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Abstract

A wireless sensor network is envisaged that performs sigsiitihation by means of the distributed adaptive node-
specific signal estimation (DANSE) algorithm. This wiredesensor network has constraints such that only a subset
of the nodes are used for the estimation of a signal. Whilepdimal node selection strategy is NP-hard due to its
combinatorial nature, we propose a greedy procedure tmahdd or remove nodes in an iterative fashion until the
constraints are satisfied based on thaility. With the proposed definition of utility, a centralized algiom can
efficiently compute each nodes’s utility at hardly any addéilccomputational cost. Unfortunately, in a distributed
scenario this approach becomes intractable. However mgubie convergence and optimality properties of the
DANSE algorithm, it is shown that for node removal, each ncale dficiently compute a utility upper bound such
that the MMSE increase after removal will never exceed thisi@. In the case of node addition, each node can
determine a utility lower bound such that the MMSE decreafiealways exceed this value once added. The greedy
node selection procedure can then use these upper and lowsd$to facilitate distributed node selection.

Erratum: The original paper, as published in Signal Processing, vol. 94, no. 1, pp. 57-73, Jan. 2014 contains an
error in equations (52) and (56). These equations have been corrected in this version of the manuscript.

Keywords: Wireless sensor networks; distributed signal estimatiade selection

1. Introduction

A wireless sensor network (WSN) utilizes a collection ofsmmodes to observe a physical phenomenon where

collected sensor observations may be used to monitor ona&tia parameter or signal. There are many key benefits
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of using a WSN over a single sensor, e.g., to collect a widegeaf spatial and temporal information and to ensure
redundancy in case of sensor failure, which accounts fordpe proliferation of their use in many applications
[1,2,3,4].

Many sensor networks are posed with the task of estimatiregvaark-wide desired signal or parameter by means
of cooperative communication, i.e., every node contribtitea global estimation problem. This framework may be
modified to the case where each node tries to estimate its oderspecific desired signals while again using its local
signal observations and those provided by the other nodieeinetwork. In this case, each node could estimate the
source signals as they are observed by the node’s own logsbise This may be important if spatial information
needs to be retained in the estimates, such as noise regatgiarithms for cooperative hearing aids, which require
node-specific signal estimates to not loose the spatialfoueéectional hearing, i.e., the signals have to be edtiha
as they impinge at the two ears [5].

In a centralized WSN, the nodes relay their observationsrt@mim base station or fusion center (FC) where all
information is aggregated and processed in order to estimsaet of desired signals. This type of WSN is susceptible
to a single point failure, i.e., if the FC fails the networkrie longer able to process the collected information.
Furthermore, transmitting all the raw sensor signals toR@amay require a significant communication bandwidth.
Therefore instead of requiring that each node transmitshtervations to a FC it is beneficial to have a distributed
WSN framework where the computational load may be dividedragithe nodes in the network while still being able
to reach the same solution as in the centralized case. ydba distributed WSN should also be able to perform
the same functions of a centralized WSN, preferably with smmunication bandwidth compared to a centralized,
FC-based, approach.

Therefore, in this paper, the envisaged distributed WSNopeis signal estimation by means of the distributed
adaptive node-specific signal estimation (DANSE) algoni{b]. The DANSE algorithm performs a linear minimum
mean square error (MMSE) estimation of a set of node-speaisfiired signals at each node, based on the iterative
computation of a set of distributed spatial filters. It hasrbased for such applications as acoustic beamforming and
distributed noise reduction in hearing aids or wirelessuatio sensor networks [5]. A benefit of using the DANSE
algorithm is that it can reduce the overall communicatiomdveidth consumption of the system while still converging
to the full-bandwidth solution, i.e., when each node traitsmach of its uncompressed sensor signals to all other
nodes.

While previous implementations of the DANSE algorithm hagked on fully-connected networks [6] or tree
topologies [7], it has not explicitly taken network congtta into account. Due to the nodes being deployed over
large distances or in hostile environments as well as theitdd battery life, it is often desired to limit the numbédr o
active nodes at any given time. Indeed, if the WSN is densgyayed, many sensors record redundant data and may
be placed in an inactive or sleep mode in order to preservedtveork lifetime. Therefore, the number of total active

nodes in the systenk, should be reduced to a smaller sub$¢t, This is an inherent combinatorial optimization



problem with E combinations. As the number of nodksincreases, the computational time required to find the
optimal subset becomes infeasible.

There are several methods that have been proposed in ongerftsm node selection in a WSN [8]. Josti al.
have proposed a formulation that relies on a MAP estimatdneses a convex cone in order to measure the impact of
removing a sensor, which relies on knowing the underlyiatjstics of the system [9]. In [10] a distributed strategy
has been proposed that is compared to a centralized appooadh cast as a multi-armed bandit problem. Other
methods are able to evaluate performance bounds compateaiaptimal solution [11]. Thattet. al. have proposed
placing bounds on the MMSE under various network topolobigsely on a FC to perform the estimation [12]. The
proposed selection strategy in this paper allows each mdetermine its £ect on the MMSE in a computationally
efficient manner without relying on a FC.

In order to select nodes from a given set, we introduce theeamrofutility, which is assigned to a node as a
way to determine its importance to the signal estimatiolemm at hand [13, 14, 15]. It is defined as the increase or
decrease of the MMSE after removing or adding the respectide and re-optimizing the estimators. Since each node
is assumed to have multiple sensors, a new utility comprtatigorithm is developed whichfeiently computes the
utility of a set of sensors at once, which then correspontisaaitility of the node.

Due to the distributed computation of the proposed utilgyeell as the combinatorial nature of node selection
we devise a distributed algorithm that uses a greedy proegdwadd and remove nodes from the network as in [16].
For node removal, at each iteration, the greedy procedutesrpaper will remove the node with the lowest utility.
Likewise, for node addition, this greedy procedure will sitelnode with the highest utility. Similar greedy technigjue
have been applied to radar arrays [17, 18] where the chaniipe &IMSE is used for target detection. It should also
be noted that the utility proposed in our frameworkelis from other definitions such as [11, 19, 20] which rely on
the concept of submodularity.

Although the exact utility cannot be computed in the DANS&ework, it can be shown that we can compute
upper and lower bounds on the utility, i.e., the increaseemrehse of the MMSE when removing or adding nodes
respectively. By using the convergence and optimality progs of the DANSE algorithm we show that the nodes can
independently decide whether to stay active in the curretwaork based on their local utility estimation. The network
therefore does not need to rely on a FC in order to facilita@enselection. However since the DANSE algorithm
allows each node to estimate a node-specific signal, eadosetil also have a dierent utility for each individual
estimation problem. Therefore, the computed utilitiedd(dreir bounds) are referenced to a common network-wide
utility measure to circumvent this problem.

The organization of the paper is as follows : In Section 2 & dnodel of the signals is provided along with the
MMSE-based spatial filtering procedure that each node usesdier to estimate a node-specific desired signal. In
Section 3 the utility is described in a centralized scenaiib a greedy node selection procedure, and we also define a

network-wide utility measure that is common for all the nagbecific estimation problems. In Section 4 the DANSE



algorithm is reviewed along with its convergence propesrtién Section 5 the utility is described in a distributed
scenario where the DANSE algorithm is in place and it is shbew it can be used in the greedy node selection as an
upper and lower bound with respect to the increase or dezteadhe MMSE. Simulations are performed in Section
6 where the centralized and distributed scenarios are cadpAn adaptive scenario is also simulated that shows the

use of the utility and the greedy node selection proceduag@al-time environment.

2. Data Model

Consider a WSN witlK nodes. We assume that each ndde, {1...K}, observesvly complex® sensor signals
where the total number of signals in the network is giverivby- Z,'le M. The Mg sensor signals may be provided
by different sensors at no#te or from remote sensors that forward their observation®ttek. The received signal

of sensor (or channeth of nodek is given as
Yikm = Xkm+ Vikms M=1,..., My (1)

wherexym is a desired signal component (the signal modebfgrwill be defined later, see (4)¥m is an additive
noise component which may be correlated to the noise in gtresors or nodes. It is assumed that the desired signal
and noise components are stationary, ergodic and statigtiodependent. The goal of each node is to estimate one
or more node-specific versions of the desired sigraisas will be explained later.

The received signals at nollare stacked in aMy-dimensional vector as
Yie= i - Yim]" (2)
and the vectorgy andvy are defined similarly such that
Yk = Xk + Vk. 3)
The desired signal components of ndd&re assumed to be linear mixtures@§ource signals given as
X = AyS (4)

whereAg is an Mg x Q-dimensional complex-valued steering matrix e a Q-dimensional stochastic vector
variable containing th€) source signals. The objective of nokiés to estimate an unobservahlechannel node-
specific desired signak, defined by the desired signal componggtin J local reference sensors. Without loss of

generality (w.l.o.g.), we assume that the fifsthannels ofyx correspond to these reference sensors, i.e.,

X = [110]xx (5)

3We assume that all signals are complex valued in order tevdtioa frequency domain representation.
4In practice, e.g., for speech processing, this statignarid ergodicity assumption can be relaxed to short-tertiostity and ergodicity

provided that the finite signal segments behave in this dashi



wherel is aJ-dimensional identity matrix an@dis aJ x (Mx — J)-dimensional matrix with all entries equal to 0. The

node specifixk can also be represented in terms of its node specific steala'am@(ﬁk, as

Xk = [| |0]AkS

= AxS. (6)

It is noted that we do not aim to obtain the original sourcaaig ins, i.e., we do not aim to unmix the signals
in X or to equalize for the filtering due to the steering mafkix Instead, we want to estimate the desired signal
components as they are locally observed inttieference sensors at nokleThis is important if spatial information
must be retained in the signal estimates, which when needgdires a node-specific estimator. In the sequel, we
assume that the dimension of the node spegifiis equal to that of the dimension of the source signal spaee,

J = Q, where we assume thAy is invertibleVk e {1,...,K}and thatQ < M.

We first assume that each node has access thl algnals, where all/x, Xk, vk vectors are stacked into M-

dimensional vectorg, X, v respectively, and we refer to this case as the centraliz@daon. We consider a linear

MSE cost function based on the node-specific linear estiméatg given as
J(Wi) = E{lIXc— WHYIE) (7)

whereE({.} is the expected value operatftj3 is thel, norm squared, and is the complex conjugate operator. The

linear MMSE estimator that minimizes (7) is given by [21]
Wi = RJRyx, (8)

whereRy, = E{yy"} is the sensor signal correlation matrix aRgk, = E{yx['} is a cross-correlation matrix between
the sensor signals and the desired signal components aknéttboughx is unobservable, due to the independence
with the additive noise, there are several strategies t#irabe used to estimate the cross-correlation matrix depgndi
on the application [6, 22, 23]. In Section 6.1 a method toweate the correlation matrices will be discussed.

Using the optimal estimator (8) the minimum cost is given as

(W) = EflIx— WEYI2)

M-

]
[

H ~
PkXJ - ryXJij (9)
J

wherew; andryyh represent thé'j column of Wy and Ryx, respectively andPy,, = E{||xkj||§} represents the desired
signal power in the'} channel.
We define theQ x Q-dimensional MMSE cost matrix

jk = Rfkfk - RH7 Wk (10)

YXk

5In Section 4 this assumption is used to ensure the convesggrtbe DANSE algorithm to that of a centralized scenario.
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whereRg %, = E{)Tkir} is the desired signal correlation matrix. The minimum cast then be compactly represented

as the trace of (10), i.e.,
JWi) = Tridy). (11)

We now consider the desired signal components belongingdthar node, X, defined similarly as in (4). Since
we assume that the desired signal components of each notleesremixtures of the sam@ source signals is, it
can be shown that the MMSE cost matrices and MMSE estimagivegen nodes are related to one another by their

steering matrices. The MMSE cost matrices between kadel nodey are related as shown in Appendix A

Hy -1

k JaA gk (12)
whereAq = AHAR. This is a direct result ok andXq being related by their steering matriokg andAg, respec-

tively. Likewise the optimal estimators of nole@nd nodey are related to one another by a product of their steering

matrices,

= WoA (13)

3. Utility

Suppose that each node in the network has calculated itdvow1®Q optimal estimator (8) and, due to constraints
imposed on the system and the possibility of new nodes bewpaviailable, we would like to remove or add nodes
to the network while controlling theffect on the MMSE at each node. This problem is inherently caatbrial in
nature so we will therefore fall back on the use of greedyiséos. In order to determine thetect of removing or
adding a node, a utility measure is introduced that quastifeev much a node contributes to the current estimation.

The utility of a node is defined as thefldirence in the MMSE (9), when one node is added or removed tem t
estimation after re-optimizing the estimatdf. In [13] it is described how the utility of a sensor can be categ
with a relatively small computational complexity when caamgd to a naive approach which would be to remove one
sensor from the system and then to recalculate the minimsi@check its contribution and to do this for all sensors.

While in the centralized approach computational compjexiy not be a concern, in the distributed case nodes
often have a smaller processing capability. In this sectiexplain how the techniques in [13] can be generalized
to find an expression that computes the utility of a group ofses (e.g., th&/ sensors corresponding to nokle

instead of a single sensor. This expression will then lagarded for node selection in the distributed scenario.

3.1. Utility for node removal
The utility, Uy, of nodeqg's sensorsy,, with respect to nodg's estimation problem is defined as the increase in

MMSE whenyq is removed from nodg's estimation problem, i.e.,

U, = I, (Wie) = Jd(Wi) (14)
6



where the subscriptq indicates that nodg’s sensors are removed from the function aﬁmq is referred to as the
optimal fall-back estimator when nodgs removed. Note tha\;f\/;Lq is not equal toW with Mg rows removed but it
is equal to the re-optimized MMSE estimator that minimidgg in which the sensors of nodgare removed. Using

(112), the utility of nodeg with respect to nodk’s estimation problem is given by

Ui, = Tridi, — I

= TH{RIE Wi - RY = Wi ). (15)

y)?k yquk

In order to calculatef\/;Lq without having to take a full inverse as given in (8), we firattgion theM x M sensor

signal correlation matrixRyy, as follows

(16)
RY; A

where, for the sake of an easy exposition but w.l.0.g., itssuaned that the fird¥ly x My elements of the matrix

correspond to nodg's sensors (i.eq = 1). Notice that to remove another nodes’s sensors, thedadiould need to

be shifted accordingly which does ndfect generality of the utility computation described in thgusel.

The calculation of/A\/Kq, using the definition given in (8), requires the inverse df@portion of the sensor signal
correlation matrix, namelR;}qyiq, which is currently unknown. In order to calculate the irseewithout having to
first remove the corresponding rows and columns that petdaime nodey's sensors and calcula@;,}qyfq, we block
partition the current inversﬁ;)} as

R,y = sV 17)
vH C
whereS is an invertibleMy X Mg-dimensional matrixV is an Mg x (M — Mg)-dimensional matrix and€ is an
(M — Mg) x (M — Mg)-dimensional matrix. It is noted that this matrix invergec{uding all of its block components)
is already known from the computation of the current MMSHneator at nodé. Using the block form of the matrix

inversion lemma [24]R may be calculated using only the known values in the cuvR%Hlmatrix as

-1
Y-qY-q
-1 _ Heo-1
R,L, =C-Visly (18)

which is the Schur complement 8fin R;)}.

The current optimal estimatd¥y is also block partitioned as

(19)

WhereVA\h<q is anMq x Q-dimensional matrix that represents the estimator valppbeu to nodey's sensors antzf\/k%q
is an M — Mg) x Q-dimensional matrix that represents the estimator valppbe to the other sensors. In Appendix

B, it is shown that the optimal fall-back estimator is given a

Wi, = Wi, - VHSTW (20)
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which are all known values of the current estimate. Agaimshim Appendix B, using (20) the utility is given as

Ui, = TrW S™W ) (21)
= Tr{U} (22)

where
Ug, = kqslwkq (23)

which only relies on an inversiérof an Mq x My matrix S, and the current estimator values. In order to find the
impact of any other node to the current estimation of nkadéy ,,i € {1...J}, the estimator cd&cients and partial
inverse of (21) can be changed to the corresponding indices.

Instead of using (21), the utility could be found naively leynoving a nodes signals and calculating the new esti-
matorVA\/|Lq which relies on the inverse &, _,, , having a worst case scenaf@M — Mq)* computational complexity.
Figure 1 shows the computational complexity of findig, using this naive approach compared to using (21) where
all nodes are assumed to have 4 sensor signals. The dasheatlfive bottom indicates the computational complexity
of calculating the utility using (21) which is constant dogtie fact of only relying on the inverse of always the same,
in this case, %#4-dimensional matrix. The total computational compleigtgiven for diterent matrix inversion algo-
rithms [25] which have an increasingly large number of cltons for an increasing number of nodes.In [13] a less
generalized expression compared to (21) was derived whidk the utility of a single sensor at computational cost
of O(M). The utility computed using (21) could instead be foundrintarative fashion based on this single sensor
utility where in each iteration, a single sensor of ngde removed and this process is repeated until all of the senso
from nodeq are removed. The utility of nodgwith respect to nodk's estimation problem in this iterative approach

is then given as
Mq
Uk, = Z Uk g, (24)
m=1

wherem is the sensor index of nodedefined similarly as in (1). In the iterative approach, a ngtimal fall-back
estimator must be calculated after each sensor removahwias found to have a computationally complexity of
O((M — m)?) [13]. The overall computational complexity therefore wbbe Z O((M — m)?). However using (21)
the utility can be found with a single matrix inversion withmaximum computannaI complexity 0(M3) Since

oftenM >> Mg, using this iterative approach is usually more computatigrintensive than using (21).

3.2. Utility for node addition

For node addition, the utility of nodg with respect to nod&’s estimation is defined as the decrease in MMSE

when all sensors of nodgare added to nodes estimation problem. We assume that the current estinvgtbout

81t should be noted that when a single channel is consideraericoval then this becomes a scalar inversion, and (21pesco the formulation

presented in [13].



nodeq, \kaq, is known which also implies that the current sensor sigoaletation matrixRy .y ., and its inverse,

R;_lqy_q, are known. The cross-correlation matrix between the sesigoals and the desired signal componeRi{g,,

is partitioned as

R —
Yok (25)

Y_gXk
whereRy. 5 = E{ygX{} is not included in the estimation problem aRg 5 = E{y_gX}'} represents the current
cross-correlation matrix.

The utility is defined identically as in the case of node reatowhich is repeated here for convenience, as

Ui, = Jie(Wic,) = Id(W)

= Tr{R"

YXk

Wi - RY Wy} (26)

Y-aXk

which relies on the new estimator with the addition of n(upléf\/k. Unlike the node removal case, the statistics
to estimate the contribution of nodgare unknown at nodk because no information is sent when the node is not
connected to the network. To circumvent this limitation wesuppose that nodg periodically sends part of its
observations to nodefrom which the required statistics can be measured, buéthesnot included in the estimation
at nodek hence only anNl — Mg) x (M — Mg)-dimensional inverse is taken. Notice that this makes #eutation of
the utility when a node is added to the estimation substhntigfferent than for the node removal case.

With the above mentioned strategy of periodically sendindeq’s statistics to nodé&, the sensor signal correla-
tion matrix is partitioned the same as given in (16) howevermwuld like to find a computationallyfiécient manner
in calculating the utility without having to take the fulMarse ofRyy to computeW.

For the sake of an easy exposition we define two intermedatables

_p-1

I'= RY—qy—q Ry-qu (27)
_ H

% = Ryy, -RY T (28)

that incorporate the statistics of the current connectelaand those of nodg In Appendix C it is shown that the
utility, when nodeq is added to nod&’s estimation using these two intermediate variables aleitiy the previously

defined notation, is given as

Uk_q = Tr{(RYqik - FH RY—q;k)Hzil(RYqik - FH Ry-qfk)} (29)

where
qu 2 (qufk - FH Ryquk)HZ_l(quik - FH Ryfq)?k) (30)

which is again a generalization of the work presented in.[1S]nce R;_lqy_q is already known from the current

estimation, the computational complexity of findifigs O((M — Mq)?Mg) andX relies on the inverse of aq x Mq

9



matrix. Therefore the overall computationally complexitlfinding the utility will be O((M — Mg)®Mq + Mg).
If we again compare this to a naive approach of calculatiegutity, i.e., including nodey’s signals in the current
estimation and taking a worst case scen@(ib!®) to find the change in the MMSE, we see that (28¢1s a substantial

decrease in computational complexity for lafge

3.3. Definition of a common network-wide utility measure

The utility calculated with (21) and (29) gives thefdrence in the MMSE when a node is removed from or added
to the network. However the utilities calculated at an indlinal node are biased to that nodes desired signals, iee., th
utility calculated for nodé(’s signals at nod&, Uy ,, may difer significantly for another nodély . This conflictin
the utilities stems from the fact that each node estimatesin node-specific desired signals. This makedfiitodilt
to quantify the network-wide utility of a node’s sensor sitg) i.e., a single utility measure that incorporates every
node’s estimation problem.

One approach could be to use the sginJy ,, to define the network-wide impact of nods signals. First of all,
this would require the computation & ui'zility values to evaluate the network-wide utility of eacbde. Secondly,
and more importantly, this measure is heavily biased togvastimation problems at nodes with a large signal power,
as the MMSE directly depends on the signal power of the désignal. The utility values corresponding to these
estimation problems will dominate the summation.

We therefore propose scaling the utilities by means of (d2yhich the utilities are now in terms of a virtual
nodes. This modifies the utilities of the nodes as if they were eating the dry source signals whiclffectively
removes the bias toward a single nodes desired signaldingsiunl a common utility-reference. The intuition behind
this approach is that a reliable estimate of the dry sougnead{is) also allows each node to compute a reliable estimate
of their locally observed source signal(s), i.e., if a ned@nsor signals have a large utility with respect to this dry
source estimation problem, they will be important for eveogle-specific estimation problem too. This is because
each node actually estimates node-specific scaled versiding dry source signals.

For ease of exposition we assume that each node will scalgilities as if it were estimating the unobservable
dry source signals is. Note that the estimation &fis not possible in practice, as the cross-correlation matr(8)
cannot be computed from the local sensor signals at kéaiethe case wheng = s. However, the remarkable aspect
of this is that information about the dry source signals isneeded to calculate a node’s utility with respect to it. We
define the desired dry source signals in terms @fa Q-dimensional identity matrids = | oxq for a virtual nodes

so that

=S (31)

10



The MMSE cost at this virtual node is given as

Js(Ws) = E{lIXs — WH11%)

= Tr{Rxx, — Ry Ws} (32)

WhereR;')?s = E{yx!}. For the sake of an easy exposition, but w.l.0.g, we assuatdrta dry source signals have also
been power normalized to unity which, relying on the assionpghat the signals are statistically independent, gives
Ryx. = Efsg'} = 1.
The utility is defined similarly to (14) where the utility obdek’s signals with respect to nodgs estimation
problem is given by
Us, = Js, (Ws,) — Js(W). (33)

Using the relationship between steering matrices and theSENost matrices, as given in (12), we have

Us, = Tr{ds,} - Tr{Jg)
= TT{A_\E? (jkk - jk)A_\ESl}
= Tr{(jkk - jk)A_\ESlA_\E?} (34)

whereAys = I Al Using this and the fact thiitgz, = AkAL, it is then shown that

Us, = Tr{Ui Rz% } (35)

which can then be applied to both (23), and (30). Note gt is a submatrix oRyx, in (8) if the desired signal and
the noise are uncorrelated (see also Section 6.1).

This definition of a common network-wide utility measureoals each node to track the network-wide utility of
its own sensor signals. Furthermore, it provides a commfamarce such that the utilities computed at thi@edent

nodes can be easily compared with each other, or with a contimeshold (see also Section 3.4).

3.4. Greedy centralized node selection

To allow maintaining a minimal network-wide estimation fsemance, we only remove a node if this removal
does not result in a network-wide MMSE increasé more thaty, wheren is a user-defined threshold, which can
be adapted depending on the current MMSE. Similarly, we adly a node if this addition can guarantee a minimal
increase in the network-wide MMSE, i.e., larger thant is noted that, since we now use a common network-wide
utility measure, each node can use the same valug. férs an example in terms of a constraint, if the number of
nodes in the network were to be limited so that 50% were rechdhésn could be adjusted until this constraint was

met.

"This is the MMSE with respect to the (virtual) estimation lné dry source signals.
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To facilitate a distributed node selection algorithm, wandalso like each node to independently decide whether
it should add itself or remove itself from the network whielguires that each node calculates the network-wide utility
of its own signals. To this end, in the case of hode additiosteiad of nodé& broadcasting its signal periodically to
the other nodes to measure its utility, we can assume thaes dot transmit its signal in order to conserve energy
but that it can still receive th®l — My broadcast signals from the other connected nodes in theorletin this case
nodek uses its owryy sensor signals as well as tMe— My signals from the other nodes to compute its utiliy,, ,
for node addition by means of (21) instead of (29) since ibig & calculate the full optimal estimatav.

In the node removal case, the selection process picks the witld the lowest utility below; and removes this
from the network. In the case there are multiple nodes fochvttie utility value is smaller tham a greedy choice is
made, i.e., the node with the smallest utility is removede fibtwork continues this selection process until there are
no more nodes whose utility fall below Likewise if a node is not connected to the network and itityits greater
than the threshold value, it is added to the network wheriaggreedy choice is made in case multiple nodes exceed
the threshold.

Since the selection process is greedy we do not make any<kamoptimality but argue that because of the
prohibitive computational complexity of an exhaustiversbathe utility based approacltfers a safe bound on the
impact on the network-wide performance (in terms of the MMS8HEhe dry source signal estimation) while being

computationally fiicient. The greedy centralized node selection is summaitz€able 1.

Remark 1. Notice also that once a node is removed or added from or to #tevark the inverse sensor signal
correlation matrix (17) must be recalculated whigfeets the utilities of the nodes, therefore we cannot prédtatre

utility values.

4. Distributed Adaptive Node-Specific Signal Estimation (BNSE)

In Sections 2 and 3 it was assumed that each node has accéshltsignals ofy to compute the optimad, for
estimating its node-specific desired signal componenthduistributed scenario, the goal of each node is to egtimat
its desired signal components as good as in the centralizehgo without each node having to broadcast all d¥fiits
signals to the other nodes. This can be accomplished by treéndjstributed adaptive node-specific signal estimation
(DANSE) algorithm. In this section we provide a brief oudliof the DANSE algorithm and the reader is referred to
[6] for a more detailed discussion as well as convergenoefpro

In DANSE, nodek broadcasts a compressed version of its sensor sig;naié:k'*yk to the other nodes whefg
is anM x Q compression matrix which will be defined later (see (37))sTompresses the data transmitted from the
individual nodes by a factor 0% Note that the number of channelszpare chosen to equé), i.e., the dimension
of Xx which is required for DANSE to converge to the optimal estiong [6]. The DANSE algorithm updates the
compression matrixCy of each node in an iterative round-robin fashion. We intasdthe index to indicate the
current iteration of the algorithm.
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The estimator matriWik is partitioned to
Wi = [Wi . W ]T (36)

WhereW{(k is the partial estimator that nodeapplies to its own sensor signalg. This WLk is then used as the

compression matriy to generate theaik signal, i.e.,
Z = WYk 37)

Note thatw|, is used as a partial estimator as well as a compression matrix
In the DANSE algorithm nodk has access to its own sensor signgisand theQ(K — 1) broadcast signals, from
other nodes given as
2, =12..4",..4 ... (38)
where the-k subscript indicates that the broadcast sigz[@lof nodek itself is not included.
Instead of decompressing eagf(as received from nodg) in (38), nodek applies & x Q transformation matrix

Gyq to each received signal, i.e., itectively applies an estimation matrix in the form
Wi = [(Wi,Gly)" ... (Wi Gl " (39)

where theGLq’s are stacked together in a matrix of the foBp = [G]] ... G\ ]". Note that since nodehas access
to its uncompressed sensor signalét does not need to apply a transformation matrix as it doésdaoeceived_

signals. SinceSLk is then not explicitly defined for nodeit can be set to an identity matrix so that (39) is
Wi = [(WLGL)T ... (Widoxo)' ... (W GL)™TT. (40)

The DANSE algorithm now performs an MMSE estimation at eamtherin a round robin fashion given as

H
Wi+l w 2
-k = arg mirE{ Xk — |- - K. i } (41)
G'_+k1 Wi, G G_k 2
where
i Yk
V=1 = - (42)
Z_k
andG"! is G| withoutG};!. The solution of (41) is given as
iy
— i -1pi
I (le’kf’k le’kfk (43)
Gh
where
Rjg. = EGIY) Ry = EGI). (44)
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The MMSE estimate at nodeis then given as the filtered combination of the nodes ownasesignals together

with the received signals from other nodes,

K
y(k = Wkayk + Z GHZI- (45)
1=1,1#k

We define a block lengtB that represents the number of observations collected leetiveo increments of the
DANSE algorithm. The DANSE algorithm is summarized in Tabland Figure 2 gives a depiction of the DANSE

algorithm in a network with three nodds,= 3, and two broadcast signals per node compozir{@® = 2).
If Ry,g, is full rank, andAy is a full-rankQ x Q, Vk € K, matrix then the DANSE algorithm converges for any

initialization of its parameters to the centralized salntgiven in (8) [6]. After convergence,= o, the estimator

codficients between nodeand nodej are related by

W = W (G ™ (46)
with
o= ALAY

Remark 2. Due to the iterative nature of the DANSE algorithm it may appthat the same sensor signals are
broadcast multiple times. However, the iterations are agreut over time which means thaffdrent compressed
versions of observations are broadcast at successivetibas in the algorithm. Therefore the nodes do not need
to recompress and re-broadcast the same observations atiteqmrocessing in the flerent iterations is performed
on djferent blocks of data. In Table 2 each iteration of DANSE usgsrdnt observations (the sample index is

incremented based on the DANSE iteration index i).

5. Distributed Computation of Utility Bounds

In the distributed scenario, nodes only have access to ¢hairsensor signals and linearly compressed sensor
signals from the other nodes, e.g., nddmly has access to its owiy sensor signalgy, and theQ(K — 1) broadcast
signals from the other nodesy. Using these signals we would like each node to compute itsugility locally, Us , ,
to determine if it should add itself to or remove itself fronetnetwork. For node addition, we assume that while a
node is not transmitting it can still receive the othgy broadcast signals. For the sake of easy exposition, we &sum
that nodek computes the utilityJy , with respect to its own estimation problem, rather thln with respect to the
dry source signals (see Section 3.3). However, everythirigi$ section can easily be extended to also compyte
by using the appropriate transformation given in (35).

The utility for node deletion given in (21) relies on the dahility of S, a sub-matrix oiR;)}, which is never
available in the distributed case. Therefore, (21) caneaided, and we need the original definition of the utility in
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(14). This relies on the ability for a node to calculate itsimal fall-back estimator, e.gk's fall-back estimator when
removing itself from the network ikf\lkk. However, in the distributed scenario, the optimal estimé found by
iteratively passing information from one node to the nestiltime system reconverges. When ndds removed from
the network this not only changes the partial estim&¥qg but alsoG_g which both rely on the statistics of the other
nodes. Therefore if nodewere removed from the network, the fall-back estimator atalo VN\/;Lk is initially sub-
optimal and only becomes optimal once all of the nodes in #teaork have converged again. To avoid the explicit
computation of the< different fall-back estimators for each possible node remewallefineU, , that is based on
(22) WhereR;)} is now replaced WithF@ig,kyk)*l. In the case of node removal tHik, will be shown to be an upper
bound on the increase in the MMSE, i.e., the actual utilify,.

Likewise for node addition we will show that with a similargaiment removed nodes are able to calculate
which produces a utility lower bound on the actual utility,, i.e., if the node adds itself to the existing network the
actual decrease in MMSE after addition will be greater tinat ¢jiven by the utility. Therefore even though the exact
utility cannot be computed, bounds for the change in the MM8iE be found for node removal and addition which

will facilitate node selection.

5.1. Node removal : utility upper bound

Assuming the DANSE algorithm has conver§eek define the following quantity for nodewith respect to its

node-specific estimation problem

U, = J(Wi'y) - I (48)
WhereW;:l is
wiiel:
W=l (49)
WG

andW::k1 is equal to (49) withw};1Gi+! removed.

It is noted that (48) does not represent the true utility odleb since, in principle, once the node is removed
the other nodes must update their local estimator parametgil the DANSE algorithm has reconverged to the re-
optimized fall-back estimator, i.e\/_\/i‘ik = VN\/"IQk = \/AVKk WhereVN\/ﬁk is equivalent to (39) after convergence without
nodek’s signals and/A\/Kk represents the optimal estimator without nétesignals.

Due to the convergence of DANSE, the cost function then deseuntil

I (W) = I, (W), (50)

8For simulations presented in Section 6 convergence is egaafter each node updates its local parameters 5 time&yil¢. DANSE iterations.
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SinceW,, minimizesJ ,, theULk using the sub-optimal estimaﬂ:zkl is an upper bound of the increase in MMSE,

i.e.,

N ~ i+l A
I (Wi ) = (Wi < 3, (W) = J(Wi)

Uy, <U,. (51)

The utility upper boundij, can be €iciently computed by means of (21) basedFt‘y;\jk

Ty, = THWHE P Wi (52)

WherePL is the upper left submatrix oéR;?kyk)*l pertaining to nod&’s signals only. A corresponding upper bound for
the network-wide utilityU's , corresponding to the dry source signals can also be compirtédrly to (35).

With this, nodek can decide to remove itself from the network knowing the mmaxh impact it will have in terms
of increase in MMSE. It should also be noted tWﬁLHkl is not explicitly computed when calculating the utility wgp

bound, and only exists once the node has been removed fronetiverk.

5.2. Node addition : utility lower bound

As in the centralized scenario, the addition of a node istamibiglly different from node removal due to the fact
that nodek does not broadcagi when not included in the network. In the distributed scemaen a node is not
connected to the network we assume that it is still able teivecsignals, possibly awaking periodically to judge its
currentimportance to the network estimation.

In the sequel, we assume that nddsill performs an estimation of its own desired signals ggirx and its own
Yk signals. In this case, we show that the node is able to deteranittility lower bound with the same formula that is
used for node removal (52) without having to broadcastitsignal.

Assuming the DANSE algorithm has converged with nke®t broadcasting its signals, we define the following

utility for nodek with respect to nodk's estimation problem,

—i+1

Ty, = I Wic,) - kW, (53)

where agaiiW,, represents the optimal estimator without néiesignals and/_v:(+l is given in (49). Notice that the
cost function with nodé&’s signals removed]hk(\kak), is currently minimized as all of the nodes in the networkeha
performed their estimation without no#is signals using the DANSE algorithm.

Assuming that nod& would include itself in the network, then due to the converggeof the DANSE algorithm,
the cost decreases to

I(Wi) = (W) (54)
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where again the estimators have converged to their optiataés. TheU'iLk using the sub-optimal estimator therefore

is a lower bound for the MMSE decrease when a node is addeé toetfivork, i.e.,

—i+1

I (Wi,) = Z(W,) > I (Wi,) — (W, )

Uy, >0y, (55)

Therefore if nodd was to add itself to the network, i.e., begin broadcastimgjtits MMSE will decrease by at least

the utility

Uy, = THWige (P Wi | (56)

It should be noted that since noleises itsyy in its current estimation it does not need to rely on (29) tocdate
its utility. Therefore by using (56), which is computatitiganore dficient, we limit the computational power and
memory requirement of the node, but bearing in mind that gheutation of the utility from either equation would be

equivalent.

5.3. Greedy distributed node selection

In the distributed scenario the same method for adding amdving nodes can be used as in the centralized case
(Table 1). However instead of calculating the exact ugiifionly upper and lower bounds can be computed. The
greedy selection procedure in Section 3.4 is therefore fiedldio take the utility bounds into consideration. During
estimation nodes will calculate their utility bounds based52) and (56) and scale them to the common dry source
reference using (35). A distributed version of the nodeciile algorithm is given in Table 3. Since the nodes
compute upper and lower bounds, we know that it is safe to veroo add nodes, i.e., without risking an MMSE

increase or decrease that is larger than

6. Simulations

6.1. Estimation of signal statistics

For the computation of the utility bounds and the DANSE updétwas implicitly assumed that the second-order
signal statistics are known throughout the estimation @idace. However in real-time applications there is normally
a finite observation window where estimation of the signtsistics is done by time averaging with the collected
observations and exploiting the assumed behavior of thralEguch as short-term stationarity and ergodicity.

Let yi[t], (42), denote the observationsigfcollected at time at nodek. Estimating the so-called “signahoise”
correlation matrixRy,s,, is typically done by time averaging the collected obseovestwith a forgetting factor G
1< 1[5, 26],ie.,

Rygilt] = ARy [t - 11+ (1= DRLHL. (57)
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Estimating the desired signal correlation matR,x,, is not as straightforward because the desired signal com-
ponents are collected with the addition of noise. If the @essignals are assumed to have dhbehavior® meaning
that there are periods when only noise is present and pesibes there is desired signal as well as noise, the “noise”
and “signal-noise” statistics may be gathered separately.

During periods when the desired signals plus noise are prégg;, is computed by means of (57). Likewise

during noise-only periods the received signals are plat@da “noise-only” correlation matrix given by
Roa[t] = AR [t — 1] + (1 — )U[t] %[t (58)

wherevy is defined in (3) andy refers to the corresponding noise componefjiras defined in (42).

Usually the desired signals and noise are assumed to bertelated and statistically independent, therefore a
desired signal correlation matrix may be estimated by aghitrg the “signatnoise” by the “noise-only” correlation
matrix, i.e.,

R;(k)?k = Rykyk - R\”]k\"}k. (59)
Subsequentially the cross correlation matRy,x,, can be given as
Ry = EFiod) (60)
which, using the assumption that the desired signals arsr@oe un-correlated, may be given as

Ryx = Raus E (61)

whereE is anMg + Q(K — 1) x Q-dimensional matrix that has@ x Q-dimensional identity matrix corresponding to

the desired signal components and 0 otherwise, i.e.,

e | (62)
0

Note that this is just one possible strategy to estingig . Other strategies may involve using training sequences, or

only considering quasi-static scenarios [6].

6.2. Batch mode

In this section we demonstrate the greedy utility based setition process in batch mode which means that all
iterations of DANSE were performed on data obtained fronetht@e length of the signals. In Section 6.3 an adaptive
implementation with moving sources is presented whergégaasof processing the entire length of the signal, shorter
blocks are processed which change the utilities througth@gimulation.

Although batch mode is not a practical implementation, alibatode simulation gives a reasonable view on the

performance limits of the algorithm. The greedy node s&lagirocess used a utility bound based on (52), (56) and

9This type of behavior is typical for speech enhancementiegifins where there is assumed to be pauses in the speeeh sig
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(35). The dimension of the desired signal spade; Q), was varied depending on the simulation, where each dksire
source consisted of 10000 samples generated from a unifatisttibuted random process on the interval [-0.5 0.5].
The codficients ofAx were generated by a uniform process on the unit intervalnglsispatially located white noise
source was added where the signal was generated with arspnileess as the dry source signal and scaled with a
random number in (0,1] for each node. Uncorrelated whitseyaiepresentative of sensor noise, that was half the
average power of the desired signals, was added to eachrsenso

As each node in the network estimates iedent signal, we will visualize the network-wide perforrnarmmt one
particular 'visualization node’. We assuffiehatAy = | in (6) at this node, i.e., the node estimates the dry source
signals. This allows us to compare the MMSE incr¢gdserease compared to the network-wide utility bounds which
are also referenced to the dry source signal estimationigrofsee Section 3.3). We also constrain the algorithm
such that this visualization node is never removed from gtevork.

In the distributed scenario, the DANSE paramet®&/g, andG_y Yk € {1...K}, were updated in a round-robin
fashion for 5x K iterations, i.e., 5 updates per node, which was deeméitismt for network convergence, i.e.,
the diference in cost between iterations was below machine poecigifter DANSE had reached a steady state the
utility bounds pertaining to the dry source sigridl ,, were calculated. The bounds for the MSE thresholdere
predefined before the start of the simulations and only ok i a time was allowed to be removed or added to the
network, where the DANSE parameters were allowed to reageMaefore the selection process resumed.

The centralized and distributed selection proceduressimiorval were compared as shown in Figure 3. There are
K = 20 nodes in the system each with 5 sensts= 100), andQ = 3. The figure on the left is the centralized
selection process, where the full mathS} can be used in (21). The dashed-lines indicate how much thgadirce
MSE increases after the removal of a node, 0g\Ws) + Us, .

The figure on the right is the DANSE algorithm that performs s$ame removal process where (52) is used and
scaled by (35). The dotted lines indicate the maximum ireg@anode will have on the dry source MSE after removal,
i.e., Js(Ws) + Ui&k. Each increment on the horizontal axis in the distributezhacio corresponds to a full iteration
cycle of DANSE, i.e., every node has updated its node-spqmdfiameterswWx andG_y) once. It was observed in
[6] that convergence of the node-specific parameters o@ftes each node has updated them 5 times. Therefore
each DANSE cycle in Figure 3 corresponds to each node in tiveonle updating their node-specific parameters once
(i = 20 DANSE iterations) with a node being removed after eaclerttab updated its node-specific parameters 5
times { = 20x 5 DANSE iterations).

During the node selection process the utility upper bourdi@ntralized utility were added to the current dry
source MMSE in order to observe the increase in MMSE afteerrethoval. This is indicated by the dotted and
dashed lines. Notice the large decrease in MSE in the firsitesations of the DANSE algorithm compared to the

subsequent reconvergence iteration when a node is remmradte network. This is due to the random initialization

10Node that this only for illustrative purposes sinkg= | usually does not occur in practice.
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of the parameters at the beginning of the DANSE algorithmcedhe DANSE algorithm has converged and a node is
removed, the sub-optimal estimators lie close to the newngbestimators as shown in the relatively small decrease
in MSE after the first set of iterations.

Figure 4 shows a magnified view of the selection process ket RANSE iterations 15-21 of Figure 3. The utility
upper bound lies above the utility that would have been fatitice optimal estimator would have been used. Again
we see a relatively small decrease in MSE when compared trigieal initialization of the DANSE algorithm.

The next simulation containel = 5 nodes in the system each with 20 sensor sigridis=(100) andQ = 3,

i.e., the network loses many more sensor signals per nodevedithan in the previously simulated network. This
normally has a larger impact on the utility bound, as thelfaltk estimators must reconverge from a largéedénce.
Figure 5 shows the increase in MSE with the utility bound dgithe selection process. Notice that the utility bounds
are less tight than in the previous netwokk € 20, M = 100). This is because there are many more degrees of
freedom in the DANSE-parameters at the other nodes. As ility bbund does not take the future DANSE updates
of these parameters at other nodes into account, there igexr lgap between the centralized utility and the utility
upper bound computed in the distributed case.

Due to the node removal case calculating a utility upper botirere are times when the node selection fails to
remove nodes that would have been removed had the optirtigl bien used for node selection. Using the previous
simulated network the value gfwas adjusted so that this type of failure in the node selegtiocess does occur. In
Figure 6, the value af and both the centralized utility and utility bounds were editb the current MSE to observe
the impact of node removal. In this scenario, the centrdligdity is belown, however the utility bound falls above
n and so the node is not considered for removal. While this doebhave a negativefect on the estimation, i.e., the
MSE stays at a lower value, it prolongs the usage of a nodevbaitl have otherwise had its transmission capabilities
turned-df possibly shortening the lifetime of the network.

For node addition a network was constructed vtk 20 nodes each with 5 sensor signas £ 100) andQ = 3.

At the beginning of the selection process a single node lmastdtsz, signal and other nodes used this signal along
with their local signals to determine their utility. Theliti threshold,;, was set tao so that all of the available nodes
would eventually add themselves to the network. In the edinad case, the utility was found using (35) and was then
subtracted from the current MSE to find the new MSE after naidiitian, i.e.,J&k(VAvs) - Us, and is represented by
the dashed line. In the distributed case, represented gotited lines the utility was calculated by means of (52) and
subtracted from the current MSE, i.é&k(WS) - Ui&k. It should be noted that since the utility was subtractedhfro
the current MMSE, the true MSE after addition will be loweaththat calculated MSE which uses the sub-optimal
estimator as shown in (55). In Figure 7 the utility bound isvgh to provide at least a minimal decrease in the system,

i.e., after convergence in the distributed scenario the 43&wver than that given by the utility bound.
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6.3. Adaptive implementation

For the adaptive implementation a simulated environmespjated in Figure 8, is considered where there are
two moving desired source signal® & 2). The desired source signals)( which are generated from a uniformly
distributed random process on the interval [-0.5 0.5]gfwlpaths indicated by the L-shaped dashed lines. The desired
source signals move at a speed of 0/3 and stop for 3 seconds at each corner. After the desiredessignals reach
the end of the path they follow the same route to their stgntiaint. This movement repeats until the end of the
simulation. Five white Gaussian noise sour¢esvhich are generated from the same process as the desirax sou
signals, are present and an uncorrelated white Gaussiae thait is 5% of the average power of the noise sources is
added to each sensor observation. Therekate30 nodes each with 5 sensor$ §o that the total number of sensor
observations arél = 150.

The individual sensor measurements originating from trerdé signal and noise sources are attenuated and
summed at each sensor. The attenuation factor is givémdmerer denotes the distance from the signal source to the
sensor. We assume that the desired source signals and tatistics are estimated at each node based on (57)-(58)
where the correlation matrices are updated with a forggttiotor of4 = 0.97 and the sensors observe their signals
at a sampling frequency df = 8kHz.

The desired source signals are stationary for the first 5h&ksoof the simulation in order to populate the necessary
signal statistics and all nodes are considered active glthiia time. After this initialization the node selectioropess
is started in order to remove and add nodes depending onttiltly bounds when compared to the predefined
threshold;. After the addition or removal of a node from the system aB#NSE cycle occurs, i.e., all nodes update
once, before the selection algorithm begins again. Thistigedn order to allow the DANSE algorithm to reconverge
after the addition or removal process.

Figure 9 compares the MSE when no nodes are removed to thaltzed and distributed node selection process,
as well as the power of the system. The vertical blue-dashesd indicate that a node was removed from the system
and the vertical red-dashed lines indicate that a node wadesktd the system. The selection of nodes in the centralized
and distributed scenario do not follow the same order dusgtaise of an upper and lower bound and due to the limited
tracking capabilities of DANSE, which may generate errarthee utility bounds.

However the utility bound is able to limit theffect on the MSE similarly to that in the centralized scenario.
There are even times that the MSE and number of active nodéee idistributed scenario are better than that of the
centralized scenario which is possible due to the fact trestdy node selection is often suboptimal. The total number
of active nodes at any one time during the centralized swiutiith no node removal as well as the centralized and
distributed selection process is given in the bottom pldtigfire 9.

The scenario is shown in Figure 10 during various times (@s, 25s, 90s) of the node selection process. The
active nodes are shown in blue and the nodes that are onlyiregsignals from the other nodes and not transmitting
their z, signals are shown in red. At 0 seconds no nodes are remowvedtffr® network which also indicates that
the system is using the maximal amount of power. After 22 sésahere has already been a large reduction in the
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amount of active nodes in the network. It should be notedtttiatis dependent omand could be adjusted to fit the

desired scenario.

7. Conclusions

In this paper we have introduced the utility as a means tditistei node selection in a distributed wireless sensor
network that performs node-specific signal estimationsTas accomplished by using the convergence and optimal-
ity properties of the DANSE algorithm in unison with an MSEeashold and a greedy selection process. While the
distributed utility bounds were shown to be sub-optimaythere successfully used to limit the MMSE increase or
decrease during node selection. The centralized andadittd node selection were compared to one another and it
was shown that the utility boundgters an €icient way to perform node selection while still allowing tontrol the
MSE performance. Simulation results using the distributede selection process often have a similar performance
to the centralized node selection process and show tha #nersignificant power savings in the network while only

slightly effecting the MSE.
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Appendix A.
The cost function of nodg evaluated with the node-specific linear MMSE estimafvbdg, is given as
Jo(We) = E{IXg — WHYI3). (A.1)
Using this optimal estimator, the MMSE cost matrix for nags given as
Jg = Ry, — Rik, W (A.2)

whereRy x, = E{)Tqig} is now the nodg's desired signal correlation matrix.

The optimal estimators are related to one another by (13ghwhhen used in (A.2) produces
Jq =Ry, — Rix WiAg. (A.3)

By expanding the desired components of nqdeto its complex-valued steering matrix and source sigeator
(A.3) is then given as

Now the product OA—E]F‘A]QA_&I} is given as

= AAGAGE(sSTATATHAL — AVAGTAGE sy Wi

AE{s$ A — AcE{sy" W,

Il
(&)

k (A.5)

(A.6)

which shows the equivalence stated in (12).

Appendix B.

For ease of exposition we re-iterate the block partitiorafithe inverse “signainoise” correlation matrix as

R.L s v (B.1)
S Valle '
and of the cross-correlation matifikz, as
R —
Ry =| ™ (B.2)
i Ryfq)?k
whereRy5 = E{ygxl'} andRy 5 = E{y_gX}'}. The estimator without nodgs signals is given as
Wi, = RyY, Ry & (B.3)
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Now using the previously defined inverse correlation mgtt8)

= (C-V"STV)Ry %,

= CRy_x - V"'SVRy . (B.4)
The current estimator values are given as
- W S V|| Ryx
Wi=|_ = yak (B.5)
Wi | V" C]| Ryx

Now using (B.5) and re-arranging the expression\fil)@_q we have

Wi, = V*Ry5 + CRy 5,

CRy_x = Wi, = VFRy . (B.6)
Using (B.6) into (B.4) produces
Wi, = Wi, . - VP (Ry5 — SVRy_x)- (B.7)

Now using the fact the®*W,, = Ry% + SVR, . (B.7) may by represented as (20), i.e.,

Wi, = Wi = VHSTW,. (B.8)
Now using the optimal fall-back estimator (20) we are ableatzulate the utility given in (21). Using (B.8) and the

definition of the utility (15) gives

Uc, = THRILW - R} ququ}
= THRE Wi — R z Wi, + Rl 2 VHS™Wy ). (B.9)
Block partitioning the first element in the trace of (B.9) @sv
Wi
Rnyka=[ Ry | Ry.ox ] - (B.10)
ka_q

which expands the utility to

Ui, = Tr{ yquwkq +Ry! quWky . -Ry! quWky .t Rquka Slwkq}
= Tr{RquXkaq +RY ka“ YWy, ). (B.11)

Now using (B.5) we have
Wy, = SR% + VRy 5.

RH_ —wH

1
YaXk Kg ST-

vhgst (B.12)

y Xk
which when used with the previous result gives the utility

Ui, = Tr{W kqglwkq} (B.13)
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Appendix C.

We partition the inverse correlation matrix using the Waagtidentity and use two intermediate variablEss

-1 _ H
Ry,qy,q Ry_qu andZ - quyq - Ryiqurn

L S V >1 _y-ipH
R-1 = _ ] (C.1)
vH C -rx! C

We first expand (26) using the definition of the optimal estoné8) to

Ui, = THRIL RyRyx, — RyH_q;kR;iy_q Ry o5 )- (C.2)
Using the previously defined intermediate variables we lsee t
Rix RyyRyx = Rjlz 2Ry, — R{lg 2Ry x — R s TE'Ry5 + Ry 5 CRy % (C.3)
Now using (18) and (C.l)R;_lqy_q is given as
-1 _ He-1
Ry,qy,q =C-V'SV
=C-rzir". (C.4)

Now combining (C.3), (C.4) and (C.2) produces
qu = Tr{R)l;!qkailRYqik - R)I;Liszer RY—qfk - Rl)iqfkrzilRquk + Rl);'—qfkrzier Ry—q’?k}

= Tr{(Ryex — T"Ry_x) "= (Ryx — T7Ry_)}- (C.5)
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Figure 1. Computational complexity for findingy_, using the naive approach compared to (21).
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Figure 2: Depiction of the DANSE algorithm with three nodestewith two broadcast signal@ (= 2).
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Table 1: Greedy Centralized Node Selection

1. Each nod&k € K collects observations of the signgls Vq € K.
2. Each node calculates its utilitys, based on (35)

¢ If Us, < nandnode is connected to network

— Remove node from network
— UpdateRy_, , andW_, Yqe K\ {k}
Note : if there are multiple nodes for which the utility is bel the threshold the node with th
smallest utility is removed.
e Elself Us, > and node is not connected to network

— Add node to network

— UpdateRyy andWy, Yqe K\ {k
Note : if there are multiple nodes for which the utility exds¢he threshold the node with the large
utility is added.

3. returnto 1.

(1]
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Table 2: The DANSE Algorithm

1. Initialize 0—i,1—u
Initialize WY, andG®, randomly,7k € K
2. Each nod&k € K performs the following update

Collect (new observations) of sensor signagB + nl, n=0...B- 1.
Compress the sensor signals using (37),

z, =Wy [iB+n,n=0...B-1

Broadcast signa,[iB+n],n=0...B-1

Collect broadcast signa[k[iB +n,n=0...B-1

Update estimates & ;, andRy ;. with new observations

YkYk
Update node specific parameters

wit || Rog) Ry (k=0
Sk -8 (f k)

3. Comput&[iB+n],n=0...B-1, as
%[iB + n] = Witly[iB + n] + G1Z [iB + n]
4, i+1—i
5 umodJ)+1-u
6. returnto 2.
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Table 3: Greedy Distributed Node Selection

1. Each node/k € K collects its ownyg signals and broadcast signatsy from other nodes connected in th
network.
2. Each node calculates its utilitys, based on (52) and scaled to the dry source as in (35)

e If U, <nandnode is connected to network

— Remove node from network
; —i+1
— UpdateRyit andW, , vqeK\ (k)
Note : if there are multiple nodes for which the utility is bel the threshold the node with th

smallest utility is removed.
e Elself Ug, > 7 and node is not connected to network

— Add node to network

— UpdateRj/ T andW::l, vge K\ {k}
Note : if there are multiple nodes for which the utility exds¢he threshold the node with the large

utility is added.
3. returnto 1.

9]
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