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Abstract

There is a burgeoning literature using non-parametric frontier methods to measure
mutual fund performance. These articles measure the relationship between the vari-
ous characteristics (mainly return information and some costs of ownership) of these
specialized financial products to establish a ranking using some efficiency measure.
We argue in favor of the use of the shortage function, which is compatible with gen-
eral investor preferences, and question some of the often maintained hypotheses in
this line of research. The empirical part employs a large database of US and Euro-
pean mutual funds to offer extensive tests of the underlying modeling assumptions
using various frontier estimators.

Keywords: Shortage function, Mutual Funds, Mean-Variance model, Higher-order mo-
ments, Data Envelopment Analysis, Free Disposal Hull

1 Introduction

In the USA, it is well-known that mutual funds have been the most rapidly growing
non-depository financial institutions. Mutual funds have even become second in size after
commercial banks (see Haslem (2003)). The European mutual fund industry has mean-
while become the second largest in the world (accounting for about 30% of world fund
assets). In the investment process, investors pay attention to mutual fund performances
established by several rating agencies in the different industries around the world (such
as Lipper, Morningstar, Standard & Poor’s, Fitch Ratings, etc. in the USA, EuroPerfor-
mance in Europe, ASSIRT in Australia, etc.).
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‡Hogeschool Universiteit Brussel, Brussels, Belgium. amine.mounir@hubrussel.be
§Hogeschool Universiteit Brussel, Brussels, Belgium. ignace.vandewoestyne@hubrussel.be
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The typical investor is likely to look at highly rated mutual funds (e.g., five stars accord-
ing to the Morningstar taxonomy) and make a choice among these. Although such industry
ratings enjoy quite some popularity, the rating agency’s methodologies are subject to con-
troversy. For instance, Blake and Morey (2000) examine the Morningstar rating system
as a predictor of mutual fund performance for USA domestic equity funds and find little
statistical evidence that Morningstar’s highest-rated funds outperform the next-to-highest
and median-rated funds. Sharpe (1998) investigates the properties of Morningstar’s mea-
sure and shows that the risk-adjusted rating (RAR) produced by Morningstar leads to
results similar to the traditional excess return Sharpe ratio.

In general, a whole variety of empirical regularities, including some behavioral biases,
have been documented for both investors and fund managers in the mutual fund industry
(see, e.g., Haslem (2003) or Zheng (2008)). It is, e.g., known that investors have little
knowledge about the funds they are investing in (Capon, Fitzsimons, and Prince (1996)).
For instance, Sirri and Tufano (1998) find that equity mutual fund investors select funds
with the highest recent returns. Furthermore, Del Guercio and Tkac (2008) show that
mutual funds receiving a five star Morningstar rating experience a high inflow of funds.

The limits of existing fund rating methodologies are to some extent related to the
foundations of traditional performance measurement following Markowitz (1952). Mod-
ern portfolio theory heavily relies on combining the information of expected return and
variance (or some other variations of a risk measure) to assess performance. From the
beginning, the theoretical foundations of this approach have been subject to several criti-
cisms. From a theoretical point of view, this work maintains strong assumptions on prob-
ability distributions and Von Neumann-Morgenstern utility functions. From a practical
point of view, since the computational cost for computing the co-variances was historically
important for samples of even modest size, Sharpe (1963) proposed a simpler “diagonal”
model. The same concern also motivated Sharpe (1964) and Lintner (1965) to develop the
capital asset pricing model (CAPM), an equilibrium model assuming that all agents have
similar expectations about the market. Meanwhile, an enormous literature has emerged
on portfolio performance measurement.

Over these years, portfolio performance appraisal has moved from total-risk founda-
tions (e.g., variance or standard deviation) to performance indexes where returns in excess
of the risk-free rate are compared to some risk measure (e.g., Sharpe and Treynor ratios
are among the classics). Both in the academic and professional literature, literally dozens
of performances gauges have been proposed over the years (a recent survey of this vast
literature is found in Bacon (2008)). In the specific literature on mutual fund perfor-
mance measurement, Haslem (2003) and especially Gregoriou (2007) and Lehmann and
Timmermann (2008) summarize what is known about both the issues of the definition of
performance benchmarks and performance attribution (i.e., the market timing and asset
selection skills of active managers).

Relatively recently, in view of a large variety of criticisms towards traditional perfor-
mance measures, several authors have been introducing non-parametric frontier methods
to open up new perspectives in mutual fund performance assessment. Following the sem-
inal articles of Farrell (1957) and Charnes, Cooper, and Rhodes (1978), efficiency mea-
sures and their extremum estimators from production theory are being transposed into
the financial literature in an effort to provide alternative mutual funds ratings. In gen-
eral, based on a sample of observed units, one estimates non-parametric frontiers of any
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multi-dimensional choice set and positions each of these observations with respect to the
boundary of such choice set using an efficiency measure (see Ray (2004)). The use of these
frontier or extremum estimators has the advantage of allowing to rate the performance
of mutual funds along a multitude of dimensions (rather than mean and variance solely).
For instance, the seminal article of Murthi, Choi, and Desai (1997) employs return as a
desirable output to be increased and risk and a series of transaction costs as an input to
be reduced, and measures the performance of each mutual fund with respect to a piece-
wise linear frontier established on the universe of funds under consideration (rather than
a traditional non-linear portfolio frontier). Immediately thereafter, similar models started
appearing in the literature (e.g., McMullen and Strong (1998) and Premachandra, Powell,
and Shi (1998)).

Meanwhile, one can speak of a burgeoning literature with about thirty or so related
articles that have appeared in a variety of outlets. For instance, extensions have been
proposed to the evaluation of pension funds (Barros and Garcia (2006)), ethical mutual
funds (Basso and Funari (2003)), and hedge funds (Gregoriou (2003)), while lower and/or
upper partial moments are utilized instead or in combination with ordinary moments
in, e.g., the work of Eling (2006). Quite often, these efficiency measures are compared to
more traditional portfolio performance measures. For instance, employing a similar frame-
work Choi and Murthi (2001) compare the resulting efficiency measures to the traditional
Sharpe ratio. Glawischnig and Sommersguter-Reichmann (2010) offer an up-to-date and
fairly comprehensive review of the literature that has developed along these lines. The
book of Gregoriou (2007) offers an international perspective and a mix of traditional and
frontier-based performance studies.

One of the main advantages of these non-parametric frontier or extremum estimators
(often known under the moniker Data Envelopment Analysis (DEA)) is that these can
handle multiple dimensions simultaneously and that these yield a single real number
performance index with respect to a frontier composed of similar entities. Especially the
need for multiple dimensions is apparent for certain type of funds (e.g., hedge funds) which
are known to follow non-normal distributions (e.g., Gregoriou (2003)). However, while a
growing body of contributions use these methods to assess mutual fund performance, no
consensus has emerged about a variety of model specification issues.

The aim of this contribution is threefold. First, we summarize theoretical arguments
for the use of the shortage function as an efficiency measure compatible with general
investor preferences. The existing literature on non-parametric frontiers to gauge mutual
fund performance has so far employed less general efficiency measures. Second, we focus
on the main specification issues surrounding the application of non-parametric frontier
methods when assessing the financial performance of mutual funds. We therefore employ
a test-statistic developed by Li (1996) and refined by Fan and Ullah (1999) to assess these
key methodological choices. Finally, since in the recent finance literature a lot of attention
has focused on obtaining more robust estimates for portfolio management (e.g., Fabozzi,
Kolm, Pachamanova, and Focardi (2007)), this paper is the first frontier contribution
gauging mutual funds using the robust L-moments (Hosking (1990)) rather than classical
moments.

This contribution is structured as follows. The next section develops the basic theoreti-
cal framework for the paper. After introducing the shortage function and some arguments
for its application in mutual fund performance assessment, we list the in our view most
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important model specification issues. An empirical application on a large sample of USA
and European funds provides a testing ground for these methodological choices at hand.
A concluding section summarizes the key results.

2 Non-Parametric Frontier Models: Methodology

2.1 Shortage Function: Definition

Even though the transposition of these non-parametric frontier estimators from a produc-
tion context into finance seems straightforward, a variety of specification issues arise that
have largely been ignored in the literature so far. Basically, there are two main issues: (i)
the choice of an efficiency measure, and (ii) the specification of the model linking the dif-
ferent dimensions involved in the frontier benchmarking model. The main contribution of
this paper lays with respect to the second issue. We now first settle the choice of efficiency
measure using a series of theoretical arguments.

Following recent insights from Eeckhoudt and Schlesinger (2006) into the validity of
the assumption that the derivatives of the expected utility (EU) function alternate in sign
to characterize behavior towards risk, Briec and Kerstens (2010) introduce a general pro-
cedure allowing for general higher moments in portfolio choice respecting this mixed risk
aversion preference structure.1 These authors transpose the generalized distance or short-
age function to the multi-moment portfolio problem to account for a preference for odd
moments (that need to be increased) and an aversion to even moments (that need to be
reduced).2 While Briec, Kerstens, and Lesourd (2004; 2007) demonstrated that the short-
age function can project any (in)efficient portfolio exactly onto Mean-Variance (MV) and
Mean-Variance-Skewness (MVS) portfolio frontiers and that this function is connected via
duality to an indirect MV and MVS utility function, Briec and Kerstens (2010) generalize
this same result for general moments. Thus, the ability of the shortage function to seek
for improvements in two directions simultaneously makes it an excellent tool for gauging
financial product performances concurring with general investor preferences. By contrast,
most current articles employ a more restrictive distance function as an efficiency measure
that is not compatible with such general investor preferences. For instance, Glawischnig
and Sommersguter-Reichmann (2010) only look for reductions in some of the dimensions
in the frontier model.

One important difference between production theory and portfolio theory is that pro-
duction data are normally restricted to the positive data domain while financial informa-
tion (e.g., odd moments) may contain negative numbers. The issue of handling negative
data has attracted some research attention in the frontier literature. For instance, propos-
als have been made to translate the data, though in many models this data transformation
may have an impact on the efficiency measure (see, e.g., Lovell and Pastor (1995) on the

1This class of mixed risk aversion utility functions was initially proposed in Brockett and Golden
(1987). It is well known that these moment orderings meet necessary, not sufficient conditions for EU
maximization under strong additional assumptions on probability distributions and investor’s preferences.

2This shortage function is introduced in production theory by Luenberger (1995): this general distance
function simultaneously looks for reductions in inputs and expansions in outputs and is dual to the profit
function. While this same function has been labeled the directional distance function in Chambers, Chung,
and Färe (1996), we prefer sticking to the original name.
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lack of translation-invariance of some of the non-parametric frontier models). An example
of a fund rating contribution opting for this solution of translating the data is Glawischnig
and Sommersguter-Reichmann (2010). A variety of other solutions have been proposed in
this frontier literature (see Pastor and Ruiz (2007) for a summary). Kerstens and Van de
Woestyne (2009) show that a slight variation on the shortage function offers a more general
method to handle negative data values while maintaining a proportional interpretation
(which has some convenience for practitioners).

Thus, summarizing the above discussion, the shortage function is a perfectly general
efficiency measure that is compatible with general investor preferences and it can be easily
extended to handle negative data occurring in a financial context. Therefore, we can now
focus on the mathematical formulation of this shortage function.

If U(x) is a utility function defined over a choice set X of combinations of m input-like
variables (to be reduced) combined in the input vector I and s output-like variables (to be
expanded) combined in the output vector O (i.e., x = (I, O) ∈ X, whereby I ∈ R

m and
O ∈ R

s), and g is a vector or reference bundle used for utility comparisons (g ∈ −R
m
+×R

s
+,

with g 6= 0), then the shortage function value of x ∈ X is defined with reference g and
reference utility value u by:3

B(x, g, u) = sup{β : x+ βg ∈ X and U(x+ βg) ≥ u}. (1)

In (1), the variables to be reduced (inputs) and variables to be expanded (outputs) can,
e.g., be a vector of even and odd moment characteristics. The shortage function simulta-
neously permits the enhancement of multiple output-like variables and the reduction of
multiple input-like variables. The shortage function defined in (1) uses a general direction
vector g. However, sometimes one considers for positive data the special case g = (−I, O)
which yields a proportional interpretation that is convenient for practitioners. In view of
the occurrence of negative data, we follow Kerstens and Van de Woestyne (2009) and
choose the direction vector g = (−|I|, |O|), whereby |I| and |O| denote the vectors ob-
tained by taking absolute values of the individual components of I and O, respectively.

In the next subsection, we focus on the specification issues related to the technology
linking the different variables involved in a frontier benchmarking model for mutual fund
rating.

2.2 Non-Parametric Frontier Models: Key Specification Issues

In the literature using non-parametric methods to gauge the financial performance of
mutual funds, the evaluation is done using models which are directly derived from the
production context. For instance, concentrating on just one issue and ignoring any other
differences between both contributions, Murthi, Choi, and Desai (1997) evaluate mutual
fund performance assuming a constant returns to scale (CRS) model, while McMullen
and Strong (1998) use a variable returns to scale (VRS) model. However, returns to scale
are a basic notion in production theory, but it is a priori unclear what it means when
modeling mutual fund performance. As it turns out, there are also other basic modeling

3In consumer theory, Luenberger (1992) introduced a similar benefit function: this other name for a
distance function positions consumption bundles relative to a reference utility level and it is dual to the
expenditure function.
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choices that have hardly been systematically discussed in the current literature and to
which we return below.

However, in our view, to meaningfully discuss specification issues it is important to first
establish what kind of theoretical framework one can adopt to adequately model mutual
fund performance. We basically see two options: (i) portfolio theory, and (ii) hedonic price
theory. Morey and Morey (1999) are the only non-parametric-frontier based article explic-
itly adopting a traditional portfolio theory framework to evaluate an efficiency measure
for mutual funds in a traditional MV model combining return and risk information over
three different time horizons.4 This approach differs from all other DEA-based models
gauging mutual funds, since it explicitly considers the diversification effect on portfolio
risk. Therefore, most authors do not seem to have an explicit portfolio theory frame-
work in mind when applying non-parametric frontier models to evaluate mutual funds.
However, one cannot preclude that this is the implicit source of inspiration.

The “characteristics” approach to consumer theory developed by Lancaster (1966)
writes utility not as a function of a vector of goods, but as a function of their character-
istics.5 Building upon this characteristics approach, Rosen (1974) developed an economic
theoretical framework to study market equilibria for differentiated products differing along
multiple characteristics. One basically seeks to derive an implicit price for the vector of
observed characteristics to aggregate these into a single measure of market value. The
recent literature in this area shows that (i) implicit price functions for characteristics are
in general non-linear, and (ii) the market need not provide a continuum of products in
equilibrium, but rather product clusters exhibiting similar combinations of characteristics
whereby products with certain other combinations of characteristics may well be hardly
present (e.g., Ekeland, Heckman, and Nesheim (2004)). Hedonic price functions are mostly
estimated using traditional econometric methods focusing on average relations between
observed prices and characteristics. But, more recently a series of frontier specifications
have aimed to estimate a price-quality correspondence and to explicitly measure any even-
tual consumer inefficiencies (see the seminal article of Kamakura, Ratchford, and Agrawal
(1988)).6

While the evaluation of product efficiency has become quite common (e.g., Lee, Hwang,
and Kim (2005)), we are unaware of any article applying non-parametric frontiers on mu-
tual funds that explicitly refers to this theoretical framework. In fact, the “characteristics”
approach has not been intensively used in the finance literature. For instance, Heffernan
(1990) has argued to interpret all financial products in terms of three main characteristics:
(i) expected rate of return, (ii) security, and (iii) liquidity. His analysis remains limited
to individual financial products, even though it is stated that ideally one would also like
to analyze portfolios in terms of their characteristics. A number of other authors has
developed this “characteristics” approach to finance (see, e.g., Blake (2000) for a reader
of articles in finance). Therefore, similar to other services, mutual funds can in our view
be trivially interpreted as a fee-based (loads) financial product that is characterized by
some distributional characteristics, as summarized by a combination of moments (see also

4This article got corrected and expanded in Briec and Kerstens (2009).
5Characteristics are objective features of products, rather than subjective attributes as analyzed in

psychology and marketing.
6While explanations in terms of inefficiencies are often suspect in economics, there exist models of

consumer choice explicitly accounting for the consumer’s imperfect ability to choose due to limited
information-processing capacities: e.g., De Palma, Myers, and Papageorgiou (1994).
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below). This disregards any repercussions at the portfolio level.

Based on a careful analysis of the available non-parametric frontier-based articles as-
sessing mutual funds, we have identified three crucial specification issues arising when
specifying a non-parametric frontier model to gauge mutual funds: (i) nature of returns
to scale; (ii) inclusion of higher moments and cost components; and (iii) convexity or not.

The discussion of each of these issues in turn below allows to return to and elaborate
upon the reasons to opt for a hedonic price theory framework rather than a portfolio
theory perspective. Exploiting the relation between efficiency measures and goodness-of-
fit measures used for hypothesis testing (see Färe and Grosskopf (1995)), the comparison
of efficiency measures based upon the shortage function (1) computed relative to two
non-parametric frontier models amounts to a test of the hypothesis distinguishing both
models involved. To formally test for the difference between both densities, we employ
a non-parametric test-statistic developed by Li (1996) that is valid for both dependent
and independent variables alike.7 Since efficiency measured using non-parametric frontier
models is relative in nature and thus depends on the sample size, this test is in principle
suitable for our purposes.8

In view of these three specification issues indicated above, we are in need to specify
three types of non-parametric frontier models that are capable to test on the one hand
variable returns to scale (VRS) versus constant returns to scale (CRS), and on the other
hand convexity (C) versus non-convexity (NC). This requires three specifications that can
be introduced formally as follows (see, e.g., Ray (2004)). Assume there is a set of mutual
funds to be evaluated (indexed by j = 1, . . . , n), where each mutual fund is characterized
by m input-like values xij, i = 1, . . . ,m and s output-like values yrj, r = 1, . . . , s. To
compute the shortage function, one needs to solve the following mathematical program
for unit o ∈ {1, . . . , n} which is in need of assessment:

max β s. t.
n∑

j=1

λjyrj ≥ yro + β|yro| r = 1, . . . , s

n∑

j=1

λjxij ≤ xio − β|xio| i = 1, . . . ,m

β ≥ 0,Γ with:

(i) ΓC,CRS = {λj ≥ 0; j = 1, . . . , n}

(ii) ΓC,V RS = {λj ≥ 0; j = 1, . . . , n} ∪ {
n∑

j=1

λj = 1}

(iii) ΓNC,V RS = {λj ∈ {0, 1}; j = 1, . . . , n} ∪ {
n∑

j=1

λj = 1},

where the specification of the direction vector follows Kerstens and Van de Woestyne
(2009) to allow for negative data values in general. The application of these three different

7This test has been refined in Fan and Ullah (1999).
8However, none of the statistical tests known to us seems to be designed to test for the effect of

convexity in particular.
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models allows to project any observed mutual fund o being evaluated into the direction
g = (−|x1o|, . . . ,−|xmo|, |y1o|, . . . , |yso|) such that the output-like values yro, (r = 1, . . . , s),
are increased and the input-like values xio, (i = 1, . . . ,m), are decreased in proportion to
the initial position of o. The value of β measures the resulting proportional amount of
inefficiency representing the shortage function. Depending on the properties of the activity
or weight vector λ = (λ1, . . . , λn) we impose (i) C and CRS, (ii) C and VRS, or (iii) NC
and VRS, whereby the latter simply adds binary constraints to (ii). Now we turn to the
details relating to the three specification issues mentioned above.

2.2.1 Returns to Scale Issue

A first specification issue that has seldom been explicitly discussed in the non-parametric
frontier articles gauging mutual fund performance is the nature of returns to scale of
the underlying “technology”. There seem to be about as much articles specifying variable
returns to scale (VRS) as there are contributions adopting constant returns to scale (CRS).
Limiting ourselves to the seminal articles (listed above), while Murthi, Choi, and Desai
(1997) and Premachandra, Powell, and Shi (1998) opt for CRS, McMullen and Strong
(1998) imposes VRS in their rating model. This controversy continues among more recent
contributions: Anderson, Brockman, Christos, and McLeod (2004) and Basso and Funari
(2001), among others, impose CRS, while Haslem and Scheraga (2006), Glawischnig and
Sommersguter-Reichmann (2010), and Wilkens and Zhu (2001) do specify VRS.

We see three potential sources of justification for the use of CRS in portfolio theory.
However, none of these stands the test of scrutiny. First, (Choi and Murthi, 2001, pg.
862-867) indicate that the Sharpe index is similar to a CRS convex frontier model applied
to a single input (risk) and a single output (return). But, this does not justify imposing
CRS when including additional variables (e.g., higher order moments, loads, . . . ) in a
mutual fund rating model, as is done in the majority of articles in this literature.

Second, some articles even combine both assumptions and infer information about local
returns to scale for the individual funds (see, e.g., Choi and Murthi (2001) and Galagedera
and Silvapulle (2002)) and then sometimes continue the analysis by investigating the rea-
sons for performance differences between funds. For instance, Galagedera and Silvapulle
(2002) attempt to explain mutual fund performance differences by fund-specific charac-
teristics like age, size and the 12-month net asset flow as proxies for experience, scale of
operation, and level of investor confidence, respectively. However, in our view, this type
of approach confounds the analysis of mutual fund performance from the investor per-
spective, which is the main aim in this literature, with an analysis of the reasons of good
and bad performance at the level of investment management companies (i.e., the firms
creating, organizing, staffing, and managing these mutual funds for fund shareholders).9

Furthermore, assuming looking for returns-to-scale properties at any point on the frontier
is a relevant item, it is worthwhile realizing that the CRS model is always just an artificial
auxiliary frontier permitting to examine different points on the VRS frontier with regard
to their returns-to-scale properties (see Ray (2004) for details).10

9Smith (2009) summarizes the economics of these investment management companies and distinguishes
between returns to scale, economies of scope, and other empirical regularities.

10Notice that VRS models the most general technology representation allowing for increasing, constant,
or diminishing returns to scale at different points on the frontier, and that CRS is unlikely to hold globally

8



Third, another potential source of inspiration justifying the application of CRS in this
literature is based on the apparent similarity between the capital market line (CML) and
the shape of a convex CRS efficient frontier. When representing the CML and the CRS
frontier in the same two-dimensional plane of mean and standard deviation (see Figure 1),
then the CRS assumption yields a straight line going through the origin. First, notice that
the connection between CML and the CRS frontier is only valid when we can translate
the data such that the positive risk free rate is located in the origin.11 Furthermore,
assuming that the CRS efficient frontier and CML coincide (which from a practical point
of view would require adding the market portfolio (M) among the observations to be
evaluated), then the efficiency of an undervalued fund must be the same with respect to
both frontiers. However, almost all non-parametric frontier models assume non-negative
weights: in portfolio theory this can be interpreted as borrowing restrictions. Under such
restrictions, one is only able to invest in asset combinations lying on the CML between
the risk free rate and the market portfolio indicated by point M (by investing one part
in the risk free rate and the remainder in the market portfolio). Thus, when borrowing
is not allowed, the CML is the segment starting from the risk free rate and ending at
market portfolio M . In Figure 1 the CRS frontier continues beyond this CML segment.
Only when one can borrow money, it is possible to move beyond point M on the CML,
but this requires a negative weight that is not allowed in typical non-parametric frontier
models.

Figure 1 about here

In terms of hedonic price theory, in view of the generally non-linear nature of the
implicit price functions for characteristics (see above), one needs to impose VRS rather
than CRS (which amounts to linearity). Hence, from both theoretical perspectives, one
can safely conclude that the most relevant assumption with regard to the nature of returns
to scale when assessing mutual funds using non-parametric frontier models is VRS.

2.2.2 Higher Order Moments and Cost Components Issues

While the application of non-parametric frontier methods to assess the performance of
financial products has become rather widespread because it allows combining multiple
variables into a single aggregate efficiency score, this methodology has a major drawback
as well: when various candidates of input-like and output-like variables co-exist, then there
is no evident rule for their selection. This leads various articles to focus on different aspects.
For example, Galagedera and Silvapulle (2002) put the spotlight on various transaction
costs, while Eling (2006) combines lower and upper partial moments trough different
models and tries combining some of these. Lozano and Guttiérez (2008) summarize a
wide variety of specifications in a selection of 14 articles using non-parametric frontier
models to assess mutual fund performance (see their Table 1). Thus, while this burgeoning
literature seems to introduce an ever growing variety of new specifications, the question
as to the correct specification remains hitherto unanswered. To the best of our knowledge,

in many realistic settings (see chapter 3 in Ray (2004)).
11This requires opting for translation-invariant non-parametric frontier models to avoid any effect on

the resulting efficiency measure, which is not trivial: see supra.
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none of these existing articles has systematically implemented statistical tests to discover
a proper specification.12

To systematically discuss specification issues, it is useful to distinguish between the
return characteristics of the mutual fund’s share price and the shareholder transaction
costs related to the buying and selling of mutual fund shares above the net asset value
per share as well as the expenses for fund administration and portfolio management.
Both from the viewpoint of portfolio and hedonic pricing theories, the former return
characteristics define the nature of the financial product, while the latter determine the
cost of mutual fund ownership. All articles in the current non-parametric frontier literature
include both return characteristics and some cost components in their models.

In our analysis, following Briec and Kerstens (2010), we focus on the main statistical
characteristics of mutual funds return distributions (i.e., classical moments such as return,
variance, skewness, kurtosis, or even higher order moments). While traditional investment
performance measures only take into account the return and risk attributes for investment
decision making, it is worthwhile checking the need for higher order moments in view of
the return patterns of mutual funds exhibiting significant levels of skewness and kurto-
sis (see Glawischnig and Sommersguter-Reichmann (2010)). Therefore, using traditional
measures based on some combination of the first two moments may well be irrelevant to
evaluate mutual funds. Thus, using higher order moments as input-output specification
allows performance gauging of mutual funds consistent with general investor preferences
(see Briec and Kerstens (2010)). Since it is well-known that the quality of moment ap-
proximations representing EU functions is an empirical issue (see Hlawitschka (1994)),
one can also expect that the approximation quality of a partial series of a Taylor expan-
sion of the shortage function needs to be empirically assessed. Using the non-parametric
test-statistic developed by Li (1996), we are the first article to test for the exact sequence
of moments needed to empirically assess mutual fund performance. In the empirical part,
this is done by systematically adding moments up to the sixth and testing for their impact.
In the existing literature, all published articles we are aware of include at most up to the
third moment (see, e.g., Glawischnig and Sommersguter-Reichmann (2010) for ordinary
moments and Eling (2006) for partial moments).

This focus on an adequate description of the mutual funds return distributions does
not deny that other variables may be of relevance in assessing mutual fund performance
using non-parametric frontier models. For instance, Galagedera and Silvapulle (2002)
include the minimum initial investment as an additional variable. Other contributions
add variables related to the composition of the mutual fund: for example, Haslem and
Scheraga (2006) include the percentage of stocks, Premachandra, Powell, and Shi (1998)
add a variable indicating the total amount that is invested risk-free, etc. However, in
the non-parametric frontier literature, it is not always clear whether a certain variable
should be included in the model computing the efficiency measure, or rather should be
used in some second stage analysis attempting to explain the observed variations in the
efficiency measures computed at the initial stage. Therefore, we refrain from extending
our specification search beyond the moment characteristics.

In the finance literature, recently a lot of attention has been drawn on the need for
robust portfolio management. This mainly academic literature appearing in engineering,

12For example, Galagedera and Silvapulle (2002) report on 11 different specifications, but no statistical
test is employed to discriminate between these.
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statistical and operations research publications has meanwhile provided a rich source
of inspiration for finance professionals (see Fabozzi, Kolm, Pachamanova, and Focardi
(2007)). The reluctance of investment managers to apply traditional quantitative portfolio
optimization models is, among others, related to their unreliability in practice. The main
goal of the development of robust portfolio optimization tools is to explicitly incorporate
the statistical precision of individual estimates in the portfolio allocation process.

Therefore, we decided to duplicate the analysis of the classical moments (C-moments)
with the more robust univariate L-moments introduced by Hosking (1990).13 In view of
handling heavy-tailed distributions, these L-moments are defined in terms of strategically
selected linear functions of the expectations of order statistics. Therefore, L-moments
provide more robust estimators of moments than their corresponding sample C-moments.
But, L-moments can also characterize a wider range of distributions since they exist (i.e.,
they are finite for all orders) whenever there is a finite first moment. While L-moments
have found their way in fields like meteorology and hydrology, their empirical application
in finance is of recent date (e.g., Tolikas and Gettinby (2009)).

While the price of a mutual fund is its net asset value per share, as determined by the
financial markets, many mutual funds impose transaction costs in addition to the expenses
paid by shareholders for fund administration and portfolio management and the costs of
trading fund portfolios (see, e.g., Haslem (2003) or Khorana, Servaes, and Tufano (2008),
the latter providing an international overview). In fact, mutual fund investors may pay a
variety of monetary costs: front-end and/or deferred loads, operating expenses (manage-
ment fees, transfer agent fees, legal fees, auditor fees, etc.), account fees (redemption fees,
account maintenance fees, etc.), and trading costs (brokerage fees, bid-ask spreads, etc).
The complexity and the large variety of practices in the mutual fund market tends to blur
the total cost of ownership.14 While attempts have been made to define a total shareholder
cost (e.g., Khorana, Servaes, and Tufano (2008)), this notion depends upon time horizon
and other parameters. While sometimes just a single cost variable is included (for instance,
Haslem and Scheraga (2006) focus on the expense ratio), most non-parametric frontier
applications specify multiple cost components (e.g., Galagedera and Silvapulle (2002)). In
view of the “characteristics” approach, we include the multiple cost components of the
mutual fund in the empirical specification and explicitly test for their relevance. Hence,
following the majority of the mutual fund frontier literature, we are forced to handle
these cost aspects in some ad hoc way by including the main components available in our
sample as separate variables.

2.2.3 Convexity Issue

By far most non-parametric frontier articles measuring the financial performance of mu-
tual funds impose the traditional convexity assumption. Examples include the articles of
Anderson, Brockman, Christos, and McLeod (2004), Basso and Funari (2001), Gregoriou
(2006), Haslem and Scheraga (2006), Lozano and Guttiérez (2008), and McMullen and
Strong (1998). We are only aware of one contribution that does not impose convexity

13Recently, also L-comoments have been defined. Computations have been done using the Lmomco and
Lmoments packages in the software R.

14Obviously, the problem of determining the cost of ownership for other consumer durables (e.g., cars
or houses) is somewhat similar.
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to gauge efficiency. One rather popular non-convex non-parametric frontier model is the
Free Disposal Hull (FDH). Daraio and Simar (2006) use order-m based FDH models to
derive robust non-parametric results to evaluate and explain mutual fund performance.
Despite the apparent consensus towards the use of convex non-parametric frontier models
in mutual fund rating, the almost unanimous use of convexity does in itself not guarantee
the validity of the assumption. Therefore, we develop the arguments showing that from
both theoretical perspectives convexity is an assumption to be scrutinized.

While in portfolio theory convexity seems like a natural assumption, even the basic
MV portfolio set is not convex under all circumstances (e.g., think about cardinality
constraints on the number of assets, transaction round lot restrictions, etc.). But, there
is a related, more specific criticism to the use of convex non-parametric frontier models
to gauge mutual funds.

Convexity is not always useful to guide investors in terms of choosing among funds
even in terms of return and risk only, since the projection point resulting from applying
the efficiency measure may yield a MV combination that need not be feasible. Indeed, the
optimal projection is normally some hypothetical combination of several mutual funds
that cannot be achieved in practice. The basic reason is that the combination of mutual
funds would require explicitly accounting for the diversification effect.

To illustrate this argument in a simple way, we generate three efficient frontiers based
upon 30 mutual funds in MV space. We represent the traditional MV portfolio frontier
as well as the convex (C-VRS) and non-convex (NC-VRS) VRS non-parametric efficient
frontiers in Figure 2. Clearly, the MV frontier dominates both convex and non-convex VRS
non-parametric frontiers. This is due to the importance of co-variances among mutual
funds, which is ignored by the non-parametric frontier models. While the convex frontier
takes advantage from its ability to combine mutual funds, thereby dominating the non-
convex frontier, we cannot discriminate between the latter two methods since both are
still far below the traditional MV frontier because they ignore the co-variance structure
in the return data.

Figure 2 about here

From a hedonic price theory perspective, the theoretical concern about non-convexity
goes back to the seminal article of Lancaster (1966) who warned about the impact of
indivisibilities (“combinable” and “non-combinable” goods in his parlance).15 In a hedonic
non-parametric frontier context, the need for assuming non-convexity has been argued
for, but not tested, by Lee, Hwang, and Kim (2005), among others. In the same context,
Chumpitaz, Kerstens, Paparoidamis, and Staat (2010) are the first to test for the impact
of convexity using the above convex and non-convex non-parametric estimators imposing
VRS and their empirical results clearly reject convexity. In finance, Heffernan (1990)
stresses the imperfect divisibility of many financial products and interprets the selection

15In economics, Shephard (1978) axiomatically analyses Lancaster’s household production theory: he
stresses that the transformation of goods into characteristics space need not result in some convex fron-
tier, let alone a twice differentiable function (p. 454). In marketing, Hjorth-Andersen (1983) is first to
use a simple vector dominance criterion distinguishing efficient and inefficient product varieties to test
Lancaster’s principle of efficient choice. While no explicit efficiency measure is involved, this amounts to
adopting a non-convex frontier model.
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of several of those products in a portfolio as an attempt to overcome this imperfection.
Therefore, in hedonic price models one cannot simply adopt a traditional convex approach,
but one must ideally test it against a non-convex frontier method.

2.2.4 Conclusions

Summarizing this extensive discussion so far, we observe that the CRS assumption is
suspect from both the portfolio and hedonic pricing perspective. The inclusion of higher
moments and cost components (mainly loads) is also compatible with these two theoretical
perspectives. Finally, even a standard convexity assumption is questionable from both
these theories: non-convexity may prove to be a more modest hypothesis to be maintained.

3 Empirical Testing

3.1 Data Description and Outlier Analysis

We illustrate the three main specification issues discussed above by using a sample of
European and United States mutual funds drawn from the reputed Morningstar database
and completed with historical prices from the Datastream database (Thomson Reuters).
The dataset contains daily prices of 1070 mutual funds from January 2, 2004 to February
28, 2009 spread over six categories: on the one hand funds domiciliated in Europe (i) OE
(= open end) Large-Cap Blend Equity, (ii) OE U.S. Large-Cap Growth Equity, (iii) OE
U.S. Large-Cap Value Equity, and on the other hand funds domiciliated in the United
States (iv) OE Large Growth, (v) OE Large Value, and (vi) OE Europe Stock.

Table 1 reports some descriptive statistics of the overall dataset. Prices are converted
into a common currency (i.e., Euro) from which the daily returns are computed. The
return distributions have been tested for normality using Jarque-Bera tests. Normality
is rejected for all mutual funds in the dataset, since the minimal value of the Jarque-
Bera test statistic of 160.04 is much larger than the value of 9.21 corresponding with a 1%
significance level. Notice from the moment characteristics that skewness and kurtosis seem
non-negligible. In particular, the average value for kurtosis is higher than the benchmark
value of 3 for a normal distribution. This observation is in line with the Jarque-Bera
test results. Furthermore, the Morningstar database contains the following information
on the cost of ownership: (i) maximum front loads, (ii) deferred loads, and (iii) annual
net expense ratio.

Table 2 reports the average C- and L-moments up to order four. Notice that the first
order C- and L-moments coincide since these are merely the average expected return.
The C-moments of order two to four are centralized with respect to the average expected
return. In this respect, the moments of order three should not be confused with skewness
and kurtosis, the latter being normalized by taking proper ratios involving the variance.
Consequently, the average values for skewness and kurtosis reported in Table 1 differ
from those of the C-moments of order three and four provided in Table 2. Also for the
L-moments, non-normalized definitions have been used. All computations executed here-
after make use of non-normalized moments, especially since moments up to order six are
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considered.

Tables 1 and 2 about here

In the empirical analysis based on non-parametric frontier models, it is not uncommon
to start with an outlier analysis to check for the existence of atypical observations. Indeed,
it is widely acknowledged that the occurrence of extreme observations may influence
the shape of non-parametric frontier models, thereby having a potentially substantial
influence on the relative performance based efficiency estimates. Among the available
outlier detection methods in the non-parametric frontier literature, we follow Simar (2003)
who proposed a more robust frontier estimator (known as the order-m frontier) that is
less sensitive to the influence of outliers.16 Intuitively speaking, the order-m frontier draws
samples of size m from the initial data using a bootstrapping strategy (2000 replications)
and tries to fit a local non-convex frontier on these selected data.17

To detect outliers, we apply the Simar (2003) methodology to what we consider a
basic non-parametric frontier model to gauge mutual funds. Borrowing from the current
literature on frontier models for mutual funds, we include the above mentioned three cost
variables (maximum front loads, deferred loads, and annual net expense ratio). Starting
from a traditional portfolio framework, we account for just the first two moments. Thus,
the basic MV and three-dimensional cost model (with the moniker MV-Loads) imposing
convexity and VRS is the basis for any further testing. Throughout the empirical section,
all tests are always performed on the two variations: C- and L-moments. Thus, also these
first two moments are estimated using both C- and L-moments.

Applying this outlier methodology to the six Morningstar categories separately and
across all categories, extreme observations are defined by two criteria. First, the efficien-
cies based on order-m must converge to the FDH estimates: in particular, the difference
between these local and global non-convex estimators should be less than 0.1.18 Second,
the number of observations sampled with replication that dominate the observation under
evaluation must be less than 5% of the sample size of its fund category or of the whole
sample. Extreme observations are suspect and are in need for some close attention.

Table 3 reports the number of extreme points in the above specified basic model. The
following conclusions emerge. First, while the number of extreme points detected with
L-moments is higher than with C-moments, the amount of extreme observations is less
than 1% of the total sample. Second, the larger set of extreme points detected with
L-moments contains all extreme points detected with the C-moments. Hence, the outlier
analysis results are robust with regard to the choice of moment estimator. Third, it is only
after scrutinizing these potentially extreme observations in detail that one can determine
whether these are real outliers. We pay especially close attention to the underlying price
distributions and find two types of anomalies. One mutual fund in the first category

16See Ray (2004) for a review of the developments in stochastic versions of non-parametric frontier
estimators, of which the Simar (2003) outlier detection method is an extension.

17For technical details, see Simar (2003). Computations are done using the FEAR package for the
software R: see www.clemson.edu/economics/faculty/wilson/Software/FEAR/fear.html .

18In fact, a sequence of order-m estimators with m equal to 25, 50, 100, 200 and 500, respectively is
computed.
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shows an abnormal price for just one trading day.19 Two funds seem to be dead: one in
the first category for which the price distribution exhibits constant net asset value for
the considered time series, except for one observation; another one in the second category
exhibits a constant net asset value in its price distribution from February 2005 onwards.

It is important to mention that we checked the price distributions of the three concerned
funds several times with other internet sources. However, the errors seem to be specific
for this financial data provider (Datastream). Being sure now about the outlier status
of these three funds, we delete the two (almost) dead funds and we correct the price of
the third one for the single day concerned.20 Thus, after the outlier analysis our sample
consists now of 1068 instead of 1070 mutual funds. These results also show that the Simar
(2003) methodology does constitute a useful tool for detecting extreme observations that
are potentially outliers.21

Table 3 about here

After correcting and deleting the real outliers, we now have the following agenda for
specification testing. First, we shed light on the nature of returns to scale by testing
whether CRS can ever prevail in a mutual fund context. Then, we test for the inclusion of
higher order moments and check whether all cost components contribute equally well to
the fit of the models. Finally, we tackle the issue of imposing convexity or not. Each time,
we basically follow the same test methodology: we formally test for differences between
the kernel density estimates of the efficiency distributions based on the shortage function
of the two models by employing the non-parametric test-statistic developed by Li (1996)
(refined by Fan and Ullah (1999)) that is valid for both dependent and independent
variables. The null hypothesis is simply that the efficiency distributions of both non-
parametric frontier models are identical, while the alternative hypothesis is that these
distributions are different. Testing is performed at a 5% significance level.

3.2 Specification Issues

3.2.1 Variable Versus Constant Returns to Scale

In this subsection, we shed light on the question whether it is useful to assess mutual
fund performance using a convex non-parametric frontier model imposing the particular
CRS assumption rather than the far more general VRS hypothesis. Again starting from
the basic non-parametric frontier model including the first two moments and three cost
variables (maximum front loads, deferred loads, and annual net expense ratio), we apply

19On average, the price of this fund is about 20e, except for that single day where it shows up at
600e. This is clearly anomalous.

20In particular, we use the information from the internet site www.boursorama.com.
21In practice, it should be added that the list of extreme observations detected may somewhat de-

pend on the choice of the parameter m and the minimal % of observations we select to be dominating
the observations being evaluated (see Simar (2003) for details). Another potential application of this
methodology in a financial performance assessment context may be the detection of superior efficient
funds. Indeed, the extreme points that after scrutiny are no outliers in any sense may simply signal
atypical price distributions reflecting special fund management strategies.
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the Li-test statistic for both models to the traditional C- as well as the more robust
L-moments.

For this MV-Loads model and for all fund categories taken together, we find that we
can safely reject the null hypothesis that both distributions are equal. This conclusion
holds for C- as well as L-moments. Hence, the VRS assumption fits our mutual fund data
better than the much stronger CRS hypothesis. Consequently, it seems hard to justify
the use of CRS for gauging mutual funds performance as is done in at least part of the
non-parametric frontier models, some of which have been cited above. In the remainder
of our analysis, we maintain the VRS assumption.

3.2.2 Higher Order Moments and Cost Components

While keeping VRS as a maintained hypothesis throughout, a series of other method-
ological choices remain available. In this subsection we explore the impact of on the one
hand adding higher moments up to order 6 to the basic MV-Loads model, and on the
other hand the effect of systematically checking for the relevant cost components. These
two issues are systematically explored against the background of two types of maintained
hypotheses: on the one hand, C-moments versus L-moments; and on the other hand, the
traditional convexity assumption versus the far less utilized non-convexity hypothesis.
We always first summarize results for the convex model, and then look at the non-convex
results.

Notice first that there is a natural order in the moments. This can be used for construct-
ing higher order moment models. Obviously, since the quality of moment approximations
representing EU functions is an empirical issue (Hlawitschka (1994)), the eventual irrele-
vance of a single moment does not imply that higher moments beyond the irrelevant one
can be ignored. This leads to a sequential approach whereby each time some moment is
added. This moment is retained if it leads to a significantly different efficiency distribution,
otherwise it is eliminated and one tries adding the next moment.

Second, and by contrast, there is no natural order in the cost components. This order
is determined using a basic MV-model solely. For this model, all possible combinations
of cost components have been added. Then, the efficiency distributions computed for all
these models are compared by means of Li-tests. The Li-test statistics for all models
considered (both C-VRS and NC-VRS in combination with C- and L-moments) are given
in Table 4 which contains in total 112 relevant model comparisons. Since the Li-test
statistic measures the deviation between two efficiency distributions, it can be used to
measure the impact of including a specific cost component. The higher the value of the
Li-test statistic, the bigger the differences between both efficiency distributions and hence
the larger the impact of the component included.

Table 4 about here

Using this methodology, it is possible to rank the three cost components. We explain
the procedure in the case of C-VRS in combination with C-moments. Carefully checking
Table 4 for this combination leads to the following ranking: the front loads (F) are the
most important component, followed by the deferred loads (D) and the net expense ratio
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(E). Indeed, by looking at the first row with Li-test statistics in the upper left part of
the table (combination of C-VRS and C-moments), the highest value (185.59) for adding
one single cost component is realized by including the front loads. Therefore, we consider
this to be the most important variable. Then, starting from the MV-F model (row F)
and comparing it with the MV-EF and MV-FD models (columns EF and FD) being the
only models that have one additional cost component with respect to the curent MV-F
model, the highest Li-test statistic is found in column FD (7.50), thereby making the
deferred loads the second most important component. The remaining net expense ratio
then turns out to be the least important component. Consequently, the natural decreasing
order established here includes the front loads, deferred loads and net expense ratio. This
ranking is denoted by FDE. A similar exercise can be performed for the other maintained
hypotheses. This leads to the following rankings: FED for NC-VRS in combination with
C-moments and EFD for both C-VRS and NC-VRS using L-moments.

The effect of adding significant higher order moments up to order 6 is reported in Table
5. Starting from a minimal model (i.e, a model with at least the expected return (M))
and accounting for the results regarding the three cost components established above, the
higher order moments have been added one by one according to the natural order.22, 23

A moment is only retained if it results in a statistically significant different efficiency
distribution with respect to the model not including it. This is again measured with a
Li-test at a 5% significance level. All of these computations are again done for different
maintained hypotheses (C-VRS and NC-VRS for both C- and L-moments).

Table 5 about here

Analyzing Table 5 yields the following key conclusions. First, moments of order higher
than two contribute significantly for different hypotheses, except for the case of NC-VRS
with L-moments and the choice of having net expense ratio and front loads in the model.
For instance, in the case of NC-VRS and C-moments, the M-F model can be significantly
expanded to include the second up to the sixth moment, with an exception for the fourth
moment. A similar pattern emerges for other combinations of cost components.

Second, in the L-moments case, the effects of higher order moments are somewhat more
modest (probably due to the increased robustness). For instance, from the absence of the
sixth moment in the sequences of models with L-moments in Table 5, it can be concluded
that this moment does not contribute in a significant way. Furthermore, the skewness
only seems to have a significant impact in the case of NC-VRS and L-moments and in
combination with having the net expense ratio in the model.

Having initially determined the relevance of the three cost components for a given basic
MV model, we now turn to test whether some of these cost components are redundant
for different higher order moment models. The effect of reducing the cost components in
some basic models is reported in Table 6. Again, we treat the four hypotheses: C-VRS and
NC-VRS, with both C- and L-moments. The efficiency distributions of different models

22In Table 5 we refer to the order of the moments (e.g., “123” stands for a model including mean,
variance and skewness).

23Notice that it has not been tested whether the effect of adding more than one additional moment
has an impact, simply because there are too many possibilities. For instance, if adding skewness in itself
has no effect, we do not test whether adding skewness and kurtosis jointly has any impact.
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are also in this case compared with a Li-test at a 5% significance level. Notice that for
reasons of readability, we do not list the exact test statistic and its significance level in
Table 6, but rather simply report whether the efficiency distributions are equal (denoted
by “E”) or different from one another (i.e., not equal, as denoted by “NE”).

Starting with some maintained hypothesis and a model including all three cost compo-
nents in the preferred order of importance, it is possible to eliminate the least important
component without noticing a significant change in the efficiency distribution. Further
removal of an additional cost component, however, does lead to noticeable changes in
the majority of cases and models. For example, when starting in C-VRS and C-moments
with the MVS-FDE model (row “123”), the net expense ratio can be removed safely. The
deferred loads, however, do have an impact on the efficiency distribution and should be
retained in the model. In the case of NC-VRS and C-moments, the MV-FED model can
even be reduced to the MV-F model (see row “12” in the appropriate part of Table 6).
Notice that Tables 5 and 6 involve in total 110 Li-test statistics comparing the different
modeling variations.

Table 6 about here

3.2.3 Convexity or Not

Having explored the impact of higher moments up to order six and some of the cost
components using moment information based on either C- or L-moments and for given
VRS models that impose either convexity or non-convexity, in this subsection we focus
specifically on testing for the traditional convexity assumption. Given the different results
in the previous subsection conditional on maintaining the assumption of either convexity
or non-convexity, we develop the following strategy to test for this hypothesis. On the
one hand, based on the results in the previous subsection we define an encompassing
model that includes all variables that turn out to be relevant in either the convex or
non-convex model. On the other hand, we follow the double strategy of picking the best
fitting convex (non-convex) model and then comparing it to the corresponding non-convex
(convex) model results.

Picking the best C-VRS model in the case of C-moments is relatively easy. From Table
5 we notice that the first, second, fifth and sixth moment should be included. In addition,
looking at Table 6 one notices in the line representing the “1256” model that one always
needs the front loads and the deferred loads (FD).24 Hence, the model “1256-FD” seems
to be performing best.

The best C-VRS model in combination with L-moments and the best NC-VRS model
with C-moments is determined using a similar reasoning. One obtains the models “125-
EF” and “12356-FE” respectively. Determining the best NC-VRS model with L-moments
is somewhat more difficult. Indeed, from Table 5, we end up with three different can-
didates: “1235-E”, “12-EF”, and “125-EFD”. All three models are now checked against
Table 6. First, since model “1235-E” cannot be achieved by reducing loads from the “1235-
EFD” model, it is rejected as best model. Second, the model “125-EFD” can be reduced to

24To avoid introducing additional abbreviations for the moments beyond MV, we refer to the order of
the moments as these appear in Tables 5 and 6.
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the model “125-EF”. However, since this model is not retained in Table 5, this candidate
is also rejected. Third, the model “12-EF” can actually be achieved by reduction of cost
components from the “12-EFD” model, as can be observed in Table 6. Consequently, this
model is the only one compatible with both Tables 5 and 6. Therefore, it is considered
being the best choice.

Table 7 summarizes these results and reports the Li-test statistics representing the
distributional differences between the best convex and non-convex models for the C- and
L-moments respectively. In both cases, convexity is clearly rejected at any conventional
level of statistical significance (e.g., a 5% significance level corresponds with a t-value of
1.64).

Table 7 about here

4 Conclusions

Starting from the current non-parametric frontier contributions assessing mutual fund
performance, this contribution focuses on a series of specification issues that hitherto
have been somewhat neglected in this literature. We first present and discuss the shortage
function that can account for a preference for odd moments (to be increased) and an
aversion to even moments (to be reduced) in multi-moment portfolio problems. This
makes the shortage function a general tool for gauging mutual fund performances in line
with general investor preferences (exhibiting a mixed risk aversion preference structure).

From both a portfolio theory and hedonic price function framework, we have identified
and discussed three crucial specification issues arising in the context of mutual fund
performance gauging with non-parametric frontier models: (i) the nature of returns to
scale (VRS vs. CRS), (ii) the inclusion of higher moments and cost components, and
(iii) imposing convexity or not. The influence of higher order moments is tested for using
both classical moments and the more robust L-moments (which are still rarely used in
finance). Exploiting the relation between efficiency measures and goodness-of-fit measures,
the comparison of efficiency measured using the shortage function computed relative to
two non-parametric frontier models using the non-parametric test-statistic of Li (1996)
amounts to a test of the hypothesis distinguishing both models involved.

Adopting the Simar (2003) methodology based upon robust frontier estimators of order-
m, we manage to detect two (almost) dead funds and to correct a typo in a mutual fund
price. Having deleted and corrected these real outliers, we have next tested VRS versus
CRS in a mutual fund context: CRS is firmly rejected in both C- and L-moments. Next,
we establish the order of importance of the different cost components and observe that
it differs depending on the chosen hypothesis regarding convexity, except when using L-
moments. Thereafter, we test for the inclusion of higher moments and check whether all
cost components contribute equally well to the fit of the models.

Looking at the need for higher order moments, it is found that both C-VRS and
NC-VRS models need higher order moments when using C-moments but less so using
L-moments, with only one exception. When trying to reduce the cost components in a
structured way, all models can do without the least important cost component. In one
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particular case, even the second least important component can be removed as well.

Finally, we have tackled the issue of imposing convexity or not. Selecting the best
fitting models for the convex and non-convex approaches, it turns out that convexity
cannot be maintained. This questions the large majority of current articles in the stream
of literature measuring mutual fund performance using frontier methods (except Daraio
and Simar (2006)). Notice that overall 224 specification tests were performed on these
different model variations.

Obviously, the proposed methodology and the resulting empirical results have some
limitations one should be aware of. First, the mutual fund rating resulting from these
non-parametric frontier models should ideally be put extensively to a comparison test
with alternative rating schemes provided by companies like Lipper Analytical Services,
Morningstar, etc. This testing of their relative predictive power should ideally be done
for a wide variety of investment horizons and other critical parameter variations. In this
respect, it could be useful crossing the current framework with the proposals in Briec and
Kerstens (2009) to employ a time-discounted temporal shortage function with multiple
time horizons to closer mimic the different time horizons included in, e.g., the Morningstar
ratings. Second, it could be worthwhile looking for further developments in the robust
estimation of financial time series to come up with estimates for the moment distribution
that are even more robust than the L-moments adopted here (e.g., trimmed L-moments
and the like).

References

Anderson, R. I., C. M. Brockman, G. Christos, and R. W. McLeod (2004):
“A Non-parametric Examination of Real Estate Mutual Fund Efficiency,” International

Journal of Business and Economics, 3(3), 225–238.

Bacon, C. R. (2008): Practical Portfolio Performance Measurement and Attribution.
Wiley, New York, 2 edn.

Barros, C. P., and M. Garcia (2006): “Performance Evaluation of Pension Funds
Management Companies with Data Envelopment Analysis,” Risk Management and In-

surance Review, 9(2), 165–188.

Basso, A., and S. Funari (2001): “A Data Envelopment Analysis Approach to Measure
the Mutual Fund Performance,” European Journal of Operational Research, 135(3),
477–492.

(2003): “Measuring the Performance of Ethical Mutual Funds: A DEA Ap-
proach,” Journal of the Operational Research Society, 54(5), 521–531.

Blake, C. R., and M. R. Morey (2000): “Morningstar Ratings and Mutual Fund
Performance,” Journal of Financial and Quantitative Analysis, 35(3), 451–483.

Blake, D. (ed.) (2000): Finance: A Characteristics Approach. Routledge, London.

Briec, W., and K. Kerstens (2009): “Multi-Horizon Markowitz Portfolio Performance
Appraisals : A General Approach,” Omega, 37(1), 50–62.

20



(2010): “Portfolio Selection in Multidimensional General and Partial Moment
Space,” Journal of Economic Dynamics and Control, forthcoming.

Briec, W., K. Kerstens, and K. O. Jokung (2007): “Mean-Variance-Skewness Port-
folio Performance Gauging: A General Shortage Function and Dual Approach,” Man-

agement Science, 53(1), 135–149.

Briec, W., K. Kerstens, and J. B. Lesourd (2004): “Single-Period Markowitz
Portfolio Selection, Performance Gauging, and Duality: A Variation on the Luenberger
Shortage Function,” Journal of Optimization Theory and Applications, 120(1), 1–27.

Brockett, P., and L. L. Golden (1987): “A Class of Utility Functions Containing
All the Common Utility Functions,” Management Science, 33(8), 955–964.

Capon, N., G. Fitzsimons, and R. Prince (1996): “An Individual Level Analysis of
the Mutual Fund Investment Decision,” Journal of Financial Services Research, 10(1),
59–82.
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Table 1: Descriptive statistics

Number of mutual funds 1068

Average minimum return −0.11103

Average expected return −0.00017

Average maximum return 0.11134

Average variance 0.00022

Average skewness −0.54312

Average kurtosis 16.72734

Average annual net expense ratio 1.43523

Average maximum front loads 2.67464

Average deferred loads 0.15801

Minimum Jarque-Bera test statistic 160.040

Table 2: Average C- and L-moments up to order four

Order 1 2 3 4

C-moments∗ −0.16524 0.22303 −0.00352 0.00242

L-moments∗ −0.16524 7.00280 −0.41391 2.06081
∗ ×10−3

Table 3: Number of extreme points (potential outliers) in basic MV-Loads model

Fund Categories C-moments L-moments

C1 3 6

C2 2 2

C3 3 4

C4 2 4

C5 2 2

C6 2 2

All funds 5 9
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Table 4: Li-test statistics comparing C-VRS and NC-VRS efficiencies of MV-Loads models with different loads (for both C- and L-moments)

C-moments

C-VRS NC-VRS

– E F D EF ED FD EFD – E F D EF ED FD EFD

– 0.00 157.81 185.59 131.60 197.71 157.65 199.49 199.86 – 0.00 183.10 203.34 134.04 202.93 183.10 203.22 202.93

E 0.00 26.64 3.49 54.74 0.00 58.09 60.09 E 0.00 26.39 28.39 25.60 0.00 26.26 25.60

F 0.00 43.24 5.83 26.71 7.50 8.42 F 0.00 88.71 0.71 26.39 0.02 0.71

D 0.00 75.21 3.79 78.31 80.68 D 0.00 88.57 28.39 88.62 88.57

EF 0.00 54.66 0.23 0.39 EF 0.00 25.60 0.56 0.00

ED 0.00 58.20 60.17 ED 0.00 26.26 25.60

FD 0.00 0.04 FD 0.00 0.56

EFD 0.00 EFD 0.00

L-moments

C-VRS NC-VRS

– E F D EF ED FD EFD – E F D EF ED FD EFD

– 0.00 200.66 92.44 0.07 230.08 200.71 92.76 230.08 – 0.00 228.15 214.04 1.85 274.60 228.16 213.73 274.60

E 0.00 63.96 200.16 36.61 0.00 64.47 36.61 E 0.00 37.25 208.57 97.52 0.00 38.08 97.52

F 0.00 91.00 46.01 64.03 0.00 46.01 F 0.00 190.23 67.58 37.25 0.02 67.58

D 0.00 228.55 200.18 91.31 228.55 D 0.00 255.07 208.57 189.69 255.07

EF 0.00 36.66 46.16 0.00 EF 0.00 97.55 68.01 0.00

ED 0.00 64.54 36.66 ED 0.00 38.08 97.55

FD 0.00 46.16 FD 0.00 68.01

EFD 0.00 EFD 0.00

26



Table 5: Adding significant higher order moments to models with different loads

C-moments

C-VRS NC-VRS

F 1 → 12 → 125 → 1256 F 1 → 12 → 123 → 1235 → 12356

FD 1 → 12 → 125 → 1256 FE 1 → 12 → 123 → 1235 → 12356

FDE 1 → 12 → 125 → 1256 FED 1 → 12 → 123 → 1235 → 12356

L-moments

C-VRS NC-VRS

E 1 → 12 → 125 E 1 → 12 → 123 → 1235

EF 1 → 12 → 125 EF 1 → 12

EFD 1 → 12 → 125 EFD 1 → 12 → 125

Table 6: Effect of reduction of loads on different multimoment models

C-moments

C-VRS NC-VRS

Order FDE→FD FD→F FED→FE FE→F

12 E NE 12 E E

123 E NE 123 E NE

1234 E NE 1234 E NE

12345 E NE 12345 E NE

123456 E NE 123456 E NE

1256 E NE 12356 E NE

L-moments

C-VRS NC-VRS

Order EFD→EF EF→E EFD→EF EF→E

12 E NE 12 E NE

123 E NE 123 E NE

1234 E NE 1234 E NE

12345 E NE 12345 E NE

123456 E NE 123456 E NE

125 E NE 125 E NE

1235 E NE
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Table 7: Distributional comparison of the best C-VRS and NC-VRS models

C-moments

Best C-VRS Best NC-VRS Result t-value

1256-FD 12356-FE NE 79.12

L-moments

Best C-VRS Best NC-VRS Result t-value

125-EF 12-EF NE 29.36

St. Dev.

M

M

Rf

St. Dev.

M

M

Rf

(a) (b)

Figure 1: Comparison of the non-parametric convex CRS frontier, traditional
portfolio frontier, and capital market line (CML)
(a) Frontiers obtained from the original mutual fund positions; (b) Frontiers after trans-
lating the mutual fund in a vertical direction for positioning the risk-free rate (Rf) in the
origin. Even then, the C-CRS frontier and the CML do not necessarily coincide unless the
market portfolio is included.
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Figure 2: MV frontier contrasted with non-parametric C-VRS and NC-VRS
frontiers
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