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Abstract

The need to adapt Data Envelopment Analysis (DEA) and other frontier models in
the context of negative data has been a rather neglected issue in the literature. Silva
Portela, Thanassoulis, and Simpson (2004) proposed a variation on the directional
distance function, a very general distance function that is dual to the profit function,
to accommodate eventual negative data. In this contribution, we suggest a simple
variation on the proportional distance function that can do the same job.
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1 Introduction

The seminal article of Farrell (1957) and the revised interest of Charnes, Cooper, and
Rhodes (1978) have led to the development of the Data Envelopment Analysis (DEA)
literature that has developed at the interface of operational research and economics.!
This DEA literature has meanwhile become one of the success stories of the operational
research area (see, e.g., Emrouznejad, Parker, and Tavares (2008)). The estimation of
frontier or best practice models to determine the relative efficiency of organizations has
found its way to a large variety of domains of application. In terms of empirical surveys
of certain well-analyzed sectors, one could, for instance, point to banking (e.g., Harker
and Zenios (2001)), education (Worthington (2001)), health care (e.g., Ozcan (2008)),
insurance (Cummins and Weiss (2000)), public transit (e..g., De Borger, Kerstens, and
Costa (2002)), and real estate (Anderson, Lewis, and Springer (2000)). In addition to
this surge of empirical applications, there have been a vast series of methodological de-
velopments in this literature (see, e.g., the surveys in Fare, Grosskopf, and Lovell (1994)
or Thanassoulis, Silva Portela, and Despi¢ (2008)).
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While in a traditional production context inputs and outputs are assumed to be non-
negative, frontier applications have also moved into areas where negative data may occur.?
Examples include, among others, the analysis of financial statements (e.g., Smith (1990)
or Feroz, Kim, and Raab (2003)) or the rating of mutual funds (see the seminal article by
Murthi, Choi, and Desai (1997)). Obviously, growth rates or returns can be both negative
and positive. The issue of handling negative data has attracted some research attention.
For instance, proposals have been made to translate the data (e.g., by adding a number
making all data positive), though in many models this may have implications on the
efficiency measures, among others (see, e.g., Ali and Seiford (1990)). In fact, very few
DEA models turn out to yield solutions that are invariant to such data transformations
(i.e., are translation invariant). This small literature has been competently summarized
in Pastor and Ruiz (2007) or Thanassoulis, Silva Portela, and Despié¢ (2008).

The rather recently introduced directional distance function generalizes existing dis-
tance functions by accounting for both input contractions and output improvements and
it is dual to the profit function (see Chambers, Chung, and Fare (1998)).* Furthermore,
the directional distance function is flexible due to the variety of direction vectors it al-
lows for. In the more pragmatic, managerially oriented benchmarking models allowing
for negative data, Silva Portela, Thanassoulis, and Simpson (2004) suggest working with
some variations of this directional distance function. In this contribution, we argue that
a very simple modification of the traditionally defined proportional distance function can
equally well be used to accommodate for negative data.

2 Technology and Directional Distance Function

Production technology traditionally transforms inputs z = (xy, ..., z,) € RE into outputs
y=(y1,...,y,) € RL. The production possibility set or technology 7" summarizes the set
of all feasible input and output vectors and can be defined as follows:

T = {(z,y) € RE™ x can produce y}.

Throughout this contribution, technology satisfies the following standard assumptions:
(T.1) no free lunch; (T.2) boundedness; (T.3) closedness; (T.4) strong disposal of inputs
and outputs; and (T.5) convexity (see Fare, Grosskopf, and Lovell (1994) for details).

Technology can be characterized by the use of distance functions. To simplify notation,
denote the netput vector z = (x,y) € T and the direction vector g = (h, k) € (—R%)xR%,
that is partitioned in an input and an output direction vector —h and k respectively. The
directional distance function is seeking a simultaneous improvement in both the input
and output dimensions in the direction of the vector g and is formally defined as:

%In a traditional production context, see, e.g., Fire, Grosskopf, and Lovell (1994) for conditions on
the input and output data matrices.

3Luenberger (1992) introduced the benefit function as a directional representation of preferences
generalizing the input distance function defined in terms of the utility function. Luenberger (1995) trans-
posed this benefit function in a production context under the name of the shortage function. Chambers,
Chung, and Fére (1998) relabel this same function as a directional distance function and this name has
become its most common denomination.



Definition 2.1. For a given technology T, the directional distance function D is the
function Dy : T'x ((—=R%) x R%) — R U {400} with

Dr(z;9) =sup{d € R: 2+ 6g € T}.
5
The vector g € (—R%) x R% is called a direction vector.

Remark first that, by extending the target set R with +o0o, the directional distance
function is well-defined for all possible choices of the direction vector. Indeed if ¢ = 0,
then clearly Dp(z;0) = +o00. Also notice that Dy (z;g) > 0 since 6 = 0 is always contained
in the set {§ € R: 2+ dg € T}.* Second, this distance function has an interpretation as
an efficiency (or better, inefficiency) measure, because it measures deviations from the
boundary of technology. An efficient vector z € T yields a directional distance function
value of zero.

The directional distance function has proven to be a useful tool in applied production
analysis. For instance, it allows Chavas and Kim (2007) to shed new light on economies
of scope from a primal viewpoint. Furthermore, it provides the defining components of
the Luenberger productivity indicator (e.g., Chambers (2002)), a generalization of the
very popular Malmquist productivity index.

We mention the following proposition that follows immediately from Definition 2.1.
Proposition 2.1. For a given technology T, z € T, g € (—R%) x RL and an arbitrary

HZJQ_”Z”, with z* = 2z + 0*g.

norm function || .. .|, it follows that Dy(z; g) = §* =

Proof: Trivial, and therefore discarded. O]

The directional distance function defined in Definition 2.1 uses a general direction vec-
tor g. However, sometimes one considers the special case: h = —x and k = y which gives
rise to the (Farrell) proportional distance function (Briec (1997)). Axiomatic properties of
these functions are studied in Briec (1997) and Chambers, Chung, and Fére (1998). Since
this proportional distance function is a special case of the directional distance function,
it also measures inefficiency. The proportional interpretation of the Farrell proportional
distance function follows immediately from Proposition 2.1 (just take g = (—x,y) with

z=(2,9)).

Now, consider n decision making units (DMUs) z; = (x;,v;), (i = 1,...,n) from
which the technology T is derived. Furthermore, zy = (79, yo) denotes the DMU under
observation and g = (h, k) is the selected direction vector. Then, the directional distance
function value Dp(zp; g) under variable returns to scale (VRS) and strong disposability

4Notice that in the more general case where a point may not be part of technology, the definition of
the directional distance function must be adapted such that it distinguishes between the standard case
where the distance is achieved and cases where there is no way to achieve the distance. This distinction
is important since Briec and Kerstens (2009) have recently shown that there are always circumstances
under very general production technologies for which this adapted function may not be well-defined.



assumptions is obtained by solving the following linear programming (LP) model:

i=1

max{5 : Z/\zxzr S Lo _I'(Shra (T = 1a s 7p)7

Z/\zyzs Z Yos + 5k57 (S = 17 s 7q)7 (1)

i=1

i=1

From (1), it is clear that the Farrell proportional distance function value for the same
technology can be computed by solving the following model:

max {5 : Z)\ixir < zg. — dxgr, (r=1,...,p),

=1

Z/\iyis > yos + 0%0s,  (s=1,...,q), (2)

=1

i=1

3 Proportional Distance Function: A Reformulation
for Negative Data

Assuming now that inputs and/or outputs can be negative, one must revise the notion
of a technology. In fact, an element of 7" no longer needs to be contained in ]szq. Hence,
we redefine the technology T' as

T = {(z,y) € RP*% z can produce y},

with the standard assumptions stated before. With this adaptation, Definition 2.1 of the
directional distance function, the corresponding model (1) for computing it and Propo-
sition 2.1 remain valid. However, the Farrell proportional distance function is no longer
well-defined when inputs or outputs can take negative values, since the direction vector
g is not necessarily contained in (—R%) x R%. Such a choice is crucial to guarantee a
simultaneous increase in the output direction and a decrease in the input direction.

To circumvent this problem, Silva Portela, Thanassoulis, and Simpson (2004) propose
a so-called range directional model. In this model, the direction vector g = (—Ry, Sp) is
chosen for a DMU 2y = (g, o) with

Ry, = zop — min{z; ;i =1,...,n}, (r=1,...,p);

Sos = max{ys; i =1,...,n} — yos, (s=1,...,q).

This choice for the direction vector assures that the direction vector g € (—=R%) x R%
under all circumstances, thereby realizing a directional distance function suitable for

4



negative as well as positive data. Again in the case of a technology satisfying VRS and
strong disposability assumptions, the following model needs to be solved:

max{5 : Z)\ia:ir <zor —0Ry, (r=1,...,p),
i=1

Z)\zyzs Z y03+58037 (3: 17"'7(])7 (3)

=1
> A=1X12>0, (izl,...,n)}.
=1

An obvious problem of this proposal is that the efficiency measure resulting from the range
directional model no longer has a proportional interpretation, which is a disadvantage for
practitioners.’

However, there is another simple alternative that basically generalizes the proportional
distance function to handle negative data as well. This seems to have gone unnoticed in
the literature so far. Given a DMU z, = (z9,y0), we propose the direction vector g =
(—|xol, lyo|) in which |zg| denotes the input vector with components |zo,| (r = 0,...,p),
and similarly |yo| denotes the output vector with components |yos| (s = 0,...,¢q). It is
immediately obvious that this choice assures that g € (—R%) x RZ for both positive
and/or negative data. Moreover, in the case of positive inputs and outputs, the direction
vector coincides exactly with the one defining the original proportional distance function.
Therefore, the proposed solution can indeed be seen as a generalization of the proportional
distance function suitable for both positive and negative data domains. We suggest calling
it the generalized proportional distance function.

From model (2), it immediately follows that the generalized proportional distance
function value for a given DMU under the same assumptions as above is computed from
the following LP model:

max{(5 : Z)\zxzr S Tor — 5|x0r‘7 (T = 1a s ,p),

=1

ZAZyzs Zy08+5|y05|7 (Szlv"'aQ)7 (4)

i=1

i=1

Remark that the generalized proportional distance function value is just like the propor-
tional distance function a measure of inefficiency. The closer this value to zero, the more
efficient the corresponding DMU.

Figure 1 illustrates the proposed direction vector on a theoretical example consisting
of 65 DMUs with one input (X) and one output (Y'). These DMUs are visualized by small
circles. Both inputs and outputs can be negative. The DEA VRS frontier is determined

5This important contribution is further discussed in contrast with other proposals regarding negative
data in Pastor and Ruiz (2007).



completely by five DMUs defining the vertex points of this piecewise linear frontier. These
vertices have as coordinates (—12,—6), (=9, 3), (—4,10), (8,15) and (14, 17) respectively.
For four DMUs (labeled with numbers 1 to 4) the projection onto the frontier by means
of the generalized proportional distance function is indicated with an arrow, whereby the
direction vector is selected to be g = (—|zo|, |vol)-

FIGURE 1 ABOUT HERE

Table 1 focuses on these four DMUs and their projections. The coordinates (zo, yo) of
the DMUs labeled with numbers 1 to 4 are provided in columns 2 and 3. The coordinates
of the direction vector g = (g, g,) used in the generalized proportional distance function
are listed in columns 4 and 5. Consequently, the direction of the arrows in Figure 1 is
determined by the absolute value of the coordinates of the position vector of the initial
points. Thus, despite what Figure 1 might suggest at first sight, the direction of the
arrows is not arbitrarily, but it is precisely determined by the position of the evaluated

DMUs.
TABLE 1 ABOUT HERE

In Figure 1, the resulting projection points located onto the frontier are labeled with
the characters A to D. Columns 6 and 7 in Table 1 represent the coordinates (xj, yg) of
these projection points A to D. The coordinates of the difference vector d = (d,,d,) =
(x§ — xo, Y5 — Yo) connecting the initial point with the projection point (visualized in
Figure 1 with an arrow) is found in columns 8 and 9. Finally, the value of the generalized
proportional distance function ¢ for the four DMUs is found in the last column.

We remark that this value can easily be computed from the previous elements in Table
1. We illustrate this for the DMU labeled 1. It follows from Proposition 2.1 that

[AL]

51 = )
gl

(5)

with ||A1|| the distance® from the point labeled 1 to the point labeled A and ||g|| the
length of the appropriate direction vector. Consequently,

5o Ml _ Vi +dy
1 p— pu—
lgll /92 + g2

6)
1.806 — 8)% + (12.419 — 7)* 6.194) + 5.4192 (
— \/( )+ ) — \/( = 0.7742.

\/(—8)° + 72 \/ (=8) + 72

The inefficiency measures for the other points can be computed in a similar fashion.

We first recall that Proposition 2.1 guarantees a proportional interpretation of the
inefficiency measure. Its value, however, can be larger than one as can be observed for

SWe remark that using a distance notion requires an appropriate norm function. As indicated in
Proposition 2.1, this choice of norm function does not influence the result. Therefore, we consider here
the commonly used Euclidean norm for computing distances.



the DMUs labeled 2, 3 and 4. This means that an improvement of more than 100% can
be achieved in certain cases. For instance, for DMU 2 the efficiency measure amounts to
1.8571, or 185.71%. This means that the performance of this DMU can almost be doubled
with respect to its original position by moving it to the location labeled B. In Figure 1,
this can be observed by the fact that the origin almost halves the distance from the point
labeled 2 to the point labeled B. Obviously, the closer a point is situated to the frontier,
the smaller is the numerator of (5) leading to smaller inefficiency values and therefore
more efficient units.”

Furthermore, also notice that in the case of one input and one output, all DMUs
positioned in the second and fourth quadrant are projected in a direction whose support
line passes the origin. This follows immediately from the choice of direction vector. This
phenomenon can be observed for the points labeled 2 and 3 in Figure 1.

4 Concluding Comments

The fast growing DEA literature has for a long time neglected the issues surrounding the
use of negative data in managerially oriented benchmarking models. The timely work of
Silva Portela, Thanassoulis, and Simpson (2004) suggest a variation on the directional
distance function, a general distance function compatible with profit maximization that
has recently gained some popularity. This contribution has argued that a very simple
modification of the traditionally defined proportional distance function can alternatively
be employed in this context whenever a proportional interpretation is an asset.
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From-To zy 4o 9a xg o d, d, )

1.806 12.419 —6.194 5.419 0.7742
—6.857  6.000 —14.857 13.000 1.8571
—8.211  4.106 —4.211 2105 1.0526
—-9.714  0.857 —5.714  2.857 1.4286

1-A 8 7 =8
2-B 8§ =7 -8
3—-C -4 2 —4
4-D -4 -2 —4

[\3[\3\1\1@Q

Table 1: Numerical Example with Four DMUs
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Figure 1: DEA VRS Frontier: Projections for Four Inefficient DMUs
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