mean Sn = 1
n

n
∑

i=1

xi can be arrived

at by applying the Gärtner-Ellis theorem.
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〈enkSn〉 =
∑

x1,x2,...xn∈{0,1}

P (x1, x2, . . . xn)exp

(

k
n
∑

i=1

xi

)

=
∑

x1,x2,...xn

π(xn|xn−1)ekxn . . . π(x2|x1)ekx2ρ(x1)ekx1

=
∑

j∈{0,1}

(Πn−1
k ρk)j (4.15)

where (Πk)ji = Π(j|i)ekj and ρk(i) = ρ(i)eki

Since, Πn−1
k is a positive real matrix, using the Perron-Frobenius theory, its

largest eigenvalue is a unique positive number. Hence,

λ(k) = lim
n→∞

1

n
log (

∑

j∈{0,1}

(Πn−1
k ρk)j)

can be extracted from this expression. For Π being irreducible and aperiodic,
there exists a unique stationary probability distribution ρst and Πk has a unique
dominant eigenvalue ξk. It follows from here,

〈enk·Sn〉 ≍ ξn−1
k , and hence λ(k) = log ξk

which is analytic in k. Hence, Sn satisfies a LDT principle. The rate function
is then easily given by

I(s) = sup k[ks− log ξk]

For our simple example of two bits {0, 1},

Πk =

(

1 − α α
αek (1 − α)ek

)

The largest eigenvalue of which can be easily determined and is a function of
k and α. For α = 1/2 we return to IID variables.
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4.3 Large Deviation Theory in statistical mechanics

Heuristic Motivation

Statistical mechanics is the study of a physical process across different scales of
description. We start from the microscopic level of particle positions, momenta
and spins and scale out into a description in terms of magnetization or total
angular momentum. Statistical physics aims to describe the global or coarse
grained levels by taking an average of more detailed levels. A system which
can be segregated into a numerous number (also called the thermodynamic
limit n → ∞) of identical subsystems is shown to obey the Law of Large
Numbers which states that the values assumed by the macroscopic observables
are reproducible (inspite of the ever changing microscopic landscape) and the
fluctuations around these most probable values behave in accordance with the
Central Limit theorem.

The Large Deviation Theory was put into use to study physical systems by
Ruelle [115], Lanford [83], Ellis [45, 43, 44] and later many links between the
two branches were forged by Pfister, Lewis and Sullivan [88]. LDT tells us that
whenever the Law of Large Numbers holds, variational principles exist which
lead to the most probable values of the macroscopic variables. In statistical
mechanics, we are aware of variational principles such as the maximum entropy
principle and the minimum free energy principle.These can be derived using
LDT. The study of most probable states is reduced to the corresponding rate
functions in the LDT. We will see ahead that thermodynamic variables such
as entropy and free energy are rate functions of LDT. It also gives us the
probability of the macroscopic variable to deviate from its most probable value.

The aim of this section is not to be an exhaustive discussion of LDT in statistical
mechanics, but to be an introduction into connections between a few important
concepts of statistical mechanics and of LDT. We would, with the help of a
few examples, especially like to illustrate how free energies and through these
statistical forces can be derived in equilibrium.

For a general system with (n) degrees of freedom, which can exist in several
microstates, denoted in general by a vector x = {x1, . . . , xn}. Each microstate
has a corresponding energy E(x) associated with it. For example, a system of
particles suspended under the gravitational force, the state of the ith particle
is given by xi = (pi, hi), where pi is the momentum and hi is its height. The
energy of such a microstate is

E(x) =

n
∑

i=1

(‖pi‖2

2m
+mghi

)
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m is the mass of each particle and g is the constant of gravitation.

Each state is distributed according to the probability density

P (x) =
e−βE(x)

Z(β)
(4.16)

where Z(β) =
∫

x
e−βE(x)dx is the normalization constant.

We will start with a LDT for the average energy per particle u, such that the
total energy E(x) = nu. The entropy per particle

s(u) = kB lim
n→∞

log Ω(u)

n
(4.17)

where Ω(u) is the number of microstates with energy E(x) = nu and kB is
the Boltzmann’s constant. Hence, the probability to observe the energy per
particle between [u, u+ du] is given by

P (u ∈ du) =

∫

x:u(x)∈du

P (x)dx

=
Ω(u)e−βnudu

Z(β)
(4.18)

We know from thermodynamics that Z(β) is not just a normalization constant.
Observables such as the Helmholtz free energy per particle

F = − 1

nβ
log(Z(β)) (4.19)

other quantities like the average energy and the specific heat can be derived
using the normalization constant.

The asymptotic probability, in terms of the Helmholtz free energy is thus given
as follows:

P (u ∈ du) ≍ e
−n[βu−

s(u)
kB

−βF ]
(4.20)

where equations (4.16), (4.17), (4.19) are used.
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In equilibrium the rate function I(u) = βu− s(u)
kB

− βF is minimized and zero,
thus we arrive at the minimum free energy principle

F(β) ≍ minu[u− Ts(u)]

Let uβ be the energy which minimizes the expression, then the Helmholtz free
energy per-particle in the thermodynamic limit

F(β) ≍ [uβ − Ts(uβ)] (4.21)

renders the usual thermodynamic relation between the free energy and entropy
as Legendre transforms of each other.

The next section consists of a statistical system in equilibrium where, with the
help of LDT we derive equilibrium state and the corresponding potentials. We
also introduce the notion of statistical forces in fluctuating systems.

4.4 Entropic Spring

Consider a one-dimensional array of N springs arranged along a straight
line. Each spring in this coupled system can assume either length 0 or λ
independently. Both states are equally probable. The state of the ith element
is labeled by xi ∈ {0, λ}. This system is placed in a heat bath with inverse
temperature β, such that the fluctuations of the bath lead the spring to explore
the whole phase space. This system of springs is attached to a classical spring
with spring constant k and equilibrium length x0. The complete system is
confined between two walls at a distance L from each other.

Our aim is to calculate the statistical reaction force acted on the
classical spring by the entropic spring, using LDT.

To calculate the force due to a spring, we should first determine the probability
of a given extension in the equilibrium length of the entropic spring. Let l = nλ
be the total length of the entropic spring, where n is the number of springs with
length λ. If x is the extension or contraction in the classical spring, then the
two systems are coupled by the following relation

L = l+ x0 − x
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Figure 4.2: Entropic Spring coupled to a Classical spring
The color blue denotes length λ and red denoted length 0

For the macroscopic variable l, we wish to calculate the probability P (l/N = X)
that the average length of each spring is 0 < X < λ.

The total number of configurations the spring could take are 2N . Each
microstate is equally probable with a probability P (η) = 2−N . Hence, the
probability of a configuration with length NX is

P (l/N = X) = 2−N

(

N
NX/λ

)

(4.22)

For a large system size N → ∞, we apply the Stirling’s approximation and
assuming that the LDT principle holds, with the rate function j(X),

log[P (l/N = X)] ≍ −βNj(X) = −N [log 2 +
X

λ
log (

X

λ
) + (1 − X

λ
)log(1 − X

λ
)]

(4.23)

Since there is an energy exchange between the entropic spring and its
environment at inverse temperature β, the rate function j(X) is a free energy
per spring f(X).

Free energy being an extensive quantity, the total free energy of the spring of
length l is

F(l) = Nf(X)
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We also notice that the minimum and zero of the rate function lies at X = λ/2,
which implies that the most probable macro-state is the one for which l = λN/2
as expected from the symmetry of the spring. The free energy of the spring
around this equilibrium point, l0 is hence

F(l) ≈ 1

2
F ′′(l0)(l − l0)2 =

1

l0λβ
(l − l0)2

Given the free energy of the entropic spring around its equilibrium configura-
tion, the total energy of the spring system is

E(x) =
1

l0λβ
(l − l0)2 +

1

2
kx2

Using the constraint equation L = l + x0 − x, the energy in terms of the
extension x of the classical spring is

E(x) = A+B[x − C]2 (4.24)

where A = (L−x0−l0)2

λβl0
, B = ( 1

λβl0
+ 1

2k) and C = (x0+l0−L)
λβl0k

2 +1
.

The total energy must be minimized around the equilibrium configuration of
the system,

− d

dx
E(x) = −2B[x− C] = 0

Hence, when the extension of the classical spring xeq = C, the system is in
equilibrium. The statistical force acting acting on the classical spring due to
the fluctuations in the entropic spring is hence,

FStat = −kxeq = −k (x0 + l0 − L)
λβl0k

2 + 1
(4.25)

This force pushes the entire system towards a minimum free energy configu-
ration. Using this analysis we would try to lay down the meaning and few
characteristics of Statistical or Entropic forces on which we would elaborate
further in chapters ahead.

FStat is called a Statistical or Entropic force. It has the following features which
would be accepted in this text, as the defining features of a Statistical force.
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1. The force is a macroscopic force, i.e. it acts only on a macroscopic scale
and depends on the coupling between the micro and macro variables.

2. It essentially arises, because a system with numerous degrees of freedom
(microstate) transitions between those microstates in such a way that the
long-time behavior of the observables representing the system would tend
to the macrostate with the most number of microstates corresponding to
it. Hence, it seems that there is a force which pushes the system to
macrostates with larger micro support. In equilibrium, this force is hence
proportional to the entropy gradient or the free-energy gradient.

3. It can be attractive e.g. the elastic force in a polymer under stress or
repulsive e.g. the repulsive forces between colloids in a dense bath of
small particles.

If we consider the classical spring as a probe which is coupled to the entropic
system, we can say something about the variance λ in the length of each
entropic spring. The statistical force is inversely proportional to the variance,
since less is the variance, the less the system wishes to move away from its
mean value.

The present model is an example of passive coupling between the entropic
spring and the probe. As seen above, the equilibrium configuration of the
entropic spring and probability of any configuration is independent of the
extension of the probe x coupled to it. Hence the probe is passive and does
not influence the system. Reverse is not true. The equilibrium configuration
of the probe, depends heavily on the configuration of the entropic spring.





Chapter 5

Entropic Forces

To see a world in a grain of sand and a heaven in a wild flower, hold infinity in
the palm of your hand and eternity in an hour.

- William Blake, Auguries of Innocence

5.1 Introduction

At sea on a windless day, in a strong swell free floating ships will roll
heavily. It was believed in the days of the clipper ships that under
those circumstances, two vessels at close distance will attract each
other.

Do they ? asked S. Boersma in A maritime analogy of the Casimir effect [17].
In a passage in The Mariner’s Album, a handbook published in 1836, French
nautical guru P.C. Causseé observed the following:

When two ships lie in close proximity on a rolling sea with little wind, then “
une certaine force attractive ” pulls the ships together causing them to collide.
Treating the two ships as two Casimir plates in a fluctuating environment,
Boersma concluded that this attractive force was very real and gave a closed
expression for this force.

The crashing of ships is a dramatic manifestation of a force which in general

67



68 ENTROPIC FORCES

is coined as the “Entropic force”, “Statistical force” or “fluctuation-induced
force”. 1

There exist in nature several examples of fluctuation-induced forces and in the
most diverse and unrelated areas. We discuss below few of them.

5.1.1 Granular matter: Depletion forces

Entropic force between macromolecules (µm sized) in suspension is often
produced by the addition of smaller particles to the background solvent. The
binary mixture is of such nature that the difference in size or shape (spherical,
rod shaped particles ) of the constituent particles, under the influence of
thermal fluctuations, is a cause for the emergence of an entropically favored
state of the system. This results in a net aggregation (attractive force) or
repulsion of one of the species in the mixture.

Depletion model: Asakura & Oosawa (1954)

For low concentrations of the smaller species in the mixture, Asakura and
Oosawa, in 1954 proposed an ideal gas approximation [7] for particles. This
model assumes a bidisperse hard core interaction between the large particles.
The model predicts an effective attractive interaction between the larger
particles in the mix, with the range of the force given by the smaller species
diameter and the magnitude of the force of the order of the osmotic pressure of
the solution of smaller species. The attractive force was shown to be stronger
in solutions of chain shaped molecules or dissymmetrical molecules.

Around every large particle of radius R, there exists a depletion region or
excluded volume which is slightly larger than its own volume and denotes a
space within which the center of the smaller particles cannot lie. The free
energy of the system decreases with the increase in volume fraction ∆V/V of
the smaller particles. When two large particles come close to each other, a
part of their excluded volumes merge, decreasing the net excluded volume of
the system. The system evolves such that the small particles “push” two close
enough large colloidal particles towards each other, to decrease the depletion
region between them and in turn increasing their volume fraction.

The entropy S of the mixture increases with the increase in the overlap volume
∆V , hence decreasing the net free energy F .

1. Physicist Fabrizio Pinto in an article in Nature argues that the whole story of attraction
between ships is nothing more than the fact that "Physicists love lore about their own science,"
http://www.nature.com/news/2006/060501/full/news060501-7.html
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Figure 5.1: a) Two species red and blue separated by the excluded volumes
(yellow) b) When the distance between the large particles is of the order of the
radius of the small particles r, they experience an attractive force between each
other. For distances much larger than r the large particles are non-interacting.
Figure reproduced from [13].

∆F = ∆U − T∆S = −NkBT log(1 + ∆V/V )

Entropy leads to an effective attractive force between large particles, though all
pair interactions are repulsive hard core.

Experiment: In a direct experimental measurement of the entropic force
between two colloidal particles in a suspension of smaller particles, Crocker et
al. [29] immersed an isolated pair of PMMA spheres (1100 ± 15nm diameter)
in a background of 83nm of polystyrene beads. To this mixture was added
some salt solution and surfactant to prevent colloidal aggregation. The only
pair-wise interaction between the particles is a screened electrostatic repulsion,
with a screening distance of 3nm, which makes this interaction as good as hard
sphere like.

The two PMMS spheres were threaded to each other with a rod of light. Optical
tweezers were used to constrain the motion of the spheres along the line joining
them. The motion is essentially confined to one-dimensions. Probability
distribution of the relative distance between the two spheres r was empirically
obtained. This distribution was fitted to the Boltzmann’s distribution:

P (r) ∝ e−βF(r)

F(r) is the free energy of the system when the distance between the large
particles is r. The experiment was re conducted with different volume fractions
of the small particles.
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Figure 5.2: A) Each large sphere is surrounded by a depletion zone. B) At
higher volume fractions, the small spheres form shells around the large spheres,
analogous to the fluid layering near a flat wall. C) The threading of two large
spheres using optical tweezers. The figure is reproduced from [29]

Observations: As displayed in plot 5.3

• A strong attractive force, in agreement with the A & O theory, was
observed at short range and at low concentrations of the small particles.

• For volume fractions φs > 0.1 of the small particles, a repulsive force at
a distance of one small sphere diameter was observed. A very heuristic
interpretation being that at high concentration of small particles, they
squeeze between the colloidal particles and form a first level layer between
them, if the gap between the spheres is commensurate with the layers, the free
energy is lower (hence causing a repulsion); when the gap is incommensurate
the free energy is higher.

• For volume fractions φs > 0.25, the free energy F (r) is oscillatory. The
oscillation wavelength being inversely proportional to the volume fraction.
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Figure 5.3: The entropic interaction potentials measured for small sphere
volume fractions from 0 to 0.42. Curves b) and c) potential is monotonically
attractive, according to the the Depletion Layer theory. Curves d) and e) a
repulsive barrier forms. Curve f) onwards the potential becomes oscillatory.
The figure is reproduced from [29].

Applications of Depletion forces

The entropic depletion forces have several applications of scientific as well as
industrial interest. Protein crystallization is exactly what it sounds like. It
is a process in which supersaturated solution of biological macromolecules like
protein, are prompted to form crystals. In presence of a certain seed protein, the
molecules align themselves in a repeating series of unit cells with a consistent
orientation. The protein crystals are used as a basis for X-ray crystallography
of proteins, wherein an X-ray diffraction pattern is used to determine the three-
dimensional tertiary structure of the protein. Entropic forces also slow down the
reaction rates in concentrated macromolecular solutions and introduce many
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metastable states in the depletion-induced colloidal crystals.

In industry, entropic forces can be used to reverse aggregate suspensions. and
entropically stabilize colloidal which would otherwise aggregate.

5.2 A Generalized formalism

In the present section we propose a mathematical set-up through which one
could derive statistical forces in some generality. We would especially like to
discuss the nature of statistical forces, when the microscopic variables have a
nonequilibrium dynamics. The present work displays some explorations into
nonequilibrium statistical forces using some toy models alone. We display, using
these toy models, the dependencies of the vector potential associated with the
statistical forces on dynamical activity. There still remain several limitations
in the present understanding of forces in general.

Another important aspect worth paying some attention to, is the separation
of time scales. A significant point of difference between the microscopic or
bath degrees of freedom and the macroscopic or probe degree of freedom is
the difference in the time scale of their dynamics. The bath being the “fast”
variables and the probe being the “slow” variable. On one end of the spectrum
lies the infinitely separated time-scale of the bath and the probe. The other
end of the spectrum is indeed when the bath and the probe have the same
time scale. We would quantify the difference in time scale through a parameter
γ ≫ 1 or ǫ ≪ 1. Through tuning this parameter, we are able to display the
influence of various scales of separation on statistical forces.

In the formalism presented below we focus our attention on processes in discrete
state space evolving in continuous time. Hence, putting into use the machinery
for Markov jump processes from Chapter 2.

5.2.1 Parameterization

We consider Ht, a jump process moving in a finite dimensional state space.
This process is in general driven, which means that the dynamics does not
satisfy detailed balance. The dynamics is itself open and coupled to reservoirs,
which make a fluctuating environment. Very generally speaking, the effect of
the fluctuating environment is incorporated in the following transition rates of
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the process

kα(η, η′) = ψα(η, η′)esα(η,η′)/2 (5.1)

Here, ψ(η, η′) = ψ(η′, η) is the symmetric prefactor, which in general is
temperature dependent. s(η, η′) = −s(η′, η) is an anti-symmetric function
which in general is interpreted as the change in entropy of the environment as
the system transitions from state η to η′. We would refer to α as an “external”,
possibly time-dependent parameter which can be present in either or both the
prefactor ψ and the entropy change s. The real meaning of this parameter
would become clear further.

In case of detailed balance, for the system in contact with one thermal bath at
inverse temperature β, the change in entropy is related to the system energy
Uα in the following manner

sα(η, η′) = β[Uα(η) − Uα(η′)]

Hence, the resulting detailed balance rates are

keq
α (η, η′) = ψ(η, η′)e− β

2 [Uα(η′)−Uα(η)] (5.2)

= eaβ∆α(η,η′)+bβUα(η) (5.3)

We have rewritten the transition rates above in form of the Arrehenius rates
discussed in Chapter 2. Jumps are occurring between metastable states η and
η′, well separated by energy barriers ∆α(η, η′) = ∆α(η′, η). Factors a and b in
the exponential are parameters which signify the relative strength and coupling
between various intensive variables.

In case when the microscopic dynamics is driven by a non-conservative
force there is an additional entropy flux F (η, η′) = −F (η′, η). A useful
parametrization becomes,

kα(η, η′) = eaβ∆α(η,η′)+bβUα(η)+βcF (η,η′)/2 (5.4)

Once we have established the transition rates for the process, a point of
interest is the information we can extract from here regarding the macroscopic
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variables and observables. Statistical forces have been argued to be macroscopic
forces and hence to understand their origins in general one has to study the
connections between statistical physics and thermodynamics. In equilibrium
statistical physics, these connections are well established. We have also
displayed in the previous chapters aspects of the large deviation rate functions,
their origin in fluctuations of microscopic variables and their interpretation in
terms of thermodynamic variables such as free energy and relative entropy. We
reveal further more of such connections which would later be instrumental in
extending our understanding into driven systems.

5.3 Adding the probe

To the microscopic dynamics thus defined by the H− process, we introduce
a probing system with its own dynamics. At first we would call “the probe”
all those degrees of freedom which are coupled to the H− process and the
environment. Later we ask whether we can reconstruct (aspects of the )
H− process from its action on other variables. It would of course be overly
ambitious to try to recover the entire bath dynamics, say to the level of the
transition rates of the individual jumps. And of course, depending on what we
want to know, different probes could be used.

The probe here is a process Xt again to be modeled as a jump process which
is influenced by the H− process.

Active-Passive probes

The coupling between the system and the probe is essentially of two kinds:
Active or Passive. An active coupling is such that the probe is influenced by
and in turn influences the H− process. In other words, there exists a feedback
from the probe (X−) process to the bath (H−) process.

Here, the coupling between the probe and the bath is defined exactly via
parameter α. The transition rates for the probe are

rα(x, x′) = zα(x, x′)e
β
2 [h(η,x)−h(η,x′)] (5.5)

for the transition from x to x′ with symmetric pre-factor zα(x, x′) = zα(x′, x)
and joint potential h(η, x) mediated at inverse temperature β. A natural choice
is then to assume that α in the H− process takes the same value as the X , or
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Uα(η) = h(η, x), α = x

In other words, for an active probe, we really have a joint Markov process
(Ht, Xt) with jump rates

kx(η, η′) = eaβ∆x(η,η′)+bβh(η,x)+cβF (η,η′)/2, rη(x, x′) = z(x, x′)e
β
2 [h(η,x)−h(η,x′)]

(5.6)

A passive probe would on other hand be such that the bath dynamics does not
depend on the state of the probe.

h(η, x) − h(η′, x) = h̃(η) − h̃(η′) and ∆x(η, η′) = ∆(η, η′)

5.3.1 Scaling of the microscopic dynamics

We are interested in the effective dynamics of the probe, where the bath
dynamics is averaged out. Mostly this is done by assuming that the bath
degrees of freedom evolve much faster than the probe degree of freedom, e.g.
the probe is much heavier than the bath particles. In these cases we speak of
systems with separation of time scales of fast η and slow x degrees of freedom.
In this section we present some formal techniques to understand the time
separation in a systematic manner. We restrict ourselves to the Markovian
systems and we will examine the effective dynamics of slow degrees of freedom
using the projection operators. This work is a result of collaboration with J.
Pes̆ek, and K. Netoc̆ný.

The joint probability density which defines the coupled system is µt(η, x). We
describe the time evolution of our system by the forward generator L†

ǫ.

∂tµt(x, η) = L†
ǫ[µt](x, η) (5.7)

For a Markov jump process, where the symmetric part of the jump rates of the
fast degrees of freedom are scaled by ǫ−1, i.e.

k[(η, x); (η′, x)] =
1

ǫ
k(η; η′); r[(η, x); (η, x′)] = r(x, x′)
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For the joint generator of such a process, we choose the following scaling:

L†
ǫ = L†

S +
1

ǫ
L†

F (5.8)

where L†
S acts only upon slow degrees of freedom and L†

F acts only upon fast
degrees of freedom.

Our goal is to find an evolution equation for reduced density for slow variables

νt(x) =
∑

η

µt(η, x). (5.9)

We further assume that there exists a unique stationary distribution of fast
degrees of freedom conditioned on the slow ones ρF (η) to which the fast degrees
of freedoms tends to converge, i.e. we fix the slow degrees of freedom and we are
searching for stationary density of overall generator L†

ǫ restricted only on the
fast variables as ǫ → 0+. Under this assumption we can define the projection
operator P as follows:

P [µ] (η, x) = ρF (η)
∑

η

µ(η, x) (5.10)

The condition of the existence of unique stationary state ρF for fast degrees of
freedom with respect to slow degrees of freedom fixed at some value reduces to
the condition of existence of unique solution of equation

L†
F [ρF ] = 0.
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The properties of the generator acting upon fast degrees of freedom can be then
summarized as

P2 = P , (5.11a)

L†
F P = 0, (5.11b)

PL†
F = 0. (5.11c)

These properties can very easily be verified by applying the definitions of the
projection operator and the action of the generator L†

F .

We use (5.10) to split the time evolution (5.7) to the time evolution of projected
density P [µt] and the rest (1 − P)[µt]

∂tP [µt] = PL†
ǫP [µt] + PL†

ǫ(1 − P) [µt] , (5.12)

∂t(1 − P) [µt] = (1 − P)L†
ǫ(1 − P) [µt] + (1 − P)L†

ǫP [µt] .

We formally solve the later equation

(1 − P) [µt] =

t
∫

0

dt′ e(t−t′)(1−P)L†
ǫ(1−P)(1 − P)L†

ǫP [µt′ ]

+ et(1−P)L†
ǫ(1−P)(1 − P) [µ0] , (5.13)

and insert the solution in equation (5.12). Integrating over the fast degrees
of freedom, assuming that the initial state of the system was uncorrelated
(i.e. µ0(η, x) = ν0(x)ρF (η)), we obtain an effective time evolution for the slow
degrees of freedom

∂tνt(x) =
∑

η

L†
ǫ [νtρF ] +

t
∫

0

dt′
∑

η

L†
ǫe(t−t′)(1−P)L†

ǫ(1−P)(1 − P)L†
ǫ [νt′ρF ]

(5.14)
Now we would like to do an expansion in ǫ as ǫ → 0+ up to lowest order and
derive what will be later defined as the fluid limit of the bath.
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Inserting the total generator (5.8) together with the properties (5.11b), (5.11c)
to the effective evolution equation (5.14) we obtain

∂tνt(x) =
∑

η

L†
S [νtρF ]+

t
∫

0

dt′
∑

η

L†
Se(t−t′)[ 1

ǫ L†

F
+(1−P)L†

S
(1−P)](1−P)L†

S [νt′ρF ]

(5.15)
which can be expanded in ǫ using Laplace transform. Upto first order in ǫ we
present the result for the effective generator for slow degrees of freedom:

∂tνt(x) =
∑

η

L†
S [νtρF ] − ǫ

∑

η

L†
S

1

L†
F

L†
S [νt′ρF ] +O(ǫ2), (5.16)

The memory in the lowest order of ǫ is only present in the time integration over
all time, hidden in pseudo-inverse [19] defined as

1

L†
F

=

∞
∫

0

dt
[

P − etL†

F

]

,

For the purposes of the results which we pursue in the fluid limit, the results
upto zeroth order in ǫ are sufficient. We do not elaborate here on the first order
correction but merely state the result for future use.

In the fluid limit (ǫ → 0) an effective generator, L†
eff governing the effective

slow dynamics of x, once all the fast degrees of freedom have been integrated
out, is defined as

∂tνt(x) =
∑

η

L†
S [νtρF ] (5.17)

:= L†
eff[νt(x)] (5.18)

5.3.2 Effective dynamics of the probe

Effective rates

In order to derive an effective dynamics of the probe, we start with the fluid
limit assumption. The action of the effective generator L†

eff is presented below
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L†
eff[ν(x)] =

∑

η

[

∑

x′

[ν(x′)rη(x′, x) − ν(x)rη(x, x′)]ρF (η)

]

=
∑

x′

[

ν(x′)
∑

η

rη(x′, x)ρF (η) − ν(x)
∑

η

rη(x, x′)ρF (η)

]

=
∑

x′

[ν(x′)χ(x′, x) − ν(x)χ(x, x′)] (5.19)

where

χ(x, x′) :=
∑

η

ρF (η)rη(x, x′)

are the effective rates governing the dynamics of the probe in the fluid limit.

Other aspects of the bath dynamics, which carry over information into the
effective motion of the probe are the so called large deviation rate functions,
called short fluctuation functionals. With the help of examples, we will show
that some of them like the Information potential or Stationary potential

ϕ(η, x) := −log (ρF (η))

do not appear in the effective dynamics in equilibrium. ρF (η) is the stationary
state of the bath process for a fixed state of the probe x. We wish to explore,
whether this fluctuation functional plays any role in the effective dynamics, in
case of nonequilibrium.

On the other hand, as shown below, the slow dynamics in detailed balance
evolves along the gradient of the Generalized free energy.

F(x) :=
∑

η

ρF (η|x)

[

h(η, x) − 1

β
ϕ(η, x)

]

(5.20)

Again, we would like to explore the role of F out of equilibrium.

Stationary escape rate

For dynamical fluctuations such as current fluctuations we do not have sufficient
structure in the generally defined H− process, though current fluctuations are
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related to aspects of dynamical activity. One important such aspect is the
stationary escape rate

e(x) :=
∑

η,η′

ρF (η|x)k(η, η′) (5.21)

It features prominently in the Donsker-Varadhan fluctuation functionals for the
occupation times

Px

(

1

T

∫ T

0

dtδHt,η = π(η) ∀η
)

≍ e−T Dx(π)

in the sense of large deviations for T ≫ 1. Ht is the state of the fast variable
at time t.

The functional Dx is the difference between expected rates

Dx(π) =
∑

η

π(η)[ξx(η) − ξV
x (η)], ξx(η) :=

∑

η′

kx(η, η′)

More precisely,

ξV
x (η) :=

∑

η′

kV
x (η, η′), kV

x (η, η′) := kx(η, η′)e[V (η)−V (η′)]/2

with the potential V depending on π such that π is the stationary distribution
for the process with rates kV

x (η, η′), see e.g. [31].

Obviously, the parameters a, b, c enter the aspects ϕ(η, x) and ξx or F(x)
and e(x). These parameters will thus help in understanding the general
dependencies.

5.3.3 Reconstruction in case of equilibrium

Given the above set-up we reiterate our original aim: to reconstruct aspects of
the bath by observing the effective behavior of the probe, to study the nature
of the statistical force on the probe and its dependence on bath dynamics. We
would like to begin the analysis in the case when the bath dynamics is detailed
balance. To this effect we assign the parameter c = 0.
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In equilibrium the effective rates reduce to

χ(x, x′) =
1

Zβ(x)
ω(x, x′)

where the symmetric function ω(x, x′) =
∑

η∈Γ

zη(x, x′)e−β[U(η,x)+U(η,x′)]/2.

The ratio between the forward and reverse rates is hence

χ(x, x′)

χ(x′, x)
=
Z(x′)

Z(x)

The equilibrium distribution ρF (η|x) reduces to a canonical Gibbs distribution.

ρF (η|x) =
e−βh(η,x)

Zβ(x)

where Zβ(x) =
∑

η

e−βh(η,x) is the partition function.

The generalized free energy F defined in equation (5.20), in equilibrium
thus reduces to

Feq(x) = − 1

β
log Zβ(x) (5.22)

Deriving inspiration from thermodynamics, the statistical force FStat on the
probe, is defined as a change in the conservative potential:

FStat(x, x
′) = −[V (x′) − V (x)]

= −[Feq(x′) − Feq(x)] (5.23)

=
1

β
log

[

Z(x′)

Z(x)

]

(5.24)
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On the other hand, from local detailed balance, the ratio of the effective rates

χ(x, x′)

χ(x′, x)
= es(x,x′) (5.25)

where s(x, x′) is the total entropy flux into the environment, which in
equilibrium is simply equal to the change in the free energy of the system.

Hence in general, the statistical force on the probe is defined as follows:

FStat(x, x
′) :=

1

β
log

[

χ(x, x′)

χ(x′, x)

]

(5.26)

This definition would hold, also when the bath dynamics is not detailed balance,
though we would see in this case that the statistical force would no longer be
defined only terms of a scalar potential V . An additional vector potential would
enter the picture.

5.3.4 Extension into nonequilibrium

When detailed balance in the bath dynamics is broken, in general it is expected
that the effective dynamics of the probe would also lose its detailed balance,
unless there exist some hidden symmetries in the dynamics which uphold
detailed balance in the dynamics of the probe. Otherwise, the statistical
force would no longer remain conservative. The non conservative or rotational
component of the force would result in a non-zero current in the probe state
space. We are interested to see what factors govern the strength and direction
of the statistical force. Also, by observing the nature of the current can we
extrapolate the nature of the nonequilibrium forcing in the bath ? What is the
role of the dynamical fluctuation functionals in the nature of this force ?

To start with, we lift the constraint c = 0, which makes the H− process non-
detailed balance. The statistical force from (5.26) is:

FStat :=
1

β
log

[

χ(x, x′)

χ(x′, x)

]

Using, the stationary distribution ρF (η), the effective rates χ(x, x′) can be
calculated.

The statistical force can be decomposed as a sum of gradient and non-gradient
parts:
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FStat(x, x
′) = V (x) − V (x′) + A(x, x′)

where the antisymmetric function A(x, x′) = −A(x′, x) is the rotational part
of the force.

The conservative potential V (x) is only defined upto a constant C. Hence we
can impose an additional constraint to completely specify its value.

∑

x∈Γ′

V (x) = 0

This fixes the constant as C = −
∑

x∈Γ′

V (x)/3. Since V (x) − V (x′) is the

conservative part of the force, the work done by this force over a complete
cycle is zero.

This naturally implies that the statistical force summed over a whole cycle is

∑

x,x′∈Γ′

FStat(x, x
′) =

∑

x,x′∈Γ′

A(x, x′)

Again, since the vector potential defining this non-gradient force is determined
only uptil the gradient of a scalar ∇λ. We demand that norm of the non-
gradient force

‖A(x, x′)‖2 =
∑

x,x′∈Γ′

A(x, x′)2

is minimized.

With the help of these constraints we obtain the gradient and non-gradient
parts of the force uniquely.

V (x) =
1

2n

∑

x 6=x′

[FStat(x, x
′) − FStat(x

′, x)] (5.27)

A(x, x′) = FStat(x, x
′) − [V (x) − V (x′)] (5.28)
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where n is the number of states is the state space of the probe.

Using these expressions we derive the conservative and non-conservative parts
of the force.

Given that now we have some general expressions in equilibrium and
nonequilibrium, we can construct a toy model to explore the nature of these
forces and potentials like the generalized free energy and the stationary escape
rate.

5.3.5 Example: A three-state discrete model

To illustrate and further understand such ideas as discussed above, we introduce
a simple Markov jump process with two coupled systems. Both processes
H and X are defined on the discrete state space Γ,Γ′ : {−1, 0, 1}. We use
the parametrization already set in place in Section 5.2.1. The symbols used
correspond to the definitions in that section.

The dynamics of the bath is governed by the potential U(η, x) = xη, which
gives rise to a force on the bath and the probe which depends on the state of
the probe and the bath respectively. On top an external non-conservative force
f(η, η′) is applied on the bath. A constant force is non-conservative when the
state space being acted upon is a circle since it cannot be written as a gradient
of a potential [19].

The transition rates for the bath dynamics are

kx(η, η′) = γe− a
2 [bx(η+η′)]+bηx+ c

2 f(η,η′) (5.29)

The inverse temperature β is assumed to be 1. γ ≫ 1 is the parameter which
makes the bath dynamics much faster than the probe dynamics. The force
f(η, η′) drives the bath in a cyclic fashion 1 → 0 → −1 (named clockwise) with
a constant driving f and in the anti-clockwise direction with driving −f .

The probe X is active. Its dynamics is detailed balance and is governed by
the rates

rη(x, x′) = zη(x, x′)eη(x−x′)/2 (5.30)

The symmetric pre-factor zη(x, x′) re-enforces the coupling between the bath
and the probe.
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zη(x, x′) = 1; η = 1, 0

= 0; η = −1 (5.31)

In Equilibrium

Given this setup we first analyse the situation when the H dynamics is detailed
balance. To this effect we select parameter c = 0 and show how to determine
the free energy of the H−process from monitoring the dynamics of the probe.

The detailed balance solution of the Master equation for the X dynamics with
rates kx(η, η′) is

ρeq
F (1) =

1

1 + ebx + e2bx
; ρeq

F (−1) =
e2bx

1 + ebx + e2bx
; ρeq

F (0) =
ebx

1 + ebx + e2bx

As can be seen, the equilibrium state for x = −1 is at η = 1 and for x = 1 is
at η = −1. For x = 0 all states are equally probable.

Using (5.23), the ratio of the effective rates for the integrated out dynamics of
the probe is given by

χ(x, x′)

χ(x′, x)
=

1 + 2 cosh[bx′]

1 + 2 cosh[bx]
(5.32)

We use the effective dynamics, to calculate the statistical force FStat(x, x
′) on

the probe, (5.26). This force can be written down as a difference

FStat(x, x
′) = −log

(

1 + 2 cosh[bx]

1 + 2 cosh[bx′]

)

(5.33)

= −[V (x′) − V (x)]

The statistical force, in equilibrium, moves the system along the gradient of
the free energy landscape. The free energy or the generalized free energy (since
this is an effective dynamics) of the H− process is hence

Feq(x) = V (x) = − log(1 + 2 cosh[bx]) (5.34)
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In equilibrium, the effective dynamics depends on the terms which constitute
the anti-symmetric part of the rate function, h(η, x) − h(η′, x). This is evident
by the presence of variable b alone. There is no influence of the symmetric
escape rates, ∆x(η, η′), which are flagged by variable a.

Breaking detailed balance

To continue we wish to go further into more interesting and richer realm of
non-equilibrium. By measuring the current in the probe state space, we can
have an ambition to predict the nature of non-equilibrium forces in the “sea”
itself. To take this model into non-equilibrium we lift the constraint that c = 0
from the H dynamics, which makes it non-detailed balance.

In non-equilibrium, the stationary solution of the Master equation for the H
dynamics renders

Zx = ecf +e2cf
[

eax + ebx
]

+eax/2+e2bx+e(a+b)x+ecf+ax/2+bx
(

1 + ecf+bx + eax/2+bx
)

ρx(1) =
ecf + e(ax)/2 + e2cf+ax

Zx

ρx(−1) =
e2bx(1 + e2cf+(ax)/2 + ecf+ax)

Zx

ρx(0) =
ebx(e2cf + eax + ecf+(ax)/2)

Zx

Before we move on, one interesting point which is to be noted is that unlike
in diffusion where with increasing driving the stationary distribution of a
particle on a ring tends to the uniform distribution, for the jump processes
the stationary distribution, at very large driving, is not uniform anymore, nor
is it independent of the conservative potential. In diffusion the influence of the
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potential becomes smaller and smaller as the non gradient force increases and
the probability to stay in any part of the ring becomes the same. For jump
processes on the hand, since the transition rates depend on the exponential of
the potential, even as f becomes large, the dynamics continues to depend on
the potential as well. This fact is illustrated in the plot 5.4.

2 4 6 8 10
f
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0.2

0.3

0.4
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Η = - 1

Η = 0

Η = 1

Figure 5.4: Stationary distribution ρ(η) vs f .
Parameter values a = b = c = x = 1

As f goes to infinity, for c = 1, the stationary distributions are:

lim
f→∞

ρx(1) =
eax

(eax + ebx + e1/2(a+4b)x))

lim
f→∞

ρx(−1) =
e1/2(a+4b)x

(eax + ebx + e1/2(a+4b)x)

lim
f→∞

ρx(0) =
ebx

(eax + ebx + e1/2(a+4b)x)



88 ENTROPIC FORCES

Average stationary potential

Moving on, we illustrate the various dependencies of the average stationary po-

tential ϕavg =

1
∑

η=−1

ρx(η)ϕ(η) and the generalized free energy in nonequilibrium

on parameters a, b, c. We show the variation of ϕavg with the nonequilibrium
driving, plot 5.5 and it is seen that as f increases ϕavg tends to the same value
as in equilibrium, for a = 1. Dependence of ϕavg on a is studied in plot 5.6

Figure 5.5: The average of stationary potential vs f .
Parameter values b = c = x = 1

Figure 5.6: The average of stationary potential vs a.
Parameter values b = c = x = 1
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Stationary escape rate

The stationary escape rate e(x) =

1
∑

η=−1

ρx(η)ξ(η), where ξ(η) is the escape rate

of the fast dynamics, upto linear order in f is:

e(x) =
γ
(

1 + 2 cosh
[

ax
2

])2

1 + 2 cosh[bx]

− ce(−a+b)xeax/2
(

1 + 2 cosh
[

ax
2

]) (

1 − 3e
ax
2 + 3eax + 3ebx − e2bx

)

γf

2e2bx (1 + 2 cosh[bx])
2

− c
(

1 + 2 cosh
[

ax
2

]) (

e
ax
2 + e( a

2 +b)x + ebx − 1
)

γf

2 (1 + 2 cosh[bx])2

+ O[f ]2 (5.35)

Its variation with f is shown in plot 5.7
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f = 2

f = 1

f = 0

Figure 5.7: Stationary escape rate, a factor governing the dynamical
fluctuations vs f . Parameter values b = c = x = 1
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Stationary distribution of the effective dynamics

The stationary distribution ν(x) of the probe is plotted above. The stationary
distribution is of course different from its equilibrium form. What is interesting
to see is that the state of maximal occupation changes with f and a. In
equilibrium there is a degeneracy between states x = ±1, which were both
equally maximally occupied. This degeneracy is lifted in nonequilibrium. In
the plots 5.8, 5.9, 5.10 we see that the distribution function varies as a function
of f for small f . For all three states, above f = 4, the distribution saturates
(to different values for different a). We will see below in the analysis of the
effective forces, the reason behind this saturation.

Figure 5.8: Stationary distribution of the effective slow d.o.f, ν(x) vs a, the
part of the rates governing kinetics. Parameter values b = c = f = 1

Figure 5.9: Stationary distribution of the effective slow d.o.f, ν(x) vs a, the
part of the rates governing kinetics. Parameter values b = c = 1, f = 2
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Figure 5.10: Stationary distribution of the effective slow d.o.f, ν(x) vs a, the
part of the rates governing kinetics. Parameter values b = c = 1, f = 3

The nature and direction of the statistical force

The Statistical force FStat(x, x
′) is calculated using (5.26). The direction of

this force can be determined by determining the sign of a quantity called the
Netforce, NetF:

NetF = FStat[1, 0] + FStat[0, −1] + FStat[−1, 1] − FStat[1, −1] − FStat[−1, 0] − FStat[0, 1]

This quantity is basically the difference between the non-gradient force A(x, x′)
in the clockwise and anti-clockwise directions. Upto linear order in f it is given
as:

NetF = −
4
(

c sinh
[

a
4

]2
tanh

[

b
4

]

)

f

1 + 2cosh
[

a
2

] + O[f ]2

For cf > 0, this force acts in the anti-clockwise direction.

We use (5.27) to arrive at the expressions for the gradient and the non-gradient
parts of the force themselves. The non-gradient forcing upto second order in f
is given by
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Figure 5.11: Statistical non-gradient force A(1, 0) vs f .
Parameter values b = c = x = 1, x′ = 0

A(1, 0) = − 2 (−1 +
√

e) sinh
[

a
4

]2
f

3 (1 +
√

e)
(

1 + 2 cosh
[

a
2

]) (5.36)

−
sinh

[

a
4

]2
(

−1 + e + (−1 +
√

e)
2

sinh
[

a
2

]

)

f2

(1 +
√

e)
2 (

1 + 2 cosh
[

a
2

])2 + O[f ]3

Its behavior is plotted in 5.11

It is clear seen as f goes to infinity, the nonconservative force goes to 0. With
increasing values of escape rates, the non-conservative force rises, which is
understandable since, if the H system escapes easily from its current state
then the magnitude of the nonequilibrium current would also rise and hence
the net force on the probe as well.

The gradient part of the force for x = 1, V (x) (upto linear order in f) is shown
in Fig 5.12.
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Figure 5.12: Statistical gradient force V (1) vs f .
Parameter values b = c = x = 1
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The parameters b and c are fixed to one here as the expressions were get very
cumbersome otherwise.

Its behavior is plotted in 5.12

The conservative force on the other hand, saturates for large values of f and
as a rises the saturation potential rises as well. For a = 1 it seems to saturate
to the equilibrium level but not so for higher values of a.

Relation with generalized free energy

In the previous section we had found a relation between the generalized free
energy in equilibrium and the potential V (x) which was as follows:
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Feq(x) = V (x)

The question we ask now is whether in non-equilibrium this relation still holds.
The expression for V (y) is shown above (5.37) upto first order in f . The
correction in change in free energy F(x, x′) upto first order in f is found
to be zero, which leads us to conclude and even close to equilibrium, the
above equality is no longer true. This is also illustrated in plot 5.13. We
also compared the two in the f → ∞ limit, taking cue from the observations
above that as f becomes very large the system goes back to detailed balance
(statistical non-gradient force becomes zero). The plot 5.13 below shows the
variation of the limiting values of Free energy and V (1) as a function of f . It
is clear that they are not the same functions even in this limit.

Figure 5.13: Comparison with generalized free energy of the conservative
potential, F and V (1) . On the x axis is plotted the non-conservative force f .
System returns to equilibrium for large values f . This equilibrium is different
from the one in which the system started with. Parameter values a = b = c = 1

5.4 Archimedes’ principle: Buoyancy in granular

matter

For the remaining of chapter, we would like to present the action of entropic
forces in granular matter. This section is mainly derived from our work in [95].

Size segregation phenomena like the Brazil nut effect, where a binary mixture
of macroparticles segregate on shaking or vibration and the larger particles
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raise to the top of the mix have been extensively observed and discussed in
the literature. There are many factors which seem to play a role in the effect,
like friction with the walls of the container causing convection currents, or
void formation effects, when vibration-induced convection currents cause large
particles move up through the middle of the container and small particles move
down along the edges. The large particles cannot slip back down along the edges
since the gap is too narrow for them to do so and are hence are stuck at the
top of the mixture.

Another phenomenon which reminds us of something similar is the Archimedes’
law and the Law of Floatation. Proposed by Archimedes of Syracuse in his work
On Floating Bodies [39], which is supposed to have been written in 250 BCE.

The Archimedes’ principle states that:

Any body wholly or partially immersed in a fluid experiences an
upward force (buoyancy) equal to the weight of the fluid displaced.

and the Law of Flotation states that:

Any floating object displaces its own weight of fluid.

We present in the following work variations of Archimedes’ law which have been
observed in granular media and propose a mathematical model which explains
some of the observed phenomena. We also propose buoyancy as an entropic
force and derive the well known Archimedes’ law by taking the fluid limit of
the granular medium.

A main characteristic of granular media is that their behavior varies between
being more fluid- and being more solid-like. Initializing flow via shaking or
stirring fluidizes granular baths. That has been observed in various experiments
and simulations, in particular by verifying Archimedes’ law, [66, 102, 119].
Also phenomenological arguments have been added to the understanding of the
buoyancy force in granular media, e.g. from using the Enskog hydrodynamic
equations [1]. Nevertheless numerous controversies have remained and various
corrections must be considered. In the present work we take up a simple
excluded volume model to study the origin and the corrections to Archimedes’
law around the fluid limit.

Fluid-like behavior of a granular material should obviously include hydrostatic
and hydrodynamic effects. A natural way to study the origin of granular
hydrostatics and their possible corrections is via flow induction, i.e., stirring
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or shaking the system. That causes energy transfer to the grains which
is dissipated again in the collisions between the moving grains. Further
simplifications can help to understand the essence of what happens. In that
spirit we consider the asymmetric exclusion process to simulate the dynamics
of the grains (monomers) with one large particle (rod) immersed in them. The
condition of detailed balance enables us to identify the buoyancy force on the
rod, as function of its size and of its relative weight, and locally as function
of the height. We recover Archimedes’ law in the fluid limit and we create a
theoretical framework for a detailed study of possible corrections.

Corrections arise from various effects such as from the discrete nature of the
lattice where the lattice spacing measures the size of the grains. Corrections
also arise from thermal effects especially when the grains are themselves
immersed in a heat bath (e.g. hot air), and as studied here, from finite shaking
rates. Other possible corrections arise from convection currents in the granular
medium, to which we turn briefly in Section 5.5.

To the extent that our modeling via the asymmetric exclusion process is relevant
for the experimental conditions of granular media under shaking, Archimedes’-
like behavior was already predicted in [48]. Five years later Archimedes’ law
was confirmed experimentally [66] in a granular medium, and some corrections
were explored before the fluid limit. In the mean time further experimental
work and simulations which show an explicit Archimedes’ like behavior have
been added, including [102, 119]. We come back to the basic set-up.

5.4.1 Phenomenon & Experiment

In an experiment by Huerta et al. [66] in 2005, a bidisperse bath of beads
sized 3 and 4 mm were placed in a box, which was shaken at the wall, giving
horizontal, periodic impulses, given in general as x(t), y(t) = A sin(ωt + φ1,2).
Here x(t) is the impulse given in the x direction and y(t) is the impulse given
in the y direction. (φ1 = −φ2). The maximum amplitude of the walls is
Γ = Aω2/g = 10, where g is the acceleration due to gravity. Since, the impulse
to the grains is given in the horizontal plain, there is no vertical kinetic energy
transferred into the system and g is used only as a reference. The net friction
between the walls and the beads is also kept very low, so all effects due to
convention can be ruled out. At high values of oscillation amplitude the medium
is fluidized and effects such as buoyancy can be studied.
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Figure 5.14: Experimental set-up. 500W loud speakers are firmly mounted on
the lateral walls of an external and rigid box. This figure has been reproduced
from [66].

A large, low density polystyrene ball is placed in the box and one end of it is
tied to a dynamometer (to measure the tension in the string attaching the two).
As the bath is fluidized, the ball starts rising through the fluidized medium ,
until the string is completely stretched. The buoyant force on the polystyrene
sphere balances its weight and the tension in the string. Archimedes’ law
was verified in the system as a plot between the measured buoyancy force for
different volumes of the sphere was found to be a straight line, see plot 5.15.
The slope of the line gave the effective density of the fluidized bidisperse bath.
The ratio between the effective density of the fluidized bath and the density of
the glass beads gave the volume fraction of the bath as 0.63±0.03, which came
quite closed to the measured volume fraction of the bi-dispersion used in the
experiment 0.64.

A more interesting observation was the dependence of the buoyant force on the
oscillation amplitude Γ. It was observed that, above a certain cut off value of
the amplitude, the observed buoyant force was independent of Γ and equaled
the theoretical buoyant force to be expected if the bath was a fluid. Below
that cut-off though, the buoyant force decreases monotonically with Γ, see plot
5.16. This behavior separates the fluidized granular bath from a real fluid bath.
The fact that the granular medium is a dissipative medium, which is never
thermalized to an equilibrium state plays a role. Also, there are long-time and
space correlations which exist in a granular bath which certainly modify its
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Figure 5.15: Buoyancy forces for spheres of polystyrene (density 0.24 gm/cc)
plotted as a function of their volume Γ = 9.5. The figure has been reproduced
from [66].

Figure 5.16: Buoyancy force vs Γ for a 92 cm3 sphere. The horizontal part of
the curve corresponds to the force as given by the Archimedes’ principle.
At around Γ ≤ 5, buoyancy force drops. The figure has been reproduced from
[66].
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behavior.

Using our model we derive that a correction to the Archimedes’ law in fluids to
granular media can be written in terms of a drag force (memory) in the system.
Several experiments have studied the behavior of this drag force [66, 102, 128,
25] and [59]. Most agree that in the fluidized and low density limit the drag
force is observed to be proportional to the velocity. Moreover the coefficient of
viscosity is seen to vary exponentially with the shaking amplitude [66, 128], or,
in [102], observed inversely proportional to the shaking amplitude. For denser
media the drag force was seen to be varying logarithmic with velocity [25]. In
our model we discuss the nature of drag force and corrections to it in Section
5.4.6.

5.4.2 The Model: A rod in a lattice

We introduce a coarse grained model of the granular medium with a large
“intruder” immersed in it, originally proposed in [48]. The medium is composed
of single particles called “monomers” (η) which exist on a two-dimensional
lattice. The intruder on the other hand is a long rod (Y ), which exists on this
lattice and whose size extends to several lattice points. The coarse graining is
done in such a way that the only interaction between the monomers and the rod
is a simple exclusion. The monomers themselves behave as an ideal gas, with
simple exclusion. There exist no hydrodynamic or long range interactions in the
system. The only external force is the force of gravitation, which is uniform
throughout the system. Hence, the system is an example of an equilibrium
dynamics 2. The boundaries are assumed to be far and are assumed to not
have any influence on the system dynamics or steady state. Hence, phenomena
like convection currents or friction from the walls and energy dissipation are not
a consideration of this model. The whole system is maintained at a constant
inverse temperature β.

The Fluid limit

As far as the dynamics of the system goes it is a Markovian reduced dynamics
for the rod. The rod is considered as the slow variable which navigates through
the bath which is considered as the fast variable. Between any two moves of
the rod, the monomer configuration has time to relax to a stationary measure

2. It has to be clarified here that this model does not take into account the dissipative
collisions between the granular bath particles which leads to non-conservation of energy.
Forgetting about this non-conservative effect, we call the dynamics of the granular bath
equilibrium.
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conditioned on the position of the rod and the external force. We call this the
fluid limit. This is quite representative of a non-viscous, low density fluid,
whose configuration at any moment is subject to the intruder configuration at
that moment and is independent of the history of the intruder dynamics.

Figure 5.17

In further sections, we would be lifting this constraint and study the system
as it becomes responsive to longer history of the intruder. There are of course,
several levels of feedback possible. In this study we concern ourselves with the
influence of the last jump of the intruder on the bath dynamics and hence the
feedback it has on the current intruder dynamics and more particularly on the
Archimedes’ law. This is an example of a non-Markovian dynamics.

We build in table 5.17 some correspondences and analogies with the Entropic
Spring model which we considered in the last chapter.

Model

All motion takes place on the square lattice Z2 where the mesh size, taken
unity here, gives the size of the grains. These grains (also called, monomers)
can occupy sites i = (x, y) having “vertical” coordinate y and “horizontal”
coordinate x. There can be at most one grain per site. There is one big
particle or intruder, called rod and we only follow its vertical position. The
vertical position of the rod at time t is denoted by Yt taking values in Z. The
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rod occupies N ∈ {2, 3, ...} lattice sites in the horizontal direction, i.e., the
region

AN (y) = {(0, y), (1, y), ..., (N − 1, y)} (5.38)

is forbidden for the monomers when Yt = y.

Figure 5.18: The red points denote the granular particles and the brown rod
is the large intruder in the granular bath. The size of the lattice is unity. The
bath is maintained at constant temperature β and horizontal shaking at the
boundary is replaced by a bulk horizontal jump rate γ

The horizontal jumps of the monomers are symmetric at rate γ. Increasing the
rate γ speeds up the monomer dynamics in the horizontal direction (orthogonal
to the motion of the rod). The vertical jumps of the monomers and the rod
are asymmetric; modeling a gravitational field. Note that the vertical motion
is not speeded up, but of course it is influenced by γ as well.

More formally, the microscopic dynamics looks as follows (Fig. 5.18) : The

monomer configuration is denoted by η ∈ {0, 1}Z2

; ηt(i) = 0 means there is no
monomer at site i at time t and ηt(i) = 1 if there is a monomer at site i at time t.
The dynamics is of exclusion- type because all motion is via jumping to vacant
sites and rod and monomers never overlap. A monomer moves horizontally to
a vacant nearest neighbor site, symmetrically with rate γ. It moves vertically
up with rate p and down with rate q.
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The rod only moves vertically, up with rate a and down with rate b. We choose
p/q, a/b < 1 to represent the gravitational field, e.g. via

p/q = exp(−βmg), a/b = exp(−βMg)

where M,m denote the mass of the rod, respectively of the monomers; 1/β =
kBT is a typical unit of thermal energy at temperature T which plays little
role in what follows, except for allowing fluctuations. The temperature could
also refer to an additional heat bath that makes contact with the grains. Yet,
granular media are typically a-thermal in which case we think of Mg,mg >>
kBT . The lattice unit is not indicated; it is taken to be one and should be
thought of as the size of the grains. All that motion gets summarized in the
formal generator

Lf(η, y) ≡ aI [η(i) = 0, ∀i ∈ AN (y + 1)][f(η, y + 1) − f(η, y)]

+ bI [η(i) = 0, ∀i ∈ AN (y − 1)][f(η, y − 1) − f(η, y)]+

∑

i=(i1,i2)

{pη(i)(1 − η(i1, i2 + 1))I [(i1, i2 + 1) /∈ AN (y)]

× [f(ηi,(i1 ,i2+1), y) − f(η, y)]

+ qη(i)(1 − η(i1, i2 − 1))I [(i1, i2 − 1) /∈ AN (y)]

× [f(ηi,(i1 ,i2−1), y) − f(η, y)]}

+ γ
∑

〈ij〉i:i2=j2

I [〈ij〉 ∩ AN (y) = ∅][f(ηi,j , y) − f(η, y)] (5.39)

where I[· ] is the indicator function of the event in the brackets, giving one or
zero depending on the event being realized, and ηi,j is the grain configuration
η after switching the occupations in sites i and j. The last term represents the
horizontal shaking in which the occupations of (horizontal) nearest neighbor
pairs 〈ij〉 get exchanged. Observe that there is always both horizontal and
vertical motion, subject to the exclusion rule, which, besides from the shaking,
can arise from an extra heat bath in which the grains are moving and with
which energy can be exchanged. We need (5.39) for writing down the kinetic
equations that are all of the form

d

dt
〈f(ηt, Yt)〉 = 〈Lf(ηt, Yt)〉
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Here and from now on, brackets 〈i〉 are with respect to the stochastic dynamics
and over the following initial conditions. At starting time t = 0 we put Yt=0 = 0
so that the rod starts from the center of the lattice, but that is really arbitrary.
For the initial distribution on monomer occupations we take density

d(x, y) = d(y) =
κ(p/q)y

1 + κ(p/q)y
(5.40)

for parameter κ > 0. This formula satisfies

pd(y)(1 − d(y + 1)) = qd(y + 1)(1 − d(y))

which is a detailed balance relation for the motion of the grains. The density
varies between zero (at the top) to one (at the bottom). The height where
d(y) = 1/2 scales like y ∼ log κ. The derivative of the density at that height
(where the transition is made between higher and lower density) is proportional
to βmg. Therefore, choosing κ ≃ 1 and large βmg corresponds to a more
constant density as in a liquid or as in a granular medium in a container filled
from the bottom to around y = 0; on the other hand, looking at positive y,
for κ = 1 and for smaller βmg corresponds to a gas condition where (5.40)
simulates a barometric formula. Low density granular media under heavy
shaking would also fall in that category which in our modeling is most typical.
The density is constant in the horizontal direction (x), but always conditioned
on having η(i) = 0 for all i covered by the rod, i.e., for all i ∈ AN (Y ). More

precisely, we let νd denote the product measure on {0, 1}Z2

with density

Prob[η(x, y) = 1] = d(y) (5.41)

defined by (5.40). The conditional probability

ν0
d = νd(· |η(i) = 0, ∀i ∈ AN (0)) (5.42)

is then the initial distribution on the monomers. The dynamics such as defined
above gives rise to the Markov process (ηt, Yt).

5.4.3 The Fluid limit

In the limit γ → ∞, the motion of the rod decouples from the monomer
dynamics. Then, the reduced dynamics of the rod becomes that of a random
walker with rates directly given in terms of the equilibrium fluid density:
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the rod moves up y → y + 1 with new rate a[1 − d(y + 1)]N and goes down
y → y− 1 with new rate b[1 − d(y− 1)]N . The factors [1 − d(y± 1)]N of course
express the plausibility of having space for the rod to move from height y to
y±1; there must be a hole of size N . Hence, in the limit of excessive horizontal
shaking, the rod is doing a continuous time random walk on Z with backward
generator

LRWf(y) = a[1 − d(y+ 1)]N [f(y+ 1) − f(y)] + b[1 − d(y− 1)]N [f(y− 1) − f(y)]
(5.43)

The density profile d(y) is obtained from (5.40).

We call this limit γ → ∞ the fluid limit. The reason of the decoupling is that
the monomers relax to their stationary reversible density in between any two
moves of the rod. The resulting motion (5.43) is itself satisfying the condition
of detailed balance for a potential V , which can be interpreted as giving rise to
a conservative force F given by the logarithmic ratio of up versus down rates

F (y) = −V (y) + V (y − 1) = −kBT log
b[1 − d(y − 1)]N

a[1 − d(y)]N
(5.44)

= −Mg −NkT log [1 +
d(y) − d(y − 1)

1 − d(y)
]

To go to a continuum description (at least in the vertical direction) we introduce
a lattice mesh of size ǫ > 0, under which log(a/b) = −βMgǫ, log(p/q) = −βmgǫ.
This imagines that the grains are of vertical size ǫ. We compute the force Fǫ

as ǫ ↓ 0:

Fǫ(y) =
−V (y) + V (y − ǫ)

ǫ
= −Mg − kBTN

ǫ
log [1 + ǫ

d′(y)

1 − d(y)
] (5.45)

where the density d(y) is now on R and, similar to (5.40), verifies

d′(y) = −d(y)(1 − d(y))βmg (5.46)
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Hence, (5.44) becomes Fǫ → F for

F (y) = −Mg + d(y)mgN (5.47)

which is Archimedes’ law for the total upward force on a body of volume N
and mass M replacing a weight equal to mgd(y)N of fluid. In short, we call
this the buoyancy force. The rod will thus move to a height where the fluid
density is proportional to 1/N . That is the equilibrium position, consistent
with Archimedes’ characterization of the hydrostatic equilibrium position, [39].
The force (5.44) is the correction to the Archimedes’ force (5.47), due to the
finite size of the grains.

The motion can be studied in the diffusive limit where we also rescale time
∼ ǫ2. That means to take for example

a =
e−βMgǫ/2

ǫ2
, b =

eβMgǫ/2

ǫ2
(5.48)

and to expand the generator

LRW
ǫ f(y) = a[1 − d(y+ ǫ)]N [f(y+ ǫ) − f(y)] + b[1 − d(y− ǫ)]N [f(y− ǫ) − f(y)]

(5.49)

(see (5.43)) in orders of ǫ. The result is that LRW
ǫ f(y) → Lf(y) with

Lf(y) = (Df ′)′(y) + χ(y)F (y)f ′(y) (5.50)

with

F (y) = Nd(y)mg −Mg, D(y) = [1 − d(y)]N , χ(y) = βD(y)

We again have made use of (5.46) in the continuum limit. The result (5.50)
is the generator of an overdamped diffusion equation with diffusion coefficient
D(y). The corresponding Langevin equation, in the Itô-sense, is given by

ẏt = χ(yt)F (yt) +D′(yt) +
√

2D(yt)ξt (5.51)

for white noise ξt. The force F is exactly the one found in (5.47), as in
Archimedes’ law. The diffusion D(y) is related to the mobility χ(y) via the
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Einstein equation kBTχ(y) = D(y). The term with the derivative D′(y) is due
to the Itô-convention.

The above analysis concludes that the two-dimensional lattice model on a
lattice with a simple exclusion dynamics, provides a reasonable description
of the hydrostatic behavior of granular matter in the limiting (fluidized) case.
We have seen above how the discreteness of the vertical lattice-direction makes
a first correction, easily studied for small lattice mesh. For the second major
type of correction, we study the approach to the fluid limit. The next section
is devoted to these questions.

5.4.4 Random Walk in a dynamical environment

Figure 5.19: The two-dimensional model is contracted onto a line. The presence
of a size N hole is represented by the green color, the absence of the same by
a red color.

To this end we propose a contracted description of the model, coarse-graining it
to an effective one-dimensional model; see Fig: 5.19. The idea is as follows. The
essential aspect of the monomer dynamics as far as regards the rod, is whether
there is a hole above or below the rod in which it can jump. We therefore
summarize all of the monomer configuration η(x, y) by variables σ(y), y ∈ Z,
that specify whether or not there is a monomer in the region AN (y), see (5.38):

σ(y) = 1 if there is no hole at y (5.52)

= 0 if there is a hole at y (5.53)
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More precisely, there is a hole at y if η(i) = 0 for all i ∈ AN (y). The position
of the rod is still denoted by Y . We assume as major simplification that the
(contracted) system (σt(y), Yt), y ∈ Z, t ≥ 0, undergoes a joint Markov process
which mimics the original model in the following sense.
The rod moves up y → y + 1 with rate a if there is a hole at y + 1, i.e., if
σ(y + 1) = 0. The rod moves down y → y − 1 with rate b if there is a hole at
y − 1, i.e., if σ(y − 1) = 0. The rod never moves to a position y where there
is no hole, σ(y) = 1. For the monomer dynamics, we assume that the σt(y)
flip 0 ⇄ 1 with different rates depending on y, and depending on the position
of the rod. More precisely, σt(y) has rate q(y) for the change 1 → 0 and has
rates p(y) for 0 → 1 except when Yt = y because then it must remain zero; see
Fig. 5.20.

Figure 5.20: The two-dimensional model is contracted onto a line. The presence
of a size N hole is represented by the green color, the absence of the same by
a red color. There is no particle number conservation anymore. The red and
green lights interchange with rates p(y) and q(y) depending on the height.

So formally the backward generator of our new Markov process is

Lf(σ, Y ) = a[1 − σ(y + 1)][f(σ, y + 1) − f(σ, y)]

+ b[1 − σ(y − 1)][f(σ, y − 1) − f(σ, y)] (5.54)

+
∑

y∈Z

[

[1 − σ(y)] p(y)(1 − δy,Y ) + σ(y) q(y)
]

× [f(σy, Y ) − f(σ, Y )] (5.55)
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where σy is the hole-configuration obtained after flipping the occupation at y:
σy(y′) = σ(y′) if y 6= y′ and σy(y′) = 1 − σ(y) if y = y′. At no point in time
could the region occupied by the rod be simultaneously occupied by a monomer
and vice versa, so σt(Yt) = 0 always. This is the influence of the active particle
(the rod) on the fast degrees of freedom.

5.4.5 Interpretation

Obviously, the rates p(y), q(y) must be interpreted in terms of the monomer
density d(y) at y with their dependence on the size N of the rod and on the
amount of horizontal shaking γ. Comparing (5.54) with (5.39) suggests further
interpretations.

It remains that a/b = exp(−Mg/kBT ) where M is the mass of the rod. We
can think of the monomers as blinking lights, red (σ(y) = 1) for no passage
of the rod, and green (σ(y) = 0) for passage allowed. In the original two-
dimensional model a hole (green light) σ(y) = 0 at y represents the fact that
there are no monomers at the sites AN (y) = {(0, y), (1, y), . . . , (N − 1, y)}, and
(red light) σ(y) = 1 means that some monomer can be found in the region
AN (y). Abbreviating

ρ(y) ≡ 1 − (1 − d(y))N

we take therefore

p(y) = γ ρ(y), q(y) = γ (1 − ρ(y)) (5.56)

for the rate at which a hole gets removed, respectively created. Each depend on
N and on y but observe that p(y)+q(y) = γ which is the horizontal shaking rate.
The stationary hole density at y for that two-state Markov process becomes
1 − ρ(y) = (1 − d(y))N which is the correct hole probability in the original
monomer-model, cf. (5.41). Of course the weight of the monomer is represented
in the density d(y) via (5.40).

Here also, for our simplified model we can take the fluid limit γ → ∞. By
simpler arguments than in [48], the motion of Yt decouples from that of the σt

and by our choice (5.56) we find exactly the same limiting motion of the rod
as given in (5.43). The two models mathematically agree in the fluid limit but
our second model allows more easily to find the most significant contribution
before the fluid limit, to which we turn next.
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5.4.6 Before the fluid limit

Suppose we find the rod at time u in position y. Thus, at that time the hole
probability at y is equal to 1. When the rod jumps from position y to say
position y + 1 at time u it leaves a “hole” at position y which remains a hole
until it gets occupied by either monomers or by the rod again. In the fluid
limit the monomer dynamics is fast enough and they relax to their equilibrium
configuration so that at its next jump the rod sees a hole with probability
1 − ρ(y). On the other hand if the time of monomer relaxation is longer in
comparison to the rod, at the next jump at time u + t the rod sees “no hole”
with probability

ρ(y)(1 − exp(−γt)) (5.57)

as follows from a simple calculation for the two-state Markov process σt(y).
Note however that the transient density (5.57) is lower than ≤ ρ(y) and that
(5.57) is only valid under the condition that the rod has not (re-)entered position
y during [u, u + t]. It implies that at time u + t the rod still sees the hole it
left behind at y. We conclude that before the fluid limit, the jump rates of the
rod depend also on the past and the rod dynamics is by itself non-Markovian
for finite γ.

We make the above statements now more concrete, and more precise. Knowing
the rod’s motion follows from the evolution equation, for all functions g on Z,

d

dt
〈g(Yt)〉 = 〈Lg (σt, Yt)〉

with, from (5.54),

Lg (σ, y) = a[1−σ(y+1)][g(y+1)−g(y)]+b[1−σ(y−1)][g(y−1)−g(y)] (5.58)

Consider for example the expectation

〈[1 − σt(Yt + 1)]g(Yt + 1)〉 = 〈〈1 − σt(Yt + 1)|Ys, 0 ≤ s ≤ t〉 g(Yt + 1)〉

where
〈σt(Yt + 1)|Ys, 0 ≤ s ≤ t〉 (5.59)

is the conditional probability of having no hole just above the rod, given the
full history of the walker (Ys, 0 ≤ s ≤ t). Obviously, history matters. Suppose
for example that at time t we have Yt = y and that the rod has been there
already for a time t1. The previous position was either y + 1 or y − 1, from
which the rod has moved at time t− t1. Before that, at jump time t− t1 − t2
the rod has been jumping either from y− 2, from y or from y+ 2, et cetera. In
this way the whole history of the rod can be parametrized in terms of waiting
times and successive positions. We denote such a rod-history by ω. Yet, the
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only thing that matters for the expected hole probability at y + 1 in (5.59) is
the last time t(ω, y + 1) it was occupied by the rod, since

〈[1 − σt(Yt + 1)] |ω〉 = (1−d(y+1))N +ρ(y+1) exp(−γ(t−t(ω, y+1))) (5.60)

We put t(ω, y) = −∞ if the rod has never been in position y, to realize the
initial condition (5.41).

We must now estimate the conditional expectation

〈e−γ[t−t(ω,y+1)]|(Ys, s ∈ [0, t]) = ω〉 (5.61)

for a history ω in which Yt = y. Clearly, that equals exp −γt1 if before y the
rod was at y + 1; otherwise (if before the rod was at y − 1) (5.61) is certainly
less than exp −γ(t1 + t2), which is much smaller than e−γt1 for large γ. There
are then two cases depending on the sign of the rod’s “velocity”

Vt = Yt − Yt−t1 (5.62)

We therefore approach the fluid limit by putting (5.61) equal to zero if Vt is
positive, and by putting it equal to

µ(γ) ≡
∫ +∞

0

e−γt1 (a+ b) e−(a+b)t1 dt1 =
a+ b

a+ b+ γ
(5.63)

if Vt is negative. The integral (5.63) takes the expectation over the exponential
waiting time distribution for t1. In (5.63), the sum a+ b = v is a good estimate
for the average speed of the rod, or µ(γ)Vt = vVt

v+γ = ν(γ)~vt, where ν(γ) =

1/(v + γ) is the friction coefficient and ~vt is the velocity of the rod before it
arrived at Yt. The drag force on a particle immersed in granular matter was
studied in various experiments — in [66, 102, 128, 25] a linear dependence on
the particle velocity such as proven above was observed and corresponds to low
density. Inserting this µ(γ) we have obtained for large but finite γ that

d

dt
〈g(Yt)〉 =

〈

LRW g(Yt)
〉

+ a

〈

ρ(Yt + 1)µ(γ)
[1 − Vt]

2
[g(Yt + 1) − g(Yt)]

〉

+ b

〈

ρ(Yt − 1)µ(γ)
[1 + Vt]

2
[g(Yt − 1) − g(Yt)]

〉

(5.64)

always with ρ(y) = 1 − [1 − d(y)]N and the first line of (5.64) corresponds to
the fluid limit (5.43). The Vt is ±1 as defined in (5.62).
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To recapitulate, the approximation in which we replace (5.61) by (5.63) is
the following. The rate of the rod’s dynamics in comparison to the monomer
dynamics is such that for the rod making a jump y → y + 1 it can still “see”
the gap it left at y + 1 when indeed the rod was at y + 1 before it came to y.
However the rod does not “see” any gaps which were left at y + 1 from earlier
visits there: the monomer dynamics is fast so that it can erase the trace of the
rod’s trajectory up to one time step ago. The introduction of the velocity Vt

of the rod is a way to re-install the Markov property, where the state of the
rod is now defined as its position plus its (previous) velocity. In other words,
due to the active nature of the rod it acquires memory before the fluid limit
(which results in a drag force, see below), which is most efficiently dealt with
by introducing a velocity.

For the position of the rod, g(y) = y,

d

dt
〈Yt〉 = 〈a(1 − ρ(Yt + 1)) − b(1 − ρ(Yt − 1))〉

+ a

〈

ρ(Yt + 1)µ(γ)
[1 − Vt]

2

〉

− b

〈

ρ(Yt − 1)µ(γ)
[1 + Vt]

2

〉

This equation gives the speed of the rod at time t given its current position
and previous direction Vt. If the rod was moving upwards (Vt = +1),
then it continues moving up with a rate a 〈(1 − ρ(Yt + 1))〉 and goes down
with a rate 〈b(1 − ρ(Yt − 1))〉 + b µ(γ) 〈ρ(Yt − 1)〉. On the other hand if
the rod was moving downwards, Vt = −1, then it continues moving down
with a rate b 〈(1 − ρ(Yt − 1))〉 and goes up with a rate 〈a(1 − ρ(Yt + 1))〉 +
a µ(γ) 〈ρ(Yt + 1)〉. In comparison to the fluid-limit there is an increase in the
rate of return. The rod has a higher tendency to go back to the site it started
from when the bath is not completely fluid. The rate to go forward remains the
same as in the fluid limit. This phenomenon of a greater tendency to return
with possible subsequent oscillations can be interpreted as a greater dynamical
activity which becomes effective as the bath becomes less and less fluid. When
the rod has an overall tendency of rising because of buoyancy, the result is
friction acting downwards.

As in the fluid limit here also we can make a small mesh analysis and take the
diffusive limit. We also need to rescale the shaking γ → γ/ε2 so that with the
choice of (5.56), µ(γ) → 2/(2 + γ) and Vt = ±ǫ. We only need to worry about
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the additional last two lines in (5.64), i.e., corresponding to

ε−2 (1 − Mgε

2kT
)
[

1 − (1 − d(y + ε))N
] ε−

2 + γ
[g(y + ε) − g(y)]

+ ε−2 (1 +
Mgε

2kT
)
[

1 − (1 − d(y − ε))
N
] ε+

2 + γ
[g(y − ε) − g(y)] (5.65)

where ε− = 2ε if the rod was going down and ε− = 0 when the rod was going
up; similarly ε+ = 2ε if the rod was going up and ε+ = 0 when the rod was
going down. Again making the ε−expansion we find, similar to (5.50), the
corrected Langevin equation

ẏt = χ(yt)F (yt) − 2(1 −D(yt))

2 + γ
υt +D′(yt) +

√

2D(yt) ξt (5.66)

with memory term in the friction, υt = yt−yt−dt

‖yt−yt−dt‖ being the direction of

the velocity just before time t; the rest of the Langevin equation (5.66) is
interpreted in the Itô-sense with, in particular the left-hand side referring to
yt+dt − yt. The diffusion coefficient remains the same as before in the fluid
limit, see (5.51). The friction ∼ (1 −D(y)) increases with higher density.

If we look at the origins of drag or friction in common phenomena like Brownian
motion, it arises due to a resistance to motion in the form of collisions from
the front. The faster a tracer particle moves in a thermal bath the more traffic
it finds ahead of itself than behind. Of course friction appears in all directions
against motion and exists at shaking of all strengths. The drag force we see
here is a variation of this effect. Our system is overdamped and nothing of
impact or momentum transfer can be discussed; yet interaction via excluded
volume will be sufficient to generate (another) force which opposes motion of
the rod. This force appears when granular baths are not completely fluidized.

The higher the intruder dynamics rate, the stronger its memory of its previous
position and the greater is the chance of jumping to its old position. The force
become weaker and weaker in the fluid limit since the memory of the rod is
“instantaneously” being wiped away by the monomers. We believe that the
“drag force” dependence on γ and intruder velocity as seen in [66, 102] away
from the fluid limit are explained by this new kind of opposing force rather
than the conventional understanding of friction in fluids, especially in a low
density environment where momentum transfer does not play such a big role.
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5.5 Further remarks

5.5.1 Segregation effect

Effects of buoyancy in granular media have been widely studied both
theoretically and experimentally. It is not always easy to distinguish between
anti-gravity effects and buoyancy as in Archimedes’ law. That connects
with the variety of segregation effects in granular media upon shaking them.
Reference [65] discusses various mechanisms that can work together for the
segregation of grains. Buoyancy, i.e., rising/sinking due to pressure gradients,
dominates when the fluidization occurs with no convection. Our model does not
show boundary effects and inertia is absent. The limiting motion is overdamped
in the diffusion limit. Buoyancy is indeed most visible in a vibro-fluidized
regime, where only binary collisions are prevalent and there is no long time
contact between particles. The medium must have minimal convection, so the
boundaries must be far and the interactions with the boundary reduced. In
a fluidized regime the effects due to convection as well as inertia are reduced
enough for buoyancy to be visible, [65, 81]. In the unfluidized regime, effects
like inertia, void filling models (true for vertical shaking) and convection are
more important. Another difference to be noted is that buoyancy is not just a
phenomenon of the larger particle climbing up to the top of the pile but refers
to a specific dependence of height on the relative sizes and densities.

On the other hand, the rising of larger objects in a sea of smaller grains
due to the Brazil nut effect, [81, 113, 69], arises in several forms and many
competing mechanisms influence the motion of the larger particles within a
bath (shape, size, forces between particles, shaking amplitude and direction,
interstitial air and humidity). In [4, 3] a similar model to ours was used to
investigate the Brazil nut effect. Sometimes segregation is a result of entropic
forces which are strong in a gravity free regime and when the frictional forces
among bath particles and between bath and intruder are such that the entropy
of a segregated state is higher than a highly mixed state, [5].

5.5.2 Simulation results

Since the one-dimensional reduction of the full lattice fluid model has
undergone some further simplifications, we have tested numerically whether
our approximations appear reasonable. In other words, we have compared the
trajectories of the rod in our approximations with those of the true model. The
simulation was run on a chain of 300 sites and gravity g and kT are taken as
unity. In this way we could also numerically verify Archimedes’ law in the large
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Figure 5.21: The contracted one-d model was simulated. Buoyancy force vs
rod length N is plotted for γ = 15 at height y = 180 and mass of bath particles
m = 0.02. kBT and g taken to be unity. Buoyant force at varying heights in
the liquid was measured by finding the weight of the intruding rod such that
the rod equilibriates at this height. The squares are the result of simulation in
the large γ case. This simulation aligns with the behavior predicted in (5.51).
The solid line is a guide for the eye.

γ limit. In the fluid limit the buoyancy force varies linearly with the size N
of the rod, plot 5.21. The straight line indicates that for such a large γ the
monomer bath is fluid-like. For a given height y buoyancy force is calculated
by estimating the weight of the rod which would exactly balance the force from
the bath at that height. In the fluid limit at equilibrium then, the weight of
the rod is equal to the upward force (called buoyancy).

Before the fluid limit is reached buoyancy force varies with γ; for large γ the
buoyancy force tends to a steady value as given by Archimedes’ law, see plot
5.22. That must be compared with Fig.3 in [66]. The buoyancy force grows
with γ and after a certain critical value which in the simulation was γ = 4.0,
it saturates. Plot 5.22 shows the Archimedes’ force (5.47) corrected with the
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friction term as it acts in (5.66), with the 2/(2 + γ) kind of variation.

5.5.3 Longer memory

Instead of considering memory only until one time step before, one could also
take two, three or more time steps long memory. That means, to consider again
(5.61) and to take into account contributions from alternative histories. These
contributions are all of smaller order, with each correction falling as an inverse
power of γ. The power arises from performing the integral like in (5.63) but
now the time is a sum of exponential variables, so that we get corrections like
µ(γ)n.
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Figure 5.22: Buoyancy force vs γ for N = 20 at height y = 180 and mass of
bath particlesm = 0.02. kBT and g taken to be unity. Buoyant force at varying
heights in the liquid was measured by finding the weight of the intruding rod
such that the rod equilibriates at this height. The squares are the result of
simulation for different values of γ. This simulation results aligns with the
behavior predicted by (5.66). The solid curve is a guide for the eye.
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5.5.4 Nonequilibrium seas

Another type of correction to Archimedes’ law comes from the possible
nonequilibrium nature of the medium, even in the fluid limit. Indeed, an
essential aspect of our analysis above was that the sea of grains (monomers)
reach their equilibrium between two moves of the rod (in the fluid limit), and
that equilibrium is the same with or without the rod. In other words, the
stationary distribution of the constrained dynamics of the monomers given the
rod’s position gives exactly the same as conditioning the stationary distribution
of the joint monomer–rod dynamics on the position of the rod. That is only
valid under the condition of detailed balance, see e.g. Lemma 3.1 in [48]. In the
present work detailed balance is forced by the specific choice of density profile
(5.40) for which holds that

p d(y) (1 − d(y + 1)) = q d(y + 1) (1 − d(y)) (5.67)

In the small mesh (continuum) limit this detailed balance condition (5.67)
becomes d′(y) = −mgd(y) (1 − d(y))/(kT ) as repeatedly used in the derivation
of the Langevin equations (5.51) and (5.66), and in the validity of the
corresponding Einstein relation. When detailed balance is violated and the
granular sea shows an irreversible steady behavior, the motion remains much
less understood.

5.5.5 Collective effects

A final source of corrections to Archimedes’ law is due to the interaction
with other intruders (rods). Here we are really speaking about a whole new
range of phenomena in which pairing of particles, [100] and more general
collective effects as flocking [104], can occur. The main underlying reason
however is already visible from the simple analysis of the present work. The
excluded volume effect of one rod not only creates a bias for itself to return
to the place it was before (creating drag, [32]), but also creates space where
another intruder can hop into, and thus “attracts” other rods and intruders.
This granular-hydrodynamic interaction is long range and is expected to be
proportional to the speeds of the rods, but more exploration is needed. This
interaction qualitatively resembles the long range hydrodynamic interaction
between colloidal particles in suspensions. These interactions come through
due to the Stokes-like force applied by the suspension on a moving colloid
which results in long-range interaction between two colloids connected through
the Oseen tensor. Here, the collective behavior of multiple intruders results
from simple exclusion and memory tracks left on the bath.



Chapter 6

Entropic Forces in
nonequilibrium

The force is an energy field created by all living things, it surrounds us, it
penetrates us, it binds the galaxy together.

- Obi-Wan Kenobi to Luke Skywalker

6.1 Introduction

In the last chapter we defined and studied some properties of forces which
arise due to fluctuations in the surrounding environment. As illustrated clearly
by the last few examples entropic forces arise due the tendency of fluctuating
systems to evolve towards a state with maximum entropy. We can derive
these forces by studying the large deviation fluctuations of a macroscopic
variable. The probability of such fluctuations decays exponentially with a
decay parameter which is proportional to the entropy or the free energy of
the environment.

For a system composed of large number of microscopic degrees of freedom x,
the probability of a macroscopic observable E(x) taking value e is

lim
N→∞

log P (E(x) = e)

N
= −I(e)

117
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in the asymptotic sense, i.e., in the limit of very large system size N . I(e), the
rate function is in equilibrium a static fluctuation functional.

Of course, such a result holds true only when the environment is undergoing
an equilibrium dynamics.

In the last chapter, where we discussed the emergence of buoyant force on a
colloidal particle immersed in a granular medium, a process of coarse-graining
was used. An appropriate time-scale separation was assumed, such that the
influence of the granular medium on the macroscopic particle was only through
its stationary distribution. In this chapter we present a different scenario to
study entropic forces. To remind you of the entropic spring in chapter 4, it
was a collection of coupled harmonic springs, which were designed to exist in
a discrete phase space with just two elements. This collection was attached
to a large classical spring which acted as a probe and the entropic force was
measured by measuring the average extension of this spring away from its
equilibrium length.

In the present scenario, which has been largely inspired by our work in [96],
we would look at a collection of N masses, m coupled with springs of spring
constant κ. We call the masses monomers. The whole spring collection, a
polymer, is in equilibrium with a heat bath at inverse temperature β. One
of the monomers in this polymer is tagged for observation. The polymer is
undergoing fluctuations in its configuration and is diffusing in the heat bath.
As far as the observer of the tagged monomer is concerned, the rest of the
coupled polymer and the underlying heat bath together constitute a fluctuating
environment. Nothing is known to the observer about this environment, which
is like a black box, except that which can be deduced by the observed behavior
of the tagged monomer.

We study the emergent statistical force on the tagged monomer due to its
environment, as the environment is in equilibrium and also, as it is driven away
from equilibrium by an external non-conservative force. The first motivation
of this work is to study an explicit example of statistical forcing emerging from
integrating out a nonequilibrium environment. Yet, the case we study comes
with an extra motivation as it opens some questions in the nonequilibrium
physics of polymers. In contrast to many ongoing studies of nonequilibrium
polymer rheology, of transport through polymers or of mechanical folding and
stretching of polymers, the present work considers also steady nonequilibria,
i.e., where the driving is constant in time and the condition of detailed balance
is broken.

Our working model is the widely studied Rouse model, an ideal chain, where
monomers are connected through Gaussian springs, and excluded volume effects
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and hydrodynamic interactions are neglected. This model holds a special place,
as it is the simplest model which can be exactly solved to describe phenomena
like anomalous diffusion of polymers in a bath. Moreover, in the natural context
of polymer melts, which are a collection of polymers in a solution, the diffusion
of a tagged polymer can be described by Rouse dynamics moving along a one-
dimensional tube embedded in a network or mesh of polymers [33, 30]. Our
general question can then be asked here, to investigate the effective dynamics
of a tagged monomer when the chain is subjected to nonequilibrium driving.
We have in mind that the extremal monomers are subject to non-conservative
forces e.g. via a small charged particle or optically driven bead attached to
them, and we wish to follow a tagged monomer near the middle of the chain.

6.1.1 Integrating out: Langevin to generalized Langevin

In this section we illustrate by a simple example of two coupled particles in a
thermal bath, the main principle behind the idea of coarse-graining by simple
integrating out of the extra degrees of freedom. This technique has been used
several times in the discussion of Brownian tagged particles in heat bath, [131,
56].

Consider a system of two particles X1 and X2 coupled to each other.

mẊ1(t) = X2(t) (6.1)

mẊ2(t) = −mγX2(t) + F (t) + ξ(t) (6.2)

X2 is surrounded by a heat bath, which is Gaussian distributed and interacts
with them through a random force ξ(t). It has the following properties:

〈ξ(t)〉 = 0; 〈ξ(t)ξ(s)〉 =
2mγ

β
δ(t− s)

This system has a Markov dynamics, since the dynamics of each particle at
time t is independent of the system configuration before time t. Suppose that
particle X1 is the tagged particle, in whose motion we are interested. We
integrate out particle X2, by solving its equation of motion, assuming that the
initial positions and momenta are sampled from a canonical distribution ρeq(0).



120 ENTROPIC FORCES IN NONEQUILIBRIUM

We replace X2 in equation (6.1) with the solution of equation (6.2) and arrive
at the following equation for X1:

mẊ1(t) = X2(0)e− γ
m t +

1

m

∫ t

0

[F (s) + ξ(s)]e− γ
m (t−s)ds (6.3)

This is a generalized Langevin equation, governing the equation of the tagged
particle X1. It is apparent that the equation is non-Markovian, depending on
the history of the force F (s) and the noise ξ(s) and initial conditions. This
represents the general features of the process of integrating out.

The noise

η(t) := X2(0)e− γ
m t +

∫ t

0

ξ(s)

m
e− γ

m (t−s)

is colored, with a long time correlation.

〈η(t1)η(t2)〉 =
e− γ

m τ

β
:=

µ(τ)

β
; |t1 − t2| = τ, t1 + t2 → ∞ (6.4)

We call µ(t) the memory of the process, which quantifies long-time correlations
in the system.

The definitions from the above example would bear their meaning and function
in the analysis which would follow.

6.1.2 Rouse dynamics

A polymer can be represented by a set of beads connected along a chain. The
dynamics of such a polymer is modeled by the Brownian motion of these
beads. This model was first proposed by Prince E. Rouse in [114] and has
been a basis to study polymer dynamics in dilute solutions. In the Rouse
model excluded volume interactions and hydrodynamic long-ranged effects are
disregarded. Hence, it is is also called the phantom Rouse model.

The Langevin equation of each bead is a combination of the deterministic elastic
force due to the springs, the surrounding fluid provides a local isotropic drag
proportional to the local velocity, ṙ of the bead, fdrag = γṙ, where γ is the
friction coefficient. A Gaussian white random force ξ (with its mean zero)
describes the coupling to the thermal bath.

Because of the harmonic interaction, the nonequilibrium Rouse model is one
of the simplest, still physically interesting examples to understand the effective
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dynamics in a driven medium. The equilibrium version of integrating out
the Rouse model was already carried out by D. Panja [106]. The dynamics
of the tagged monomer is shown to be non-Markovian with memory kernel
having a power law decay µ(t) ∝ t−1/2 for short times and exponential decay
asymptotically in time,

µ(t) ∝ 1√
t
e−t/τ (6.5)

The kernel µ(t) is shown to be the mean relaxation response of the polymers
to local strain and its behavior gives good information on the nature of the
diffusion, which is anomalous for intermediate times, ∆x2 ∝ D

√
t.

In the present work we start with the phantom Rouse dynamics in the inertial
regime and we introduce a nonequilibrium driving. The result of integrating out
the (other) polymer degrees of freedom is again a generalized Langevin equation
(GLE) for the tagged monomer. We show that in the overdamped limit, the
equilibrium results match those of Panja [106]. We discuss the nonequilibrium
corrections to the force and memory terms for driving of specific nature to
obtain some general information about statistical forces in nonequilibrium.

The more systematic and general approach to integrating out degrees of freedom
is commonly referred to as the Mori-Zwanzig approach [129, 101] or the
approach via adiabatic elimination [58, 89, 16, 70]. Generalized Langevin
equations have also been derived in nonstationary environments [74] and similar
in spirit to the present work is also the generalization where a coarse-graining is
added upon a coarse-grained description [47], or where one Brownian particle
is described in a nonequilibrium bath [118]. In the case of nonequilibrium
thermostated dynamics a generalized Langevin equation has also been derived
[99].

We do not follow these general schemes here also because we work on the
more explicit Langevin (not Fokker-Planck) side of the question, and we take
no special limits for macroscopic systems or for the speed of motion of non-
conserved versus conserved quantities. Moreover, these general approaches are
less explored for starting with open driven polymer dynamics as we do here.
An interesting study of the average square displacement of a tagged monomer
in Rouse polymer chain subjected to random, layered convection flows both
time-independent and time-dependent has been made in [103, 71].

In the next section we introduce the model and the various types of
nonequilibrium driving. Sections 6.4, 6.5 and 6.6 summarize the method and
the results with a discussion of the effective dynamical behavior. Finally some
more essential elements of the computations are collected in Appendix A.1.
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6.2 Nonequilibrium Rouse dynamics

We consider the positions ~Ri, i = 1, . . . , N, of N point particles (also called
monomers) in a three-dimensional domain open to thermal exchanges. The
particles are harmonically coupled and some are subject to further forces, some
of which are non-conservative. The potential energy is quadratic

U(~R) =
κ

2
(~R1 − ~R2)2 +

κ

2
(~R2 − ~R3)2 + . . .+

κ

2
(~RN−1 − ~RN )2 (6.6)

and the force on the ith particle is the sum of systematic forces ~Ki and Langevin
forces ~Li:

~Ki = −~∇iU + ~Fi, ~Li = −mγ ~̇Ri + ~ξi (6.7)

There is an independent standard white noise ~ξi modeling the action of the
thermal environment at temperature T and friction γ, with 〈~ξi,α(t)~ξj,β(t′)〉 =
2mγkBTδi,jδα,βδ(t − t′), where α and β refer to the various spatial directions.

The first term in ~Ki is the conservative part of the force. The force ~Fi need not
be conservative or constraining and will be specified below; that is what we refer
to as the driving. We then have the equation of motion for the time-dependent
coordinates ~Ri(t)

m
d2 ~Ri

dt2
= ~Ki + ~Li (6.8)

with given initial conditions Ri(0), ~̇Ri(0) at time t = 0. In many cases of
standard polymer physics the inertial term proportional to the mass in (6.8)
can be fairly ignored. That can be done in all following equations and results
but there is however no harm in keeping it ; in fact our concern is not in the
first place towards a detailed study in polymer physics. In fact, we take the
Rouse polymer model for the simple purpose of illustrating effects of statistical
forces in a nonequilibrium environment. To have a workable model we can
exploit the linearity of the Rouse model and the extra forcing ~Fi will also be
assumed linear. We will however not proceed with a diagonalization, and we
will not write the solution in terms of modes. After integrating out all particles
but the first one, we obtain explicit information about the final equation of the
form,

m
d2 ~R1

dt2
= −m

∫ t

0

dt′µ(N)(t− t′) ~̇R1(t′) −mγ ~̇R1(t) + ~η(N)(t) + ~ξ1(t) + ~G(N)(t)

(6.9)
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Indeed, not surprisingly and as an explicit example of a type of Zwanzig’s
program [131], we will find the validity of a GLE of the form (6.9). Our model
will enable rather explicit memory and friction kernels. We will discuss the
memory kernel µ(t) (more generally a matrix), the noise ~η(t) and the statistical

forcing ~G (that all depend on N) in the cases that we introduce next. Obviously,
the case of the effective dynamics on another coordinate, e.g. the middle one
around i = N/2, can be reduced to that case. The effective force ~G can be of
convolution type, as in Eq. (6.28) below, and also contain the memory of the
past trajectory of the tagged monomer.

6.2.1 Uniform constant driving

The simplest case is to assume that the outer end of the polymer is being
driven under a constant external force f . That is a mathematical idealization
of a polymer say with a charged end, forced under an electric field. As there
is no confining force for the polymer, that means the whole system will move
in the direction of the field and we discuss that diffusive regime. That is, we
take free boundary conditions and ~Fi = δN,i f êx, for some constant field f in
the x−direction. The simplest example corresponds to two linearly coupled
degrees of freedom moving in one dimension, with dynamics

m
d2R1

dt2
= −κ[R1 −R2] −mγ

d

dt
R1 + ξ1(t)

m
d2R2

dt2
= −κ[R2 −R1] −mγ

d

dt
R2 + ξ2(t) + f (6.10)

for R1, R2 ∈ R. The constant f induces a drift. We give here that dimer-
case explicitly also because we have found that for all finite N (size of original
polymer) the basic qualitative features of generalized memory and friction are
unchanged from N = 2, where things are of course much simpler.

6.2.2 Non-uniform driving

Here we imagine the motion of a polymer in a 2-dimensional slab of vertical size
L in which the outer end is subject to a forcing in the horizontal direction that
is linear in the vertical distance. We can imagine that as the result of a shearing
at the outer edge of the polymer, but we do not imagine a surrounding fluid
as we wish to stick to the Rouse model (ignoring hydrodynamic interactions
as e.g. in the Zimm model). In terms of a polymer melt we can realize that
by attaching a bead or nanoparticle to the end of the polymer chain, which is
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then driven in one direction but non-uniformly with respect to an orthogonal
direction. That provides a well known case of a non-conservative force. For
explicitness we write out this case again first for a polymer of size N = 2.
One monomer is being acted on by the non-uniform force which depends on its
y-coordinate. The equation of motion written in Cartesian coordinates is then

md2R2x

dt2
= k[R1x −R2x] −mγ

dR2x

dt
+ ξ2x(t) + f R2y

md2R2y

dt2
= k[R1y −R2y] −mγ

dR2y

dt
+ ξ2y(t)

md2R1x

dt2
= −k[R1x −R2x] −mγ

dR1x

dt
+ ξ1x(t)

md2R1y

dt2
= −k[R1y −R2y] −mγ

dR1y

dt
+ ξ1y(t) (6.11)

where f is the nonequilibrium amplitude.

Since the external force now does depend on the position, it is useful here to
have a comparison or equilibrium reference, where an external potential Uext is
added to the potential energy U so to trap the outer monomer. In other words,
again for simplicity of presentation, for the case of a dimer, F (t) = −f(R2 −Q)
which derives from a confining potential around position Q which holds the
outer edge of the polymer.

m
d2R2

dt2
= −κ(R2 −R1) −mγ

dR2

dt
+ ξ2(t) − f(R2 −Q)

m
d2R1

dt2
= −κ(R1 −R2) −mγ

dR1

dt
+ ξ1(t) (6.12)

which would replace the dynamics of the x-components of the equations (6.11).

6.3 General method: induction and recurrence
relations

In this section we show the methods and intermediate steps involved in reaching
our results that will be summarized in the next three sections. The general
method is always to work via iteration and to prove results by induction. More
precisely, the tagged particle equation of motion is directly coupled to a second
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particle which then is coupled to the other N − 2 particles. If we now assume
that first, after integrating out these N − 2 particles, the effective dynamics
on the second particle is of the form (6.9), then we obtain two equations:
one is the GLE (6.9) (with N there replaced by N − 1) and the other is
the original equation of motion of the tagged particle coupled to the second
particle. Assuming the structure (6.9) for N − 1 with specific properties of
the memory kernel, noise and force constitutes the induction hypothesis. The
remaining task is then to integrate out that last (second) particle and to prove
that the induction hypothesis is indeed reproduced at size N . The crucial step
to discover what is the correct induction hypothesis is the case N = 2. That
is also why the essential first step is to be explicit about the case N = 2. We
next give more details.

After integrating out N − 2 particles we arrive at the following GLE for the
N − 1th monomer, which we label with subscript 2 (second particle). (Note
that we skip vector notation, as we can always reduce the problem to more
scalar degrees of freedom.)

d2R
(N−1)
2

dt2
(t) = − k

m
(R

(N−1)
2 −R1) − γ

dR
(N−1)
2

dt
(t) +

ξ2(t)

m
+
η(N−1)(t)

m

−
∫ t

0

dt′µ(N−1)(t− t′)
dR

(N−1)
2

dt
(t′) +

G(N−1)(t)

m
(6.13)

The tagged monomer R1 is attached to R
(N−1)
2 by a harmonic spring. The

force on which is simply given by

Φ(N)(t) = m
d2R1

dt2
(t) = −k(R1 −R

(N−1)
2 ) −mγ

dR1

dt
(t) + ξ1(t) (6.14)

where ξ1(t) and ξ2(t) are the independent white noise on monomers 1 and 2.
These equations represent a system of 2 monomers, one of which is already a
coarse grained variable, with memory kernel µ(N−1)(t), external forceG(N−1)(t)
and noise η(N−1)(t). A second major ingredient in our computation is quite
naturally to take the Laplace transform of (6.13) and (6.14). After integrating

out R
(N−1)
2 , we arrive at the following GLE for R1,
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Φ̃(N)(s) = −mκ
µ̃(N−1)(s) + γ + s

msµ̃(N−1)(s) + msγ + ms2 + κ
[sR̃1(s) − R1(0)]

− mγ[sR̃1(s) − R1(0)] +
κ

msµ̃(N−1)(s) + msγ + ms2 + κ
G̃(N−1)(s)

+ mκ
µ̃(N−1)(s) + γ + s

msµ̃(N−1)(s) + msγ + ms2 + κ
[R

(N−1)
2 (0) − R1(0)]

+
mκ

msµ̃(N−1)(s) + msγ + ms2 + κ
Ṙ

(N−1)
2 (0)

+ κ
(η̃(N−1)(s) + ξ̃2(s))

msµ̃(N−1)(s) + msγ + ms2 + κ
+ ξ̃1(s) (6.15)

That has to be confronted with (6.9) and in particular with each of the terms on
the right-hand side. In that way we obtain recurrence relations for the memory
kernel µ̃(N)(s), the noise η̃(N)(s) and the induced force G̃(N)(s) on the tagged
particle when comparing size N polymers with size N − 1:

µ̃(N)(s) =
κ(µ̃(N−1)(s) + γ + s)

(msµ̃(N−1)(s) +msγ +ms2 + κ)
(6.16)

G̃(N)(s) =
κG̃(N−1)(s)

(msµ̃(N−1)(s) +msγ + ms2 + κ)
(6.17)

η̃(N)(s) = mµ̃(N)(s)[R
(N−1)
2 (0) −R1(0)] +mκ

Ṙ
(N−1)
2 (0)

(msµ̃(N−1)(s) +msγ + s2 + κ)

+
κ

(msµ̃(N−1)(s) +msγ +ms2 + κ)
(η̃(N−1)(s) + ξ̃2(s)) (6.18)

To these we must add “initial” conditions for the recurrence, i.e., to insert the
findings for the case N = 2. These will enable the correct induction hypothesis.
Finally, there are the initial conditions to the dynamics; the initial conditions
(positions and momenta) of all the other particles (except the tagged particle)
contribute to the noise. Their statistical distribution is in principle a matter of
choice but there are of course dynamically more natural choices. We will detail
them in Appendix A.1.
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6.4 Free diffusion under uniform driving

This and the two following sections summarize the main results of the logic
explained in the previous Section. We always refer to (6.9) for the notation,
that we have obtained after integrating out all but one of the particles.

6.4.1 In general

Referring to the dynamics (6.6)–(6.8)–(6.10), we define the frequency ω as

ω2 = κ
m − γ2

4 . If ω is real (inertial case), then the friction kernel µ(N) is
oscillating with frequency ω with decreasing amplitude. When under high
friction, ω is imaginary (overdamped case), there is monotone decay in time.
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Figure 6.1: Memory vs time for κ = 3, χ = 1. The long time limit of memory
in a semi-log plot. The data points are a result of a numerical simulation of
the eq. (6.16). The solid lines are curves fitting the data. The different colors
represent different polymer sizes.

In the long time limit we find that the friction kernel is always exponentially
decaying as µ(N)(t) ≤ e−t/τN for large times t, where the decay time τN is of
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the order N2 for large N , see Fig. 6.1. In the figures are represented polymers
of different sizes. The discrete data points are solutions of numerical evaluation
of analytical results. The lines are fits exhibiting the general nature of these
solutions. κ is the spring constant and χ = mγ. Fig. 6.1 is a semi-log plot,
which shows the exponential decay of the friction kernel in long time. The slopes
of various lines are proportional to the decay exponent τN . It is seen in Fig. 6.1
that τN varies as N−2, which is already known to hold in full equilibrium [106].
We show that this remains valid in nonequilibrium. We have also obtained that
the time of relaxation is in general bounded from below as τN > 2/γ, see below
in Appendix A.2. This is indeed clear as the time of relaxation grows with the
size of the polymer and the tagged particle relaxes fastest when it is connected
to just one another monomer, τN then being 2/γ.
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Figure 6.2: The short time behavior of memory in a log-log plot.
The data points are a result of a numerical simulation of the eq. (6.16).
The solid lines are curves fitting the data. The different colors represent
different polymer sizes.

As is well known and is also to be expected under nonequilibrium conditions,
for short times t < τN , the memory kernel has a power law decay µ(t) ∝ 1

t1/2 ,
see also [33, 30, 106]. Indeed, as seen in the log-log plo 6.2, for short times
there is no dependence of memory on system size.
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Integrating out the other monomers also creates additional colored noise in the
system. The noise η(N)(t) is Gaussian with a shifted average and is breaking
the second fluctuation–dissipation relation transiently. However asymptotically,
the stationary covariance satisfies the second fluctuation-dissipation relation

lim
t→∞

〈η(t+ τ)η(t)〉 =
m

β
µ(τ) (6.19)

Finally, the external force f on the outer monomer gives rise to a time-
dependent statistical forceG(t) on the tagged monomer and reaches exponentially-
fast a limiting form. The general behavior is exactly similar to what we make
explicit in the next subsection; see below in Eq. (6.23).

6.4.2 Two monomer case

To give immediately more explicit formula we summarize the results for the
dimer-case, which is also used to start the recurrence. First the memory kernel
(N = 2),

µ(t) =
κ

m
e−γt/2 [cosωt+

γ

2ω
sinωt] (6.20)

where ω2 =
κ

m
− γ2

4
> 0

For a dimer, a power law decay for small time is not seen, as can be imagined
from the fact that a dimer in one dimension has no conformational degrees of
freedom. The mean squared end–to–end distance 〈R2

ee〉 is simply equal to the
square of the bond length and thus shows only simple diffusion.

The colored noise is

η(t) = −κ[R1(0) −R2(0)][cos(ωt) +
γ

2ω
sin(ωt)]e−γt/2

+ κṘ2(0)
sin(ωt)

ω
e−γt/2

+
κ

m

∫ t

0

sin(ω(t− t′))

ω
ξ2(t′)e−γ(t−t′)/2dt′ (6.21)

It is natural to take the distribution

ρst(R2, Ṙ2) =
1

Z
e−βH (6.22)
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where H = mṘ2
2

2 + κ
2 (R1 −R2)

2 − fR2 that depends on the position R1 of the
tagged particle. When averaged over that initial distribution (6.22) we get a
mean

〈η(t)〉 = f [cos(ωt) +
γ

2ω
sin(ωt)]e−γt/2

which is not zero for f 6= 0. Indeed, the monomer R2 is found more on one side
than the other due to the force f . The effective force is found to be

G(t) = f [1 − e−γt/2(cos(ωt) +
γ

2ω
sin(ωt))] (6.23)

exponentially growing to the applied force f . When the force would be time
dependent, f = ft, the effective force gets memory and becomes

G(t) = k

∫ t

0

fs e
−γ(t−s)/2 sinω(t− s) ds

That appears to be a general feature of nonequilibrium forcing; they create
effective forces that themselves depend on the forcing at all earlier times. We
still emphasize that the nature of nonequilibrium in this work and in the
present example of constant forcing is qualitatively different from the case of
driving forces discussed in some previous works [105], polymer translocation
by an external force being one example. Such driving forces are introduced
at the macroscopic level or the level of the GLE and hence do not have effect
on the nature of the friction kernel or of the noise. On the other hand the
nonequilibrium in our work is introduced microscopically, such that the GLE
itself gets modified as a function of the driving.

6.4.3 Limiting cases

1. The long time limit. Motion after t ≫ τN , of the tagged particle
appears to be diffusive with a constant drift f .

2. Large coupling limit. A large coupling signifies that the restoring
force between any two monomers is very strong and hence the monomers

undergo high frequency oscillations given by ω ≃
√

k
m → ∞. Measure-

ments will typically time–average over a few periods. The time-averaged
behavior of the tagged monomer is again of a Brownian particle acted on
by a constant force. The effective force goes to the constant force f . The
time averaged total noise goes to white noise ξ1(t) and the time averaged
memory kernel µ(t) disappears.

3. The overdamped limit. The high friction limit refers to the case
when the viscosity of the medium is so high that the acceleration of the
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monomers is zero, and the only variables which are changing are position.
To take the overdamped limit in a meaningful manner, together with
taking the friction coefficient γ to infinity one has to take the mass m of
all monomers to zero, preserving the product χ = mγ to be finite. The
memory kernel then reduces to

µ(t) = ke−kt/χ (6.24)

The memory kernel after taking the continuum limit is

µ(t) = 2

√

πχk

t
e−t/τ (6.25)

where τ = N2χ/(π2k), as shown before [106] under equilibrium dynamics.

6.5 Non-uniform driving

We are now in two dimensions with forcing at one end of the polymer in the
horizontal direction with an amplitude that is proportional to the vertical
distance. That dependence is similar to a shearing force, but we do not
insist here on the presence of a fluid (as we treat the Rouse model and not
e.g. the Zimm model). Rather, we have in mind that we can manipulate
the outer monomer of a polymer in a melt in a non-uniform way. To a good
approximation, that would be the case when nanoparticles are attached to the
polymer and undergo non-rigid rotation, where the angular velocity depends
on the radial distance (here, the vertical distance). An interesting result here
is that the friction kernel µ(N)(t) is identical to the case of constant forcing
(previous section). To be explicit and without loss of essential information we
can already state the results for N = 2. The memory kernel in each direction
is given by

µ1x(t) = µ1y(t) =
κ

m
e−γt/2[cos(ωt) +

γ

2ω
sin(ωt)]

which is indeed the same as for a dimer in free space under constant forcing.
That is due to the fact that the external forcing does not couple to velocity but
only to position. The nature of µ in the two mutually perpendicular directions
and various limits hence remains the same.

The nature of the induced noise however gets modified due to the different
nature of the external force. The noise in general is dependent on the initial
positions and velocities of all the monomers, and hence picks up additional
contributions from the external force which is coupled to the y component of
the position of the first monomer. Here is the explicit noise function
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η1x(t) = −κ[R1x(0) −R2x(0)](cos(ωt) +
γ

2ω
sin(ωt))e−γt/2

+ κṘ2x(0)e−γt/2 sin(ωt)

ω

+
κ

m

∫ t

0

e−γ(t−t′)/2 sin(ω(t− t′))

ω
ξ2x(t′)dt′

+
f

mω
κ

∫ t

0

dt′e−γ(t−t′)/2sin(ω(t− t′))[R2y(0)(cos(ωt′)+

γ

2ω
sin(ωt′)) + Ṙ2y(0)

sin(ωt′)

ω
] (6.26)

+
f

mω

κ

mω

∫ t

0

∫ t′

0

dt′dt′′e−γ(t−t′′)/2 sin(ω(t− t′)) sin(ω(t′ − t′′))ξ2y(t′′)

Putting f = 0 in (6.26) gives us back the noise on a polymer under constant
force (6.21). The external force couples the x component of noise to the
dynamics in y direction. The initial positions in the y-direction as well as
the component of the white noise ξ2y(t) in the y-direction now play a role in
the dynamics in the x-direction of the second monomer. The y-component of
the noise remains unaffected by the force, since the external force does not
couple to the motion in the y-direction.

η1y(t) = −κ[R1y(0) −R2y(0)](cosωt+
γ

2ω
sinωt)e−γt/2

+ κṘ2y(0)e−γt/2 sin(ωt)

ω

+
κ

m

∫ t

0

e−γ(t−t′)/2 sin(ω(t− t′))

ω
ξ2y(t′)dt′

(6.27)
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Now we come to the induced force. The x−component of the effective force is

G1x(t) = f
κ2

m2ω2

∫ t

0

dt′
∫ t′

0

dt′′e−γ(t−t′′)/2 sin(ω(t− t′))

sin(ω(t′ − t′′))R1y(t′′) (6.28)

Again, as a nonequilibrium effect, the effective force has memory. On the other
hand its y-component G1y(t) stays zero. Indeed, since the applied force itself
is acting in the x-direction, there is no reason why the effective dynamics in
the y-direction of the tagged monomer should get affected by it.

Let us now go to the results for general N . The memory kernels µ̃
(N)
x (s) and

µ̃
(N)
y (s) look as they did in the case of constant force (6.16), with the same

“initial” conditions. The recurrence relation for the colored noise picks up
changes due to shearing, similar as discussed under (6.26) and (6.27); they arise
due to the fact that the non-uniform forcing couples the x and y components
of motion.

η̃(N)
x (s) = mµ̃(N)

x (s)[R(N−1)
x (0) − Rx(0)] +

mκ

(msµ̃
(N−1)
x (s) + msγ + s2 + κ)

Ṙ(N−1)
x (0)

+
κ

(msµ̃
(N−1)
x (s) + msγ + ms2 + κ)

(η̃(N−1)
x (s) + ξ̃(N−1)

x (s))

+ f
κ3

m3

{[s + γ + µ̃
(N−1)
y (s)]R

(N−1)
y (0) + Ṙ

(N−1)
y (0)}

[s2 + γs + κ
m

+ sµ̃
(N−1)
x ][s2 + γs + κ

m
+ sµ̃

(N−1)
y ][s2 + γs + κ

m
]

+ f
κ3

m3

{ξ̃
(N−1
y (s)/m + η̃

(N−1)
y (s)/m}

[s2 + γs + κ
m

+ sµ̃
(N−1)
x ][s2 + γs + κ

m
+ sµ̃

(N−1)
y ][s2 + γs + κ

m
]

The most interesting aspect of the non-uniform case is the appearance of
memory in the induced force. We have already seen this in the case of two-
monomers (6.28). This behavior persists in general with,

F̃ (N)
x (s) = G̃(N)

x (s)R̃(N)
y (s) (6.29)
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G̃(N)
x (s) =

κ2G̃
(N−1)
x (s)

[ms2 + γs+ k +msµ̃
(N−1)
x (s)][ms2 + γs+ k +msµ̃

(N−1)
y (s)]

(6.30)

Starting the recurrence with a single monomer where G̃
(1)
x (s) = f , all

subsequent forces can be determined using equations (6.29)– (6.30). The initial

force on a single monomer in the y-direction is zero, hence F̃
(N)
y (s) = 0 as also

seen in the two monomer case.
We studied the asymptotic behavior of the force-memory kernel G̃

(N)
x (s) in the

same spirit as in Appendix A.2. It can be shown easily following the same line

of arguments that G̃
(N)
x (s) decays exponentially in time. In the long time limit,

for all N ,
G(N)

x (t) < e−γt/2

6.6 Trapped monomer

Upon introducing an external potential Uext such that the force in the x-
direction on the outer edge depends on the x-component of the distance of the
monomer from a fixed origin, the resulting force is not non-conservative but
simply trapping. That is thus an equilibrium reference; the force is conservative

in nature. The result a rescaling of the frequency Ω2 = k+f
m − γ2

4 . The effective
force on the tagged monomer due to the action of this external potential is

F (t) = − κf

κ+ f
R1(t) +

κfQ

κ+ f
{1 − e−γt/2(cos Ωt+

γ

2Ω
sin Ωt)} (6.31)

We recognize the effective spring replacing two springs connected in series,

1

κeff
=

1

κ
+

1

f

This is another way to understand the net restoring force on R1. After all it
looks like a trapping potential around the origin but of strength κeff . The
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colored noise due to unknown initial conditions is

η1(t) =
κ2

κ+ f
(R2(0) −R1(0))e−γt/2(cos Ωt+

γ

2Ω
sin Ωt)

+
κf

k + f
R2(0)e−γt/2(cos Ωt+

γ

2Ω
sin Ωt)

+ κṘ2(0)e−γt/2 sin Ωt

Ω

+
κ

m

∫ t

0

eγ(t−t′)/2ξ2(t′)
sin(Ω(t− t′))

Ω
dt′ (6.32)

where 〈η1(t)〉R1
ρst

= κfQ
κ+f e

−γt/2(cos(Ωt) + γ
2Ω sin Ωt) for distribution

ρst(R2) =
1

Z
e−β

(κ+f)
2 (R2−

(κR1+fQ)
κ+f )2

eβ
(κR1+fQ)2

2(κ+f) e−β
(κR2

1
+fQ2)

2

The memory kernel is given as

µ(t) =
k2

m(k + f)
e−γt/2(cos Ωt+

γ

2Ω
sin Ωt) (6.33)

Given the conservative nature of the forces, the second fluctuation-dissipation
theorem is seen to hold:

〈η1(t1)η1(t2)〉ρ =
m

β
µ(τ)

where τ = t1 − t2 and t1 + t2 −→ ∞.

6.7 Conclusions and outlook

Integrating out degrees of freedom introduces non-Markovian noise, effective
forces and memory in a tagged particle dynamics. That is true in equilibrium
as in nonequilibrium, and, when starting from coupled diffusion processes, the
result is a generalized Langevin equation. Certain more detailed aspects are
also unchanged, like the anomalous nature of the memory kernel for short
times which goes into pure diffusion for long times, or the N2 dependence of
the relaxation times. Other important aspects fundamentally change when the
integration is over nonequilibrium degrees of freedom. Naturally, the remaining
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and visible degrees of freedom inherit nonequilibrium features and detailed
balance gets broken. As a result, the so called second fluctuation-dissipation
theorem or Einstein relation gets violated. For the moment however, there is no
systematic understanding of exactly how that Einstein relation is modified. To
put it differently, when considering a diffusion model for a particle (e.g. colloids)
in a nonequilibrium environment such as the visco-elastic medium of the cell,
we have little idea of how to relate the noise with the friction term, be that they
have the same physical origin [18]. The outlook is then to find the analogue of
what has been called the frenetic contribution to the first fluctuation-dissipation
theorem [11]. Indeed we expect a non-entropic and more kinetic contribution in
the breaking of the second fluctuation-dissipation theorem, much like discussed
for the modification of the Sutherland-Einstein relation [94]. For the moment
however, we must deal with examples and prototypical examples, such as
the Rouse model of the present work, where exact computations are possible.
There indeed, say in the case of non-uniform driving, the second fluctuation-
dissipation relation is broken, but for the uniform driving that is only a transient
effect as found in (6.19). A more general theory will of course need to conform
to the findings of the present work. A second set of more general research
questions really inverts the calculations of the present work. The aim is then
to be able to reconstruct the nonequilibrium forcing on the hidden degrees of
freedom from the effective motion of the probe or tagged or visible degrees of
freedom. The standard example from equilibrium statistical mechanics is the
free energy of a thermodynamic system which can be measured from the work
on some probe that is coupled to the system. For nonequilibrium statistical
mechanical systems there are plenty of nonequilibrium entropies and fluctuation
functionals, [91] but so far, no solid and general operational meaning has been
attached to them. We would again like to determine these nonequilibrium
fluctuation functionals from the effective forces on probes. In the present
work it would mean to reconstruct important nonequilibrium features of the
full polymer dynamics from the motion and effective dynamics of the tagged
monomer. Clearly, before that program can start, the direct question as in the
work must be sufficiently understood. We conclude that the Rouse dynamics
provides an interesting and important playground for questions that in the
future must be addressed in the construction of a nonequilibrium statistical
mechanics.



Chapter 7

Conclusions & Outlook

7.1 Stochastic process and the No-go theorem

We studied some aspects of nonequilibrium forces on effective or coarse grained
dynamics of macro observables. This thesis is broadly divided into two parts. In
the first part, we explored Stochastic processes in general and time-dependent
Markov processes in particular. The action of periodic external driving on
systems existing on a finite state space was studied. We considered the
jump dynamics such that the external driving makes the escape rates λt(x)
change with time but the transition probabilities p(i, j) of jump remain time-
independent,

wt(i, j) = λt(i)p(i, j)

When expressing the rates in the form of the Arrhenius rate law, the time
dependent rates can be interpreted as

wt(i, j) = A(i, j)eβGt(i), A(i, j) = A(j, i)

with periodic time-dependent energy wells Gt(i) and the constant energy
barriers as represented by the symmetric factors A(i, j).

137



138 CONCLUSIONS & OUTLOOK

The dynamics is time dependent and detailed balance is broken. Yet, we show
that for this particular time-dependence of the rates, the net time-averaged
current over a long time is zero.

J(i, j) = lim
T →∞

1

T

∫ T

0

jt(i, j)dt = 0

where jt(i, j) is the instantaneous current.

This is called the No-go Theorem. This effect arises because the specific time-
dependent driving is such that the time-averaged dynamics becomes detailed
balanced in the long-time limit. If the reference dynamics itself breaks detailed
balance, the time-averaged current is a mere global multiple of the steady
reference current.

7.2 Statistical forces in equilibrium and nonequilib-
rium

In the second part of the thesis we were concerned more generally with the
study of coarse grained dynamics of an intruder in a bath and in particular
with the nature of Statistical or fluctuation-induced forces that arise due to
the action of the bath on the intruder. Statistical forces are a consequence
of the action of large numbers. We discussed first some familiar examples of
Statistical forces. In Equilibrium Thermodynamics, they have been known to
us as Thermodynamic forces, such as pressure and chemical potential.

We pursued the programme in equilibrium in Chaper 5. We systematically
studied the variations of Buoyancy in granular media and in particular studied
the influence of various time scale separations on Statistical forces. In this
context, two cases were considered:

• In the Fluid limit: There is a large time scale separation between the bath
and the intruder dynamics. The result of which is that the bath dynamics
is at all times in stationarity conditioned on the state of the intruder. The
effective dynamics was Markovian and the Statistical force on the intruder
was recovered as the Buoyant force of a fluid of density d(y) on an intruder
of size N .

FB = d(y)Ng
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• Before the Fluid limit: The time scales of the bath and the intruder
are comparable. As a result an effective non-Markovianity was introduced in
the intruder dynamics. The Statistical force consisted of the Buoyant force,
corrected by an induced frictional or drag force.

The programme in nonequilibrium was followed in two cases: A Markov jump
process and a Diffusion process.

We studied two kinds of forcing on a Rouse polymer in an equilibrium bath: a
uniform force f at one end of the polymer, a non-uniform shear force. The
observable was a tagged monomer in the polymer, for which an effective
equation of motion was arrived at by coarse graining all the other monomers in
the polymer. The effective dynamics of the tagged monomer was governed by
a Generalized Langevin equation. Additional memory term µ(t) and colored
noise η(t) were a consequence of the coarse graining.

In general, for both equilibrium and nonequilibrium driving, in short times,
the motion of the tagged monomer was anomalous diffusion, which turned
diffusive in long time. The effective force on the tagged monomer is in general
time dependent. In equilibrium this force is Markovian. Also, in equilibrium
the second fluctuation-dissipation was satisfied for the memory term µ(t) and
colored noise η(t).

The most interesting nonequilibrium feature was the appearance of non-
Markovianity in the resultant force. A general characteristic of non-
conservative or time dependent force is that the effective force depends on
the history of the dynamics itself.

We conclude that Statistical forces in general, for Markov jump processes can
be expressed

FStat(x, x
′) = − 1

β
log

[

χ(x, x′)

χ(x′, x)

]

where χ(x, x′) are the effective jump rates of the observed process.

In general
FStat(x) = −∇Vf (x) + ∇ ×Af (x)

statistical force can be expressed as a sum of conservative and non-conservative
parts. They are both dependent on f , the nonequilibrium driving and are not
related to the generalized free energies in any simple manner. The effective
dynamics in nonequilibrium also depends on the symmetric parts of the rates
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and hence the Statistical forces were seen to contain features of average escape
rates, which is not true in equilibrium.

In equilibrium
FStat(x) = −∇F(x)

statistical force is the gradient of a generalized free energy.

7.3 Looking Ahead

There are several directions to go starting from here. The effective dynamics is
arrived at by coarse graining the dynamics of the bath. This coarse graining can
be made more systematic so that more than first order corrections around the
fluid limit can be obtained. Systematic approaches such as projection operator
methods are being put into use to better understand the non-Markovianity in
the effective motion of the intruder.

We studied the Statistical force on a single intruder or a single tagged particle in
a bath. There exist interesting collective effects, where attractive or repulsive
forces arise between multiple intruders in a bath as a result of fluctuations
in the bath. These collective effects, as seen in granular media can also be
explored when the bath has some nonequilibrium driving in it.

More broadly speaking, Statistical forces are a window to the underlying
microscopic dynamics whose fluctuations they mirror. A more generalized
frame work starting from Statistical forces can be build, which would
render information about the microscopic dynamics. By studying the nature
of Statistical forces, information could be gathered about the nature of
conservative and non-conservative forces in the bath. Not only that, Statistical
forces in nonequilibrium are related to dynamical fluctuations functionals in the
bath. A general frame work can be build to relate the two. A related project is
to connect the corrections in the second fluctuation theorem in nonequilibrium
to the gradient and the non-gradient parts of the Statistical force.



Appendix A

A.1 Deriving the long time behavior of statistical

force in Laplace space

Let us confine to the case of constant forcing. The initial conditions for the
recurrence are µ̃(1)(s) = 0; G̃(1)(s) = f/s ; η̃(1)(s) = 0.

The stationary distribution of R
(N−1)
2 (0) given R1(0) is given by

ρst =
1

Z
e−βHst

where
Hst =

κ

2
[R

(N−1)
2 (0) −R1(0)]2 −G

(N−1)
st R

(N−1)
2 (0)

where we take it that external force has always been on. Of course, it is also
important here to separate transient from stationary behavior. For example,

for the force on q2, we have at stationarity G
(N−1)
st = limt→∞ G(N−1)(t) and

as an illustration we will show using recurrence that in the case of constant

forcing it always equals the originally applied force G
(N−1)
st = f .

We start from the relation

lim
t−→∞

G(N−1)(t) = lim
s−→0

sG̃(N−1)(s)
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The recurrence relation for the force (6.17) starts from a dimer,

G̃(2)(s) =
κG̃(1)(s)

(msµ̃(1)(s) +msγ +ms2 + κ)

=
κf

s(msγ +ms2 + κ)

By a simple calculation it is seen that

lim
s−→0

sG̃(2)(s) = f

If now for a polymer of size N − 2 (induction hypothesis)

lim
s−→0

sG̃(N−2)(s) = f

We can use the recurrence relation and the property lims−→0 sµ̃
(N)(s) = 0

shown in A.2, to see that also

lim
s−→0

sG̃(N−1)(s) = f

as wanted. The stationary distribution thus is given by

ρst =
1

Z
e−β( κ

2 (R
(N−1)
2 (0)−R1(0)2)−fR

(N−1)
2 (0)) (A.1)

The mean noise is

〈η̃(N)
1 (s)〉st = m

f

κ
µ̃

(N)
1 (s)

A.2 Asymptotic behavior of memory

We show here that the memory kernel µ̃(N)(s) decays exponentially in the long
time limit, again by recurrence. We take the constant force case as simplest
example. From (6.20) we see that for a dimer

lim
t→∞

eλtµ(2)(t) = 0 for λ < γ/2

which translates to
lim
s→0

sµ̃(2)(s− λ) = 0 (A.2)

in the Laplace space. Let us assume that for a polymer of size N − 1

lim
s→0

sµ̃(N−1)(s− λ) = 0 (induction hypothesis) (A.3)
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and let us choose λ = γ/4. That would show that for a polymer of size N ,

lim
s→0

sµ̃(N)(s − γ/4) = lim
s→0

s
κ(µ̃(N−1)(s − γ/4) + γ + s − γ/4)

(s − γ/4)(mµ̃(N−1)(s − γ/4) + mγ + m(s − γ/4) + κ
(s−γ/4)

)

= lim
s→0

3sγ/4 = 0 (A.4)

where we have used recurrence relation (6.16) and hypothesis (A.3) and the
fact that lims→0 µ̃

(N)(s) is a constant, as is easy to show. The above result
translates to

lim
t→∞

eγt/4µ(N)(t) = 0

Hence in the long time limit, for all N ,

µ(N)(t) < e−γt/2

which also proves the claim made in 6.4.1 that the time of relaxation is bounded
from below by 2/γ.

A.3 Second fluctuation-dissipation relation in Laplace

Space

The second fluctuation–dissipation relation says that the stationary noise auto-
correlation function is proportional to the memory kernel µ(t) through inverse
temperature β,

〈η(t)η(t + τ)〉 =
m

β
µ(τ) +O(

1

t
, τ) (A.5)

such that in the long time limit all terms of the order 1/t or greater drop out.
We continue by deriving that relation in Laplace space. Let s be the variable
in the Laplace space, domain |Re{s}| < γ/2, such that the Laplace transform
is well defined; see Appendix A.2.
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〈η̃(s)η̃(s′)〉 =

∫ ∞

0

∫ ∞

0

e−ste−s′t′〈η(t)η(t′)〉dtdt′

Let t′ = t+ τ

=

∫ ∞

0

e−stdt

∫ ∞

−t

e−s′te−s′τ 〈η(t)η(t + τ)〉dτ

=

∫ ∞

0

e−(s+s′)tdt

∫ ∞

−t

e−s′τ 〈η(t)η(t + τ)〉dτ

Let (s+ s′)t = T (A.6)

=
1

s+ s′

∫ ∞

0

e−TdT

∫ ∞

− T
s+s′

e−s′τ 〈η(
T

s+ s′
)η(

T

s+ s′
+ τ)〉dτ

Rewriting (A.5) and plugging in the result in (A.6)

〈η(
T

s+ s′
)η(

T

s+ s′
+ τ)〉 =

m

β
µ(τ) +O(s+ s′)

〈η̃(s)η̃(s′)〉 =
1

s+ s′

∫ ∞

0

e−TdT

∫ ∞

− T
s+s′

e−s′τ (
m

β
µ(τ) +O(s+ s′))dτ

Hence,

lim
s+s′→0

(s+ s′)〈η̃(s)η̃(s′)〉 =
m

β

∫ ∞

−∞

e−s′τµ(τ)dτ

=
m

β
(µ̃(s) + µ̃(−s)) (A.7)

is the form of the second fluctuation-dissipation relation in Laplace space.

A.3.1 Proof by induction

We prove our claim that the second fluctuation-dissipation relation holds in
case of constant force, for a polymer of general size N . We give the explicit
calculation for the case of a dimer. Given memory kernel (6.16) and noise



SECOND FLUCTUATION-DISSIPATION RELATION IN LAPLACE SPACE 145

(6.18), which is distributed as ρst(R2, Ṙ2) as given in (A.1), one can calculate
the correlation function 〈η̃(2)(s)η̃(2)(s′)〉st. Using the relation

lim
s+s′→0

(s+ s′)〈ξ̃i(s)ξ̃j(s′)〉 =
2mγ

β
δij (A.8)

it is shown by a simple calculation that

lim
s+s′→0

(s+ s′)〈η̃(2)(s)η̃(2)(s′)〉 =
m

β
{µ̃2(s) + µ̃2(−s)} (A.9)

which proves the result. To prove it for a general polymer, we use the induction
hypothesis that for a polymer of size N − 1 the second fluctuation-dissipation
relation holds:

lim
s+s′→0

(s+ s′)〈η̃(N−1)(s)η̃(N−1)(s′)〉st =
m

β
{µ̃(N−1)(s) + µ̃(N−1)(−s)}

From the recurrence relations (6.18) and from (A.8), one easily shows that

J = m(s(µ̃(N−1)(s) + γ + s) +
κ

m
)(−s(µ̃(N−1)(−s) + γ − s) +

κ

m
)

〈η̃(N)(s)η̃(N)(s′)〉st =
kBTκ

2(µ̃(N−1)(s) + µ̃(N−1)(−s))
J

+
2kBTγκ

2

J

with s+ s′ → ∞.

Using the recurrence relations for memory (6.16),

µ̃(N)(s) + µ̃(N)(−s) =
κ2(µ̃(N−1)(s) + µ̃(N−1)(−s))/m2

J

+
2κ2γ/m2

J

which proves the claim. Therefore, the second fluctuation-dissipation relation
holds for a polymer of arbitrary size under the action of a constant force.
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In the case of non-uniform forcing, we are in two dimensions and the
computations become more involved, but the basic recurrence relations remain
in place.
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