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Abstract. Transposable elements (TEs) are DNA sequences that can
change their location within the genome. They contribute to genetic di-
versity within and across species and their transposing mechanisms may
also affect the functionality of genes. Accurate annotation of TEs is an
important step towards understanding their effects on genes and their
role in genome evolution. We introduce a framework for annotating TEs
which is based on relational decision tree learning. It allows to naturally
represent the structured data and biological processes involving TEs.
Furthermore, it also allows the integration of background knowledge and
benefits from the interpretability of decision trees. Preliminary experi-
ments show that our method outperforms two state-of-the-art systems
for TE annotation.
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1 Introduction

Transposable elements (TEs) are DNA sequences that can change their location
within the genome. This transposition process is carried out by a copy-and-paste
(Class I TEs) or cut-and-paste (Class II TEs) mechanism. TEs make up a large
portion of the DNA in eukaryotic organisms and contribute to genetic diversity
within and across species. Furthermore, their transposing mechanisms increase
the size of the genome and may affect the functionality of genes. Accurate anno-
tation of TEs, together with the development of interpretable models explaining
these annotations, is an important step towards understanding their effects on
genes and their role in genome evolution [1].

Currently, the annotation of TEs involves a fair amount of manual labor.
Automated methods exist that screen DNA for candidate TEs, but human an-
notators take over from there. In this paper, we explore how inductive logic
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programming (ILP) can be used to improve the screening. The framework we
propose uses existing methods to create a logic-based representation for each se-
quence, and then applies an ILP model. A preliminary experimental evaluation
reveals that this method can substantially boost the precision of the screening
process.

2 Background

As discussed by Bergman and Quesneville [2], there are several methods to an-
notate TEs in a genome, either based on homology, structural information or
no prior information at all, i.e., by looking for repeats in the genome (known as
de novo repeat discovery methods). However, all these approaches suffer from
limitations, such as the assumption that TE sequences are very similar, the
propagation of incorrect annotations, and specificity towards particular TE (su-
per)families. Moreover, none of them automatically learn models from data,
with the exception of Loureiro et al. [3], who demonstrate that machine learning
methods can be used to boost the annotation of TEs. They assessed a set of
annotation tools and learn a classifier that combines their predictions. A second
classifier predicts which tool to use to determine the boundaries of a TE.

From biology, it is known that TEs consist of several subsequences, called
protein domains, which help the TE perform its biological functions, including
copying or moving the TE. Methods exist for recognizing protein domains; the
state of the art uses hidden Markov models (HMMs) [4]. While TEs typically
contain particular protein domains, the occurrence of some domains does not
guarantee that a sequence is a TE.

In this work, we focus on predicting LTR retrotransposons, a particular type
of TEs that belong to Class I. They are characterized by having long terminal
repeats (LTRs) at their boundaries. These are identical sequences (up to minor
variations) of a few hundred nucleotides that can easily be recognized using ex-
isting software [5]. There are different types of LTR retrotransposons, organized
into superfamilies and families. One can consider two tasks: (1) identifying LTR
retrotransposon sequences in the genome, and (2) predicting their (super)family.

3 Method

Given the biological background knowledge mentioned above, it makes sense
not to try to learn a model that identifies TEs from the nucleotide sequence
alone, but to use the tools that already exist to extract relevant information
from sequences. Therefore we propose the following three-step framework for
identifying TEs.

1. The genome is screened for potential LTR retrotransposons. To that aim,
we use the tool Ltr Finder [5], which scans a DNA sequence to search
for matching string pairs (the LTRs), and then filters the list by checking
user defined length restrictions. Each remaining candidate, i.e., the region
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Fig. 1. (a) Illustration of the typical structure of a TE from the Copia superfamily,
delimited by LTRs and annotated with protein domains [7]. (b) An example of an
interpretation, which consists of protein domain predictions. For each domain predic-
tion, we have the Copia candidate ID, the domain, the start and end positions of the
domain prediction in the sequence, and the e-value for the HMM prediction. Note that
domains may have subtypes. For example, RT LTR is a subtype of domain RT.

bounded by the LTR pairs, receives a score, depending on how many of a
predefined set of structural elements are found in there. The output of this
first step is a list of candidate LTR retrotransposons, to be further filtered.

2. Every candidate TE sequence, obtained in the previous step, is screened for
the occurrence of protein domains that are known to occur in LTR retro-
transposons. Domains are recognized using a profile hidden Markov model
(HMM) [4] trained on a multiple sequence alignment corresponding to that
subdomain, from the Conserved Domain Database (CDD) [6].

3. Each candidate sequence is represented in a first order logic format, by simply
listing all its predicted protein domains, and the location in the sequence
where that domain was found. Fig. 1 illustrates this representation. For
a given sequence, this representation is fed into an ILP model, together
with biological background knowledge. The model predicts for every LTR
retrotransposon superfamily the probability that the sequence belongs to
that family.

In the above description, every element of this prediction framework is de-
termined, except for the ILP model, which is to be learned from data. In our
approach, the learning process is as follows. For each LTR retrotransposon su-
perfamily, a separate model is learned that maps a sequence, represented as
above, to the probability that the sequence belongs to that superfamily. This
model is built using the FORF approach (first-order random forests) [8], as im-
plemented in the relational data mining system ACE1. The language bias that
is used allows for the following types of tests in the nodes of the tree: (1) the
occurrence of a particular protein domain, (2) the occurrence of a particular
protein domain with a certain length limit (the same domain can be predicted
with different lengths), (3) the occurrence of a particular protein domain before
another domain, and (4) the number of occurrences of a particular protein do-
main. As domains may have subtypes (see Fig. 1), we give the hierarchical “is a
subtype” relationship as background knowledge.

1 http://dtai.cs.kuleuven.be/ACE/
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4 Experiments

As a first experiment, we evaluate the predictive performance of our frame-
work on the genome of D. melanogaster2 and compare our results for the Copia
superfamily with those of two state-of-the-art methods for TE annotation: Re-
peatMasker and LtrDigest.

State of the art. RepeatMasker [9] is a tool used to find repeats in query se-
quences according to their similarity with sequences from a library. This program
has been widely used for screening the genome for candidate TEs. LtrDigest
[10] is more similar to our method. It starts from a generated list of LTR retro-
transposons [11] and further annotates the sequences with protein domains (also
using profile HMMs) and other structural regions. Using a fixed set of rules, a
DNA strand is assigned to the most confident predictions.

Methodology and parameter settings. In order to obtain the initial set of
candidate sequences, we used standard parameters for Ltr Finder, but chose
the lowest possible score threshold (to have as many candidates as possible) and
set the minimum length between LTRs to 100 nucleotides. To annotate protein
domains, we used HMMER3 [12] with default parameters. To construct a train-
ing set for FORF, we extracted 4710 positive sequences (annotated with Copia)
from NCBI3 and added the same amount of negative sequences that were similar
to at least one positive sequence, but not annotated with Copia. The relational
trees were built with default parameters, except for the minimum number of
examples in a leaf, which was set to 5. RepeatMasker and LtrDigest were
run with their standard parameter settings. For LtrDigest, we only retained
predictions with an assigned DNA strand.

We report the performance of the different methods with precision-recall
(PR) curves [13]. We consider a prediction correct if its boundaries deviate no
more than 500 nucleotides from the boundaries of the corresponding annotation
in the genome. The motivation for using PR curves is that, as only a small
fraction of the genome contains Copia TE sequences, we are more interested in
recognizing the positive instances than in correctly predicting the negatives.

Results. The PR-curves are shown in Fig. 2. A first observation is that the
curve has a maximal recall of 0.63. This is due to the candidate set returned
by Ltr Finder: after removing duplicate sequences (Ltr Finder may return
sequences that only differ in the length of their LTR), it returns 4652 sequences,
containing only 32 of the 51 known Copia TE sequences in D. melanogaster.
Interestingly, 8 of the 19 missed sequences do not have any protein domain and
are much shorter than a typical Copia sequence, which makes it difficult for
many methods to detect them.

Second, the FORF curve is remarkable: the different points merely form a
vertical line. This means that, at the highest possible threshold, the method is
able to detect (nearly) all true positives. Allowing more predictions by lowering

2 We use version 48 of the annotated genome from Flybase (http://flybase.org/), as
the official annotation, which was made publicly available in November 2012.

3 National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/.
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Fig. 2. Precision-recall curves of the different methods.

the threshold only adds false positives. This suggests that a very high cut-off
can be used. We therefore had a closer look at the top predictions of the random
forest (73 predictions, after removing the true positives). This resulted in a
set of 6 Copia candidate sequences that are not in the official D. melanogaster
annotation, but for which Copia evidence can be found using a BLAST search
against the Nucleotide Collection (nt) of NCBI. This shows that our method is
able to make new suggestions for annotations to be included in the official list.

Third, as RepeatMasker (2064 predictions) and LtrDigest (1051 predic-
tions) only output positive predictions with 100% confidence rather than prob-
abilities, they correspond to a single point in PR space. As the point of LtrDi-
gest is below the curve of FORF, the latter is able to obtain a higher recall
(precision) than LtrDigest for the same precision (recall). RepeatMasker
yields a precision (0.02) that is slightly higher than the precision of FORF (0.01)
at a recall of 0.63, but for a slight decrease of 0.02 in recall, FORF’s precision
rises to 0.30.

5 Conclusions and further work

In this paper we have proposed a framework based on relational learning to
annotate TEs in a genome. We evaluated our approach for the Copia superfamily
in D. melanogaster and found a much better predictive performance compared
to the state-of-the-art methods.

As future work, we plan to explore alternatives to Ltr Finder to select can-
didate sequences, in order to identify more Copia TEs contained in the official D.
melanogaster annotation. We also plan to evaluate our method on other genomes,
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which will allow us to analyze how robust our trained models are w.r.t. different
organisms. Finally, we will explore hierarchical classification methods that can
exploit the underlying structure of the TE classification scheme.
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