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Abstract

The shortage function has been proposed as a tool to gauge portfolio perfor-
mance in multi-moment portfolio models. An open issue is how the choice
of direction vector affects the efficiency measurement and, from a practical
point of view, the resulting league tables. This paper illustrates empirically
how the choice of direction vector affects the relative ranking of portfolios.
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1 Introduction

Traditionally, the performance of portfolios within the mean-variance framework
has been evaluated using performance measures which include some combination of
information on both return and risk. Well-known classic examples are the Sharpe,
Treynor and Jensen measures, among others (see Grinblatt and Titman (1989) for a
critical discussion). Obviously, the menu of available portfolio performance measures
has meanwhile been substantially expanded (see, e.g., Bacon (2008) or Feibel (2003)
for surveys).
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In production theory, the shortage function, that simultaneously looks for reduc-
tions in inputs and expansions in outputs and that is dual to the profit function, has
been introduced by Luenberger (1995).1 Inspired by these developments in micro-
economic theory where distance functions are used to characterise choice sets and
to establish duality relations with value functions, Briec, Kerstens, and Lesourd
(2004) introduced the shortage function as a portfolio performance gauging tool in
the traditional mean-variance (MV) portfolio framework. In particular, these au-
thors show that this shortage function can represent the MV-space and serves as
an efficiency measure to position any portfolio with respect to the boundary of this
portfolio set. Furthermore, developing a dual framework to assess the degree of
satisfaction of investors preferences, they propose a decomposition of portfolio per-
formance into allocative and portfolio efficiency. This approach was extended to the
mean-variance-skewness (MVS) space in Briec, Kerstens, and Jokung (2007) where
the shortage function seeks to project portfolios onto the MVS-frontier by looking
for potential improvements (i.e., increasing return and skew, while decreasing risk).
A framework for the general moment portfolio problem is described in Briec and
Kerstens (2009), where the shortage function seeks to magnify odd moments and to
decrease even moments.

This new shortage function approach has meanwhile been applied to hedge funds
in a variety of contributions (see, e.g., Bacmann and Benedetti (2009), or Jurczenko
and Yanou (2010)). It has also been contrasted to alternative models in Lozano and
Guttiérez (2008), among others. Additional developments in this context are found
in, e.g., Menćıa and Sentana (2009).

Apart from portfolio theory, the utilisation of non-parametric frontier estima-
tors in conjunction with the use of distance functions (that also have an efficiency
interpretation) has found its way in a variety of finance topics. The performance
of mutual funds has been rated along a multitude of dimensions (rather than mean
and variance solely) using these boundary estimators. For instance, the seminal
article of Murthi, Choi, and Desai (1997) employs return as a desirable output to be
increased and risk and a series of transaction costs as an input to be reduced, and
measures the performance of each mutual fund with respect to a piecewise linear
frontier (rather than a traditional non-linear portfolio frontier). Most recently, em-
ploying a similar methodology, Glawischnig and Sommersguter-Reichmann (2010)
critically compare the resulting higher order moment efficiency measures to tradi-
tional financial indices. In the context of asset selection and following the innovative
article of Alam and Sickles (1998), similar ideas have been employed to show that
changes in productive efficiency at least partially translate into changes in stock
performance (see Edirisinghe and Zhang (2008) for a recent contribution).

All works (from Briec, Kerstens, and Lesourd (2004) to Briec and Kerstens
(2009)) project any portfolio onto the portfolio frontier by using a direction vector
directly related to the observed position of the portfolio itself. This choice of di-
rection vector results in a proportional efficiency measure, which is convenient for
practitioners. It is natural to ask how this choice of direction affects the efficiency

1Similar functions define duality relation in consumption theory (see Luenberger (1995)).
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assessment of portfolios.

Evident starting points to look for eventual readily available answers is the liter-
ature on the axiomatic foundations of efficiency measures in production theory and
some further related literature in operations research. The analysis of the axiomatic
foundations of efficiency measures in production theory goes back to at least Färe
and Lovell (1978). Färe and Lovell (1978) initially proposed three axioms that an
input-based efficiency index should satisfy: (i) indication (the index equals unity
if and only if the input vector belongs to the strongly efficient subset), (ii) mono-
tonicity (for constant other inputs and outputs, increasing an input must reduce
the value of the index), and (iii) homogeneity of degree minus one (doubling inputs
must halve the index). Later on, additional axioms have been proposed (e.g., Russell
(1985, 1990) suggested (iv) invariance for units of measurement (commensurability)
and (v) continuity in technology and also in input or output quantities). A recent
article summarising this axiomatic literature is Russell and Schworm (2009a).

This literature can prove only partially inspiring, since it focused mainly on spe-
cial distance functions that merely look for reduction in inputs (or improvements
in outputs). However, the shortage function measures potential efficiency improve-
ments in all dimensions. Russell and Schworm (2009b) recently took a look at similar
efficiency measures in production theory and prudently conclude that the shortage
function with a proportional interpretation satisfies a stronger unit invariance prop-
erty compared to the case of a fixed direction. Furthermore, as may be clear from
the above description so far, the traditional distance functions analysed in this ax-
iomatic literature do not normally adhere to the mathematical notion of a norm (for
exceptions, see Briec and Leleu (2003) for the use of a Hölder distance function).2

In brief, many alternatives to the proportional shortage function are conceivable,
but this work remains silent on how to choose among the existing options.

Furthermore, a particular problem of portfolio theory compared to production
theory is that returns and other odd moments can be negative, while production is
normally confined to semi-positive input and output vectors. While in the non-
parametric efficiency literature in production some articles do treat the case of
negative numbers occurring in some particular specifications (e.g., growth in em-
ployment), this problem is omnipresent in a portfolio context.3 The work by, e.g.,
Silva Portela, Thanassoulis, and Simpson (2004) specifically deals with negative data
when using a shortage function (see Pastor and Ruiz (2007) for a summary of these
issues in the Data Envelopment Analysis (DEA) literature). As will be empirically
documented, in portfolio analysis the traditional shortage function seems to lead to
problems of performance measurement around the origin, a problem that hitherto
went unnoticed in the literature.

Therefore, in this contribution we intend to systematically explore the conse-

2In finance, norms are used in a variety of contexts (see, e.g., the definition of coherent risk
measures in Jarrow and Purnanandam (2005)), but -to the best of our knowledge- never to appraise
portfolio performance.

3In operations research this literature is also known under the name Data Envelopment Analysis
(DEA).

3



quences of choosing different direction vectors for the shortage function in a MV-
portfolio context. In particular, this contribution is organised as follows. Section 2
provides some basic definitions as well as extensions in line with the framework de-
veloped in Briec, Kerstens, and Lesourd (2004). Section 3 offers a structured study
of different choices of the direction vector in a basic Mean Variance (MV) context.
In Section 4, making use of visualisations, the effect of these different choices is
illustrated using an empirical example. The final Section 5 concludes and outlines
potential future research avenues.

2 Mean-Variance Portfolio Framework

We start by briefly describing the non-parametric MV portfolio framework following
the initial Briec, Kerstens, and Lesourd (2004) article, but extending and generalis-
ing it where appropriate.

Consider the basic problem of composing a portfolio from an investor’s universe
consisting of n financial products, the latter referred to as the financial universe.
A portfolio can then be represented by a weight vector x = (x1, . . . , xn). A sum
constraint (

∑n

i=1
xi = 1) determines the proportion of each of the initial products.

Short selling is excluded, meaning that all weights xi are assumed to be positive.
Consequently, the set of all portfolios, also known as the portfolio simplex,4 is the
subset of R

n determined by

ℑ =

{

x ∈ R
n
+;

n
∑

i=1

xi = 1

}

.

The expected return vector and covariance matrix of the financial universe can
be computed. More precisely, if ril denotes the historical return of the ith financial
product in the financial universe (i = 1, . . . , n) at time l (l = 1, . . . ,m), then the
expected return of the ith product over the given time window is equal to

Ri =
1

m

m
∑

l=1

ril. (1)

Furthermore, the covariance between the ith and the jth product, denoted by Vij, is
obtained by

Vij =
1

m

m
∑

l=1

(ril − Ri)(rjl − Rj). (2)

The expected return E[R(x)] of a portfolio x and its variance Var[R(x)] can be

4This set of admissible portfolios can be modified to include additional constraints that can
be written as linear functions of asset weights (e.g., transaction costs): see Briec, Kerstens, and
Lesourd (2004). Briec and Kerstens (2009) also consider the cases of a risk-free asset and shorting.
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calculated as follows:

E[R(x)] =
n

∑

i=1

xiRi, Var[R(x)] =
n

∑

i,j=1

xixjVij. (3)

The portfolio simplex ℑ is mapped into the 2-dimensional MV-space by means
of the function Φ : ℑ → R

2 : x 7→ Φ(x) = (E[R(x)], Var[R(x)]). The image set Φ(ℑ)
can be extended to the disposal representation set DR = Φ(ℑ) + (R− × R+).

Furthermore, every element of the 2-dimensional MV-space R
2 is called a MV-

point. A MV-point can thus represent an observed portfolio in the sense that it can
be the image by Φ of this portfolio, or can be an arbitrary point in this 2-dimensional
space not related to a real portfolio. We also point out that both Φ(ℑ) and DR are
contained in R×R+ since the variance is always positive. As a consequence, both sets
are situated in the first and fourth quadrant of the traditional MV-representation.
Figure 1 provides an illustration generated from a fictitious financial universe.

Figure 1: Illustration of the image set Φ(ℑ) and the disposal representation set DR.

V

M

Φ(ℑ)

DR

To introduce the notion of portfolio efficiency, the weakly efficient frontier is
defined as a subset of DR by:

Definition 2.1. In MV-space, the weakly efficient frontier is defined as:

∂W (DR) = {(vM , vV ) ∈ DR; (−v′

M , v′

V ) < (−vM , vV ) ⇒ (v′

M , v′

V ) 6∈ DR}.

Clearly, the weakly efficient frontier, also called the theoretical frontier, contains all
MV-points that are not weakly dominated in MV-space. Notice that by definition,
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this frontier is part of DR. As the latter is an extension of Φ(ℑ), the theoretical
frontier can also contain points not attainable by real portfolios.

The strongly efficient frontier is introduced as follows:

Definition 2.2. In MV-space, the strongly efficient frontier is defined as:

∂S(DR) = {(vM , vV ) ∈ DR; (−v′

M , v′

V ) ≤ (−vM , vV ) and

(−v′

M , v′

V ) 6= (−vM , vV ) ⇒ (v′

M , v′

V ) 6∈ DR}.

The strongly efficient frontier, shortened to efficient frontier, contains all MV-points
that are not strictly dominated in MV-space. Now, the extended shortage function
is introduced in the following definition:

Definition 2.3. Let g = (gM , gV ) ∈ R+ × R− and g 6= 0. The extended shortage

function Sg in the direction of vector g is the function Sg : R
2 → R+ ∪ {−∞}, with

Sg(v) = sup
δ∈R+

{δ; v + δg ∈ DR}.

The optimal value of δ, if finite, is denoted by δ∗. The corresponding vector v∗ =
v + δ∗g is called the theoretical projected point.

Note firstly that the value −∞ is only realised if the set {δ; v+δg ∈ DR} is empty
since it is commonly accepted that sup ∅ = −∞. Secondly, the theoretical projected
point v∗ is located at the weakly efficient frontier ∂W (DR). Lastly, the extended
shortage function (hereafter merely addressed as shortage function) extends the one
introduced by Briec, Kerstens, and Lesourd (2004) and denoted by Sg. The following
diagram shows the relation between both functions:

ℑ

R
2 R+ ∪ {−∞}

�
�

�
�

��+

Φ

?

Sg

-
Sg

For a given direction vector g = (gM , gV ) specified as in Definition 2.3, the short-
age function value for a MV-point v = (vM , vV ) under evaluation can be computed
by solving the following quadratic non-linear model:

max
x,δ

δ (P1)

s. t.
n

∑

i=1

xi = 1,

E[R(x)] ≥ vM + δgM ,

Var[R(x)] ≤ vV + δgV ,

δ ≥ 0, 0 ≤ xi ≤ 1 for i ∈ {1, . . . , n}.

As for the shortage function value, the following proposition is valid.
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Proposition 2.1. Let v = (vM , vV ) ∈ DR, with v 6= 0, and g the direction vector

specified in Definition 2.3. Then Sg(v) ≥ 0, with Sg(v) = 0 ⇔ v ∈ ∂W (DR).

Proof. Because the set {δ; v + δg ∈ DR} is non-empty (δ = 0 is a member), the
result follows directly from Definition 2.3 of the shortage function.

From Proposition 2.1, we conclude that in practical shortage function value com-
putations, three different cases can occur: (i) Sg(v) = −∞ if v 6∈ DR, which is
observed as an infeasibility when solving model (P1); (ii) Sg(v) = 0 if v is efficient;
(iii) Sg(v) > 0 in all other cases, with higher values for less efficient vectors v. This
observation makes the shortage function, for instance, suitable for ranking differ-
ent financial products with respect to some financial universe: a higher shortage
function value results in a lower ranking.5

Proposition 2.2. Let g ∈ R+×R− be a non-zero direction vector. Then, Sλg = 1

λ
Sg

for an arbitrary λ > 0.

Proof. For an arbitrary vector v in MV-space, it follows from Definition 2.3 that

Sλg(v) = sup
δ∈R+

{δ; v + δλg ∈ DR}.

Now, let δ′ = δλ. Then

Sλg(v) = sup
δ′∈R+

{δ′

λ
; v + δ′g ∈ DR} =

1

λ
· sup

δ′∈R+

{δ′; v + δ′g ∈ DR} =
1

λ
Sg(v).

Proposition 2.2 demonstrates the effect on the shortage function value of scaling
the direction vector. A value λ > 1 corresponds with an expansion of the direction
vector, while λ < 1 results in a contraction of this vector. Moreover, this proposition
also shows that the computation of the shortage function value does not need to be
redone after rescaling the direction vector. Indeed, the resulting value can be found
directly by multiplying the initial shortage function values with the inverse of the
scaling factor.

3 Different Choices for the Direction Vector

The shortage function provides a tool for measuring efficiency of a given portfolio
with respect to the weakly efficient MV-frontier of some financial universe. Mea-
suring is done in the direction of the vector g with the purpose to simultaneously

5To obtain a positive relation between efficiency and the shortage function, one could consider
taking the negative of the current definition. However, we prefer to stay in line with current
practice in the literature.
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increase return and reduce risk. This explains the condition g = (gM , gV ) ∈ R+×R−

imposed in Definition 2.3. However, this restriction still leaves ample room for differ-
ent choices. The literature so far has not described how to determine this direction
vector and the impact of this choice on resulting computations (for instance, on
efficiency based rankings of different portfolios).

Inspired by developments in economic theory, several choices can be proposed.6

One main distinction can be made between (i) a fixed direction, or (ii) a direction
determined by the position of the portfolio under evaluation. Additionally, the
direction vector could be rescaled or normed. In this section, we discuss each of
these options in closer detail.

3.1 Fixed Direction Vector

A fixed direction vector in the shortage function definition is probably the most
natural choice to start with. In this subsection, we investigate exactly this case.

Definition 3.1. The fixed direction vector, abbreviated as FD-vector, is a vector g =
(cM ,−cV ) 6= (0, 0) with cM , cV ≥ 0. Computations of the shortage function value
(called FD-efficiency) and related vectors are done according to the FD-projection

scheme if the FD-vector is used as direction vector.

By definition, the FD-vector points in an increasing return and decreasing risk
direction if both cM and cV are distinct from zero. Figure 2 illustrates this type of
FD-vector in the MV-plane.

Evidently, special directions can be considered (see, e.g., Morey and Morey
(1999) for similar proposals). If cM = 0, then the FD-vector points in a hori-
zontal direction in MV-space. This choice corresponds with a purely risk reducing
strategy. The FD-vector points in a vertical upward direction in MV-space if cV = 0,
corresponding with a purely return increasing strategy.

Apart from the horizontal and vertical directions, plenty of other directions can
still be chosen in MV space. Commonly, one describes intermediate directions by
means of an angle. For instance, an equal increase of return and decrease of risk
strategy followed in Figure 2 leads to a 135◦ angle.

Note that a correct interpretation of a given direction requires the same measur-
ing unit on both axes of the MV figure. However, most frontier figures in MV-space,
of which Figure 1 is an example, are scaled images, thereby optimising printing
space and facilitating interpretation. More precisely, usually a different scaling is
used on both axes leading to different units which evidently influences the angle of
projection. Consequently, proposing a specific angle of direction should always be

6Briec (1997) introduces a position dependent direction vector in the efficiency literature. The
article by, e.g., Chambers, Chung, and Färe (1998) opts for a fixed direction vector. Also Blacko-
rby and Donaldson (1980) choose a fixed direction vector with unit coordinates when developing
absolute inequality measures.
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Figure 2: Illustration of the FD-vector pointing to a risk reducing and return in-
creasing direction.

accompanied by information on the measuring units to allow for a correct interpre-
tation.

As for the FD-efficiency, nothing can be added to the general Propositions 2.1
and 2.2. These propositions, however, guarantee that the shortage function can be
used for ranking financial products on the basis of their efficiency with respect to
the MV-frontier. Moreover, the ranking itself is not influenced by rescaling the FD-
vector. Only the exact direction of the direction vector needs to be determined. One
way to go is to base the choice of direction on investor preferences (in particular,
the choice of angle could reflect risk-aversion).7

3.2 Unit Length Fixed Direction Vector

The FD-vector g in MV-space introduced in the previous subsection is taken rather
arbitrarily. In particular, one could consider a vector with unit Euclidean length.8

This leads to the following definition:

Definition 3.2. The unit length fixed direction vector, abbreviated to UFD-vector,
is a vector g = 1√

c2
M

+c2
V

(cM ,−cV ) 6= (0, 0) with cM , cV ≥ 0. Computations of

the shortage function value (called UFD-efficiency) and related vectors are done

7Briec, Kerstens, and Lesourd (2004) demonstrate that, due to dual relations between short-
age function and mean-variance utility function, the shadow prices associated with the shortage
function can yield information about investors risk aversion.

8Recall that the Euclidean length of a vector v = (vM , vV ) is given by
√

v
2

M
+ v

2

V
. Note that

instead of Euclidean length, other choices of norms could equally well be considered.
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according to the UFD-projection scheme if the UFD-vector is used as direction
vector.

Clearly, the UFD-projection scheme is merely a special case of the FD-projection
scheme, but with an adjusted direction vector. In fact, the following proposition
clarifies the relationship between both projection schemes.

Proposition 3.1. Let gFD = (cM ,−cV ) be a FD-direction vector. Then, the UFD-

efficiency equals the FD-efficiency multiplied by
√

c2
M + c2

V .

Proof. The result follows directly from Proposition 2.2 and the fact that the corre-
sponding UFD-vector gUFD = 1√

c2
M

+c2
V

gFD.

Notice that Figure 2 can also serve to illustrate the UPD-projection scheme.9

3.3 Position Dependent Direction Vector

Briec, Kerstens, and Lesourd (2004) opt for a direction vector g depending on the
position of the point to be mapped by the shortage function. More precisely, their
choice is explained in the following definition.

Definition 3.3. Let v = (vM , vV ) be a point in MV-space. Then, the position de-

pendent direction vector, abbreviated to PD-vector, is the vector g = (|vM |,−|vV |).
Computations of the shortage function value (called PD-efficiency) and related vec-
tors are done according to the PD-projection scheme if the appropriate PD-vector
is used as direction vector.

Clearly, the PD-vector points in a direction simultaneously increasing return and
reducing risk. Moreover, this choice provides the shortage function with a convenient
proportional interpretation, as can be seen from Proposition 3.2.10

Proposition 3.2. Let v = (vM , vV ) ∈ DR, with v 6= 0, and g the PD-vector. Then

0 ≤ Sg(v) ≤ 1, with Sg(v) = 0 ⇔ v ∈ ∂W (DR).

Proof. Because of Proposition 2.1, we only need to prove additionally that Sg(v) ≤ 1
for v = (vM , vV ) ∈ DR. Clearly, since vV ≥ 0, g = (|vM |,−vV ). Consequently,

Sg(v) = sup
δ∈R+

{δ; (vM , vV ) + δ(|vM |,−vV ) ∈ DR}.

It now follows that vV (1 − δ) ≥ 0 which yields the required result.

9Normally, the arrows in the case of a fixed direction vector and a unit lenghth fixed direction
vector would just differ in length. This would hardly be noticeable on a separate figure. To save
space, we therefore refer to the same figure.

10As a matter of fact, as long as a portfolio model contains an even moment (variance, kurtosis,
... - i.e., all observed values in this dimension being stricly positive) this proprtional interpretation
can be maintained.

10



Figure 3 illustrates the PD-vector positioned at the corresponding point but
without considering the proper length of the vector in an effort not to obscure the
image. As can be observed, the PD-vector points towards the origin for original
positions located in the fourth quadrant and points away from the origin for po-
sitions situated in the second quadrant. This phenomenon follows directly from
the construction. Indeed, if v = (vM , vV ) is located in the fourth quadrant, then
vV ≥ 0 and vM ≤ 0. Consequently, g = (|vM |,−|vV |) = (−vM ,−vV ) = −v. Simi-
larly, if v is located in the second quadrant, then vV ≤ 0 and vM ≥ 0, resulting in
g = (|vM |,−|vV |) = (vM , vV ) = v. For points situated in the first or third quadrant,
the resulting PD-vector bends away from the origin.

Figure 3: Illustration of the PD-vector, only considering the direction and not the
length of the vector, and positioned at the corresponding point.

3.4 Unit Length Position Dependent Direction Vector

The PD-vector g introduced in the previous subsection is completely determined
by the position of the point v in MV-space. In particular, the Euclidean length of
the PD-vector varies when the position of v changes. This could be undesirable.
Therefore, in this subsection we examine the effect of switching to a direction vector
that is still dependent on the position of v but that has unit Euclidean length. We
start by introducing the following definition:

Definition 3.4. Let v = (vM , vV ) be a point in MV-space distinct from the origin.
Then, the unit length position dependent direction vector abbreviated to UPD-vector,
is the vector g = 1√

v2
M

+v2
V

(|vM |,−|vV |). Computations of the shortage function

value (called UPD-efficiency) and related vectors are done according to the UPD-

projection scheme if the appropriate UPD-vector is used as direction vector.
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As is the case of the PD-vector, the UPD-vector points in a direction that in-
creases return and decreases risk. In fact, Figure 3 can also perfectly serve as
illustration of the UPD-projection scheme. However, the proportionality property
(see Proposition 3.2) is no longer valid when choosing the UPD-vector. Instead, the
following holds:

Proposition 3.3. Let v ∈ DR, with v 6= 0, and g the UPD-vector. Then, 0 ≤
Sg(v) ≤

√

v2
M + v2

V . Sg(v) = 0 ⇔ v ∈ ∂W (DR).

Proof. The result follows directly from Propositions 2.2 and 3.2.

4 Empirical Application

Several projection schemes have been discussed in section 3 by means of their prop-
erties. In order to understand the differences more thoroughly, we apply these on a
set of portfolios obtained from a real data base. Visualisations help in understanding
the underlying patterns. Moreover, we explain the possible impact of different pro-
jection schemes on the efficiency based ranking of the portfolios under observation.

4.1 Data Description

The data base for this empirical part is obtained from Euronext and contains initially
a selection of 101 assets (given by their daily returns from May 18 to October 1,
2009) traded at Euronext Paris. The assets are spread over Large Cap, Middle
Cap, Small Cap, Free Market and Bonds. To obtain more detailed visualisations
afterwards, this selection has been narrowed down to those assets with an expected
return smaller than or equal to 0.006 and a variance less than or equal to 0.001
computed over the given time period. The financial universe on which we proceed
thus contains 78 assets.11

From the financial universe provided, twenty portfolios labelled from 1 to 20 are
randomly drawn. Because of the financial universe’s size, the portfolio weights are
not reported here.

4.2 Efficiency Computations and Discussion

We start by visualising in Figure 4 the MV-frontier and the projection of the pro-
posed portfolios onto this frontier according to different direction schemes. More
precisely, we propose the PD- and UPD-projection schemes, and the FD- and UFD-
projection schemes. The latter are computed in a horizontal, vertical and slant
direction. As slant direction, we propose the FD-vector g = (Mmax,−Vmax), with

11Both the initial data base and the proposed selection are available upon simple request from
the authors.
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Mmax and Vmax the maximal expected return and variance of all assets in the fi-
nancial universe computed over the given time period, respectively. This choice of
direction roughly corresponds, at least for this data base, with a projection in a 135◦

direction when scaled to a square figure (see Figure 4b).

[Figure 4 about here]

The weakly efficient (green) and strongly efficient (red) MV-frontier, and the left
side boundary of Φ(ℑ) (blue) are visible on the left-hand side of each image of Figure
4. The original assets are visible as grey circles. The selected portfolios (black solid
circles) are projected onto their optimal positions (black circles) on the MV-frontier
according to the PD- and UPD-projection schemes in Figure 4a, and the FD- and
UFD-projection schemes in Figures 4b (slant direction), 4c (horizontal direction),
and 4d (vertical direction). Notice that PD and UPD schemes lead to the same
projected portfolios. The same remark applies to FD and UFD schemes. A detail of
these images can be found in Figure 5. Notice that the scaling applied for the latter
images visibly results in a different direction in Figure 5b compared with Figure
4b. This serves to illustrate what was mentioned earlier: providing a projection
direction in terms of an angle should be accompanied by scaling information for
correct interpretation.

[Figure 5 about here]

Next, the efficiencies of the twenty portfolios under observation are computed
according to the proposed projection schemes. The resulting efficiencies are reported
in Table 1.

[Table 1 about here]

Observe that the efficiencies computed according to FD- and UFD-projection
schemes are equal up to a fixed factor. For example, the FD-efficiency in the slant
direction equals the UFD-efficiency multiplied by 237.82 for all portfolios. Similar
factors can be found for the other FD-directions. This result is a mere consequence
of Proposition 3.1.

The noticeable differences in magnitude of different types of efficiencies make
these mutually incomparable. It follows from Proposition 3.2 that the PD-efficiency
can be interpreted as a proportional efficiency measure (or better inefficiency mea-
sure). Focussing on portfolio 10 for instance, the observed PD-efficiency of 0.883821
can be interpreted as an inefficiency of 88.38%, knowing that all portfolios of the
financial universe, and not only those under observation, have a PD-efficiency be-
tween 0% (fully efficient) and 100% (fully inefficient). One might expect a similar
interpretation for the FD-efficiency whose magnitude appears to be comparable with
that of the PD-efficiency. Proposition 2.1, however, is the best one can say, meaning
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there is no predetermined upper bound for the FD-efficiencies. Consequently, the
FD-efficiencies cannot be considered as proportional measures.

The UPD- and UFD-efficiencies are all pretty small. It follows from Definition 2.3
that, with these projection schemes, the shortage function value can be interpreted
as the Euclidean distance to the MV-frontier in the appropriate direction. In fact,
this interpretation makes it possible to compare the UPD- and UFD-efficiencies
after all. Taking portfolio 10 again as an example, the slant UFD-efficiency is equal
to 0.000322, while the horizontal and the vertical UFD-efficiencies equal 0.000050
and 0.003050, respectively. Because of the shape of the MV-frontier (increasing
and concave), one can expect that the slant UFD-efficiency is situated between the
horizontal and the vertical UFD-efficiency. Also the UPD-efficiency of 0.000990 is
situated between the horizontal and vertical UFD-efficiency. Clearly, this result is
valid for all portfolios.

Based on the different efficiencies computed in Table 1, a ranking of all portfolios
is established. The resulting rankings from best (smallest efficiency) to worst (largest
efficiency) are listed in Table 2.

[Table 2 about here]

One is immediately struck by the differences between some of the rankings.
Compare, for instance, the PD-ranking with the UPD-ranking. Portfolio 17, for
example, performs best in the PD-ranking while its performance is rather average
in the UPD-ranking. The differences can even be more pronounced. Portfolio 10,
for instance, is the worst possible portfolio in the PD-ranking, which contrasts to its
second best position in the UPD-ranking. Other examples show that this behaviour
is not in any sense exceptional.

[Table 3 about here]

These casual observations are confirmed by Spearman’s rank correlations repre-
sented in Table 3. Indeed, the rank correlation between the PD- and UPD-efficiencies
is equal to 0.048 with a high significance of 0.840. Therefore, both rankings can be
considered statistically independent. Comparing other rankings, we come to the
same conclusion except for the horizontal and the slant FD-UFD rankings. Here,
we observe a statistically significant rank correlation of 0.986. Inspection of Table
2 confirms this result since one can notice that only the consecutive portfolios 14
and 17 are interchanged. Consequently, in this example, projecting horizontally or
in the slant angle proposed earlier does not result in major differences.

[Figure 6 about here]

That projecting in different directions can lead to different rankings need not
come as a surprise. Indeed, some portfolios can be situated close to the MV-frontier
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in one direction, but less close in other directions. The real surprise, however, is
the drastic effect of switching from a PD-vector to the UPD-vector in the position
dependent projection schemes, since in these cases, the directions are identical for
both schemes.

To understand this unexpected behaviour, we visualise the different types of ef-
ficiencies in Figure 6. Starting from the financial universe, a particular rectangular
region in MV-space covering Φ(ℑ) is identified. On this region, a regular grid of
size 200× 200 is imposed. For each of the grid points (40,000 in total) the efficiency
measure is computed, following one of the projection schemes. These values are then
scaled to a grey tone value that can be used to colour the corresponding grid point.
Consequently, the grey tone value gives an indication of the efficiency value. How-
ever, since the human mind is not well trained to discriminate between neighbouring
grey tones, an additional transformation is used to cycle ten times through all grey
tone values in consecutive increasing and decreasing order. Put differently, instead
of using a pattern consisting of only one grey tone cycle (from black to white), a
pattern consisting of ten cycles (from black to white and back to black) is utilised as
colour function. As a consequence, different grey tone bands occur, all determined
by MV-points with equal efficiency, thus, visualising the curves of equal efficiency.
We mention that also the grid points are scaled to obtain square images.

Comparing Figures 6a and 6b, it becomes clear why switching to a unit length
projection vector can have a major impact on the efficiency ranking. Indeed, the
lines of equal UPD-efficiency seem to bend away around the origin, contrary to the
lines of equal PD-efficiency. On the one hand, portfolios with an expected return of
nearly zero and higher variance are promoted in the UPD-ranking compared with
the PD-ranking. On the other hand, notice that the lines of equal PD-efficiency in
Figure 6a are more condensed near the low variance side of the MV-frontier and
close to the origin. This means that the PD-efficiency changes in this region more
drastically than, for instance, in the high variance, high return area. Consequently,
it is possible for portfolios to be situated rather close to the MV-frontier and still
be considered as rather PD-inefficient. This effect should not be underestimated,
especially in the presence of products with very low variance in the financial universe
(which is quite often the case). As a consequence, portfolios in that area are almost
always very inefficient, which is undesirable. The UPD-projection scheme tries to
correct this effect, but actually overcompensates it as can be seen in Figure 6b.

When analysing Figures 6c, 6d and 6e, one notices that the lines of equal effi-
ciency are translated in a horizontal, vertical, and slant direction, respectively. The
resulting images correspond more closely to the idea that portfolios closer to the
MV-frontier should have a higher efficiency ranking. Especially the slant FD- (and
UFD-) projection scheme live up to this expectation. Remark that the horizontal
FD- (and UFD-) projection concentrates the lines of equal efficiency near the high
variance, high return area of the MV-frontier (see Figure 6c). A similar behaviour is
noticeable in the low variance, low return area of the MV-frontier when projecting
vertically according to a FD- (and UFD-) projection scheme (see Figure 6d).
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5 Conclusions and Recommendations

In section 3, we have described possible projection schemes for computing efficiency
by means of the shortage function. From the empirical analysis in section 4, we have
learned that different projection schemes can lead to different portfolio rankings.
The PD-projection scheme has as advantage that its efficiency has a proportional
interpretation (this is, having a value between zero and one), thereby making it
suitable for situating the efficiency of any portfolio with respect to the financial
universe. However, as a major drawback we observe that, in the presence of low
variance products in the financial universe, portfolios with a low variance and low
return have a rather high PD-efficiency. Therefore, these types of portfolios are
conceived as being inefficient. Put differently, the PD-efficiency of high variance,
high return products is less sensitive to changes compared to low variance, low
return products. Consequently, high variance, high return products are usually
promoted in PD-rankings.

The UPD-projection scheme tries to correct the drawback in the PD-projection
scheme but actually overcompensates by bending the lines of equal UPD-efficiency
away near the origin of the MV-plane. As a consequence, portfolios with a higher
variance but a return close to zero are over-promoted in the UPD-ranking. This
effect can equally lead to undesirable effects in the ranking. The UPD-efficiency has
the advantage, however, that it can be interpreted as a true Euclidean distance to
the MV-frontier in the appropriate direction. Therefore, its interpretation concurs
with the natural idea of efficiency as some kind of distance to the frontier: smaller
distances to the frontier result in smaller efficiency values.

The FD- and UFD-projection schemes lead to identical rankings, at least for the
same fixed direction. When applying a UFD-projection scheme, the correspond-
ing UFD-efficiency can be interpreted as a Euclidean distance to the MV-frontier
measured in that direction. However, the FD- and UFD-efficiencies cannot be inter-
preted as proportional efficiency measures. The computation of one efficiency value
can, therefore, not be interpreted, which should not be a problem when applied for
ranking portfolios on the basis of their efficiency.

To summarise, all projection schemes considered here seem to have their specific
advantages and drawbacks in a MV portfolio context. Therefore, an ideal projection
scheme is not apparent at this moment. When it comes to efficiency based ranking of
portfolios, however, we are in favour of the slant UFD-projection scheme since (a) the
UFD-efficiency can be interpreted as a Euclidean distance to the MV-frontier, which
is therefore interpretable (i.e., points closer to the frontier are more efficient); (b)
the lines of equal UFD-efficiency in Figure 6e correspond most to our expectations
(i.e., these basically have a similar shape as the original frontier).

This paper is, to the best of our knowledge, the first in systematically examining
the effect of different projection schemes for the shortage function in a MV portfolio
setting. Clearly, this research is not finished. It could, for instance, be interesting
to look for the mathematical reasons why the lines of equal UPD-efficiency bend
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away near the origin of the MV-space. Furthermore, instead of using the Euclidean
distance, other distance norms can be considered. The effect of other norm choices
on the corresponding efficiencies and on related rankings is unknown so far. Finally,
it could be equally interesting to examine the results of this analysis in production
theory where the problem by its very nature is always multi-dimensional.
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Table 1: Efficiencies of twenty randomly selected portfolios according to

different projection schemes.

Nr PD UPD FD hor UFD hor FD ver UFD ver FD slant UFD slant

1 0.692152 0.001396 0.070869 0.000064 0.406139 0.002387 0.096315 0.000405

2 0.779754 0.001156 0.046033 0.000042 0.436797 0.002567 0.063938 0.000269

3 0.443501 0.001183 0.058670 0.000053 0.281548 0.001655 0.077089 0.000324

4 0.708772 0.001183 0.041753 0.000038 0.394698 0.002320 0.057667 0.000242

5 0.591681 0.001388 0.074082 0.000067 0.359669 0.002114 0.099206 0.000417

6 0.811610 0.001549 0.125345 0.000114 0.494799 0.002908 0.170012 0.000715

7 0.679392 0.001221 0.044759 0.000041 0.382507 0.002248 0.061511 0.000259

8 0.794476 0.001287 0.064905 0.000059 0.458695 0.002696 0.089582 0.000377

9 0.694604 0.001519 0.098996 0.000090 0.420354 0.002470 0.133121 0.000560

10 0.883821 0.000990 0.054667 0.000050 0.519052 0.003050 0.076607 0.000322

11 0.836747 0.001369 0.091765 0.000083 0.501430 0.002947 0.126227 0.000531

12 0.526507 0.001357 0.081001 0.000074 0.334255 0.001964 0.106652 0.000448

13 0.756302 0.001491 0.095947 0.000087 0.451748 0.002655 0.130262 0.000548

14 0.736745 0.001550 0.109030 0.000099 0.445507 0.002618 0.146967 0.000618

15 0.789060 0.000979 0.031841 0.000029 0.431482 0.002536 0.044565 0.000187

16 0.883182 0.001631 0.207546 0.000188 0.566834 0.003331 0.278942 0.001173

17 0.443159 0.001339 0.114992 0.000104 0.305361 0.001795 0.143802 0.000605

18 0.873161 0.001113 0.065143 0.000059 0.516351 0.003034 0.090873 0.000382

19 0.658802 0.001509 0.098974 0.000090 0.403417 0.002371 0.132366 0.000557

20 0.873004 0.001098 0.063138 0.000057 0.514912 0.003026 0.088129 0.000371
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Table 2: Ranking of twenty randomly selected portfolios according to dif-

ferent types of efficiency.

Ranked by PD UPD FD-UFD hor FD-UFD ver FD-UFD slant

best
�

�

�

�
17 15 15 3 15

3 10 4
�

�

�

�
17 4

12 20 7 12 7

5 18 2 5 2

19 2 10 7 10

7 4 3 4 3

1 3 20 19 20

9 7 8 1 8

4 8 18 9 18

14
�

�

�

�
17 1 15 1

13 12 5 2 5

2 11 12 14 12

15 5 11 13 11

8 1 13 8 13

6 13 19 6 19

11 19 9 11 9

20 9 14 20
�

�

�

�
17

18 6
�

�

�

�
17 18 14

16 14 6 10 6

worst 10 16 16 16 16

Table 3: Spearman’s Rank Correlation between Different Efficiency Rank-

ings

PD UPD FD-UFD FD-UFD FD-UFD

hor ver slant

PD Rank Correlation 1.000 0.048 −0.063 0.023 −0.054

Sig. (2-tailed) 0.840 0.791 0.925 0.821

UPD Rank Correlation 0.048 1.000 −0.314 −0.026 −0.301

Sig. (2-tailed) 0.840 0.177 0.915 0.198

FD-UFD hor Rank Correlation −0.063 −0.314 1.000 0.284 0.986**

Sig. (2-tailed) 0.791 0.177 0.225 0.000

FD-UFD ver Rank Correlation 0.023 −0.026 0.284 1.000 0.293

Sig. (2-tailed) 0.925 0.915 0.225 0.210

FD-UFD slant Rank Correlation −0.054 −0.301 0.986** 0.293 1.000

Sig. (2-tailed) 0.821 0.198 0.000 0.210

**: Correlation is significant at the 0.01 level (2-tailed).
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Figure 4: Projection of selected portfolios onto the MV-frontier following

different projection schemes.

Visualisation of the weakly efficient (green) and strongly efficient (red) MV-frontier,
and the left side boundary of Φ(ℑ) (blue). The original assets are visible as grey
circles. The selected portfolios (black solid circles) are projected onto their opti-
mal positions (black circles) on the MV-frontier according to the following projec-
tion schemes: (a) The PD- and UPD-projection scheme; (b) The FD- and UFD-
projection scheme in a slant direction; (c) The FD- and UFD-projection scheme in a
horizontal direction; (d) The FD- and UFD-projection scheme in a vertical direction.

(a) (b)

(c) (d)
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Figure 5: Details of the projection of selected portfolios onto the MV-

frontier following different projection schemes.

Visualisation of the weakly efficient (green) and strongly efficient (red) MV-frontier.
Some of the original assets are visible as grey circles. The selected portfolios (black
solid circles) are projected onto their optimal positions (black circles) on the MV-
frontier according to the following projection schemes: (a) The PD- and UPD-
projection scheme; (b) The FD- and UFD-projection scheme in a slant direction;
(c) The FD- and UFD-projection scheme in a horizontal direction; (d) The FD- and
UFD-projection scheme in a vertical direction.

(a) (b)

(c) (d)
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Figure 6: Visualisation of the curves of equal efficiency according to dif-

ferent projection schemes

For each point of a 2d-grid covering Φ(ℑ), the efficiency measure is computed,
following different projection schemes. The efficiency values obtained are scaled
cyclical to a grey tone value for colouring the corresponding grid point. In this way,
the curves of equal efficiency become visible. The following projection schemes are
applied: (a) The PD-projection scheme; (b) The UPD-projection scheme; (c) The
FD- and UFD-projection scheme in a horizontal direction; (d) The UFD- and UFD-
projection scheme in a vertical direction; (e) The FD- and UFD-projection scheme
in a slant direction. The original assets are visible as small green dots.

V

M

V

M

(a) (b)

V

M

V

M

(c) (d)

V

M

(e)

23


	Vandewoestynecover1.pdf
	vandewoestyneHUBRP1.pdf

