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Abstract

A wireless sensor network is envisaged that performs signalestimation by means of the distributed adaptive node-

specific signal estimation (DANSE) algorithm. This wireless sensor network has constraints such that only a subset

of the nodes are used for the estimation of a signal. While an optimal node selection strategy is NP-hard due to its

combinatorial nature, we propose a greedy procedure that can add or remove nodes in an iterative fashion until the

constraints are satisfied based on theirutility. With the proposed definition of utility, a centralized algorithm can

efficiently compute each nodes’s utility at hardly any additional computational cost. Unfortunately, in a distributed

scenario this approach becomes intractable. However by using the convergence and optimality properties of the

DANSE algorithm, it is shown that for node removal, each nodecan efficiently compute a utility upper bound such

that the MMSE increase after removal will never exceed this value. In the case of node addition, each node can

determine a utility lower bound such that the MMSE decrease will always exceed this value once added. The greedy

node selection procedure can then use these upper and lower bounds to facilitate distributed node selection.

Erratum: The original paper, as published in Signal Processing, vol. 94, no. 1, pp. 57-73, Jan. 2014 contains an

error in equations (52) and (56). These equations have been corrected in this version of the manuscript.

Keywords: Wireless sensor networks; distributed signal estimation;node selection

1. Introduction

A wireless sensor network (WSN) utilizes a collection of sensor nodes to observe a physical phenomenon where

collected sensor observations may be used to monitor or estimate a parameter or signal. There are many key benefits
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of using a WSN over a single sensor, e.g., to collect a wider range of spatial and temporal information and to ensure

redundancy in case of sensor failure, which accounts for therapid proliferation of their use in many applications

[1, 2, 3, 4].

Many sensor networks are posed with the task of estimating a network-wide desired signal or parameter by means

of cooperative communication, i.e., every node contributes to a global estimation problem. This framework may be

modified to the case where each node tries to estimate its own node-specific desired signals while again using its local

signal observations and those provided by the other nodes inthe network. In this case, each node could estimate the

source signals as they are observed by the node’s own local sensors. This may be important if spatial information

needs to be retained in the estimates, such as noise reduction algorithms for cooperative hearing aids, which require

node-specific signal estimates to not loose the spatial cuesfor directional hearing, i.e., the signals have to be estimated

as they impinge at the two ears [5].

In a centralized WSN, the nodes relay their observations to amain base station or fusion center (FC) where all

information is aggregated and processed in order to estimate a set of desired signals. This type of WSN is susceptible

to a single point failure, i.e., if the FC fails the network isno longer able to process the collected information.

Furthermore, transmitting all the raw sensor signals to theFC may require a significant communication bandwidth.

Therefore instead of requiring that each node transmits itsobservations to a FC it is beneficial to have a distributed

WSN framework where the computational load may be divided among the nodes in the network while still being able

to reach the same solution as in the centralized case. Ideally this distributed WSN should also be able to perform

the same functions of a centralized WSN, preferably with less communication bandwidth compared to a centralized,

FC-based, approach.

Therefore, in this paper, the envisaged distributed WSN performs signal estimation by means of the distributed

adaptive node-specific signal estimation (DANSE) algorithm [6]. The DANSE algorithm performs a linear minimum

mean square error (MMSE) estimation of a set of node-specificdesired signals at each node, based on the iterative

computation of a set of distributed spatial filters. It has been used for such applications as acoustic beamforming and

distributed noise reduction in hearing aids or wireless acoustic sensor networks [5]. A benefit of using the DANSE

algorithm is that it can reduce the overall communication bandwidth consumption of the system while still converging

to the full-bandwidth solution, i.e., when each node transmits each of its uncompressed sensor signals to all other

nodes.

While previous implementations of the DANSE algorithm haverelied on fully-connected networks [6] or tree

topologies [7], it has not explicitly taken network constraints into account. Due to the nodes being deployed over

large distances or in hostile environments as well as their limited battery life, it is often desired to limit the number of

active nodes at any given time. Indeed, if the WSN is densely deployed, many sensors record redundant data and may

be placed in an inactive or sleep mode in order to preserve thenetwork lifetime. Therefore, the number of total active

nodes in the system,K, should be reduced to a smaller subset,N. This is an inherent combinatorial optimization
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problem with

(

K
N

)

combinations. As the number of nodesK increases, the computational time required to find the

optimal subset becomes infeasible.

There are several methods that have been proposed in order toperform node selection in a WSN [8]. Joshiet. al.

have proposed a formulation that relies on a MAP estimator and uses a convex cone in order to measure the impact of

removing a sensor, which relies on knowing the underlying statistics of the system [9]. In [10] a distributed strategy

has been proposed that is compared to a centralized approachbut is cast as a multi-armed bandit problem. Other

methods are able to evaluate performance bounds compared tothe optimal solution [11]. Thatteet. al.have proposed

placing bounds on the MMSE under various network topologiesbut rely on a FC to perform the estimation [12]. The

proposed selection strategy in this paper allows each node to determine its effect on the MMSE in a computationally

efficient manner without relying on a FC.

In order to select nodes from a given set, we introduce the concept ofutility, which is assigned to a node as a

way to determine its importance to the signal estimation problem at hand [13, 14, 15]. It is defined as the increase or

decrease of the MMSE after removing or adding the respectivenode and re-optimizing the estimators. Since each node

is assumed to have multiple sensors, a new utility computation algorithm is developed which efficiently computes the

utility of a set of sensors at once, which then corresponds tothe utility of the node.

Due to the distributed computation of the proposed utility as well as the combinatorial nature of node selection

we devise a distributed algorithm that uses a greedy procedure to add and remove nodes from the network as in [16].

For node removal, at each iteration, the greedy procedure inthis paper will remove the node with the lowest utility.

Likewise, for node addition, this greedy procedure will addthe node with the highest utility. Similar greedy techniques

have been applied to radar arrays [17, 18] where the change ofthe MMSE is used for target detection. It should also

be noted that the utility proposed in our framework differs from other definitions such as [11, 19, 20] which rely on

the concept of submodularity.

Although the exact utility cannot be computed in the DANSE framework, it can be shown that we can compute

upper and lower bounds on the utility, i.e., the increase or decrease of the MMSE when removing or adding nodes

respectively. By using the convergence and optimality properties of the DANSE algorithm we show that the nodes can

independently decide whether to stay active in the current network based on their local utility estimation. The network

therefore does not need to rely on a FC in order to facilitate node selection. However since the DANSE algorithm

allows each node to estimate a node-specific signal, each sensor will also have a different utility for each individual

estimation problem. Therefore, the computed utilities (and their bounds) are referenced to a common network-wide

utility measure to circumvent this problem.

The organization of the paper is as follows : In Section 2 the data model of the signals is provided along with the

MMSE-based spatial filtering procedure that each node uses in order to estimate a node-specific desired signal. In

Section 3 the utility is described in a centralized scenariowith a greedy node selection procedure, and we also define a

network-wide utility measure that is common for all the node-specific estimation problems. In Section 4 the DANSE
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algorithm is reviewed along with its convergence properties. In Section 5 the utility is described in a distributed

scenario where the DANSE algorithm is in place and it is shownhow it can be used in the greedy node selection as an

upper and lower bound with respect to the increase or decrease to the MMSE. Simulations are performed in Section

6 where the centralized and distributed scenarios are compared. An adaptive scenario is also simulated that shows the

use of the utility and the greedy node selection procedure ina real-time environment.

2. Data Model

Consider a WSN withK nodes. We assume that each node,k ∈ {1 . . .K}, observesMk complex3 sensor signals

where the total number of signals in the network is given byM =
∑K

k=1 Mk. TheMk sensor signals may be provided

by different sensors at nodek, or from remote sensors that forward their observations to nodek. The received signal

of sensor (or channel)mof nodek is given as

ykm = xkm+ vkm, m= 1, . . . ,Mk (1)

wherexkm is a desired signal component (the signal model forxkm will be defined later, see (4)),vkm is an additive

noise component which may be correlated to the noise in othersensors or nodes. It is assumed that the desired signal

and noise components are stationary, ergodic and statistically independent.4 The goal of each node is to estimate one

or more node-specific versions of the desired signalsxkm, as will be explained later.

The received signals at nodek are stacked in anMk-dimensional vector as

yk = [yk1 . . .ykMk ]
T (2)

and the vectorsxk andvk are defined similarly such that

yk = xk + vk. (3)

The desired signal components of nodek are assumed to be linear mixtures ofQ source signals given as

xk = Aks (4)

whereAk is an MK × Q-dimensional complex-valued steering matrix ands is a Q-dimensional stochastic vector

variable containing theQ source signals. The objective of nodek is to estimate an unobservableJ-channel node-

specific desired signal,̄xk, defined by the desired signal componentxkm in J local reference sensors. Without loss of

generality (w.l.o.g.), we assume that the firstJ channels ofyk correspond to these reference sensors, i.e.,

x̄k = [I |0]xk (5)

3We assume that all signals are complex valued in order to allow for a frequency domain representation.
4In practice, e.g., for speech processing, this stationarity and ergodicity assumption can be relaxed to short-term stationarity and ergodicity

provided that the finite signal segments behave in this fashion.
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whereI is aJ-dimensional identity matrix and0 is aJ × (Mk − J)-dimensional matrix with all entries equal to 0. The

node specific̄xk can also be represented in terms of its node specific steeringmatrix,Āk, as

x̄k = [I |0]Aks

= Āks. (6)

It is noted that we do not aim to obtain the original source signals ins, i.e., we do not aim to unmix the signals

in x̄k or to equalize for the filtering due to the steering matrixĀk. Instead, we want to estimate the desired signal

components as they are locally observed in theJ reference sensors at nodek. This is important if spatial information

must be retained in the signal estimates, which when needed,requires a node-specific estimator. In the sequel, we

assume that the dimension of the node specificx̄k is equal to that of the dimension of the source signal space,5 i.e.,

J = Q , where we assume that̄Ak is invertible∀k ∈ {1, . . . ,K} and thatQ ≤ Mk.

We first assume that each node has access to allM signals, where allyk, xk, vk vectors are stacked into M-

dimensional vectorsy, x, v respectively, and we refer to this case as the centralized estimation. We consider a linear

MSE cost function based on the node-specific linear estimator, Wk, given as

Jk(Wk) = E{||x̄k −WH
k y||22} (7)

whereE{.} is the expected value operator,||.||22 is thel2 norm squared, andH is the complex conjugate operator. The

linear MMSE estimator that minimizes (7) is given by [21]

Ŵk = R−1
yy Ryx̄k (8)

whereRyy = E{yyH} is the sensor signal correlation matrix andRyx̄k = E{yx̄H
k } is a cross-correlation matrix between

the sensor signals and the desired signal components at nodek. Althoughx̄k is unobservable, due to the independence

with the additive noise, there are several strategies that can be used to estimate the cross-correlation matrix depending

on the application [6, 22, 23]. In Section 6.1 a method to estimate the correlation matrices will be discussed.

Using the optimal estimator (8) the minimum cost is given as

Jk(Ŵk) = E{||x̄k − ŴH
k y||22}

=

J
∑

j=1

Pkx j − r H
y x̄k j

ŵk j (9)

whereŵk j andr y x̄k j
represent the jth column ofŴk andRyx̄k respectively andPkx j = E{||xk j||

2
2} represents the desired

signal power in the jth channel.

We define theQ× Q-dimensional MMSE cost matrix

Ĵk , Rx̄kx̄k − RH
yx̄k

Ŵk (10)

5In Section 4 this assumption is used to ensure the convergence of the DANSE algorithm to that of a centralized scenario.
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whereRx̄kx̄k = E{x̄kx̄H
k } is the desired signal correlation matrix. The minimum cost can then be compactly represented

as the trace of (10), i.e.,

Jk(Ŵk) = Tr{Ĵk}. (11)

We now consider the desired signal components belonging to another nodeq, x̄q, defined similarly as in (4). Since

we assume that the desired signal components of each node arelinear mixtures of the sameQ source signals ins, it

can be shown that the MMSE cost matrices and MMSE estimators between nodes are related to one another by their

steering matrices. The MMSE cost matrices between nodek and nodeq are related as shown in Appendix A

Ĵk = Ā−H
qk ĴqĀ−1

qk (12)

whereĀqk = Ā−H
k ĀH

q . This is a direct result of̄xk andx̄q being related by their steering matricesĀk andĀq, respec-

tively. Likewise the optimal estimators of nodek and nodeq are related to one another by a product of their steering

matrices,

Ŵk = ŴqĀ−H
q ĀH

k

= ŴqĀ−1
qk . (13)

3. Utility

Suppose that each node in the network has calculated its ownM ×Q optimal estimator (8) and, due to constraints

imposed on the system and the possibility of new nodes becoming available, we would like to remove or add nodes

to the network while controlling the effect on the MMSE at each node. This problem is inherently combinatorial in

nature so we will therefore fall back on the use of greedy heuristics. In order to determine the effect of removing or

adding a node, a utility measure is introduced that quantifies how much a node contributes to the current estimation.

The utility of a node is defined as the difference in the MMSE (9), when one node is added or removed from the

estimation after re-optimizing the estimatorWk. In [13] it is described how the utility of a sensor can be computed

with a relatively small computational complexity when compared to a naive approach which would be to remove one

sensor from the system and then to recalculate the minimum cost to check its contribution and to do this for all sensors.

While in the centralized approach computational complexity may not be a concern, in the distributed case nodes

often have a smaller processing capability. In this section, we explain how the techniques in [13] can be generalized

to find an expression that computes the utility of a group of sensors (e.g., theMk sensors corresponding to nodek)

instead of a single sensor. This expression will then later be used for node selection in the distributed scenario.

3.1. Utility for node removal

The utility, Uk−q, of nodeq’s sensors,yq, with respect to nodek’s estimation problem is defined as the increase in

MMSE whenyq is removed from nodek’s estimation problem, i.e.,

Uk−q = Jk−q(Ŵk−q) − Jk(Ŵk) (14)
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where the subscript−q indicates that nodeq’s sensors are removed from the function andŴk−q is referred to as the

optimal fall-back estimator when nodeq is removed. Note that̂Wk−q is not equal toŴk with Mq rows removed but it

is equal to the re-optimized MMSE estimator that minimizesJk−q in which the sensors of nodeq are removed. Using

(11), the utility of nodeq with respect to nodek’s estimation problem is given by

Uk−q = Tr{Ĵk−q − Ĵk}

= Tr{RH
yx̄k

Ŵk − RH
y−qx̄k

Ŵk−q}. (15)

In order to calculateŴk−q without having to take a full inverse as given in (8), we first partition theM × M sensor

signal correlation matrix,Ryy, as follows

Ryy =





















Ryqyq Ryqy−q

RH
yqy−q

Ry−qy−q





















(16)

where, for the sake of an easy exposition but w.l.o.g., it is assumed that the firstMq × Mq elements of the matrix

correspond to nodeq’s sensors (i.e.,q = 1). Notice that to remove another nodes’s sensors, the indices would need to

be shifted accordingly which does not affect generality of the utility computation described in the sequel.

The calculation ofŴk−q, using the definition given in (8), requires the inverse of only a portion of the sensor signal

correlation matrix, namelyR−1
y−qy−q

, which is currently unknown. In order to calculate the inverse without having to

first remove the corresponding rows and columns that pertainto the nodeq’s sensors and calculateR−1
y−qy−q

, we block

partition the current inverseR−1
yy as

R−1
yy =





















S V

VH C





















(17)

whereS is an invertibleMq × Mq-dimensional matrix,V is an Mq × (M − Mq)-dimensional matrix andC is an

(M − Mq) × (M − Mq)-dimensional matrix. It is noted that this matrix inverse (including all of its block components)

is already known from the computation of the current MMSE estimator at nodek. Using the block form of the matrix

inversion lemma [24],R−1
y−qy−q

may be calculated using only the known values in the currentR−1
yy matrix as

R−1
y−qy−q

= C − VHS−1V (18)

which is the Schur complement ofS in R−1
yy .

The current optimal estimator̂Wk is also block partitioned as

Ŵk =





















Ŵkq

Ŵky−q





















(19)

whereŴkq is anMq×Q-dimensional matrix that represents the estimator values applied to nodeq’s sensors and̂Wky−q

is an (M −Mq) ×Q-dimensional matrix that represents the estimator values applied to the other sensors. In Appendix

B, it is shown that the optimal fall-back estimator is given as

Ŵk−q = Ŵky−q
− VHS−1Ŵkq (20)

7



which are all known values of the current estimate. Again shown in Appendix B, using (20) the utility is given as

Uk−q = Tr{ŴH
kq

S−1Ŵkq} (21)

= Tr{Uk−q} (22)

where

Uk−q , ŴH
kq

S−1Ŵkq (23)

which only relies on an inversion6 of an Mq × Mq matrix S, and the current estimator values. In order to find the

impact of any other node to the current estimation of nodek, Uk−i , i ∈ {1 . . . J}, the estimator coefficients and partial

inverse of (21) can be changed to the corresponding indices.

Instead of using (21), the utility could be found naively by removing a nodes signals and calculating the new esti-

matorŴk−q which relies on the inverse ofRy−qy−q having a worst case scenarioO(M−Mq)3 computational complexity.

Figure 1 shows the computational complexity of findingUk−q using this naive approach compared to using (21) where

all nodes are assumed to have 4 sensor signals. The dashed line at the bottom indicates the computational complexity

of calculating the utility using (21) which is constant due to the fact of only relying on the inverse of always the same,

in this case, 4×4-dimensional matrix. The total computational complexityis given for different matrix inversion algo-

rithms [25] which have an increasingly large number of calculations for an increasing number of nodes.In [13] a less

generalized expression compared to (21) was derived which finds the utility of a single sensor at computational cost

of O(M). The utility computed using (21) could instead be found in an iterative fashion based on this single sensor

utility where in each iteration, a single sensor of nodeq is removed and this process is repeated until all of the sensors

from nodeq are removed. The utility of nodeq with respect to nodek’s estimation problem in this iterative approach

is then given as

Uk−q =

Mq
∑

m=1

Uk−qm
(24)

wherem is the sensor index of nodeq defined similarly as in (1). In the iterative approach, a new optimal fall-back

estimator must be calculated after each sensor removal which was found to have a computationally complexity of

O((M − m)2) [13]. The overall computational complexity therefore would be
Mq
∑

m=1
O((M −m)2). However using (21)

the utility can be found with a single matrix inversion with amaximum computational complexity ofO(M3
q). Since

oftenM >> Mq, using this iterative approach is usually more computationally intensive than using (21).

3.2. Utility for node addition

For node addition, the utility of nodeq with respect to nodek’s estimation is defined as the decrease in MMSE

when all sensors of nodeq are added to nodek’s estimation problem. We assume that the current estimatorwithout

6It should be noted that when a single channel is considered for removal then this becomes a scalar inversion, and (21) reduces to the formulation

presented in [13].
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nodeq, Ŵk−q, is known which also implies that the current sensor signal correlation matrix,Ry−qy−q, and its inverse,

R−1
y−qy−q

, are known. The cross-correlation matrix between the sensor signals and the desired signal components,Ryx̄k,

is partitioned as

Ryx̄k =





















Ryqx̄k

Ry−qx̄k





















(25)

whereRyqx̄k = E{yqx̄H
k } is not included in the estimation problem andRy−qx̄k = E{y−qx̄H

k } represents the current

cross-correlation matrix.

The utility is defined identically as in the case of node removal, which is repeated here for convenience, as

Uk−q = Jk−q(Ŵk−q) − Jk(Ŵk)

= Tr{RH
yx̄k

Ŵk − RH
y−qx̄k

Ŵk−q} (26)

which relies on the new estimator with the addition of nodeq, Ŵk. Unlike the node removal case, the statistics

to estimate the contribution of nodeq are unknown at nodek because no information is sent when the node is not

connected to the network. To circumvent this limitation we presuppose that nodeq periodically sends part of its

observations to nodek from which the required statistics can be measured, but these are not included in the estimation

at nodek hence only an (M − Mq) × (M − Mq)-dimensional inverse is taken. Notice that this makes the calculation of

the utility when a node is added to the estimation substantially different than for the node removal case.

With the above mentioned strategy of periodically sending nodeq’s statistics to nodek, the sensor signal correla-

tion matrix is partitioned the same as given in (16) however we would like to find a computationally efficient manner

in calculating the utility without having to take the full inverse ofRyy to computeŴk.

For the sake of an easy exposition we define two intermediate variables

Γ = R−1
y−qy−q

Ry−qyq (27)

Σ = Ryqyq − RH
y−qyq
Γ (28)

that incorporate the statistics of the current connected nodes and those of nodeq. In Appendix C it is shown that the

utility, when nodeq is added to nodek’s estimation using these two intermediate variables alongwith the previously

defined notation, is given as

Uk−q = Tr{(Ryqx̄k − Γ
HRy−qx̄k)

H
Σ
−1(Ryqx̄k − Γ

HRy−qx̄k)} (29)

where

Uk−q , (Ryqx̄k − Γ
HRy−qx̄k)

H
Σ
−1(Ryqx̄k − Γ

HRy−qx̄k) (30)

which is again a generalization of the work presented in [13]. SinceR−1
y−qy−q

is already known from the current

estimation, the computational complexity of findingΓ is O((M − Mq)2Mq) andΣ relies on the inverse of anMq × Mq
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matrix. Therefore the overall computationally complexityof finding the utility will be O((M − Mq)2Mq + M3
q).

If we again compare this to a naive approach of calculating the utility, i.e., including nodeq’s signals in the current

estimation and taking a worst case scenarioO(M3) to find the change in the MMSE, we see that (29) offers a substantial

decrease in computational complexity for largeM.

3.3. Definition of a common network-wide utility measure

The utility calculated with (21) and (29) gives the difference in the MMSE when a node is removed from or added

to the network. However the utilities calculated at an individual node are biased to that nodes desired signals, i.e., the

utility calculated for nodek’s signals at nodek, Uk−k, may differ significantly for another node,Uq−k . This conflict in

the utilities stems from the fact that each node estimates its own node-specific desired signals. This makes it difficult

to quantify the network-wide utility of a node’s sensor signals, i.e., a single utility measure that incorporates every

node’s estimation problem.

One approach could be to use the sum,
∑

k
Uk−q, to define the network-wide impact of nodeq’s signals. First of all,

this would require the computation ofK2 utility values to evaluate the network-wide utility of eachnode. Secondly,

and more importantly, this measure is heavily biased towards estimation problems at nodes with a large signal power,

as the MMSE directly depends on the signal power of the desired signal. The utility values corresponding to these

estimation problems will dominate the summation.

We therefore propose scaling the utilities by means of (12) in which the utilities are now in terms of a virtual

nodes. This modifies the utilities of the nodes as if they were estimating the dry source signals which effectively

removes the bias toward a single nodes desired signals resulting in a common utility-reference. The intuition behind

this approach is that a reliable estimate of the dry source signal(s) also allows each node to compute a reliable estimate

of their locally observed source signal(s), i.e., if a node’s sensor signals have a large utility with respect to this dry

source estimation problem, they will be important for everynode-specific estimation problem too. This is because

each node actually estimates node-specific scaled versionsof the dry source signals.

For ease of exposition we assume that each node will scale itsutilities as if it were estimating the unobservable

dry source signals ins. Note that the estimation ofs is not possible in practice, as the cross-correlation matrix in (8)

cannot be computed from the local sensor signals at nodek for the case wherēxk = s. However, the remarkable aspect

of this is that information about the dry source signals is not needed to calculate a node’s utility with respect to it. We

define the desired dry source signals in terms of aQ× Q-dimensional identity matrix̄As = I Q×Q for a virtual nodes

so that

x̄s = Āss

= s. (31)
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The MMSE cost at this virtual node is given as

Js(Ŵs) = E{||x̄s− ŴH
s ỹ||2}

= Tr{Rx̄sx̄s − RH
yx̄s

Ŵs} (32)

whereRH
yx̄s
= E{yx̄H

s }. For the sake of an easy exposition, but w.l.o.g, we assume that the dry source signals have also

been power normalized to unity which, relying on the assumption that the signals are statistically independent, gives

Rx̄sx̄s = E{ssH} = I .

The utility is defined similarly to (14) where the utility of nodek’s signals with respect to nodes’s estimation

problem is given by

Us−k = Js−k(Ŵs−k) − Js(Ŵs). (33)

Using the relationship between steering matrices and the MMSE cost matrices, as given in (12), we have

Us−k = Tr{Ĵs−k} − Tr{Ĵs}

= Tr{Ā−H
ks (Ĵk−k − Ĵk)Ā−1

ks}

= Tr{(Ĵk−k − Ĵk)Ā−1
ksĀ−H

ks } (34)

whereĀks = I kĀH
k . Using this and the fact thatRx̄kx̄k = ĀkĀH

k , it is then shown that

Us−k = Tr{Uk−kR
−1
x̄kx̄k
} (35)

which can then be applied to both (23), and (30). Note thatRx̄kx̄k is a submatrix ofRyx̄k in (8) if the desired signal and

the noise are uncorrelated (see also Section 6.1).

This definition of a common network-wide utility measure allows each node to track the network-wide utility of

its own sensor signals. Furthermore, it provides a common reference such that the utilities computed at the different

nodes can be easily compared with each other, or with a commonthreshold (see also Section 3.4).

3.4. Greedy centralized node selection

To allow maintaining a minimal network-wide estimation performance, we only remove a node if this removal

does not result in a network-wide MMSE increase7 of more thatη, whereη is a user-defined threshold, which can

be adapted depending on the current MMSE. Similarly, we onlyadd a node if this addition can guarantee a minimal

increase in the network-wide MMSE, i.e., larger thanη. It is noted that, since we now use a common network-wide

utility measure, each node can use the same value forη. As an example in terms of a constraint, if the number of

nodes in the network were to be limited so that 50% were removed, thisη could be adjusted until this constraint was

met.

7This is the MMSE with respect to the (virtual) estimation of the dry source signals.
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To facilitate a distributed node selection algorithm, we would also like each node to independently decide whether

it should add itself or remove itself from the network which requires that each node calculates the network-wide utility

of its own signals. To this end, in the case of node addition, instead of nodek broadcasting its signal periodically to

the other nodes to measure its utility, we can assume that it does not transmit its signal in order to conserve energy

but that it can still receive theM − Mk broadcast signals from the other connected nodes in the network. In this case

nodek uses its ownyk sensor signals as well as theM − Mk signals from the other nodes to compute its utility,Uk−k,

for node addition by means of (21) instead of (29) since it is able to calculate the full optimal estimator̂Wk.

In the node removal case, the selection process picks the node with the lowest utility belowη and removes this

from the network. In the case there are multiple nodes for which the utility value is smaller thanη, a greedy choice is

made, i.e., the node with the smallest utility is removed. The network continues this selection process until there are

no more nodes whose utility fall belowη. Likewise if a node is not connected to the network and its utility is greater

than the threshold value, it is added to the network where again a greedy choice is made in case multiple nodes exceed

the threshold.

Since the selection process is greedy we do not make any claims on optimality but argue that because of the

prohibitive computational complexity of an exhaustive search, the utility based approach offers a safe bound on the

impact on the network-wide performance (in terms of the MMSEof the dry source signal estimation) while being

computationally efficient. The greedy centralized node selection is summarizedin Table 1.

Remark 1. Notice also that once a node is removed or added from or to the network the inverse sensor signal

correlation matrix (17) must be recalculated which effects the utilities of the nodes, therefore we cannot predictfuture

utility values.

4. Distributed Adaptive Node-Specific Signal Estimation (DANSE)

In Sections 2 and 3 it was assumed that each node has access to all M signals ofy to compute the optimal̂Wk for

estimating its node-specific desired signal components. Inthe distributed scenario, the goal of each node is to estimate

its desired signal components as good as in the centralized scenario without each node having to broadcast all of itsMk

signals to the other nodes. This can be accomplished by usingthe distributed adaptive node-specific signal estimation

(DANSE) algorithm. In this section we provide a brief outline of the DANSE algorithm and the reader is referred to

[6] for a more detailed discussion as well as convergence proofs.

In DANSE, nodek broadcasts a compressed version of its sensor signalszk = CH
k yk to the other nodes whereCk

is anMk×Q compression matrix which will be defined later (see (37)). This compresses the data transmitted from the

individual nodes by a factor ofMk
Q . Note that the number of channels inzk are chosen to equalQ, i.e., the dimension

of x̄k which is required for DANSE to converge to the optimal estimators [6]. The DANSE algorithm updates the

compression matrixCk of each node in an iterative round-robin fashion. We introduce the indexi to indicate the

current iteration of the algorithm.
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The estimator matrixW i
k is partitioned to

W i
k = [W iT

k1 . . .W
iT
kK]T (36)

whereW i
kk is the partial estimator that nodek applies to its own sensor signals,yk. This W i

kk is then used as the

compression matrixCk to generate thezi
k signal, i.e.,

zi
k =W iH

kkyk. (37)

Note thatW i
kk is used as a partial estimator as well as a compression matrix.

In the DANSE algorithm nodek has access to its own sensor signals,yk, and theQ(K − 1) broadcast signals, from

other nodes given as

zi
−k = [ziT

1 . . . z
iT
k−1 . . .z

iT
k+1 . . . z

iT
K ]T (38)

where the−k subscript indicates that the broadcast signal,zi
k, of nodek itself is not included.

Instead of decompressing eachzq (as received from nodeq) in (38), nodek applies aQ×Q transformation matrix

Gkq to each received signal, i.e., it effectively applies an estimation matrix in the form

W̃ i
k = [(W i

11G
i
k1)

T . . . (W i
kKGi

kK)T ]T (39)

where theGi
kq’s are stacked together in a matrix of the formGi

k = [GiT
k1 . . .G

iT
kK]T . Note that since nodek has access

to its uncompressed sensor signalsyk it does not need to apply a transformation matrix as it does tothe receivedz−k

signals. SinceGi
kk is then not explicitly defined for nodek it can be set to an identity matrix so that (39) is

W̃ i
k = [(W i

11G
i
k1)T . . . (W i

kkI Q×Q)T . . . (W i
kKGi

kK)T ]T . (40)

The DANSE algorithm now performs an MMSE estimation at each node in a round robin fashion given as





















W i+1
kk

Gi+1
−k





















= arg min
Wkk,G−k

E
{

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̄k −





















Wkk

G−k





















H

ỹi
k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

}

(41)

where

ỹi
k =





















yk

zi
−k





















(42)

andGi+1
−k is Gi+1

k withoutGi+1
kk . The solution of (41) is given as





















W i+1
kk

Gi+1
−k





















= (Ri
ỹkỹk

)−1Ri
ỹkx̄k

(43)

where

Ri
ỹkỹk
= E{ỹkỹH

k }, Rỹkx̄k = E{ỹkx̄H
k }. (44)
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The MMSE estimate at nodek is then given as the filtered combination of the nodes own sensor signals together

with the received signals from other nodesz−k,

x̃k = ŴH
kkyk +

K
∑

l=1,l,k

GH
klzl . (45)

We define a block lengthB that represents the number of observations collected between two increments of the

DANSE algorithm. The DANSE algorithm is summarized in Table2 and Figure 2 gives a depiction of the DANSE

algorithm in a network with three nodes,K = 3, and two broadcast signals per node composingzk (Q = 2).

If Rỹkỹk is full rank, andĀk is a full-rankQ × Q, ∀k ∈ K, matrix then the DANSE algorithm converges for any

initialization of its parameters to the centralized solution given in (8) [6]. After convergence,i = ∞, the estimator

coefficients between nodek and nodeq are related by

W̃∞
k = W̃∞

q (G∞qk)
−1 (46)

with

G∞qk = Ā−H
k ĀH

q

= Āqk. (47)

Remark 2. Due to the iterative nature of the DANSE algorithm it may appear that the same sensor signals are

broadcast multiple times. However, the iterations are spread out over time which means that different compressed

versions of observations are broadcast at successive iterations in the algorithm. Therefore the nodes do not need

to recompress and re-broadcast the same observations and sothe processing in the different iterations is performed

on different blocks of data. In Table 2 each iteration of DANSE uses different observations (the sample index is

incremented based on the DANSE iteration index i).

5. Distributed Computation of Utility Bounds

In the distributed scenario, nodes only have access to theirown sensor signals and linearly compressed sensor

signals from the other nodes, e.g., nodek only has access to its ownMk sensor signals,yk, and theQ(K − 1) broadcast

signals from the other nodes,z−k. Using these signals we would like each node to compute its own utility locally, Us−k,

to determine if it should add itself to or remove itself from the network. For node addition, we assume that while a

node is not transmitting it can still receive the otherz−k broadcast signals. For the sake of easy exposition, we assume

that nodek computes the utilityUk−k with respect to its own estimation problem, rather thanUs−k with respect to the

dry source signals (see Section 3.3). However, everything in this section can easily be extended to also computeUs−k

by using the appropriate transformation given in (35).

The utility for node deletion given in (21) relies on the availability of S, a sub-matrix ofR−1
yy , which is never

available in the distributed case. Therefore, (21) cannot be used, and we need the original definition of the utility in
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(14). This relies on the ability for a node to calculate its optimal fall-back estimator, e.g.,k’s fall-back estimator when

removing itself from the network iŝWk−k . However, in the distributed scenario, the optimal estimator is found by

iteratively passing information from one node to the next until the system reconverges. When nodek is removed from

the network this not only changes the partial estimatorWkk but alsoG−k which both rely on the statistics of the other

nodes. Therefore if nodek were removed from the network, the fall-back estimator at nodek, W̃k−k is initially sub-

optimal and only becomes optimal once all of the nodes in the network have converged again. To avoid the explicit

computation of theK different fall-back estimators for each possible node removal,we defineUk−k that is based on

(21) whereR−1
yy is now replaced with (Ri

ỹkỹk
)−1. In the case of node removal thisUk−k will be shown to be an upper

bound on the increase in the MMSE, i.e., the actual utilityUk−k.

Likewise for node addition we will show that with a similar argument removed nodes are able to calculateUk−k

which produces a utility lower bound on the actual utilityUk−k, i.e., if the node adds itself to the existing network the

actual decrease in MMSE after addition will be greater than that given by the utility. Therefore even though the exact

utility cannot be computed, bounds for the change in the MMSEcan be found for node removal and addition which

will facilitate node selection.

5.1. Node removal : utility upper bound

Assuming the DANSE algorithm has converged8 we define the following quantity for nodek with respect to its

node-specific estimation problem

U
i
k−k
= Jk−k(W

i+1
k−k

) − Jk(Ŵk) (48)

whereW
i+1
k is

W
i+1
k =





































W i+1
11 Gi+1

k1
...

W i+1
kK Gi+1

kK





































(49)

andW
i+1
k−k

is equal to (49) withW i+1
kk Gi+1

kk removed.

It is noted that (48) does not represent the true utility of node k since, in principle, once the node is removed

the other nodes must update their local estimator parameters until the DANSE algorithm has reconverged to the re-

optimized fall-back estimator, i.e.,W
∞

k−k
= W̃∞

k−k
= Ŵk−k whereW̃∞

k−k
is equivalent to (39) after convergence without

nodek’s signals andŴk−k represents the optimal estimator without nodek’s signals.

Due to the convergence of DANSE, the cost function then decreases until

Jk−k(W
∞

k−k
) = Jk−k(Ŵk−k). (50)

8For simulations presented in Section 6 convergence is reached after each node updates its local parameters 5 times, i.e., 5×K DANSE iterations.
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SinceŴk−k minimizesJk−k , theU
i
k−k

using the sub-optimal estimatorW
i+1
k−k

is an upper bound of the increase in MMSE,

i.e.,

Jk−k(W
∞

k−k
) − Jk(Ŵk) ≤ Jk−k(W

i+1
k−k

) − Jk(Ŵk)

U
∞

k−k
≤ U

i
k−k
. (51)

The utility upper bound,U
i
k−k

, can be efficiently computed by means of (21) based onRi
ỹkỹk

U
i
k−k
= Tr{ŴH

kk(P
i
k)
−1Ŵkk} (52)

wherePi
k is the upper left submatrix of

(

Ri
ỹkỹk

)−1
pertaining to nodek’s signals only. A corresponding upper bound for

the network-wide utilityU s−k corresponding to the dry source signals can also be computedsimilarly to (35).

With this, nodek can decide to remove itself from the network knowing the maximum impact it will have in terms

of increase in MMSE. It should also be noted thatW
i+1
k−k

is not explicitly computed when calculating the utility upper

bound, and only exists once the node has been removed from thenetwork.

5.2. Node addition : utility lower bound

As in the centralized scenario, the addition of a node is substantially different from node removal due to the fact

that nodek does not broadcastzk when not included in the network. In the distributed scenario when a node is not

connected to the network we assume that it is still able to receive signals, possibly awaking periodically to judge its

current importance to the network estimation.

In the sequel, we assume that nodek still performs an estimation of its own desired signals using z−k and its own

yk signals. In this case, we show that the node is able to determine a utility lower bound with the same formula that is

used for node removal (52) without having to broadcast itszk signal.

Assuming the DANSE algorithm has converged with nodek not broadcasting its signals, we define the following

utility for nodek with respect to nodek’s estimation problem,

U
i
k−k
= Jk−k(Ŵk−k) − Jk(W

i+1
k ) (53)

where againŴk−k represents the optimal estimator without nodek’s signals andW
i+1
k is given in (49). Notice that the

cost function with nodek’s signals removed,Jk−k(Ŵk−k), is currently minimized as all of the nodes in the network have

performed their estimation without nodek’s signals using the DANSE algorithm.

Assuming that nodek would include itself in the network, then due to the convergence of the DANSE algorithm,

the cost decreases to

Jk(Ŵk) = Jk(W
∞

k ) (54)
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where again the estimators have converged to their optimal values. TheU
i
k−k

using the sub-optimal estimator therefore

is a lower bound for the MMSE decrease when a node is added to the network, i.e.,

Jk−k(Ŵk−k) − Jk(W
∞

k ) ≥ Jk−k(Ŵk−k) − Jk(W
i+1
k )

U
∞

k−k
≥ U

i
k−k
. (55)

Therefore if nodek was to add itself to the network, i.e., begin broadcasting itszk, its MMSE will decrease by at least

the utility

U
i
k−k
= Tr{W

iH
kk(Pi

k)
−1W

i
kk} . (56)

It should be noted that since nodek uses itsyk in its current estimation it does not need to rely on (29) to calculate

its utility. Therefore by using (56), which is computationally more efficient, we limit the computational power and

memory requirement of the node, but bearing in mind that the calculation of the utility from either equation would be

equivalent.

5.3. Greedy distributed node selection

In the distributed scenario the same method for adding and removing nodes can be used as in the centralized case

(Table 1). However instead of calculating the exact utilities, only upper and lower bounds can be computed. The

greedy selection procedure in Section 3.4 is therefore modified to take the utility bounds into consideration. During

estimation nodes will calculate their utility bounds basedon (52) and (56) and scale them to the common dry source

reference using (35). A distributed version of the node selection algorithm is given in Table 3. Since the nodes

compute upper and lower bounds, we know that it is safe to remove or add nodes, i.e., without risking an MMSE

increase or decrease that is larger thanη.

6. Simulations

6.1. Estimation of signal statistics

For the computation of the utility bounds and the DANSE updates it was implicitly assumed that the second-order

signal statistics are known throughout the estimation procedure. However in real-time applications there is normally

a finite observation window where estimation of the signals statistics is done by time averaging with the collected

observations and exploiting the assumed behavior of the signals such as short-term stationarity and ergodicity.

Let ỹk[t], (42), denote the observations ofỹk collected at timet at nodek. Estimating the so-called “signal+noise”

correlation matrix,Rỹkỹk, is typically done by time averaging the collected observations with a forgetting factor 0<

λ < 1 [5, 26], i.e.,

Rỹkỹk[t] = λRỹkỹk[t − 1] + (1− λ)ỹk[t]ỹk[t]
H . (57)
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Estimating the desired signal correlation matrix,Rx̃kx̃k , is not as straightforward because the desired signal com-

ponents are collected with the addition of noise. If the desired signals are assumed to have on-off behavior,9 meaning

that there are periods when only noise is present and periodswhen there is desired signal as well as noise, the “noise”

and “signal+noise” statistics may be gathered separately.

During periods when the desired signals plus noise are present Rỹkỹk is computed by means of (57). Likewise

during noise-only periods the received signals are placed into a “noise-only” correlation matrix given by

Rṽkṽk [t] = λRṽkṽk[t − 1] + (1− λ)ṽk[t]ṽk[t]
H (58)

wherevk is defined in (3) and̃vk refers to the corresponding noise component inỹk, as defined in (42).

Usually the desired signals and noise are assumed to be un-correlated and statistically independent, therefore a

desired signal correlation matrix may be estimated by subtracting the “signal+noise” by the “noise-only” correlation

matrix, i.e.,

Rx̃kx̃k = Rỹkỹk − Rṽkṽk . (59)

Subsequentially the cross correlation matrix,Rỹkx̄k , can be given as

Rỹkx̄k = E{ỹkx̄H
k } (60)

which, using the assumption that the desired signals and noise are un-correlated, may be given as

Rỹkx̄k = Rx̃kx̃kE (61)

whereE is anMk +Q(K − 1)×Q-dimensional matrix that has aQ× Q-dimensional identity matrix corresponding to

the desired signal components and 0 otherwise, i.e.,

E =
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

. (62)

Note that this is just one possible strategy to estimateRỹkx̄k . Other strategies may involve using training sequences, or

only considering quasi-static scenarios [6].

6.2. Batch mode

In this section we demonstrate the greedy utility based nodeselection process in batch mode which means that all

iterations of DANSE were performed on data obtained from theentire length of the signals. In Section 6.3 an adaptive

implementation with moving sources is presented where, instead of processing the entire length of the signal, shorter

blocks are processed which change the utilities throughoutthe simulation.

Although batch mode is not a practical implementation, a batch mode simulation gives a reasonable view on the

performance limits of the algorithm. The greedy node selection process used a utility bound based on (52), (56) and

9This type of behavior is typical for speech enhancement applications where there is assumed to be pauses in the speech signal.
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(35). The dimension of the desired signal space, (J = Q), was varied depending on the simulation, where each desired

source consisted of 10000 samples generated from a uniformly distributed random process on the interval [-0.5 0.5].

The coefficients ofAk were generated by a uniform process on the unit interval. A single spatially located white noise

source was added where the signal was generated with a similar process as the dry source signal and scaled with a

random number in (0,1] for each node. Uncorrelated white noise, representative of sensor noise, that was half the

average power of the desired signals, was added to each sensor.

As each node in the network estimates a different signal, we will visualize the network-wide performance at one

particular ’visualization node’. We assume10 that Āk = I in (6) at this node, i.e., the node estimates the dry source

signals. This allows us to compare the MMSE increase/decrease compared to the network-wide utility bounds which

are also referenced to the dry source signal estimation problem (see Section 3.3). We also constrain the algorithm

such that this visualization node is never removed from the network.

In the distributed scenario, the DANSE parameters,Wkk andG−k ∀k ∈ {1 . . .K}, were updated in a round-robin

fashion for 5× K iterations, i.e., 5 updates per node, which was deemed sufficient for network convergence, i.e.,

the difference in cost between iterations was below machine precision. After DANSE had reached a steady state the

utility bounds pertaining to the dry source signal,Us−k , were calculated. The bounds for the MSE thresholdη were

predefined before the start of the simulations and only one node at a time was allowed to be removed or added to the

network, where the DANSE parameters were allowed to reconverge before the selection process resumed.

The centralized and distributed selection procedures for removal were compared as shown in Figure 3. There are

K = 20 nodes in the system each with 5 sensors (M = 100), andQ = 3. The figure on the left is the centralized

selection process, where the full matrixR−1
yy can be used in (21). The dashed-lines indicate how much the dry source

MSE increases after the removal of a node, i.e.,Js(Ŵs) + Us−k .

The figure on the right is the DANSE algorithm that performs the same removal process where (52) is used and

scaled by (35). The dotted lines indicate the maximum increase a node will have on the dry source MSE after removal,

i.e., Js(Ŵs) + U
i
s−k

. Each increment on the horizontal axis in the distributed scenario corresponds to a full iteration

cycle of DANSE, i.e., every node has updated its node-specific parameters (Wkk andG−k) once. It was observed in

[6] that convergence of the node-specific parameters occursafter each node has updated them 5 times. Therefore

each DANSE cycle in Figure 3 corresponds to each node in the network updating their node-specific parameters once

(i = 20 DANSE iterations) with a node being removed after each node has updated its node-specific parameters 5

times (i = 20× 5 DANSE iterations).

During the node selection process the utility upper bound and centralized utility were added to the current dry

source MMSE in order to observe the increase in MMSE after node removal. This is indicated by the dotted and

dashed lines. Notice the large decrease in MSE in the first fewiterations of the DANSE algorithm compared to the

subsequent reconvergence iteration when a node is removed from the network. This is due to the random initialization

10Node that this only for illustrative purposes sinceĀk = I usually does not occur in practice.
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of the parameters at the beginning of the DANSE algorithm. Once the DANSE algorithm has converged and a node is

removed, the sub-optimal estimators lie close to the new optimal estimators as shown in the relatively small decrease

in MSE after the first set of iterations.

Figure 4 shows a magnified view of the selection process between DANSE iterations 15-21 of Figure 3. The utility

upper bound lies above the utility that would have been foundif the optimal estimator would have been used. Again

we see a relatively small decrease in MSE when compared to theoriginal initialization of the DANSE algorithm.

The next simulation containedK = 5 nodes in the system each with 20 sensor signals (M = 100) andQ = 3,

i.e., the network loses many more sensor signals per node removal than in the previously simulated network. This

normally has a larger impact on the utility bound, as the fall-back estimators must reconverge from a larger difference.

Figure 5 shows the increase in MSE with the utility bound during the selection process. Notice that the utility bounds

are less tight than in the previous network (K = 20, M = 100). This is because there are many more degrees of

freedom in the DANSE-parameters at the other nodes. As the utility bound does not take the future DANSE updates

of these parameters at other nodes into account, there is a larger gap between the centralized utility and the utility

upper bound computed in the distributed case.

Due to the node removal case calculating a utility upper bound, there are times when the node selection fails to

remove nodes that would have been removed had the optimal utility been used for node selection. Using the previous

simulated network the value ofη was adjusted so that this type of failure in the node selection process does occur. In

Figure 6, the value ofη and both the centralized utility and utility bounds were added to the current MSE to observe

the impact of node removal. In this scenario, the centralized utility is belowη, however the utility bound falls above

η and so the node is not considered for removal. While this doesnot have a negative effect on the estimation, i.e., the

MSE stays at a lower value, it prolongs the usage of a node thatwould have otherwise had its transmission capabilities

turned-off possibly shortening the lifetime of the network.

For node addition a network was constructed withK = 20 nodes each with 5 sensor signals (M = 100) andQ = 3.

At the beginning of the selection process a single node broadcast itszk signal and other nodes used this signal along

with their local signals to determine their utility. The utility threshold,η, was set to∞ so that all of the available nodes

would eventually add themselves to the network. In the centralized case, the utility was found using (35) and was then

subtracted from the current MSE to find the new MSE after node addition, i.e.,Js−k(Ŵs) − Us−k and is represented by

the dashed line. In the distributed case, represented by thedotted lines the utility was calculated by means of (52) and

subtracted from the current MSE, i.e.,Js−k(Ŵs) − U
i
s−k

. It should be noted that since the utility was subtracted from

the current MMSE, the true MSE after addition will be lower than that calculated MSE which uses the sub-optimal

estimator as shown in (55). In Figure 7 the utility bound is shown to provide at least a minimal decrease in the system,

i.e., after convergence in the distributed scenario the MSEis lower than that given by the utility bound.
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6.3. Adaptive implementation

For the adaptive implementation a simulated environment, depicted in Figure 8, is considered where there are

two moving desired source signals (Q = 2). The desired source signals (�), which are generated from a uniformly

distributed random process on the interval [-0.5 0.5], follow paths indicated by the L-shaped dashed lines. The desired

source signals move at a speed of 0.3 m/s and stop for 3 seconds at each corner. After the desired source signals reach

the end of the path they follow the same route to their starting point. This movement repeats until the end of the

simulation. Five white Gaussian noise sources�, which are generated from the same process as the desired source

signals, are present and an uncorrelated white Gaussian noise that is 5% of the average power of the noise sources is

added to each sensor observation. There areK = 30 nodes each with 5 sensors (◦) so that the total number of sensor

observations areM = 150.

The individual sensor measurements originating from the desired signal and noise sources are attenuated and

summed at each sensor. The attenuation factor is given as1
r wherer denotes the distance from the signal source to the

sensor. We assume that the desired source signals and noise statistics are estimated at each node based on (57)-(58)

where the correlation matrices are updated with a forgetting factor ofλ = 0.97 and the sensors observe their signals

at a sampling frequency offs = 8kHz.

The desired source signals are stationary for the first 5 seconds of the simulation in order to populate the necessary

signal statistics and all nodes are considered active during this time. After this initialization the node selection process

is started in order to remove and add nodes depending on theirutility bounds when compared to the predefined

thresholdη. After the addition or removal of a node from the system a fullDANSE cycle occurs, i.e., all nodes update

once, before the selection algorithm begins again. This is done in order to allow the DANSE algorithm to reconverge

after the addition or removal process.

Figure 9 compares the MSE when no nodes are removed to the centralized and distributed node selection process,

as well as the power of the system. The vertical blue-dashed lines indicate that a node was removed from the system

and the vertical red-dashed lines indicate that a node was added to the system. The selection of nodes in the centralized

and distributed scenario do not follow the same order due to the use of an upper and lower bound and due to the limited

tracking capabilities of DANSE, which may generate errors in the utility bounds.

However the utility bound is able to limit the effect on the MSE similarly to that in the centralized scenario.

There are even times that the MSE and number of active nodes inthe distributed scenario are better than that of the

centralized scenario which is possible due to the fact that greedy node selection is often suboptimal. The total number

of active nodes at any one time during the centralized solution with no node removal as well as the centralized and

distributed selection process is given in the bottom plot ofFigure 9.

The scenario is shown in Figure 10 during various times (0s, 22s, 45s, 90s) of the node selection process. The

active nodes are shown in blue and the nodes that are only receiving signals from the other nodes and not transmitting

their zk signals are shown in red. At 0 seconds no nodes are removed from the network which also indicates that

the system is using the maximal amount of power. After 22 seconds there has already been a large reduction in the
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amount of active nodes in the network. It should be noted thatthis is dependent onη and could be adjusted to fit the

desired scenario.

7. Conclusions

In this paper we have introduced the utility as a means to facilitate node selection in a distributed wireless sensor

network that performs node-specific signal estimation. This was accomplished by using the convergence and optimal-

ity properties of the DANSE algorithm in unison with an MSE threshold and a greedy selection process. While the

distributed utility bounds were shown to be sub-optimal they were successfully used to limit the MMSE increase or

decrease during node selection. The centralized and distributed node selection were compared to one another and it

was shown that the utility bounds offers an efficient way to perform node selection while still allowing to control the

MSE performance. Simulation results using the distributednode selection process often have a similar performance

to the centralized node selection process and show that there are significant power savings in the network while only

slightly effecting the MSE.
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Appendix A.

The cost function of nodeq evaluated with the node-specific linear MMSE estimator,Ŵq, is given as

Jq(Ŵq) = E{||x̄q − ŴH
q y||22}. (A.1)

Using this optimal estimator, the MMSE cost matrix for nodeq is given as

Ĵq = Rx̄qx̄q − RH
yx̄q

Ŵq (A.2)

whereRx̄qx̄q = E{x̄qx̄H
q } is now the nodeq’s desired signal correlation matrix.

The optimal estimators are related to one another by (13), which when used in (A.2) produces

Ĵq = Rx̄qx̄q − RH
yx̄q

ŴkĀqk. (A.3)

By expanding the desired components of nodeq into its complex-valued steering matrix and source signal vector

(A.3) is then given as

Ĵq = ĀqE{ssH}ĀH
q − ĀqE{syH}ŴkĀqk. (A.4)

Now the product of̄A−H
qk ĴqĀ−1

qk is given as

Ā−H
qk ĴqĀ−1

qk = Ā−H
qk ĀqE{ssH}ĀH

q − ĀqE{syH}ŴkĀqkĀ−1
qk

= ĀkĀ−1
q ĀqE{ssH}ĀH

q Ā−H
q ĀH

k − ĀkĀ−1
q ĀqE{syH}Ŵk

= ĀkE{ssH}ĀH
k − ĀkE{syH}Ŵk

= Ĵk (A.5)

(A.6)

which shows the equivalence stated in (12).

Appendix B.

For ease of exposition we re-iterate the block partitioningof the inverse “signal+noise” correlation matrix as

R−1
yy =





















S V

VH C





















(B.1)

and of the cross-correlation matrixRyx̄k as

Ryx̄k =





















Ryqx̄k

Ry−qx̄k





















(B.2)

whereRyqx̄k = E{yqx̄H
k } andRy−qx̄k = E{y−qx̄H

k }. The estimator without nodeq’s signals is given as

Ŵk−q = R−1
y−qy−q

Ry−qx̄k . (B.3)
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Now using the previously defined inverse correlation matrix(18)

Ŵk−q = (C − VHS−1V)Ry−qx̄k

= CRy−qx̄k − VHS−1VRy−qx̄k . (B.4)

The current estimator values are given as

Ŵk =





















Ŵkq
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















=





















S V

VH C








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





























Ryqx̄k

Ry−qx̄k





















. (B.5)

Now using (B.5) and re-arranging the expression forŴky−q
we have

Ŵky−q
= VHRyqx̄k + CRy−qx̄k

CRy−qx̄k = Ŵky−q
− VHRyqx̄k . (B.6)

Using (B.6) into (B.4) produces

Ŵk−q = Ŵky−q
− VH(Ryqx̄k − S−1VRy−qx̄k). (B.7)

Now using the fact thatS−1Ŵkq = Ryqx̄k + S−1VRy−qx̄k , (B.7) may by represented as (20), i.e.,

Ŵk−q = Ŵky−q
− VHS−1Ŵkq. (B.8)

Now using the optimal fall-back estimator (20) we are able tocalculate the utility given in (21). Using (B.8) and the

definition of the utility (15) gives

Uk−q = Tr{RH
yx̄k

Ŵk − RH
y−qx̄k

Ŵk−q}

= Tr{RH
yx̄k

Ŵk − RH
y−qx̄k

Ŵky−q
+ RH

y−qx̄k
VHS−1Ŵkq}. (B.9)

Block partitioning the first element in the trace of (B.9) gives

RH
yx̄k

Ŵk =

[

Ryqx̄k Ry−qx̄k

]H





















Ŵkq

Ŵky−q





















(B.10)

which expands the utility to

Uk−q = Tr{RH
yqx̄k

Ŵkq + RH
y−qx̄k

Ŵky−q
− RH

y−qx̄k
Ŵky−q

+ RH
y−qx̄k

VHS−1Ŵkq}

= Tr{RH
yqx̄k

Ŵkq + RH
y−qx̄k

VHS−1Ŵkq}. (B.11)

Now using (B.5) we have

Ŵkq = SRyqx̄k + VRy−qx̄k

RH
yqx̄k
= ŴH

kq
S−1 − RH

y−qx̄k
VHS−1 (B.12)

which when used with the previous result gives the utility

Uk−q = Tr{ŴH
kq

S−1Ŵkq}. (B.13)
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Appendix C.

We partition the inverse correlation matrix using the Woodbury identity and use two intermediate variables,Γ =

R−1
y−qy−q

Ry−qyq andΣ = Ryqyq − RH
y−qyq
Γ,

R−1
yy =





















S V

VH C


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















=





















Σ
−1 −Σ−1

Γ
H

−ΓΣ−1 C





















. (C.1)

We first expand (26) using the definition of the optimal estimator (8) to

Uk−q = Tr{RH
yx̄k

R−1
yy Ryx̄k − RH

y−qx̄k
R−1

y−qy−q
Ry−qx̄k}. (C.2)

Using the previously defined intermediate variables we see that

RH
yx̄k

R−1
yy Ryx̄k = RH

yqx̄k
Σ
−1Ryqx̄k − RH

yqx̄k
Σ
−1
Γ

HRy−qx̄k − RH
y−qx̄k
ΓΣ
−1Ryqx̄k + RH

y−qx̄k
CRy−qx̄k . (C.3)

Now using (18) and (C.1),R−1
y−qy−q

is given as

R−1
y−qy−q

= C − VHS−1V

= C − ΓΣ−1
Γ

H . (C.4)

Now combining (C.3), (C.4) and (C.2) produces

Uk−q = Tr{RH
yqx̄k
Σ
−1Ryqx̄k − RH

yqx̄k
Σ
−1
Γ

HRy−qx̄k − RH
y−qx̄k
ΓΣ
−1Ryqx̄k + RH

y−qx̄k
ΓΣ
−1
Γ

HRy−qx̄k}

= Tr{(Ryqx̄k − Γ
HRy−qx̄k)

H
Σ
−1(Ryqx̄k − Γ

HRy−qx̄k)}. (C.5)
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Figure 1: Computational complexity for findingUk−q using the naive approach compared to (21).
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the nodes that are only receiving signals from the other nodes and not transmitting theirzk signals are shown in red.
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Table 1: Greedy Centralized Node Selection

1. Each node∀k ∈ K collects observations of the signalsyq, ∀q ∈ K.
2. Each node calculates its utilityUs−k based on (35)

• If Us−k ≤ η and node is connected to network

– Remove node from network

– UpdateRy−ky−k andŴ−k, ∀q ∈ K \ {k}
Note : if there are multiple nodes for which the utility is below the threshold the node with the
smallest utility is removed.

• ElseIf Us−k > η and node is not connected to network

– Add node to network

– UpdateRyy andŴk, ∀q ∈ K \ {k}
Note : if there are multiple nodes for which the utility exceeds the threshold the node with the largest
utility is added.

3. return to 1.
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Table 2: The DANSE Algorithm

1. Initialize 0→ i, 1→ u
Initialize W0

kk andG0
−k randomly,∀k ∈ K

2. Each node∀k ∈ K performs the following update

• Collect (new observations) of sensor signalsyk[iB + n], n = 0 . . .B− 1.

• Compress the sensor signals using (37),

zi
k =W iH

kkyk[iB + n], n = 0 . . .B− 1

• Broadcast signalzi
k[iB + n], n = 0 . . .B− 1

• Collect broadcast signalzi
−k[iB + n], n = 0 . . .B− 1

• Update estimates ofRi
ỹkỹk

andRi
ỹkx̄k

with new observations

• Update node specific parameters
[

W i+1
kk

Gi+1
−k

]

=























(Ri
ỹkỹk

)−1Ri
ỹkx̄k

(if k = u)
[

W i
kk

Gi
−k

]

(if k , q)

3. Computẽxk[iB + n], n = 0 . . .B− 1, as
x̃k[iB + n] =W i+1

kk yk[iB + n] +Gi+1
−k zi

−k[iB + n]
4. i+1→ i
5. (u modJ) + 1→ u
6. return to 2.
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Table 3: Greedy Distributed Node Selection

1. Each node∀k ∈ K collects its ownyk signals and broadcast signals,z−k from other nodes connected in the
network.

2. Each node calculates its utilityUs−k based on (52) and scaled to the dry source as in (35)

• If Us−k ≤ η and node is connected to network

– Remove node from network

– UpdateRi+1
ỹk−k ỹk−k

andW
i+1
k−k

, ∀q ∈ K \ {k}
Note : if there are multiple nodes for which the utility is below the threshold the node with the
smallest utility is removed.

• ElseIf U s−k > η and node is not connected to network

– Add node to network

– UpdateRi+1
ỹkỹk

andW
i+1
k , ∀q ∈ K \ {k}

Note : if there are multiple nodes for which the utility exceeds the threshold the node with the largest
utility is added.

3. return to 1.

39


