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Abstract:  
Quite a few studies have considered efficiency at the bank branch level by comparing mostly a 

single branch network, while an abundance of studies have focused on comparing banking 

institutions. However, to the best of our knowledge no study has ever assessed performance at 

the level of the branch bank network by looking for ways to reallocate resources such that 

overall performance improves. Here, we introduce the Johansen-Färe measure of plant capacity 

of the firm into a multi-output, frontier-based version of the short-run Johansen industry model. 

The first stage capacity model carefully checks for the impact of the convexity assumption on 

the estimated capacity utilization results. Policy scenarios considered for the short-run Johansen 

industry model vary in terms of their tolerance with respect to existing bank branch 

inefficiencies, the formulation of closure policies, the reallocation of labor in terms of integer 

units, etc. The application to a network of 142 bank branches of a German savings bank in the 

year 1998 measures their efficiency and capacity utilization and demonstrate that by this 

industry model approach one can improve the performance of the whole branch network. 
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1. INTRODUCTION 

In today’s integrated financial markets, banks face increasing competition for market 

share. The rapid changes in market conditions (e.g., disintermediation and deregulation trends, 

successive merger waves, new competition from the non-financial sector) raise a number of 

important questions from a regulatory perspective about the structure of the banking industry. 

But, equally important are the strategic issues related to the management of these financial 

service providers offering a wide range of increasingly complex products. Against this 

background, the issue of bank efficiency has become rather prominent, since inefficient banks 

may not survive these continuous challenges, especially when the sector implements massive 

investments in IT to foster productivity growth (improved information management, new 

delivery channels, etc.). While the literature on the efficiencies of banking institutions has been 

summarized from various perspectives (see, among others, Berger (2007), Berger and 

Humphrey (1997), Goddard, Molyneux and Wilson (2001), and the focused surveys on 

consolidation of Amel et al. (2004) and Berger, Demsetz and Strahan (1999)), the literature 

analyzing the drivers of performance in financial services delivery remains rather limited (see 

Harker and Zenios (2001)) as does the literature on the management of bank branch networks 

(see Paradi, Vela and Yang (2004) for a survey). 

An abundant amount of studies has focused on comparing banking institutions, while 

fewer studies have studied efficiency at the bank branch level by comparing mostly a single 

branch network. However, to the best of our knowledge no study has ever assessed the 

performance at the level of the branch bank network by looking for ways to reallocate resources 

such that overall performance of the network improves. To put this topic in perspective, we first 

briefly summarize the efficiency literature on banking institutions and bank branch networks. 

Then, we expand on the reasons why the management of a branch network requires new models 

and how the short-run Johansen industry model shows some promise in this respect. 

In view of the dual role of financial institutions as providers of transactions and as 

intermediates transferring funds from savers to investors, in the efficiency literature one finds 

mainly two types of models to measure the flow of services in a given period (see Berger and 

Humphrey (1997)):  

• Production approach: Banks are considered as service providers to account holders that 

perform transactions and process documents for depositors (e.g., checks, loan applications, 

credit reports, etc.). Outputs are defined in terms of numbers of transactions or documents 

processed. Only current expenses related to physical inputs like labor and capital and their 
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associated costs are considered, while interest payments are ignored. As a consequence, only 

input prices for physical inputs are considered.  

• Intermediation approach: Banks are intermediating funds between savers and investors. The 

flow of services is seen as proportional to the stock of financial value in the accounts (e.g., 

value of loans, deposits, etc.). Outputs are defined in terms of financial value terms. In 

addition to the physical inputs, also the input of funds is considered. Costs therefore contain 

current expenses and interest payments and input prices for physical inputs and financial 

inputs are taken into account. 

Both approaches have their relative advantages (see again Berger and Humphrey (1997)). 

The intermediation approach is more appropriate for evaluating entire banking institutions, since 

interest expenses are an important part of total costs and need to be minimized to guarantee 

overall cost minimization or profit maximization. The production approach is most suitable for 

bank branches, since intermediation is organized at a higher level. Certain studies employ both 

approaches. 

Since the seminal article of Berger, Leusner and Mingo (1997), some progress had been 

made in analyzing bank branch efficiency. Some key results from this limited literature can be 

summarized as follows. (i) There are scale economies at the branch level. But, the excess costs 

of over-branching are rather low due to the relative flatness of average cost curves. Furthermore, 

additional revenues gained from the convenience offered to the customers at the network level 

probably compensate these additional costs due to scale inefficiency. (ii) The large dispersion of 

technical inefficiencies at the branch level implies that technical inefficiencies at the bank level 

are understated, since even efficient banks are likely to have some inefficient branches. 

(iii) Bank management only imperfectly controls the costs of branch offices through its 

procedures, incentives and supervision. The quality of local management remains a crucial 

determinant of branch performance. Further conclusions on bank branch efficiency are found in 

the surveys of Berger and Humphrey (1997) and Paradi, Vela and Yang (2004). International 

comparative network studies are still extremely rare (see Athanassopoulos, Soteriou and Zenios 

(2001) or McEachern and Paradi (2007) for exceptions). 

Bank management has always monitored the operational efficiency of its branch network 

by a variety of tools to measure its performance. Traditional tools to measure efficiency are 

based on financial ratios (such as Return on Assets, Return on Equity, or similar ratios). While 

ratios provide a great deal of information about financial performance in comparisons across 

time or relative to other banks’ performance, these tools have well-known limitations. An 

alternative approach is the use of deterministic or econometric frontier efficiency analysis using 
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a production approach or eventually using accounting information (as it turns out that financial 

and production performance tends to be rather correlated: see, e.g., Elyasiani, Mehdian and 

Rezvanian (1994) or Feroz, Kim and Raab (2003)). Some success stories of using frontier 

benchmarking in evaluating branch networks have been well-documented (see, e.g., Sherman 

and Ladino (1995) or Athanassopoulos and Giokas (2000)). Straightforward uses of frontier 

benchmarking for managing branch networks have equally been testified in a variety of written 

sources. In particular, efficiency scores, rankings and frontier projections have, among others, 

been used as an instrument to reformulate budgetary and revenue targets; to identify branches 

needing a thorough internal audit; to rewrite internal procedures and test the implications of 

these reforms on performance; to induce a learning process for current personnel by assembling 

both weak and good performers and eventually move best-practice managers to poor performing 

branches; to train new employees at best practice branches, etc. 

However, the rapid technological changes have led to the introduction of new delivery 

systems (Automatic Teller Machines (ATM), electronic fund transfer of point of sale 

(EFTPOS), phone and internet banking, e-money, centralized call centers, etc) that risk to erode 

away the earlier dominance of the brick-and-mortar bank branch. This increasing competition of 

distribution channels goes hand in hand with an increasing number of bank branches in the USA 

(Thirtle (2007)), even though these branches are becoming more concentrated in the networks of 

just a few institutions (due to industry consolidation). Though Thirtle (2007) finds no systematic 

relationship between branch network size and overall institutional profitability, which seems to 

suggest that banks somehow optimize the size of their branch network as part of an overall 

strategy, her findings do suggest that banks with mid-sized branch networks (101–500 branches) 

may be at a competitive disadvantage in branching activities relative to banks with larger branch 

networks. Together with the common knowledge that there remain unexploited scale economies 

at the branch level whereby the additional cost of “overbranching” seems to be compensated by 

the gains in additional revenues from providing extra customer convenience (see above), these 

findings point to the conclusion that the management of branch networks is going to remain a 

major challenge for the years to come. 

While measuring the efficiency of bank branch networks is fairly standard, few if any 

managerial tools are available to optimize existing bank branch networks while correcting for 

existing inefficiencies and accounting for targets of various kinds. A burgeoning literature exists 

that starts from efficiency measurements at the individual firm (plant or subunit) level to come 

up with some reallocation of resources at the level of the industry (firm). Early examples of such 

articles include Athanassopoulos (1995), Färe, Grosskopf and Li (1992), Golany and Tamir 
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(1995), Li and Ng (1995), among others. Meanwhile, a series of additional publications have 

appeared, including, for instance, Asmild, Paradi and Pastor (2009), Giménez-García, Martínez-

Parra and Buffa (2007), Korhonen and Syrjänen (2004), and Lozano and Villa (2004). However, 

it is difficult to see a common structure in this large variety of research proposals. Furthermore, 

since few empirical applications exist and experience with practical implementations seems 

absent (at least it is not reported in publications), it is difficult to assess the relative advantages 

of these models from a managerial viewpoint. To the best of our knowledge, none of these 

reallocation models has ever been applied to the banking sector. 

We have therefore opted to stick to a short-run industry model initially proposed in 

Johansen (1972) which received at least a minimum of discussion in the economics literature 

(see, e.g., Førsund and Hjalmarsson (1983) or Hildenbrand (1981)). Furthermore, it has been 

linked to the frontier-literature in Dervaux, Kerstens and Leleu (2000) who introduce frontier-

based estimates of plant capacity (see Johansen (1968)) as a foundation for this short-run 

industry model, thereby distinguishing between variations in technical efficiency and capacity 

utilization. This methodological refined model has been applied in analyzing excess capacities 

in fisheries and further extended in Kerstens, Vestergaard and Squires (2006). Starting from the 

ex-post fixity of investments in production capacities, this short-run Johansen (1972) model 

allows for some substitution possibilities by reallocating inputs and outputs among the units 

composing the industry while eliminating technical inefficiencies and major variations in 

capacity utilization among units. Furthermore, over time substitution and technical change can 

be traced via shifts in successive short-run industry models. None of the other above mentioned 

models accounts for the notion of production capacity or distinguishes clearly between technical 

inefficiency and variations in capacity utilization. As far as we know, this short-run industry 

model has never been applied to banking. 

Since the goal of performance benchmarking in this case is prospective (i.e., providing 

management with strategic information to actually improve performance), there are strong 

reasons to believe that many people object to unobservable projection points implied by the 

traditional convexity hypothesis. This is evidenced in remarks, scattered in the literature, on the 

problems encountered in communicating the results of efficiency measurement to decision 

makers. We offer three examples. In a study applying convex nonparametric frontier methods to 

measure bank branch efficiency, Parkan (1987: 242) notes: “The comparison of a branch which 

was declared relatively efficient, to a hypothetical composite branch, did not allow for 

convincing practical arguments as to where the inefficiencies lay.” In a similar vein, Bouhnik et 

al. (2001: 243), apart from criticizing extreme low scaling, also state: “… it is our experience 
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that managers often question the meaning of convex combinations that involve what they 

perceive to be irrelevant DMUs.” Finally, Epstein and Henderson (1989: 105) report similar 

experiences in that managers simply question the feasibility of the hypothetical projection points 

resulting from convex nonparametric frontiers. Thus, avoiding convexity may facilitate the 

implementation of frontier-based decision support models.4 Therefore, in this contribution a lot 

of attention is devoted to testing for the impact of the convexity assumption in estimating 

capacity and in the results of the short-run industry model. 

This contribution is structured as follows. We introduce in Section 2 the Johansen-Färe 

measure of plant capacity of the firm into a multi-output, frontier-based version of the short-run 

Johansen industry model. The first stage capacity model carefully checks for the impact of the 

convexity assumption on the estimated capacity utilization results. Policy scenarios considered 

for the short-run Johansen industry model vary in terms of their tolerance with respect to 

existing bank branch inefficiencies, the formulation of closure policies, the reallocation of labor 

in terms of integer units, etc. The data set of 142 bank branches of a German savings bank in the 

year 1998 is introduced in Section 3. The application to this German network of bank branches 

in Section 4 measures their efficiency and capacity utilization and demonstrate that by this 

industry model approach one can improve the performance of the whole branch network. A final 

section concludes and tries to outline some promising avenues for further research. 

 

2. Methodology 

2.1. Introduction 

The theory of production is based on efficient technologies (production frontiers) and 

their value duals (such as minimal cost functions and maximum profit functions) and on 

envelope properties yielding cost-minimizing input demand functions and revenue maximizing 

output supply functions. In theory, emphasis is placed on efficient production and its 

consequences, and the evocative term “frontier” is applied to functions characterizing these 

boundaries. Using either parametric or nonparametric approaches, the standard cost structure is 

typically generated by imposing a specific functional form on the data and by obtaining the best 

fit by minimizing the deviations from the estimated structure. Efficiency measurement implies 

comparison between actual and optimal performance positioned on the relevant frontier. This 

frontier is called “best-practice”, since it is an empirical approximation of the true but unknown 

                                                            

4 We thereby ignore the theoretical arguments against convexity based upon, for instance, the indivisibilities in 
production. See, e.g., Scarf (1994). 
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frontier. The parametric approach is stochastically attempting to distinguish noise from 

inefficiency which requires strong assumptions, while the nonparametric approach does not run 

the risk of misspecification of the functional form but noise is not taken into account.5 

We first offer several definitions to understand the mechanism of efficiency measurement. In 

general, efficiency analysis can be carried out at many levels of aggregation (i.e., at the plant, 

firm, industry or economy–wide level). The choice of level of aggregation is determined by – 

among other things – availability of data and the purpose of the study. Here, we focus on the 

linkages between the efficiency both at the firm (branch) level and the industry (branch 

network) level. Economic efficiency has both a technical and allocative component. Technical 

efficiency is generally about avoiding waste, i.e., reducing the use of inputs given output levels 

or increasing outputs given input levels (see Koopmans (1951) for a formal definition). 

Allocative efficiency is referring to optimal proportions in outputs and inputs connected to 

prevailing relative prices.  

When it comes to measurement of technical efficiency, the so-called Debreu (1951)-Farrell 

(1957) measure is used. In an output-augmenting orientation, the Debreu-Farrell measure is 

defined as the maximum radial expansion in all outputs that is feasible with given technology. 

From an engineering capacity concept, Johansen (1968) defined plant capacity as the maximal 

amount of output that can be produced per unit of time with an existing plant and its equipment 

without any restrictions on the availability of variable inputs. Capacity arises due to fixity of one 

or more inputs, and is thereby inherently a short-run concept. Färe (1984) formally showed the 

existence of plant capacity for certain types of production functions, while Färe, Grosskopf and 

Kokkelenberg (1989) made the concept operational by using the Debreu-Farrell measure to 

calculate firm level capacity levels using nonparametric frontier approximations of technology. 

Their approach assumes that firms cannot exceed their use of fixed factors, but that their use of 

variable factors is unconstrained. A best-practice technology or frontier is constructed and the 

current output of each firm is evaluated against the maximum potential output at full capacity 

utilization, called “capacity output”. 

Summing these firm-level capacity outputs across firms offers an estimate of the aggregate 

industry capacity output. Comparing this aggregate industry capacity output to current industry 

output provides a measure of overcapacity at the industry level. However, neither firm-level 

technical measures nor firm-level capacity levels allow for reallocation of inputs and outputs 
                                                            

5 This is of course a simply presentation, but it presents the two essential differences between both approaches. For 
example, in recent years there has been a lot of work on the statistical foundation of the nonparametric approach: 
see Simar and Wilson (2008) for an overview. 
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across firms, precluding insight into the optimal restructuring and configuration of the industry. 

For example, the plant capacity measure implicitly assumes that production of capacity output is 

feasible and that the necessary variable inputs are available. In many other situations, relevant 

questions at the industry level are: What is the optimal firm-structure given the current 

aggregate output? How should the reallocation of inputs and outputs be performed between the 

firms? How does the reallocation look like if certain policy issues are taken into account? And 

what are the costs of pursuing these policy issues in terms of allocating more inputs than 

necessary? 

To answer these questions, we combine the plant capacity notion (Johansen (1968)) at the 

individual and industry levels using a multiple-output and frontier-based version of the short-run 

Johansen (1972) sector model, a methodological refinement developed in Dervaux, Kerstens and 

Leleu (2000) and applied in, e.g., Kerstens, Vestergaard and Squires (2006). The short-run 

Johansen (1972) sector model analyses the industry structure resulting from underlying ex post 

firm-level production structures. Investment decisions imply a putty-clay production structure: 

while firms may eventually choose ex ante from a catalogue of production options exhibiting 

smooth substitution possibilities, most firms face fixed coefficients ex post and have a capacity 

that is entirely conditioned by the investment decision made. The short-run industry model 

nevertheless exhibits substitution possibilities when inputs and outputs can be reallocated across 

the units composing the industry. Over time, substitution and technical change can be traced via 

shifts in successive short-run industry models. 

The revised short-run Johansen (1972) model proceeds in two phases. In a first step, the 

Johansen-Färe capacity measure determines capacity production for each individual firm at the 

production frontier. Second, this firm-level capacity information is employed in the industry 

model by a planning agency to select the level of activity at which individual firm capacities are 

utilized with the objective of minimizing fixed industry inputs given total outputs and capacities 

and the current state of technology. Following Dervaux, Kerstens and Leleu (2000) and 

Kerstens, Vestergaard and Squires (2006), the optimal industry or branch network configuration 

can be found by minimizing the total use of fixed inputs given that each firm cannot increase its 

use of fixed inputs and the production of the industry is at least at the current level.6 The output 

                                                            

6 Remark that, when appropriate price information is available, the technical optimization (in terms of primal or 
quantity based aspects) in both stages of the short-run Johansen industry model can be replaced by alternative 
economic capacity notions in the first stage and economic objective functions (e.g., industry cost functions as in 
Førsund and Hjalmarsson (1983), or industry revenue or profit functions) in the second stage. In the first stage, 
economic capacity notions based on, e.g, the cost function can be employed (e.g., Prior (2003)). 
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level of each firm in this type of model is the capacity output estimated from the firm-level 

capacity model. 

 

2.2. Definitions of Efficiency, Plant Capacity, and the Short-Run Industry Model 

To develop these production models formally, the production technology S transforms inputs 

1( ,..., ) N
Nx x x += ∈  into outputs 1( ,..., ) M

Mu u u += ∈  and summarizes the set of all feasible 

input and output vectors: { }( , ) : can produceN MS x u x u+
+= ∈ . Let J be the number of 

firms/units ( { }1,...,j J∈ ). The N-dimensional input vector x is partitioned into fixed factors 

(indexed by f) and variable factors (indexed by v): ( , )v fx x x= . To determine the capacity 

output or technical efficiency, a radial output-oriented efficiency measure 

{ }0 ( , ) max : ( , )E x u x u Sθ θ= ∈  is computed relative to a frontier technology providing the 

potential output given the current use of inputs, where restrictions on input use determine the 

precise nature of the measure.  

Nonparametric inner-bound approximations of the true technology can be presented by the 

following set of production possibilities, assuming strong disposal of inputs and outputs and 

variable returns to scale (VRS): 

 

,

1

1 1

( , ) : , 1,..., ;

, 1,..., ; 1, , 1,..., ,

J
VRS N M

m j jm
j

J J

j jn n j j
j j

S x u u z u m M

z x x n N z z j J

Λ +
+

=

= =

⎧
= ∈ ≤ =⎨
⎩

⎫
≤ = = ∈Λ = ⎬

⎭

∑

∑ ∑
 (1) 

where { },C NCΛ∈ , with { }J
jC z += ∈  and { }{ }: 0,1J

j jNC z z+= ∈ ∈ . VRSS ,Λ  assumes 

strong disposability of input and outputs, variable returns to scale, and it imposes either the 

traditional convexity (C) assumption or an alternative non-convexity (NC) hypothesis. From 

activity analysis, z is the vector of intensity or activity variables that indicates the intensity at 

which a particular activity is employed in constructing the reference technology by forming 

convex combinations of observations constituting the best practice-frontier.  

From this same technology, a plant capacity version is defined by dropping the 

constraints on the variable input factors. This leads to Johansen’s model definition of plant 

capacity whereby the availability of variable factors is unrestricted:  
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,

1

1 1

ˆ ( , ) : , 1,..., ;

, 1,..., ; 1, , 1,..., ,

J
VRS N M

m j jm
j

J J

j jf f j j
j j

S x u u z u m M

z x x f F z z j J

Λ +
+

=

= =

⎧
= ∈ ≤ =⎨
⎩

⎫
≤ = = ∈Λ = ⎬

⎭

∑

∑ ∑
 (2) 

where Λ

 

is again defined as above. To remain consistent with the plant capacity definition, in 

which only the fixed inputs are bounded at their observed level, the variable inputs in the 

production model (2) are allowed to vary at will to exploit the full capacity of outputs 

conditioned by the fixed inputs.  

The efficiency measure 1θ  is found by solving the linear programming problem for each 

firm 1,2,...,j J=  relative to the production possibilities set with unrestricted variable inputs 

given by (2):  

 { }
1

,
1 1

,
ˆmax : ( , )

j
j

j j VRS

z
x u S

θ
θ θ Λ∈ . (3) 

The scalar 1θ  informs us by how much the production of each output of firm j can be increased. 

In particular, capacity output for firm k of the mth output is *
1

kθ  multiplied by the actual 

production ukm. Hence, capacity utilization based on observed output (subscript ‘oo’) is: 

 *
1

1
oo

k
kCU

θ
= . (4) 

Färe et al. (1994) note that this ray CU measure may be biased downwards, because 

there is no guarantee that the observed outputs are produced in a technically efficient way. The 

technical efficiency measure can be obtained by evaluating each firm 1,2,...,j J=  relative to 

the production possibility set VRSS ,Λ . The outcome ( 2θ ) shows by how much production can be 

increased using the given vector of inputs: 

 { }
2

,
2 2

,
max : ( , )

j
j

j j VRS

z
x u S

θ
θ θ Λ∈ . (5) 

The technically efficient output vector is *
2

kθ  multiplied by observed production for each output. 

Total industry output can be found by aggregating the firm-level technically efficient output 
*
2

k
kuθ  of each firm. Likewise, the aggregate industry capacity output can be found as the sum of 

firm-level capacity outputs ( *
1

k
kuθ ). The unbiased ray measure of capacity utilization given 

technically efficient output (subscript ‘eo’) is then: 

 
*
2
*
1

k
k
eo kCU θ

θ
= . (6) 

The focus here is on reallocation of resources between branches in a network by 

explicitly allowing improvements in technical efficiency and capacity utilization rates. The 
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model is developed in two steps as follows. In the first step, from model (3), an optimal activity 

vector z*k is provided for firm k and hence capacity output and its optimal use of fixed and 

variable inputs can be computed: 

 * * * * * *

1 1 1

; ;
J J J

k k k
km j jm kf j jf kv j jv

j j j

u z u x z x x z x
= = =

= = =∑ ∑ ∑ . (7) 

In a second step, these “optimal” frontier figures (capacity output and capacity variable 

and fixed inputs) at the branch level are used as parameters in the industry model. In particular, 

the industry model minimizes the industry use of fixed inputs in a radial way such that the total 

production is at least at the current total level, or at a desired target level in the model extension 

developed below, by a reallocation of resources between firms or branches. Reallocation is 

allowed based on frontier production outputs and inputs used in each branch. In the short-run, it 

is assumed that current capacities cannot be exceeded either at the branch or industry level. 

Define Um as the industry output level of output m and Xf (Xv) as the aggregate fixed (variable) 

inputs available to the sector of factor f (v): 

 
1 1 1

,  and
J J J

m jm f fj v vj
j j j

U u X x X x
= = =

= = =∑ ∑ ∑ . (8) 

The formulation of the multi-output and frontier-based short-run Johansen (1972) 

industry model can then be specified as: 

 

, ,

*

1

*

1

*

1

min

s.t. , 1,.., ,

,      1,..., ,

,          1,..., ,

0 1, 0, 1,..., .

vw X

J

jm j m
j

J

fj j f
j

J

vj j v
j

j

u w U m M

x w X f F

x w X v V

w j J

θ
θ

θ

θ

=

=

=

≥ =

≤ =

≤ =

≤ ≤ ≥ =

∑

∑

∑

 (9) 

Rather than reflecting a returns-to-scale hypothesis, the variables w now indicate which firms’ 

capacity is utilized and by how much. The components of the activity vector w are bounded 

above at unity, such that current capacities can never be exceeded. The first constraint prevents 

total production by a combination of firm capacities from falling below the current output levels. 

The second constraint means that the total use of fixed inputs (right-hand side) cannot be less 

than the use by a combination of firms. The third constraint calculates the resulting total use of 

variable inputs. Note that the total amount of variable inputs is a decision variable. The objective 

function is a radial input efficiency measure focusing on the fixed inputs solely. This input 

efficiency measure has a fixed-cost interpretation at the industry level. The activity vector w 
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indicates which portions of the line segments representing the firm capacities are effectively 

used to produce outputs from given inputs.  

To sum up, the optimal solution to this simple LP gives the combination of firms or 

branches that can produce the same or more outputs with less or the same use of fixed inputs in 

aggregate.7 It measures the combined impact of the removal of any inefficiency, the exploitation 

of existing plant capacities, and the reallocation of inputs and outputs. Notice that an alternative 

could be to have an efficiency measure focusing on the expansion of industry outputs that has a 

revenue interpretation.  

From a managerial point of view, the optimal solution of this short-run industry model 

provides information at two levels. First, at the level of the network it indicates the aggregate 

amount of variable inputs that is needed to realize the multiple aggregate outputs from given 

fixed aggregate inputs. If the optimal value of the aggregate variable inputs decision variable is 

larger than the current amount of aggregate variable inputs, then this implies additional 

recruitments are needed. Otherwise, a reduction in staff levels is required. 

Second, at the level of the individual production units (bank branches) the model yields a 

complete planning for service production. Per unit, one obtains optimal fixed ( **
jfjwx ) and 

variable ( **
jvjwx ) inputs as well as optimal outputs ( **

jjmwu ). This may imply reallocations of 

inputs: fixed and variable inputs may be redistributed among units. Obviously, adjusting fixed 

inputs may be costly (e.g., renegotiating an existing office rental contract) and may furthermore 

require time to implement (e.g., legal terms of notification prevent immediate changes). Equally 

so, adjusting variable inputs may be subject to a series of constraints (especially labor is under 

legal protection). This plan may also imply reallocations of outputs: this simply means that one 

adjusts the output targets within the planning horizon so as to better exploit the existing capacity 

of the whole network. Obviously, this may imply accompanying policy measures that are not 

necessarily part of the model (e.g., marginal changes in global and local marketing campaigns in 

an effort to gear consumer demand towards these targets). 

 

2.3. Short-Run Industry Model: Additional Scenarios 

Now, we turn to a discussion of some additional scenarios that extend the frontier-based 

short-run industry model to adapt to managerial concerns.  

 
                                                            

7 In fact, this short-run industry model is geometrically speaking a set consisting of a finite sum of line segments 
known as a zonotope (see Hildenbrand (1981: 1096). 
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1.  Restriction on number of branches: 

Assume the number of branches should be restricted to N. Since the variable wj represents the 

utilization of the corresponding branch, this restriction can be modeled with the following 

constraints: 

 

{ }
1

( 1,..., );

;

0,1 ( 1,..., ).

j j

J

j
j

j

w b j J

b N

b j J
=

≤ =

≤

∈ =

∑  (10) 

By adding these constraints to model (9), it becomes a mixed integer program. The binary 

variable bj indicates whether the corresponding branch is used in the optimal solution or not. 

The amount by which it is used can then be read from variable wj. 

 

2.  Allow for existing inefficiency  

The capacity outputs and the corresponding optimal fixed and variable inputs as 

computed in (7) presuppose that all eventually existing technical inefficiency can be eliminated 

in an effort to exploit the existing capacity of production. However, starting from the optimal 

activity vector * * *
1( ,..., )k k k

Jz z z=  obtained from solving model (3), it is also possible to define 

capacity outputs and the corresponding optimal fixed and variable inputs while maintaining the 

existing levels of technical inefficiency by computing: 

 * * * * * *

1 1 12

1 ; ;
J J J

k k k
km j jm kf j jf kv j jvk

j j j

u z u x z x x z x
θ = = =

= = =∑ ∑ ∑ . (11) 

Hence, while the optimal fixed and variable inputs remain the same, the capacity outputs are 

maintained or scaled down by the measured amount of technical inefficiency ( 2θ ). Referring to 

the capacity output in (7) as the fully efficient one, the adjustment in (11) is called the fully 

inefficient capacity output. Both these capacity outputs can be considered special cases of the 

100α % inefficient capacity output and the corresponding optimal fixed and variable inputs that 

can be defined as: 

 * * * * * *

1 1 12

1( ) ; ; ,
1 ( 1)

J J J
k k k

km j jm kf j jf kv j jvk
j j j

u z u x z x x z xα
α θ = = =

= = =
+ − ∑ ∑ ∑  (12) 

with 0 1α≤ ≤ . Clearly, the 0% inefficient capacity output corresponds with the fully efficient 

capacity output, while the 100% inefficient capacity output coincides with the fully inefficient 

capacity output. When fully inefficient capacity output are used in the short-run industry model, 

this implies that one measures the impact of reallocation only. 
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3. Restrictions on the personnel transfer 

Assuming the number of employees is a variable input, personnel transfer for a given 

branch with respect to the current situation is then measured by the difference between the 

optimal variable input resulting from the industry model and the observed fixed input (i.e., 
*
vj j vjx w x− ). It could be meaningful to allow personnel transfer only in integer multiples of some 

unit β . For instance, 0.5β =  would mean that the number of employees must change in 

multiples of one half (e.g., because the basic unit of a labor contract in some countries is either a 

part-time of a full-time contract). Since this change can be either positive (reflecting an increase 

in number of employees) or negative (referring to a decrease), this condition can be modeled by 

the constraint: 

 *
1 2( )vj j vjx w x i iβ− = − , (13) 

with i1 and i2 integer variables. The difference of both integer variables measures exactly the 

change in personnel expressed in units of β  (e.g., 0.5β =  means this difference of integer 

variables measures personnel change in half units). Note that adding this type of constraint 

transforms model (9) to a mixed integer problem. 

 

4. Imposing alternative aggregate output targets 

If it is possible to impose alternative target values on the outputs, then the first set of 

constraints in model (9) needs to be changed to: 

 *

1
(1 )

J

jm j m m
j

u w Uγ
=

≥ +∑  , (14) 

with 1mγ ≥ − . A value of 0mγ ≥  (implying 1 1mγ+ ≥ ) means that the aggregate output m of the 

industry model must be at least 100 mγ % larger than the current industry level of output m. 

Obviously, positive values correspond with increases, while negative values reflect decreases 

with respect to the current industry level of output m. If all 0mγ = , then no alternative target 

values are proposed and the original model (9) is obtained based upon observed aggregate 

outputs. 

Remark that, in general, imposing a positive target value (i.e., above the output 

aggregate) additionally restricts the constraints. This lead to worse objective function values in 

the case of a minimization problem. Put differently, a positive target value leads to a higher 

efficiency measure θ . Ultimately, too large positive target values may result in infeasibilities. 

By contrast, negative target values (i.e., below the output aggregate) relax the corresponding 

constraint, which results in a lower or equal efficiency measure value. Whether this 
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phenomenon actually occurs, however, depends on the status of the corresponding constraint 

and on its relation with other constraints. For instance, adding a negative target value to a 

nonbinding output constraint has no influence on the optimal solution. Even if an output 

constraint is binding, other binding output constraints could prevent a reduction of the efficiency 

measure θ  when adding a negative target value.  

 

Additional scenarios that could eventually be envisioned are: (i) limiting the range of 

plant capacity utilization for the units in the optimal solution (see, e.g., Kerstens, Vestergaard 

and Squires (2006)), and (ii) aggregating some of the outputs to reduce the number of 

dimensions (at the risk that the required more spectacular changes are more difficult to 

implement). 

 

3. DATA: BANK BRANCHES OF A GERMAN SAVINGS BANK 

Data are obtained from the article by Porembski, Breitenstein and Alpar (2005). These 

authors analyze a sample of 142 German bank branches in the year 1998. In this work, we 

measure the efficiency of these branches of a German savings bank and demonstrate that by a 

different industry model approach one can improve the efficiency over the whole network. 

German thrift institutions are owned by communities or counties. Today, these 

institutions participate in all types of banking activities, either directly or through a central 

institution that is commonly owned. These banks are independent of each other, but share a 

number of resources. An important characteristic of these banks is that the goal of profit 

maximization is conditioned by the requirement of providing services to their stakeholders (e.g., 

community or county, to small businesses, and the middle-class). For example, nobody who 

wants to open an account can be rejected. These special characteristics cause some serious 

problems, since, for instance, it is not allowed to restrict branches to regions with profitable 

customer bases only. Moreover, increased competition is faced due to the globalization of 

financial markets, the spread of internet banking, and the increasing operational cost of 

personnel, whereas interest rates and profits have been decreasing over the last few years. This 

explains why these banks are very keen on increasing their productivity. 

The bank analyzed is among the ten largest of its type in Germany. Its total assets in 

1998 were in the tens of billions US $. To develop the bank branch industry model, we follow 

Porembski, Breitenstein and Alpar (2005) and basically adopt a so-called, production approach 

to defining the transformation of banking inputs into financial services. Bank branches are 

considered as service providers to account holders performing transactions and processing 
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documents. Outputs are therefore normally defined in terms of the numbers of transactions or 

documents processed. The outputs chosen cover most of the products offered by a branch and 

the level of disaggregation is high (e.g., one distinguishes between demand deposits for business 

and for households). However, very often, and also in this case, detailed transaction flow data 

are unavailable, whence the stock of the number of accounts of various types is employed 

instead. Furthermore, only physical inputs like labor and capital and their associated costs are 

taken into account. Actually, around 60% of the operating costs are due to personnel. Hence, the 

labor input is one of the most important at the branch level. A major part of the remaining 

operating costs are building and equipment costs. Since these costs are very difficult to 

determine (e.g., the corresponding book value is often biased), the input office space serves as a 

surrogate input measure.  

Listing the inputs and outputs constituting the production technology in detail, the 

following inputs are available: 

• Employees (number); 

• Office space (square meters); 

whereby the units of measurement are put in between braces. Notice that it is common to 

consider office space as a fixed input that cannot be modified in the short-run. Hence, 

employees are the sole variable inputs. In addition, there is information on the following 11 

output dimensions: 

• Private demand deposits (accounts); 

• Business demand deposits (accounts); 

• Time deposits (accounts); 

• Saving deposits (accounts); 

• Credits (accounts); 

• Bearer securities (accounts); 

• Recourse guarantees (accounts); 

• Bonds (accounts); 

• Investment deposits (accounts); 

• Insurances (contracts); 

• Contributions to a building society (contracts). 

Descriptive statistics, including mean, variance, skewness, the minimum and the 

maximum, for these input and output dimensions are reported in Table 1. We can make the 

following observations. First, there is a lot of variation among these bank branches as witnessed 
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by the standard deviation. Furthermore, the positive skewness of the distribution reveals the 

dominance of certain large units, mainly reflecting substantial differences in size. Second, notice 

that some branches do not seem to produce time deposits, recourse guarantees, or insurance 

since these outputs are zero at the minimum. This may reveal a variety of patterns of 

specialization among this sample bank branches. In addition, the last row contains the sum of all 

inputs and outputs at the level of the branch network. This serves as a benchmark to assess the 

impact the various scenarios in the industry models. 

< Table 1 about here > 

 

4 EMPIRICAL RESULTS  

First, we report extensively on the estimation results of the plant capacity measure and 

its underlying efficiency measures. We thereby focus on the impact of the convexity hypothesis 

and the impact of correcting the capacity definition for the presence of technical inefficiency or 

not. Thereafter, we turn to the basic results from the short-run industry model and also 

investigate the implied reallocations at the level of the individual branches. We thereby report 

on a series of different scenarios. 

 

4.1. Estimation of Plant Capacity: Testing for Convexity 

Descriptive statistics for the capacity-related efficiency measure ( 1θ ), the ordinary 

technical efficiency measure ( 2θ ), and the plant capacity measure ( eoCU ) are reported in Table 

2 for both the convex and non-convex case. Four key observations can be made: (i) the output-

oriented inefficiency measures are on average much higher in the convex case than in the non-

convex case; (ii) in the non-convex case all bank branches except three are technically efficient 

in contrast to just about 40% of observations in the convex case; (iii) two thirds of all branches 

(97) operate at full capacity in the non-convex case compared to about one fifth (33) in the 

convex case; and (iv) these phenomena result in rather low average measures of capacity 

utilization in the convex case compared to the non-convex case. 

< Table 2 about here > 

The difference between the densities of the output efficiency measures obtained with the 

convex and non-convex models as well as the resulting ray CU measure can be tested with a 

statistic developed by Li (1996) and later refined by Fan and Ullah (1999). This test statistic has the 

critical advantage to be valid for dependent and independent variables, the former dependency 

being typical for frontier estimators. The null hypothesis states the equality of both distributions. 
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Table 3 summarizes the obtained results. In total, three efficiency measures ( 1θ , 2θ  and eoCU ), 

both in the convex and non-convex case, are compared two by two. Notice that the symmetry of the 

table immediately follows from the symmetry of the test itself. The values of these test statistics 

must be compared with the reference value for the target significance level. A value higher than the 

reference value leads to a rejection of the null hypothesis (implying that both density distributions 

can be considered statistically different). Table 3 also shows the conclusion depicted with symbols 

when tested for a significance level of 1%: an asterisk (*) is used when the null hypothesis is 

rejected (different densities) and an equality sign (=) flags that the null hypothesis cannot be 

rejected (equal densities). We notice that all density distributions can be considered different, 

except for 1θ  and eoCU  in the non-convex case. The latter exception is explained by the fact that 

only three observations are technically inefficient ( 2 1θ > ) in the non-convex case (hence, the ratio 

eoCU  is inevitably very close related to 1θ ). In conclusion, statistical tests indicate that these 

efficiency measures follow different distributions. Put differently, adding the traditional convexity 

hypothesis is not as innocuous as it is traditionally assumed. 

< Table 3 about here > 

Table 4 reports descriptive statistics of plant capacity inputs and outputs for two 

variations: (i) convex vs. non-convex; and (ii) full efficiency vs. full inefficiency. These results 

need to be contrasted with the descriptive statistics on the inputs and outputs of the original data 

in Table 1. Comparing Tables 4 and 1, one immediately observes that: (i) the capacity inputs 

remain on average close to the observed inputs, while the choice for the output orientation of 

efficiency measurement implies that capacity outputs are quite above observed outputs; (ii) this 

divergence between capacity and observed outputs is more substantial for the convex case than 

for the non-convex case; and (iii) the difference between capacity outputs without and with 

technical inefficiency is again largest in the convex case. This analysis serves to underscore the 

importance of the convexity axiom and, to some lesser extent, the impact of eliminating 

technical inefficiency or not. 

< Table 4 about here > 

 

4.2. Short-Run Industry Model: Basic Results and Additional Scenarios 

Instead of using the fully efficient capacity output in the short-run Johansen industry 

model formulated in (9), the fully inefficient capacity output (11) as well as the 100α % 

inefficient capacity output for a given α  (12) can be employed, leading to a series of variations 

of this basic model. By examining these different models, the impact of allowing for 
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inefficiency can be measured in combination with the difference between convex and non-

convex estimates of capacity.  

Table 5 summarizes exactly this impact of both convexity and inefficiency on several 

key decision variables. First, there is the influence on the optimal industry efficiency measure 
*θ . In the next row, the influence on the number of branches is reported for which full capacity 

is used in realizing at least the aggregate outputs with only a fraction of the fixed aggregate 

inputs. Similarly, the next rows indicate the number of branches that are only partially used or 

not used at all to realize the set of constraints in model (9).  

< Table 5 about here > 

In the convex case, the effect of allowing for inefficiency is noticeable. We observe, for 

instance, an increase of the efficiency measure with 0.1 when allowing for all existing technical 

inefficiency (this is a relative increase of 17%). Since capacity outputs are lower when one 

allows for inefficiency, it is harder to economize on fixed inputs and an increase of its optimal 

value can indeed be expected. Furthermore, notice that the full efficiency case only utilizes 106 

of the 142 branches. Since the number of branches only partially used is limited to only three, 

this means that 33 branches are not used at all to implement the optimal solutions obtained in 

the Johansen industry model. This is quite a substantial amount (23.2% of the total number of 

branches), making one doubt whether such solution is implementable in practice. When 

inefficiency is allowed for, then the number of unused branches is reduced to 28 (19.7%), which 

remains considerable.  

Remark that, contrary to what one may expect, the branches that are no longer used in 

the optimal solution remain not necessarily the same when moving from the fully efficient to the 

fully inefficient case. Put differently, the 28 branches observed with zero capacity in the fully 

efficient scenario are not necessarily contained in the 33 branches that are no longer utilized in 

the fully efficient scenario. Examining the individual branches, we detect 11 of the 28 branches 

that are used in the fully efficient case but not used at all in the fully inefficient scenario. Except 

for one, these are even used at full capacity. 

We end by looking at the results in the non-convex case. With respect to the optimal 

efficiency value *θ , we notice only a minor increase of 0.003 (this is a relative increase of only 

0.4%) when moving from the fully efficient to the fully inefficient industry model. From the 

individual results per branch, it can be observed that there is no shift in the optimal solution. 

Thus, all branches used at full capacity in the fully efficient case are also maintained at full 

capacity in the fully inefficient scenario. The same holds true for the branches used at partial 
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capacity and for those that are no longer used at all. Only a minor change can be detected in the 

capacity of two branches used at partial capacity. Consequently, the effect of allowing 

inefficiency in the non-convex case can be neglected. The same holds for the other decision 

variables reported in this case, since there is no difference at all. Intermediate inefficiency levels 

for the non-convex model are therefore of limited interest in this particular study.  

Notice that the number of unused branches reduces to 24 (16.9%) which is substantially 

lower compared to the convex model (33 in the fully efficient scenario and 28 in the fully 

inefficient case). From additional examination of individual branch results, it can be noticed that 

the 24 branches that are no longer used following the non-convex methodology are not 

necessarily contained in the unused branches according to the convex methodology. Indeed, 

with respect to full efficiency, 11 branches are found with zero capacity in the non-convex case, 

but with full capacity in the convex case. In the fully efficient scenario, even 13 branches can be 

detected having zero capacity according to the non-convex methodology, but with full capacity 

following the convex methodology. This underscores that the fundamentally different nature of 

the convex and non-convex technologies may have far reaching managerial consequences. 

To complement Table 5, Figures 1a and 1b trace the evolution of the industry efficiency 

measure as a function of a given α  for the convex respectively the non-convex case. As could 

already be anticipated from considering the extreme cases in Table 5, the function for the convex 

case is much steeper because industry efficiency changes over a wider range. The relative flatness 

of this function in the non-convex case is related to the small amount of technical inefficiency that 

can be detected under this assumption in the first place. 

< Figures 1a and 1b about here > 

Notice that the industry efficiency measure has a fixed cost interpretation and denotes the 

potential budgetary gains from closing down the branches indicated by zero utilization in the 

industry model. However, one must realize that in practice a host of additional considerations may 

be necessary to choose among these in defining a coherent closure policy. As already pointed at 

previously, adjusting fixed inputs may be costly both when one is owner of the office space (e.g., 

should one rent out part of the excessive office space assuming this is technically feasible, or 

should one sell of the property and buy a smaller one somewhere nearby?) and when one is renting 

these (e.g., renegotiating an existing office rental contract may be costly). Furthermore, these 

changes require time to implement (e.g., legal terms in buying and selling contracts as well as in 

rental contracts prevent changes overnight). In addition, it may be necessary to include 

additional consideration into this decision making process. For instance, it makes a difference 

whether one closes down a branch in a town with two additional branches of the same bank or in 



  20

a small village with no other branch around in the neighborhood. These decisions may thus need 

to be conditioned on a variety of geographical information that is currently ignored in the model.  

We now restrict attention to the non-convex methodology. Furthermore, since the effect of 

allowing for inefficiency is negligible in the non-convex case, we also limit the analysis to the case 

of full efficiency. We discuss the following three scenarios of interest that have been formally 

introduced in subsection 2.3. Firstly, the impact of adding restrictions on the number of branches 

(10) in model (9) is considered. Secondly, we investigate the influence of adding restrictions on the 

personnel transfer (13) to the short-run industry model. Finally, we evaluate the effect of imposing 

some alternative aggregate output targets (see (14)). Results for all these scenarios are reported in 

Table 6. 

< Table 6 about here > 

 

Restrictions on the number of branches 

The results of adding the constraints on the number of branches for some key reference 

values of N to the model are reported in the first five columns of Table 6. On one extreme, we 

notice that the problem becomes infeasible when limiting the number of branches to 95 or less. 

This means that we need at least 96 branches to deliver the current level of network outputs 

from given fixed inputs. On the other side of the range, we see that efficiency no longer 

improves when passing the limit of 118 branches. Furthermore, observe that in all cases, the 

number of branches used at full capacity is very close to the imposed limit N. Put differently, the 

number of branches used at partial capacity is very low (only one to two), meaning there seems 

to be little or no advantage of moving to scenarios that promote the use of partial capacities. 

Obviously, the value of the efficiency measure θ  decreases as N increases. This observation 

corresponds with intuition since an increase in the number of branches implies using branches 

that are less efficient and/or that have less capacity. 

 

Restrictions on the personnel transfer 

Adding restrictions on the personnel transfer, the middle part of Table 6 reports the 

effect of adding such a restriction for two values of β . In particular, personnel transfer is only 

possible in integer multiples of either 0.5β =  (number of employees must change in multiples 

of one half) or 1β =  (number of employees must change in multiples of one). This scenario has 

two noticeable effects. First, the industry efficiency score increases substantially, implying that 

less fixed inputs can be economized. Second, there is a substantial move from branches working 
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at full capacity to branches functioning at some partial capacity level. This actually turns out to 

be the only scenario producing such a result. 

We add two remarks on potential implementation problems. First, the transfer of 

personnel can be difficult in view of geographical distances. For instance, it would make little 

sense to reallocate a person for say about 10% of his working time (about a half day per week in 

a five day working week) to a bank branch located at 500 km from his/her initial location. The 

current model ignores this issue basically because geographical information is lacking. 

However, in principle it is possible to extend the current model by restricting patterns of 

reallocation among units within a certain geographical radius (see, e.g., Giménez-García, 

Martínez-Parra and Buffa (2007) for an example). 

Second, the empirical model only employs aggregate information on personnel. 

Disaggregating personnel may yield more detailed results that are easier to implement and that 

have positive additional results. For instance, in Sherman and Ladino (1995) the efficiency 

results have been used to look for reductions in the number of branch managers by looking for 

possibilities to share managers for specific nearby bank branches. This again necessitates 

detailed geographical information. In a similar vein, the efficiency and capacity results could be 

used to make sure reallocations of managers go from high performance to low performance 

branches such that these relatively more successful managers can induce best practice behavior 

throughout the branch network.  

 

Imposing alternative aggregate output targets 

The last part of Table 6 reports on some aggregate output target scenarios. In a first 

scenario, we impose a positive output target of 10% on the number of saving deposits only. As a 

result, the optimal efficiency measure increases substantially from its original value of 0.702 to 

0.775. To achieve this target, the number of branches needed at full capacity must be increased 

from 116 to 120, reducing the number of branches at zero capacity by 4. Increasing the target 

beyond 30% of current aggregate output is infeasible. For instance, using a negative reduction of 

20% on the number of saving deposits has no influence at all on the optimal solution. Clearly, 

the other output constraints prevent such a reduction. When systematically looking for output 

variables that do have an influence when imposing a, for instance, 20% negative target, we 

observe that only the number of bearer securities accounts and the number of insurance 

contracts do make a difference. This effect is valid under ceteris paribus conditions, i.e., 

assuming no targets are imposed for the other outputs. First, in the case of the bearer securities, 
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the efficiency measure θ  is further reduced to 0.675, hereby using only 108 branches at full 

capacity compared to 116 originally (resulting in an increase of the number of unused branches 

from 24 to 32). Second, with respect to the number of insurance contracts, a more modest effect 

is observed: the efficiency measure only drops with 0.001. This result is obtained by utilizing 

115 branches at full capacity instead of 116 initially. The number of branches no longer used 

remains the same (24), but when looking at individual results, we notice a minor shift. One 

branch previously not used is now used partially, and simultaneously another branch previously 

used only partially is now no longer used at all. 

 

5. CONCLUSIONS 

Briefly summarizing the main contributions of this work, we focus shortly on the 

methodology employed as well as on the results. The efficiency literature analyzing the financial 

sector shows that even well performing banking institutions may have technical inefficiencies 

and some excess capacities at the level of their network of bank branches. Instead of relying on 

a burgeoning literature that starts from efficiency measurements at the individual level to come 

up with reallocations of resources at the firm level, we have opted to continue in the tradition of 

the revised short-run Johansen (1972) industry model, which is firmly grounded in the 

economics literature.  

By way of example, we have analyzed the financial services supplied by a bank branch 

network of a rather large sized German savings bank (see Porembski, Breitenstein and Alpar 

(2005)) using a production approach. The ordinary technical efficiency measure, the capacity-

related efficiency measure, and the plant capacity measure have been computed using both 

convex and non-convex technologies. The resulting difference between the densities of these 

output efficiency measures and the resulting ray capacity utilization measure have been tested: 

the Li (1996) test statistic reveals that the resulting densities are almost all different from one 

another. This provides strong support to opt for a non-convex production technology rather than 

the traditional convex one for frontier benchmarking purposes. 

Empirical results of the short-run industry model reveal a potential for closing down part 

of the network while maintaining current service levels, even under the most conservative 

estimates of efficiency and capacity (i.e., the ones based on a non-convex technology). Three 

additional scenarios related to the impact of adding restrictions on the number of branches on 

the one hand and on personnel transfer on the other hand, and the fixing of alternative aggregate 

output targets have also been documented.  
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Obviously, these scenarios do not exhaust the possibilities to adjust this network model 

to managerial needs. We have mentioned on several occasions the usefulness of including 

geographical information. Additional policy considerations could include local and regional 

market share considerations (competition issues in general). Obviously, while including these 

additional parameters need not be impossible, one must be aware that the inclusion of additional 

constraints lowers the potential benefits of the short-run industry model and that some 

combinations of constraints may even lead to infeasibilities. 

The implementation cost of efficiency and capacity analysis and the resulting short-run 

industry models is high for single shot exercises, but this cost becomes low once the needed data 

on inputs and outputs are integrated into the accounting system (e.g., eventually as part of an 

activity based costing (ABC) strategy: see Kantor and Maital (1999)). Furthermore, while the 

computation of efficiency measures and capacity measures is rather straightforward and 

meanwhile a host of software options are around (e.g., in GAMS: see Olesen and Petersen 

(1996); in the freeware R: see Wilson (2008); in SAS: see Emrouznejad (2005), etc.), it is clear 

that the utilization of the short-run industry model as a strategic planning tool would ideally 

require its integration into a DSS. We are unaware of written accounts reporting on the regular 

use of frontier benchmarking software in organizations.8 This remains an important issue for 

future research.  

Overall, we hope this contribution has shown convincingly that there is scope to employ 

efficiency-based models to manage bank branch networks both at a strategic and operational 

level. Obviously, more research is needed to come up with more detailed branch network 

models geared towards a more complete set of managerial needs. 
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Table 1: Descriptive Statistics of Inputs and Outputs 

 Inputs Outputs (all in numbers) 

 

Personnel 

(num
ber) 

O
ffice 

space (m
2) 

Private 
dem

and 
deposits 

B
usiness 

dem
and 

deposits 

T
im

e 
deposits 

Saving 
deposits 

C
redit 

B
earer 

securities 

R
ecourse 

guarantees 

B
onds 

Investm
ent 

deposits 

Insurance 

C
ontributions 

to a building 
society 

Mean 5.42 297.34 1846.91 272.31 37.32 5155.47 124.14 284.68 46.53 95.89 365.73 25.74 47.46 

St. Dev. 4.17 213.12 1455.95 265.39 39.15 4086.80 100.01 196.27 44.45 85.79 288.29 26.67 48.81 

Skew 1.58 1.71 1.68 2.19 2.78 1.78 1.56 1.48 1.98 2.07 1.79 2.67 2.22 

Min. 1.0 64.00 432.00 31.00 0.00 1257.00 6.00 33.00 0.00 7.00 74.00 0.00 3.00 

Max. 20.89 1228.00 7851.00 1563.00 285.00 20523.00 499.00 1020.00 271.00 503.00 1673.00 185.00 293.00 

Total 769.84 42222 262262 38668 5300 732077 17628 40424 6607 13616 51934 3655 6739 

 



 

Table 4: Descriptive Statistics of Plant Capacity Inputs and Outputs: Convex vs. Non-Convex; Full Efficiency vs. Full Inefficiency 

 

Personnel 

O
ffice space 

Private 
dem

and 
deposits 

B
us iness 

dem
and 

deposits 

T
im

e deposits 

Saving deposits 

C
redit 

B
earer 

securities 

R
ecourse 

guarantees 

B
onds 

Investm
ent 

deposits 

Insurance 

C
ontributions 

to a building 
society 

Full Efficiency Convex             

Mean 8,13 296,37 2840,26 456,36 70,46 7642,41 212,73 398,15 86,95 155,05 562,67 42,14 71,86 

St. Dev. 4,43 210,57 1524,33 306,12 47,83 4370,98 107,50 189,55 57,81 88,98 317,85 25,97 49,99 

Min 2,00 64,00 552,00 46,00 0,00 1335,00 6,00 67,00 0,00 15,00 74,00 3,00 14,00 

Max 20,89 1228,00 7851,00 1563,00 285,00 20523,00 499,00 1020,00 271,00 503,00 1673,00 185,00 293,00 

 Non-Convex            

Mean 6,71 282,08 2308,20 365,72 54,79 6290,96 172,71 333,47 68,27 126,29 453,43 33,35 59,31 

St. Dev. 4,95 204,79 1646,01 342,33 56,05 4695,95 124,40 191,35 71,28 98,43 329,60 29,33 52,76 

Min 1,00 64,00 471,00 31,00 0,00 1335,00 6,00 57,00 0,00 14,00 74,00 0,00 3,00 

Max 20,89 1228,00 7851,00 1563,00 285,00 20523,00 499,00 1020,00 271,00 503,00 1673,00 185,00 293,00 



 

 

 

 

Full InefficiencyConvex             

Mean   2568,37 413,68 63,33 6922,23 191,76 358,87 77,81 140,60 509,14 38,37 65,72

St. Dev.   1542,24 305,14 46,58 4405,07 107,96 193,75 55,53 90,37 320,86 26,33 50,41

Min   552,00 46,00 0,00 1335,00 6,00 67,00 0,00 15,00 74,00 3,00 14,00

Max   7851,00 1563,00 285,00 20523,00 499,00 1020,00 271,00 503,00 1673,00 185,00 293,00

 Non-Convex            

Mean   2303,87 365,13 54,68 6279,34 172,24 332,71 68,17 126,06 452,57 33,27 59,14

St. Dev.   1646,57 342,48 56,01 4696,89 124,14 191,27 71,31 98,45 329,67 29,32 52,67

Min   471,00 31,00 0,00 1335,00 6,00 57,00 0,00 14,00 74,00 0,00 3,00

Max   7851,00 1563,00 285,00 20523,00 499,00 1020,00 271,00 503,00 1673,00 185,00 293,00



 

Table 2: Descriptive Statistics for 1θ , 2θ  and eoCU  

 Convex Non-Convex 

 1θ  2θ  eoCU  1θ  2θ  eoCU  

Mean 1,533 1,147 0,801 1,086 1,002 0,939 

St. Dev. 0,556 0,204 0,170 0,171 0,016 0,107 

Min 1,000 1,000 0,343 1,000 1,000 0,565 

Max 3,475 1,982 1,000 1,873 1,133 1,000 

# Eff. Obs 33 57 32 97 139 97 

 

Table 3: Li (1996) Test Statistic for Differences in Densities 

  Convex Non-Convex 

  
1θ  2θ  eoCU  1θ  2θ  eoCU  

1θ  0.000 = 7.728 * 13.013 * 26.211 * 54.730 * 27.061 *

2θ  7.728 * 0.000 = 12.804 * 6.672 * 26.543 * 7.693 *Convex 

eoCU  13.013 * 12.804 * 0.000 = 27.074 * 53.955 * 24.841 *

1θ  26.211 * 6.672 * 27.074 * 0.000 = 6.205 * 0.506 =

2θ  54.730 * 26.543 * 53.955 * 6.205 * 0.000 = 6.215 *Non-Convex 

eoCU  27.061 * 7.693 * 24.841 * 0.506 = 6.215 * 0.000 =

H0: The two density distributions are equal. Conclusions: * : Reject H0, = : Accept H0. Reference values: 
1.28 for 10% sign. level, 1.64 for 5% sign. level, 2.33 for 1% sign. level. 

 



 

Table 5: Basic Short-Run Industry Model Results: Impact of Convexity and Technical 
(In)efficiency 

 Decision Variables 
Full efficient 

( 0α = ) 

Full inefficient 

( 1α = ) 

Industry efficiency *θ  0.588 0.688 

# Full Capacity w  106  112 

# Partial Capacity w  3  2 
Convex 

# Zero Capacity w  33  28 

Industry efficiency *θ  0.702 0.705 

# Full Capacity w  116  116 

# Partial Capacity w  2  2 
Non Convex 

# Zero Capacity w  24  24 

 

 

Figure 1a: Industry Efficiency measure in 
Relation to α  in Convex Case 

Figure 1b: Industry Efficiency measure in 
Relation to α  in Non-convex Case 
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Table 6: Short-Run Industry Model Results: Additional Scenarios 

 N β  Aggregate output targets 

 95≤  96 100 117 118≥ 0.5 1.0 S1* S2 S3 S4 

*θ  – 0.766 0.722 0.702 0.702 0.711 0.723 0.775 0.702 0.675 0.701

# Full Cap. – 95 99 115 116 84 78 120 116 108 115

# Partial Cap. – 1 1 2 2 47 57 1 2 2 3

# Zero Cap. – 46 42 25 24 11 7 21 24 32 24

* S1: Impose a target value of +10% on the number of saving deposits. 
S2: Impose a target value of -20% on the number of saving deposits. 
S3: Impose a target value of -20% on the number of bearer securities account. 
S4: Impose a target value of -20% on the number of insurance contracts. 
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