
MCMC Estimation of Conditional Probabilities
in Probabilistic Programming Languages

Bogdan Moldovan, Ingo Thon, Jesse Davis, and Luc de Raedt

Department of Computer Science, Katholieke Universiteit Leuven, Belgium

Abstract. Probabilistic logic programming languages are powerful for-
malisms that can model complex problems where it is necessary to rep-
resent both structure and uncertainty. Using exact inference methods to
compute conditional probabilities in these languages is often intractable
so approximate inference techniques are necessary. This paper proposes a
Markov Chain Monte Carlo algorithm for estimating conditional proba-
bilities based on sampling from an AND/OR tree for ProbLog, a general-
purpose probabilistic logic programming language. We propose a param-
eterizable proposal distribution that generates the next sample in the
Markov chain by probabilistically traversing the AND/OR tree from its
root, which holds the evidence, to the leaves. An empirical evaluation on
several different applications illustrates the advantages of our algorithm.

1 Introduction

Probabilistic programing languages (PPLs) embed probabilistic concepts into
programming languages. They provide high-level constructs for specifying mod-
els that can capture both uncertainty and structure. Examples of PPLs include
ProbLog [11, 2], PRISM [22], BLOG [14], Church [6], and IBAL [16].

This paper focuses on ProbLog, a probabilistic extension of the logic program-
ming language Prolog, based on Sato’s distribution semantics [20]. A ProbLog
program represents a distribution over possible worlds. Consequently, unlike in
Prolog, the success or failure of a query is not deterministic. A central infer-
ence problem is computing the probability that a query succeeds conditioned
on some given evidence. Unfortunately, computing such probabilities exactly for
high dimensional realistic problems is unfeasible, only approximation techniques
providing a polynomial time solution [1]. One of the most popular sampling tech-
niques used by many PPLs [21, 6, 14] is Markov chain Monte Carlo (MCMC) [1].

We present an MCMC approach tailored to computing the conditional prob-
ability of a ProbLog query. Computing conditional probabilities in PPLs has,
with a few exceptions [3], not yet received much attention in the literature.

Several challenges arise when designing a ProbLog MCMC algorithm. First,
as ProbLog is a programming language, the possible worlds can be infinite,
making it impossible to sample complete worlds. Our MCMC approach samples
partial possible worlds (i.e., assignments to subsets of the random variables in
model) which correspond to proofs. Second, ProbLog explicitly deals with the

2 Bogdan Moldovan, Ingo Thon, Jesse Davis, and Luc de Raedt

disjoint sum problem in contrast to other PPLs (e.g., Prism) that make the
mutually exclusiveness assumption to avoid this NP-hard problem. The disjoint
sum problem arises when two proofs overlap. We solve this using the Karp and
Luby algorithm [9]. By not making the mutually exclusiveness assumption, a user
can write a ProbLog program that more easily models a richer problem setting.
Third, only those possible worlds that agree with the evidence are relevant for ap-
proximating the conditional probability. We employ an AND/OR tree rooted at
the evidence, representing all such possible worlds, and probabilistically traverse
the tree to generate only those samples where the evidence holds. The AND/OR
tree is needed to deal with ProbLog’s underlying non-deterministic nature, also
distinguishing our approach from those applied to functional programming lan-
guages. Finally, in contrast to some other languages, we also provide support for
numeric random variables and discrete distributions.

2 Background

We first review some basic concepts of logic programming: An atom pred(t1, ..., tn)
consists of a predicate pred/n of arity n and ti terms. A term is either a (lower-
case) constant, a (uppercase) variable, or a functor func/n applied on n terms.
A definite clause is an expression of the form h← b1, ..., bn, where h and the bi
are atoms. It states that h is true whenever all bi are true. If n is 0, we have a fact
f ←, which expresses that f is true. A substitution θ = {X1 = t1, ..., Xn = tn}
maps each variable Xi to a term ti. Applying a substitution θ to an atom a
yields aθ, in which each occurrence of Xi in a is replaced with ti.

A ProbLog [11, 2] program consists of a set of labeled facts pi :: ci, where pi
is a probability value and ci a fact, and a set of definite clauses. Each ground
instance of such a fact represents a random variable that is true with probability
pi. We use the following ProbLog program as a running example in the paper:

0.05 :: burglary.

0.01 :: earthquake.

0.7 :: hears_alarm(john).

0.6 :: hears_alarm(mary).

alarm :- burglary.

alarm :- earthquake.

calls(Pers) :- alarm, hears_alarm(Pers).

It has the random variables: burglary, earthquake, hears alarm(john) and
hears alarm(mary), and states that there is an alarm whenever there is burglary
or an earthquake. The last clause states that if there is an alarm and a person
hears the alarm, that person will call.

To model univariate discrete distributions (e.g., uniform, Poisson), we also
allow for discrete distribution probabilistic facts X ∼ φ :: f . X is a logical
variable appearing in atom f and φ a probability density function. Currently
only the uniform and Poisson distributions are implemented. For example, X ∼
uniform(7) :: apples(X) specifies that apples(X) is true with X sampled from
the set of integers between 1 and 7 with equal probability. Only for the sampled
value of X will apples(X) be true. Each grounding of all the variables (except
X) in f denotes a random variable. In ProbLog, all random variables (discrete
distributions or probabilistic facts) are assumed marginally independent.

MCMC Estimation of Conditional Probabilities in PPLs 3

The semantics of the ProbLog program is then given by probability distri-
butions over subsets of the facts fi (called subprograms) and sample values for
the numeric variables in the uniform and Poisson distributions. Each ground
probabilistic fact p :: f specifies an atomic choice, i.e., we can choose to include
f as a fact (with probability p) or its negation f (with probability 1− p), where
f is the predicate denoting the explicit negation of f . These negated predicates
may also occur in the background knowledge, allowing us to deal with explicit
negation on probabilistic facts. For a uniform distribution, X will be sampled
from the discrete uniform distribution and f(x) will be included as a fact, where
x is the sampled value for X. Poisson distributions are treated similarly.

The resulting set of facts is called a total choice [17] when we have included
a fact for all random variables, and a partial choice otherwise. To each total
or partial choice we can associate a probability. This is simply the product
of the probabilities of the atoms chosen for inclusion in the total or partial
choice, as these random variables are marginally independent. For example, the
probability of the total choice T1 = {burglary, earthquake, hears alarm(john),
hears alarm(mary)} is 0.05× .99× .7× .4.

The distribution over total choices induces a probability distribution P over
possible worlds, which also defines the (success) probability Ps(q) of a query q
(conjunction of atoms) as Ps(q) = P ({w|q is true in the possible world w}).
Continuing our example, the probability of alarm is equal to the probability
that it is true in the 24 possible worlds. Rather than enumerating these worlds
explicitly, one would compute the proofs of the query and observe that alarm
is true exactly when earthquake or burglary is true. The partial choices corre-
sponding to the two proofs are sometimes called explanations. So:
Ps(alarm) = Ps(burglary ∨ earthquake)

= Ps(burglary ∨ (burglary ∧ earthquake)) = 0.05 + (.95× .01)
This derivation also illustrates the disjoint sum problem, as we have to make
the two arguments of the disjunction mutually exclusive before we can correctly
compute the probability of the query. This is a #P complete problem [23].

3 AND/OR Trees

Our MCMC algorithm relies on the notion of an AND/OR tree for definite
programs [18]. Let T be a definite clause program and ?− e an evidence query.
The AND/OR tree for ProbLog pTree(e) of the given query is a tree with root
e whose nodes are divided into two disjunctive sets, the set of AND nodes and
the set of atomic choice nodes. Each node contains a query. Leafs of pTree(e)
are either an empty clause (�) or a failure (for leaf ?−aleaf no clause head in T
unifies with aleaf). The nodes ?−a1, ..., ?−an constitute the children of an AND
node ?− a1, ..., an. An atomic choice node can be of three types: exclusive OR-
nodes, probabilistic atoms and discrete distribution atoms. An OR node ? − a
has a child ?− (a1, ..., an)θ if and only if there is a definite clause a← a1, ..., an
in T and a substitution θ such that a′θ = a. An atomic choice node ? − a (or
? − a) for a probabilistic atom p :: a′ adds a′θ (or a′θ) with aθ = a′θ as a

4 Bogdan Moldovan, Ingo Thon, Jesse Davis, and Luc de Raedt

fact to T , and imposes the constraint that a′θ (or a′θ) will never be added to T .
Similarly, an atomic choice node ?−a for a discrete distribution atom X ∼ φ :: f
adds aθ{X = v} as a fact to T for one possible value v in the distribution φ
with aθ{X = v} = fθ{X = v}, and imposes the contraint that facts will not
be added for any other value than v. Since these facts are now added to T ,
they prove the node containing these probabilistic atomic choices, thus the child
of this node is �. Figure 1a illustrates pTree(e) on our running example for
e = calls(mary). An AND/OR tree is obtained by starting with the root e and
recursively expanding each node for the definite clause program.

(a) A solution tree (solid line arrows) (b) Highlighted solution tree for x(i).

Fig. 1: Example AND/OR tree for the evidence: calls(mary).

A solution tree S in the AND/OR tree pTree(e) is a subtree such that 1) e
is the root of S, 2) the children of all AND nodes that are in S are also in S, 3)
all OR nodes that are in S have exactly one child that is also in S, and 4) all the
leaves are �. A solution tree is consistent with regard to random variables and
atomic choices (e.g., it will not contain two atoms a and a and there cannot be
two different values assigned to the same discrete distribution atom). A solution
tree represents one particular proof of e. Since e is true with respect to every
solution tree in pTree(e), every solution tree implies a model of the evidence e.
Figure 1a highlights with solid line arrows the solution tree corresponding to the
partial possible world {earthquake = true, hears alarm(mary) = true}.

4 MCMC Algorithm Overview

Computing the conditional probability of a query in ProbLog is defined as:

Given: a ProbLog program T , a set of observed (evidence) atoms e, a query q
Do: Calculate P (q|e)

As it is often intractable to compute P (q|e) exactly, we propose an MCMC [1,
8, 13] approach. Each state in the Markov Chain is a (partial) possible world.
The estimate of P (q|e) is obtained by dividing the number of partial possible
worlds where e is true and q is entailed by the number of partial possible worlds
where e is true. Two key challenges arise when designing the MCMC algorithm.

The first challenge is designing a proposal distribution that, as often as possi-
ble, constructs states that agree with e, as only these are relevant for estimating

MCMC Estimation of Conditional Probabilities in PPLs 5

P (q|e). We exploit the fact that each partial possible world meeting this criteria
corresponds to a solution tree in pTree(e). Given the previous solution tree, our
proposal distribution builds a new one to propose as the candidate next state.

Secondly, two partial possible worlds can overlap, i.e., sampling their unas-
signed variables can lead to the same full possible world. If two such overlapping
partial worlds are counted as distinct then that full possible world would be
overcounted, skewing the probability estimate. We adapt ideas from the Karp
and Luby algorithm [9] to identify overlapping worlds.

Our algorithm is similar to the standard MCMC algorithm in [1]. Until a stop
criteria is met, each iteration proposes a candidate state, which is checked for
overlap with previously seen states. If there is no overlap, or it can be resolved, we
calculate the acceptance probability, and advance to the next state accordingly.

4.1 Proposing a New State

Our Markov chain samples solution trees from pTree(e). We exploit the intuition
that small changes in the solution tree are more likely to lead to another solution
than a big jump by probabilistically favouring reusing parts of the current proof
for e. Each proof requires making decisions at OR and atomic choice nodes. We
stay close to the previous state by (1) following the same branch at an OR node
with probability P1, and (2) making the same atomic choice with probability P2.

P1 and P2 are user defined parameters; higher values encourage more reuse
between consecutive solution trees. Parameter choice depends on the problem. If
pTree(e) contains many solution trees with few shared branches, lower parame-
ter values are better to encourage faster solution space exploration. If pTree(e)
contains only few solution trees or they share many branches, higher values are
better to favour reuse. If solution trees are more evenly spead out in pTree(e), pa-
rameters have smaller impact. Any non-zero values lead to eventual exploration
of all solution trees in pTree(e). Only these are relevant to estimate P (q|e).

Algorithm 1 outlines the recursive procedure prove for proposing a new so-
lution. Its parameters are: N (current node), Sold (previous solution tree), and
Snew (tree under construction). It begins at the root node e and, depending on
the type of the current node N , it recursively traverses pTree(e) as follows:

AND node: Recursively call prove on each of the node’s children because prov-
ing e requires proving each child. Return the conjunction of the results.

OR node: (At least) one of the children c1, . . . , cn of N needs to be proved in
order for e to be true. To favour reuse, if N occurs in Sold, then pick the
same child c as in Sold with probability P1 and return prove(c). Otherwise,
pick ci uniformly at random between c1, . . . , cn and return prove(ci).

Atomic choice node: To favour reuse, if N occurs in Sold, then with proba-
bility P2 pick the same value for the random variable as in Sold. Otherwise
pick a value for it from its probability distribution. For probabilistic atoms,
only one value (either true or false) makes e true, so we are forced to pick
this value for the proof to succeed. Add the atom in N to T and return true.

Empty clause: Return true.
Failure: No clause head in T unifies with the atom in the node. Return false.

6 Bogdan Moldovan, Ingo Thon, Jesse Davis, and Luc de Raedt

Function prove returns true if it finds a solution tree, and false otherwise. If prove
returns true, the partial possible world associated with Snew is the candidate next
state. Otherwise, the candidate next state is identical to the current state: x∗ =
x(i), where we know e is entailed. Subsection 4.3 shows why this is advantageous.

Algorithm 1: bool prove(N,Sold, var Snew)

Require: Global vars: pTree(e)
1 Add node N to Snew

2 if N is AND node ? − a1, ..., an then return
∧

i prove(ai, Sold, Snew)
3 else if N is OR node with n children then
4 if N is in Sold then
5 cold = child of N in Sold

6 with prob. P1: return prove(cold, Sold, Snew)

7 let c1, ..., cn be the children of N in pTree(e)
8 pick i uniformly from [1...n]
9 return prove(ci, Sold, Snew)

10 else if N is atomic choice then
11 if N is in Sold then
12 with prob. P2: pick same value for random variable as in Sold

13 else pick value randomly from its prob distribution
14 add atom N to ProbLog program
15 return true

16 else if � then return true
17 else return false

4.2 Handling Overlapping Partial Worlds

Snew represents one proof or explanation for e. Two different explanations for e
are not necessarily mutually exclusive (i.e., they overlap). This occurs if, in both
explanations, there exists a setting to the unassigned variables that produces the
same full possible world. This is known as the disjoint sums of product problem.

We illustrate this problem on our example with e={alarm=true}. There are
two solution trees corresponding to the partial possible worlds {burglary=true}
and {earthquake=true}. Each partial possible world represents a set of full pos-
sible worlds. The partial world {burglary=true} represents the two full worlds:
{burglary=true, earthquake=false} and {burglary=true, earthquake=true}.
Similarly, the partial world {earthquake=true} represents the two full worlds:
{burglary=false, earthquake=true} and {burglary=true, earthquake=true}.
The full world {burglary=true, earthquake=true} is represented by both these
two partial worlds. Two partial worlds overlap if they both can represent the
same full world. Treating them as distinct (i.e., non-overlapping) will cause this
full world to be counted twice, leading to an incorrect probability estimate.

To solve the disjoint sums problem we use the idea from the Karp and Luby
algorithm [9]. Each possible world is assigned to exactly one of its explanations.
This assignment is defined as positive, leading to the world being accepted.
We then use sampling of the unassigned variables in a partial world to resolve

MCMC Estimation of Conditional Probabilities in PPLs 7

overlap. When a candidate sample is proposed, we assign it to its explanation
represented by Snew, obtaining a pair of a possible world and an explanation. For
each possible world, only one such pair is positive. As samples are obtained, we
build a list of unique positive pairs, and check new candidate samples against
this. If the sample overlaps with a previous one from the list assigned to a
different explanation, we attempt to remove overlap as follows. We pick a variable
from the previous possible world which is unassigned in the proposed world. Then
we extend the proposed world by setting this variable to a value drawn from its
distribution. We repeat this procedure until (1) we arrive at a world with no
overlap which we save in the list and propose as the candidate state, or (2) no
variable in the previous world is unassigned in our proposed world and there is
still overlap. In the second case, we reject the sample and propose the current
state instead. Intuitively, we reject sample contributions from the overlapping
world. It was shown [9] that this results in an accurate estimate for P (e).

Assume {earthquake=true} is the first sampled possible world, assigned to
the same explanation. If {burglary=true} is the next sample, we identify an
overlap and draw a value for earthquake. If earthquake=true, the full world
overlaps with the first sample and we reject it. If earthquake=false, the overlap
is eliminated. We then propose {burglary=true, earthquake=false} and assign
the world to the explanation {burglary=true}.

4.3 Computing the Acceptance Probability

The Markov chain advances by accepting a candidate state x∗ with probability

A = min{1, P (x∗)Q(x(i)|x∗)
P (x(i))Q(x∗|x(i))

}, and otherwise remains in the same state (x(i+1) =

x(i)) [1]. P (·) is the probability of a state (i.e., partial possible world), and Q(·|·)
is the probability of transitioning from one state to another. We illustrate these
calculations using the example in Figure 1b, where each choice branch is labeled
with its probability of being selected in x∗ given x(i).

Computing P (·): The probability of a partial world w = {c1 = v1, . . . , cn =
vn} is: Pworld(w) =

∏n
i=1 Psi , where Psi is probability that fact ci takes on value

vi. Thus P ({burglary = true, hears alarm(mary) = true}) = 0.05×0.6 = 0.03.
Computing Q(·|·): Q(x∗|x(i)) is the product of the probabilities of all the

choices made when constructing Snew from Sold since the choices at each node
type are made independently. Algorithm 2 shows computeQ, a recursive algo-
rithm similar in structure to Algorithm 1, with Sold (previous solution tree)
and Snew (proposed solution tree) as parameters. To compute Q(x(i)|x∗) we call
computeQ and swap the order of the parameters. In our example in Figure 1b,
at the top OR node the probability of the choice is 1 (node has only one child).
Next, at the AND node, we multiply the probabilities obtained by recursively
calling computeQ on each child. The atomic choice hears alarm(mary) must be
true for the proof to succeed, so there is no choice and we return 1. At the OR
node alarm, given parameter P1 = 0.6, the probability of picking the child bur-
glary is 1−0.6

2 = 0.2. We reach the atomic choice burglary, and we return 1. The

product of all the choices made is: Q(x∗|x(i)) = 1× ((1)× (0.2× 1)) = 0.2.

8 Bogdan Moldovan, Ingo Thon, Jesse Davis, and Luc de Raedt

Algorithm 2: float computeQ(N,Sold, Snew)

1 if N is AND node ? − a1, ..., an then return
∏

i computeQ(ai, Sold, Snew)
2 else if N is OR node with n children then
3 cnew = child of N in Snew

4 if N and cnew are in Sold then

5 return (P1 + 1−P1
n

) ∗ computeQ(cnew, Sold, Snew)
6 else if N is in Sold but cnew is not in Sold then

7 return (1−P1
n

) ∗ computeQ(cnew, Sold, Snew)
8 else return (1

n
) ∗ computeQ(cnew, Sold, Snew); // none in Sold

9 else if N is atomic choice then
10 Let Pnew be the prob of the value of random variable in Snew

11 if N is in Sold with same sampled value then
12 return P2 + (1 − P2) ∗ Pnew

13 else if N is in Sold with different sampled value then
14 return (1 − P2) ∗ Pnew

15 else return Pnew; // N is not in Sold

16 else return 1; // if �

Computing A: In our running example, the acceptance probability will be:
A = min{1, 0.03×0.2

0.006×0.2} = 1 and the proposed sample will be accepted.
If a traversal does not reach a solution, or if overlap cannot be resolved, the

proposed state is the current state. This greatly simplifies the algorithm. In this
case, computing Q(x∗|x(i)) would have needed to sum over the probabilities of

all paths in pTree(e) where e is not entailed. However, the ratio Q(x(i)|x∗)
Q(x∗|x(i))

= 1

(since x∗ = x(i)). Thus A = 1 and the MCMC chain advances with x(i+1) = x(i).

5 Related Work

The use of MCMC techniques is popular in the literature on PPLs and statistical
relational learning. Many languages (e.g., Blog [14], Church [6], Alchemy [12],
Prism [22]) offer an inference algorithm based on MCMC. Our MCMC approach
has the important difference that it needs to deal with the disjoint sum problem.
The above mentioned techniques assume that the probability of a function or
predicate call can be approximated by counting/weighting the number of suc-
cesful execution traces of the program. Doing this in the ProbLog context will
lead to overcounting of partial worlds and possibly incorrect probability values
larger than one. In Blog or Church this is a valid assumption as the underlying
programming language is functional (i.e., deterministic). In Prism, one assumes
mutually exclusive explanations so the problem does not arise. We solve this us-
ing the Karp and Luby algorithm [9], previously used in the ProbLog context in
DNF sampling [10], but not with an MCMC approach. Aditionally, by proposing
states probabilistically, we eventually fully explore the state space and can tackle
a bigger set of problems, while Alchemy and MLNs [12, 19] combine MCMC with
satisfiability testing to have an MC-SAT algorithm that can also tackle problem
domains with deterministic or near-deterministic dependencies [19].

MCMC Estimation of Conditional Probabilities in PPLs 9

Wingate [24] proposed a general MCMC technique for obtaining a probability
distribution over program execution traces, together with a general method of
transforming arbitrary programming languages into PPLs. To compute a condi-
tional probability, one would need to do rejection sampling on all these execution
traces sampled from the unconditioned program. By comparison, our AND/OR
tree based approach for estimating conditional probabilities attempts to guide
the Markov chain towards the solution space of the conditioning query.

We want to stress that the use of AND/OR trees here is completely different
than in the work by Dechter & probabilistic theorem proving (PTP) [4, 5], in
that, we employ the traditional trees used in theorem proving, whereas Dechter &
PTP employ the special data structures used in a knowledge compilation setting.
These data structures impose different requirements than the AND/OR trees and
are aimed at optimizing some operations (e.g., weighted model counting).

6 Empirical Evaluation

The goal of the experimental evaluation is to explore how our MCMC approach:
Goal 1: compares to existing ProbLog inference techniques
Goal 2: compares to other PPLs when faced with hard constraints
Goal 3: copes with Poisson and uniform distributions

Implementation was in Yap-6 Prolog. Experiments were run on computers
with Intel Core i7− 2600 3.4GHz processors, 8MB cache, and 16GB memory.
Parameters were set to P1 = 0.6, P2 = 0.4, but varying them had minimal
impact on performance on the three considered problem domains.

Goal 1: Comparison to the Following Existing ProbLog Inference Algorithms:

ProbLog Exact is the current exact inference implementation for ProbLog,
which can scale to tens of thousands of proofs [11].

ProbLog MC is a naive Monte-Carlo method that samples possible worlds for
a ProbLog program[11]. We reject the ones where the evidence does not hold.

ProbLog MC-SAT is the state-of-the-art approach to approximate inference
in ProbLog [3]. It converts a ProbLog program to a CNF theory and then
runs the MC-SAT inference algorithm [15].

We use WebKB1, a large data set about university webpages. The knowledge
base (KB) contains deterministic knoweldge about the set of words present on the
pages and links between pages. We only consider the overall 20 most commonly
occuring words in all documents, not including stem words (e.g., the, of, a). The
query is a ground wordclass/3 atom. For each setting we randomly generate 20
KBs and average results. Timeout is 1 hour, and this value is used in case of
a timeout when computing average runtime. The lines in the graphs stop when
more than half the runs time out. We run MCMC and MC-SAT for 100, 000
samples. ProbLog MC is setup with a 95% confidence interval width of 0.01.

We first compare how run time varies with the number of pages in the domain.
We vary the number of pages from 20 to 200. For each page, with 20% probability,

1 http://www.cs.cmu.edu/∼webkb/

10 Bogdan Moldovan, Ingo Thon, Jesse Davis, and Luc de Raedt

we include its true class (e.g. course, staff, etc.) in the evidence. Figure 2a(left)
shows the results, where ProbLog MC is not included as it cannot solve any
task. ProbLog Exact cannot solve domains with more than 100 pages. MCMC
and MC-SAT can solve any WebKB graph size, MC-SAT being faster.

In a second task, we compare how run time varies with the amount of evi-
dence. We keep the number of pages constant at 100, but vary the probability
that page’s class is included in e from 10% to 50%. ProbLog MC cannot solve
this task either, ProbLog exact can only solve settings with a smaller amount
of evidence, while MCMC and MC-SAT can consistently solve any setting, as
shown in Figure 2a(right). MC-SAT is also faster on this setting.

(a) Runtime comparisons (b) Error comparisons

Fig. 2: WebKB: MCMC is continuous line, Exact dotted, MC-SAT dashed.

Since MC-SAT is faster than MCMC in producing the same number of sam-
ples, we investigate their accuracy next. We use the first task for the largest
subset of pages (100) where we can obtain Exact probabilities. We run both
methods for the same amount of time (i.e., MC-SAT produces more samples)
and compare the errors in the predicted probabilities, as shown in Figure 2b.
After the burn-in period, MCMC average error is about the same as MC-SAT,
but its average relative error with respect to the exact probability is smaller.

Goal 2: Comparison with other inference engines: the Bher implementation of
Church [6] and the Alchemy [12] implementation of Markov logic [19].

As a test domain, we use Hamming codes, a family of linear error-correcting
codes [7] containing data and parity bits. Instead of considering error correction
or detection, we predict the values of certain bits given other bits as evidence.
This is intended as an illustration of how algorithms cope with hard constraints
(PPLs are not necessarily the best way to infer missing bit values). Hard con-
straints are important in PPLs, yet many approaches struggle.

We vary the number of bits in randomly produced Hamming codes from 10
to 100, and the percentage of bits included in the evidence from 10% to 80%. The
query is one of the data bits. We run all sampling algorithms for 100, 000 samples.
Figure 3 shows a runtime comparison against the inference engines mentioned
above, also including ProbLog Exact and MC. White means the method is the
fastest, striped that it solves the problem but is not the fastest, and black means
timeout (1 hour) or invalid answer. For smaller domains MCMC run time versus
Exact is overestimated as we converge faster than 100, 000 samples.

Bher’s MCMC algorithm has difficulty with the hard constraints in this prob-
lem and cannot switch between the two non-zero probability states, returning a
probability of either 0 or 1. Solving this problem requires running inference mul-
tiple times and averaging results (100 times 1, 000 samples). For Alchemy with

MCMC Estimation of Conditional Probabilities in PPLs 11

the MC-SAT inference algorithm, the CNF conversion times out for any domain
with more than 9 bits. MCMC can solve more problems than any of the other
four approaches. In this task, we outperform them because we propose states
probabilistically which eventually allows full exploration of the state space.

(a) MCMC (b) Bher (c) Church (d) Exact (e) MC

Fig. 3: Runtime: White=fastest, Striped=solves problem, Black=timeout/error.

Goal 3: Poisson and Uniform Distributions We model a single server queue,
showing a practical problem using these distributions. We assume that (1) the
expected number of customer arrivals is 4 (i.e., Poisson distribution with λ = 4),
and (2) the number of customers served is uniformly distributed between 1 and
8. At time t0 the number of customers in the queue is 10. At t5 = t0 + 5, we
observe (i.e., e) 12 customers. We want to find the posterior distributions of the
number of customers in the queue at t2 and number of customers served at t3.

We ran our MCMC algorithm 20 times, each with 500, 000 samples. The
average runtime was 12 minutes. Figure 4 shows the prior and posterior distri-
butions for the two queries. The posterior puts more weight on a higher number
of customers in the queue at t2 and a smaller number of customers served at t3.

Fig. 4: Different Probability Distributions: at t2 (left), at t3 (right).

7 Conclusion

We presented an MCMC algorithm for estimating the conditional probability of a
query given evidence in ProbLog. Our proposal distribution proposes candidate
states by sampling solution trees from an AND/OR tree. Handling potential
overlap between partial worlds is solved by employing ideas from the Karp and
Luby algorithm. We provide support for Poisson and uniform distributions. We
outperform existing ProbLog inference techniques on the considered tasks.
Acknowledgements. Bogdan Moldovan is supported by the IWT (agentschap voor

Innovatie door Wetenschap en Technologie). This work is supported by the European

Community’s 7th Framework Programme, grant agreement First-MM-248258.

12 Bogdan Moldovan, Ingo Thon, Jesse Davis, and Luc de Raedt

References

1. C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC
for machine learning. Machine Learning, 50, 2003.

2. L. De Raedt, A. Kimmig, and H. Toivonen. Problog: A probabilistic Prolog and
its application in link discovery. In IJCAI, pages 2462–2467, 2007.

3. D. Fierens, G. Van den Broeck, I. Thon, B. Gutmann, and L. De Raedt. Inference
in probabilistic logic programs using weighted CNF’s. In UAI, 2011.

4. V. Gogate and R. Dechter. AND/OR importance sampling. In UAI, 2008.
5. V. Gogate and P. Domingos. Probabilistic theorem proving. CoRR, abs/1202.3724,

2012.
6. N. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenenbaum.

Church: a language for generative models. In UAI, pages 220–229, 2008.
7. R. W. Hamming. Error detecting and error correcting codes. Bell System Technical

J., 29:147, April 1950.
8. W. K. Hastings. Monte Carlo sampling methods using Markov chains and their

applications. Biometrika, 57:97–109, 1970.
9. R. M. Karp and M. Luby. Monte-carlo algorithms for enumeration and reliability

problems. In FOCS, pages 56–64. IEEE Computer Society, 1983.
10. A. Kimmig. A Probabilistic Prolog and its Applications. PhD thesis, Informatics

Section, Department of Computer Science, KU Leuven, Belgium, November 2010.
11. A. Kimmig, B. Demoen, L. De Raedt, V. Santos Costa, and R. Rocha. On the

implementation of the probabilistic logic programming language ProbLog. Theory
and Practice of Logic Programming, 11:235–262, 2011.

12. S. Kok, M. Sumner, M. Richardson, P. Singla, H. Poon, D. Lowd, J. Wang, A. Nath,
and P. Domingos. The alchemy system for statistical relational AI. Technical
report, Dept. of Computer Science and Engineering, U. of Washington, WA, 2010.

13. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.
Equations of state calculations by fast computing machine. Journal of Chemical
Physics, 21:1087–1091, 1953.

14. B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov. BLOG:
Probabilistic models with unknown objects. In IJCAI, pages 1352–1359, 2005.

15. J. D. Park. Using weighted MAX-SAT engines to solve MPE. In AAAI/IAAI,
pages 682–687, Menlo Parc, CA, USA, 2002. AAAI Press.

16. A. Pfeffer. IBAL : A probabilistic rational programming language. In IJCAI, 2001.
17. D. Poole. The independent choice logic for modelling multiple agents under un-

certainty. Artif. Intell, 94(1-2):7–56, 1997.
18. K. Kersting, L. De Raedt. Bayesian logic programs. CoRR, cs.AI/0111058, 2001.
19. M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1-

2):107–136, 2006.
20. T. Sato. A statistical learning method for logic programs with distribution seman-

tics. In In ICLP, pages 715–729. MIT Press, 1995.
21. T. Sato. A general MCMC method for bayesian inference in logic-based proba-

bilistic modeling. In IJCAI, pages 1472–1477. IJCAI/AAAI, 2011.
22. T. Sato and Y. Kameya. PRISM: A language for symbolic-statistical modeling. In

IJCAI, pages 1330–1339, 1997.
23. L. G. Valiant. The complexity of enumeration and reliability problems. SIAM

Journal on Computing, 8:410–421, 1979.
24. D. Wingate, A. Stuhlmüller, and N. D. Goodman. Lightweight implementations

of probabilistic programming languages via transformational compilation. Journal
of Machine Learning Research - Proceedings Track, 15:770–778, 2011.

