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Abstract. We study the computational complexity of the discrete sequential search problem with
group activities, in which a set of boxes and group activities is given, and a single object is hidden
in one of these boxes. The goal is to find a sequence in which the boxes are to be searched and
the group activities will be executed to minimize the expected total cost of finding the object while
satisfying the precedence constraints imposed by the group activities. We prove that this problem
is strongly NP-hard both for conjunctive group activities and for disjunctive group activities, and
we discuss some special cases that can be solved in polynomial time.

Keywords: discrete sequential search; group activities; NP-hard; single-machine scheduling; bi-
partite precedence constraints.

1 Introduction

The purpose of this paper is to study the computational complexity of the discrete sequential search
problem with group activities as defined by Wagner and Davis [16]. A single object is hidden in
one of n boxes and the probability that box k contains that object is πk (

∑n
k=1 πk = 1). The

boxes are searched one at a time and the cost of searching box k is tk. If the box containing
the object is searched then the object is detected with certainty. When the first n − 1 searches
are negative, it is certain that the item is hidden in the last unsearched box. It is assumed that
this final box must still be opened (and therefore its cost is incurred). There are also m ‘group
activities.’ Each group activity ℓ has a cost Rℓ and is associated with a subset Sℓ ⊆ {1, . . . , n} of
boxes. Note that some boxes may appear in more than one subset Sℓ. The group activities are
said to be conjunctive if any box can be searched only when all the group activities in which it
appears have been performed, whereas for disjunctive group activities a box can be searched as
soon as at least one of the group activities in which it appears has been executed. The goal is to
find a sequence (defining a search strategy) in which the boxes are to be searched and the group
activities are to be performed so as to minimize the expected cost while satisfying the precedence
constraints imposed by the group activities. We refer to the discrete sequential search problem
with exclusively conjunctive, respectively disjunctive, group activities as Problem 1, respectively
Problem 2.

Discrete sequential search problems have applications in various areas such as quality con-
trol [11], research and development [9], and diagnostic tests on components of complex radar,
missile, and communications systems [6]. In the diagnostic sequencing problem, illustrations of
a group activity include removing an access cover, draining fluids, disconnecting a power supply,
etc., which must occur before a set of components can be tested. In the problem of sequencing
tasks in a research-and-development project, a group activity may represent a facility that must be
constructed before a set of tasks can be completed [16].

In 2001, Wagner and Davis [16] presented an integer-programming model for the discrete se-
quential search problem including both conjunctive and disjunctive group activities. Based on their
experiments, they conjectured that the conjunctive case (Problem 1) could be solved as a linear
programming problem. Recently in [15], we have described a counterexample for which the optimal
value of the linear program proposed by Wagner and Davis is different from the optimal value of
the integer-programming model, hence contradicting their conjecture.

In this paper, we first observe in Section 2 that Problem 1, respectively Problem 2, is equivalent
to scheduling a set of jobs on a single machine to minimize the total weighted completion time with
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and, respectively or, precedence constraints, represented by a special bipartite graph. We exploit
this equivalence to establish NP-hardness results for Problem 1 in Section 3, and for Problem 2 in
Section 4. Subsequently, we study some polynomially solvable cases of Problem 1 and Problem 2
in Section 5. Finally, a conclusion and an outlook on further work is given in Section 6.

2 Link with the scheduling literature

Consider the problem where each of n jobs is to be processed without interruption on a single
machine that can handle only one job at a time. Job i (i = 1, . . . , n) becomes available at time zero
(no release dates), requires a processing time pi and has a non-negative weight wi. The objective
is to find a processing order of the jobs that minimizes the sum of weighted completion times∑n

i=1wiCi, where Ci is the time at which job i completes in the given schedule. In standard
notation [7] the problem is referred to as 1||

∑
wiCi. This generic problem has an O(n log n)

algorithm based on Smith’s rule [14], which schedules jobs in such a way that for all pairs of jobs i
and j, job i is executed before job j if piwj < pjwi.

The discrete sequential search problem without group activities is equivalent to 1||
∑

wiCi in
the sense that any algorithm for the first problem can be used to solve the second problem, and vice
versa. On the one hand, when we are given an instance of the search problem, we can construct an
instance of 1||

∑
wiCi if we associate with each box i a job i with weight wi := πi and processing

time pi := ti. In this way the total expected cost of finding the hidden object for any search order
of the boxes equals the total weighted completion time of the processing order of the corresponding
jobs. On the other hand, for any instance of 1||

∑
wiCi, we create for each job i a box i with

πi := wi/W and ti := pi, where W =
∑n

i=1wi. If z is the total expected search cost of some order
of the boxes, then the total weighted completion time of the corresponding order of jobs is Wz. By
this equivalence, it follows that the discrete sequential search problem without group activities can
be solved in time O(n logn) by ordering the boxes k in non-decreasing order of tk/πk.

The problem 1||
∑

wiCi has been extended following several directions, including the addition
of precedence constraints among jobs. When precedence constraints are included, the problem
is written as 1|prec|

∑
wiCi. In the literature, precedence constraints are specified by a directed

acyclic graph G = (J,A), where J = {1, . . . , n} and an arc (i, j) ∈ A indicates that job i must be
executed before job j. Lenstra and Rinnooy Kan [10] show that 1|prec|

∑
wiCi is strongly NP-hard

when G is an arbitrary directed acyclic graph, even if each job has a unit processing time. Ambühl
et al. [2] prove that 1|prec|

∑
wiCi remains strongly NP-hard if the precedence constraints form an

interval order. Some polynomially solvable cases have been studied by Horn [8] and Sidney [13],
who present an O(n log n) algorithm when G is a rooted tree, and by Adolphson [1], who describes
an O(n log n) algorithm when G is a series-parallel graph. Ambühl et al. [2] exploit the relationship
between the dimension theory of partial orders and 1|prec|

∑
wiCi to obtain a polynomial-time

4/3-approximation algorithm when G is a convex bipartite graph or a unit interval graph, and to
obtain a 3/2-approximation for an arbitrary interval graph. These approximation results improve
previous results by Woeginger [17] and are the currently best-known approximation ratios.

For ease of exposition, when the precedence constraints are represented by a bipartite graph
G = (V1 ∪ V2, A) (thus for each (i, j) ∈ A, i ∈ V1 and j ∈ V2), we write 1|V1 ∪ V2|

∑
wiCi.

Now consider the special case where the weights of the jobs in V1 are zero, which is denoted by
1|V1 ∪ V2, w(V1) = 0|

∑
wiCi (for any index set A ⊆ {1, . . . , n} we define w(A) =

∑
i∈Awi). The

variant of 1|V1 ∪ V2, w(V1) = 0|
∑

wiCi in which any job in V2 can be executed as soon as at least
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one of its predecessors in V1 has been processed (or -type precedence constraints [5, 12]), is denoted
by 1|V1 ∪ V2, w(V1) = 0, or |

∑
wiCi.

Lemma 1. Problem 1 is equivalent to 1|V1 ∪ V2, w(V1) = 0|
∑

wiCi, and Problem 2 is equivalent
to 1|V1 ∪ V2, w(V1) = 0, or |

∑
wiCi.

Proof. Consider an instance of Problem 1 with n boxes and m group activities. We construct
an equivalent instance of 1|V1 ∪ V2, w(V1) = 0|

∑
wiCi with m + n jobs, where the first m jobs,

called group-activity jobs, correspond with the m group activities and belong to V1 whereas the
last n jobs, called box jobs, correspond with the n boxes and all belong to V2. The weight wi of
group-activity job i (i = 1, . . . ,m) is 0 whereas the weight wi of box job i (i = m+ 1, . . . ,m+ n)
is the probability πi−m that the object is in the box i − m. Next, the processing time pi of a
group-activity job i (i = 1, . . . ,m) is exactly the cost Ri of group activity i whereas the processing
time pi of box job i (i = m+1, . . . ,m+n) is equal to the cost ti−m of searching box i−m. Finally,
the bipartite precedence graph G = (V1 ∪ V2, A) is such that there is an arc from group-activity
job i (i = 1, . . . ,m) to box job j (j = m + 1, . . . ,m + n) if and only if box j − m belongs to Si

(the subset of boxes associated with group activity i). This construction is done in polynomial
time with respect to the size of the instance (in this case n+m). We can revert this construction
to build an instance of Problem 1 from a given instance of 1|V1 ∪ V2, w(V1) = 0|

∑
wiCi, but then

the job weights must be scaled to guarantee that the box probabilities πi sum to one (as explained
in the second paragraph of this section). For disjunctive group activities (Problem 2), the same
construction is valid, but now a job in V2 can be started as soon as at least one of its predecessors
in V1 has been executed (or -type precedence constraints).

3 Complexity of Problem 1

We first observe that the algorithms developed by Adolphson [1] and Horn [8] cannot solve Prob-
lem 1 because the corresponding bipartite graph is neither always a rooted tree nor always a
series-parallel graph. In this section, we prove that 1|V1 ∪ V2, w(V1) = 0|

∑
wiCi is strongly NP-

hard, even if each job in V1 has a unit processing time and each job in V2 has a zero processing time
and a unit weight. We use a reduction from 1|prec, pi = 1|

∑
wiCi, which is known to be NP-hard

in the strong sense [10]. From Lemma 1, Problem 1 is then also strongly NP-hard (see Corollary 1
below).

Theorem 1. The problem 1|V1 ∪V2, w(V1) = 0|
∑

wiCi is strongly NP-hard, even if each job in V1

has a processing time of one and each job in V2 has a processing time of zero and a weight of one.

Proof. Clearly, the decision variant of 1|V1 ∪ V2, w(V1) = 0|
∑

wiCi belongs to the class NP. Con-
sider an arbitrary instance I of 1|prec, pi = 1|

∑
wiCi with job set J = {1, . . . , n}, where each

i ∈ J has a processing time pi = 1 and a non-negative integer weight wi. The precedence con-
straints are described by a (directed acyclic) graph G(J,A). We now construct an instance of
1|V1 ∪ V2, w(V1) = 0|

∑
wiCi, which we denote by f(I), as follows. With each job i ∈ J we asso-

ciate two subsets J1
i and J2

i , consisting of pi = 1 and wi copies of job i, respectively. We define
V1 = ∪i∈JJ

1
i and V2 = ∪i∈JJ

2
i . For each i ∈ J , the single job in J1

i has a weight of 0 and a processing
time of 1, whereas for each job in J2

i we have a weight of 1 and a processing time of 0. Furthermore,
there is an arc from the only job in J1

i to each job in J2
j when either i = j or (i, j) ∈ T (A), where

T (A) is the transitive closure of A. Figure 1 shows the constructed instance f(I) for an example
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|J1
1 | = 1

|J1
2 | = 1

|J1
3 | = 1

|J2
1 | = w1

|J2
2 | = w2

|J2
3 | = w3

V1 V2

V

Figure 1: Constructed instance f(I) of 1|V1 ∪ V2, w(V1) = 0|
∑

wiCi in the proof of Theorem 1,
where I is an instance of 1|prec, pi = 1|

∑
wiCi with n = 3, w1 = 4, w2 = 2, w3 = 3, and

A = {(2, 3)}

instance I of 1|prec, pi = 1|
∑

wiCi with n = 3, w1 = 4, w2 = 2, w3 = 3, and A = {(2, 3)}.
This completes the construction of the instance f(I) of 1|V1 ∪ V2, w(V1) = 0|

∑
wiCi. Note that

it is a pseudo-polynomial construction because it is polynomial in n and
∑

i∈J wi. However, as
1|prec, pi = 1|

∑
wiCi is strongly NP-hard, it is sufficient to show that f is a pseudo-polynomial

transformation (see [4, p. 101]).
Note that any permutation of elements in V1 ∪ V2 that satisfies the precedence constraints is a

feasible solution to f(I). We now describe a subclass of feasible solutions to f(I) that will be used
to show the equivalence between I and f(I): we only consider the solutions to f(I) in which for
each i ∈ J , the jobs in J2

i are scheduled consecutively and the single job in J1
i immediately precedes

the block of jobs J2
i . We call such a solution a consecutive-index solution. For the moment, let us

assume that the following claim holds; its proof is established below.

Claim 1. Any optimal solution to f(I) is a consecutive-index solution.

We now argue that any solution (i1, . . . , in) to I can be transformed into a consecutive-index
solution (J1

i1
, J2

i1
, . . . , J1

in
, J2

in
) to f(I) with the same objective value, and vice versa. It can be

verified that both schedules have a total weighted completion time equal to
∑n

k=1 kwik (recall that
we have unit processing times in I). Claim 1 together with this result will imply that 1|V1 ∪
V2, w(V1) = 0|

∑
wiCi is at least as hard as 1|prec, pi = 1|

∑
wiCi. Because the latter is strongly

NP-hard, we conclude that Theorem 1 holds.

Proof of Claim 1. We prove Claim 1 by induction on the the number of jobs |J | = n. When n = 1,
all solutions to f(I) are consecutive-index solutions, and take the form (J1

1 , J
2
1 ). Now assume that

the claim holds whenever n = r − 1 with r > 1. In the remainder of this paragraph we will show
that for any optimal solution α to f(I) there is a job i1 ∈ J without predecessors in G such that
the jobs in J1

i1
and J2

i1
are the first jobs in α, in that order. First note that it is a dominant

decision to schedule a job of V2 as soon as possible. Indeed, if we move a job of V2 earlier in the
schedule, we can only decrease its completion time, and since it has zero processing time, this will
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not increase the completion time of any other job in the schedule. As a result, jobs in any subset
J2
i are scheduled consecutively in α. Let J2

i1
be the first block of jobs of V2 in α. By construction,

the job in J1
i1

and the jobs in any J1
j for which (j, i1) ∈ T (A), are scheduled before J2

i1
. It can

be seen that α cannot be optimal if i1 has predecessors in G. Indeed, if i1 has predecessors in G
then there is a predecessor job j without predecessors (G is acyclic). The schedule α can then be
improved by first scheduling J1

j and J2
j .

We conclude that α = (J1
i1
, J2

i1
, α′) where α′ is an optimal solution to f(I ′) with I ′ the instance

of 1|prec, pi = 1|
∑

wiCi obtained from I by removing i1 from J together with all outgoing arcs.
The instance I ′ has only r − 1 jobs, and the associated precedence graph is again acyclic. By
induction, α′ is a consecutive index solution to f(I ′), thus we can write α′ = (J1

i2
, J2

i2
, . . . , J1

ir
, J2

ir
)

with {i2, . . . , ir} = J \ {i1}. We conclude that α = (J1
i1
, J2

i1
, J1

i2
, J2

i2
, . . . , J1

ir
, J2

ir
) is a consecutive-

index solution to f(I).

Woeginger [17] shows that the special case of 1|V1 ∪ V2, w(V1) = 0|
∑

wiCi described in The-
orem 1 is as hard to approximate as the general case 1|prec|

∑
iwiCi. It should be noted that

from this result, Theorem 1 can also be inferred. From Lemma 1 the following result ensues for
Problem 1, and is valid even if all group activities have a unit cost, and all boxes are identical with
a zero inspection cost.

Corollary 1. Problem 1 is strongly NP-hard, even if Rℓ = 1 for all group activities ℓ, and for all
the n boxes i we have πi = 1/n and ti = 0.

Corollary 1 implies that, unless P=NP, there is no (concise) LP-model for solving Problem 1.
In particular, the integrality constraints in the integer-programming model proposed in [16] cannot
be relaxed, which reinforces the counterexample presented in [15].

An interesting special case of Problem 1 is the setting where a linear ordering of the boxes exists
such that for each group activity ℓ, the associated boxes in Sℓ are consecutive in this ordering.
This geometrical property may be valid in several practical applications such as the presence of
access covers over a set of consecutive machine components. The corresponding special case of
1|V1 ∪ V2, w(V1) = 0|

∑
wiCi that is equivalent to this particular setting of Problem 1 is such that

the bipartite precedence graph is convex. That is, the jobs in V2 can be ordered such that for
every job in V1, the successor jobs in V2 are consecutive in that ordering. The polynomial-time
4/3-approximation algorithm that was presented in [2] can be applied to approximate this special
case of Problem 1. The complexity status of 1|prec|

∑
iwiCi with precedence constraints that form

a convex bipartite order is still an open problem [2]. Remark that in this open problem, there
is no restriction on the weights, whereas we demand zero weights for the jobs in V1. Therefore,
an NP-hardness result for the special case of 1|V1 ∪ V2, w(V1) = 0|

∑
wiCi with convex bipartite

precedence constraints would settle the open problem in [2], whereas a positive result for the former
problem would not necessarily apply for the latter.

4 Complexity of Problem 2

We now consider the disjunctive case (Problem 2), which is equivalent to 1|V1 ∪ V2, w(V1) =
0, or |

∑
wiCi, in which any job in V2 can be executed as soon as at least one of its predeces-

sors in V1 has been processed (Lemma 1). The result of Corollary 1 does not apply to Problem 2
because it assumes that a box can be executed only when all its associated group activities have been
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m1

m2

m3

a1

a2

b1

b2

c1

c2

V1 V2

Figure 2: Constructed instance of 1|V1 ∪V2, w(V1) = 0|
∑

wiCi in the proof of Theorem 2 for q = 2
and M = {m1,m2,m3}, with m1 = (a1, b2, c1), m

2 = (a1, b1, c2) and m3 = (a2, b2, c1)

processed. We show that 1|V1 ∪ V2, w(V1) = 0, or |
∑

wiCi is strongly NP-hard using a reduction
from the variant of 3-Dimensional Matching (3DM) defined as follows [4]:

3-Dimensional Matching (3DM):
Instance: A set M ⊆ A×B×C, where A, B, and C are disjoint sets having the same number q of
elements and such that each element of A, B and C is the coordinate of at least one triple in M .
Question: Does M contain a matching, that is, a subset M ′ ⊆ M such that |M ′| = q and no two
elements of M ′ contain an identical coordinate?

Theorem 2. 1|V1 ∪ V2, w(V1) = 0, or |
∑

wiCi is strongly NP-hard, even when all jobs in V1 have
unit processing times and exactly three successor jobs in V2, and all jobs in V2 have zero processing
times and unit weights.

Proof. Clearly, the decision variant of 1|V1 ∪ V2, w(V1) = 0, or |
∑

wiCi belongs to the class NP.
Consider an arbitrary instance of 3DM described by the three distinct sets A = {a1, . . . , aq},
B = {b1, . . . , bq}, C = {c1, . . . , cq}, and M = {m1, . . . ,m|M |}, where mi = (ai, bi, ci) ∈ A×B × C.
We build an instance of 1|V1 ∪V2, w(V1) = 0, or |

∑
wiCi with V1 = {m1, . . . ,m|M |} containing |M |

elements, each corresponding with one mi ∈ M . The set V2 = {a1, . . . , aq, b1, . . . , bq, c1, . . . , cq}
contains 3q jobs. Each job mi ∈ V1 is the predecessor of jobs ai, bi, ci ∈ V2. Furthermore, each
job mi ∈ V1 has a weight of wmi = 0 and a processing time of pmi = 1, whereas each job e ∈ V2 has
a weight of we = 1 and a processing time of pe = 0. This completes the description of our instance
of 1|V1 ∪ V2, w(V1) = 0, or |

∑
wiCi. This construction can be set up in polynomial time. Figure 2

illustrates this construction for q = 2, M = {m1,m2,m3} with m1 = (a1, b2, c1), m
2 = (a1, b1, c2)

and m3 = (a2, b2, c1). It can be easily verified that this is a yes-instance.
We now argue that this instance of 1|V1 ∪ V2, w(V1) = 0, or |

∑
wiCi has a solution with an

objective value less than or equal to 3
2q(q + 1) if and only if the instance of 3DM is a yes-instance.

On the one hand, suppose that we have a yes-instance of 3DM; in other words, M contains a
matching M ′ =

{
m1, . . . ,mq

}
(up to a permutation of indices). We consider the following solution

to 1|V1 ∪ V2, w(V1) = 0, or |
∑

wiCi: we first schedule the job m1 followed by the three successor
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jobs a1, b1, c1; we proceed with job m2 and the three successor jobs a2, b2, c2. This schedule
continues up to job mq and the three successor jobs aq, bq, cq. The remaining jobs mq+1, . . . ,m|M |

are scheduled afterwards. This solution yields an objective value of 1×3+2×3+. . .+q×3 = 3
2q(q+1).

On the other hand, suppose that T = (t1, . . . , t3q+|M |) is a solution to 1|V1 ∪ V2, w(V1) = 0,

or |
∑

wiCi with an objective value less than or equal to 3
2q(q + 1). Because of the precedence

constraints, at least q jobs in V1 must be scheduled before the last job in V2 is scheduled. If
q + 1 jobs in V1 are scheduled before the last job in V2 then at least one job in V2 is scheduled
after the q + 1th job in V1. For that job, the weighted completion time is 1 × (q + 1). For the
remaining 3q − 1 jobs scheduled before the q + 1th job in V1, the sum of weighted completion
times is at least 1 × 3 + 2 × 3 + . . . + (q − 1) × 3 + q × 2. Summing up everything, we have
1 × 3 + 2 × 3 + . . . + q × 2 + q + 1 = 1 + 3

2q(q + 1) > 3
2q(q + 1). Therefore, any solution to

1|V1 ∪ V2, w(V1) = 0, or |
∑

wiCi with an objective value less than or equal to 3
2q(q + 1) executes

exactly q jobs in V1 before the last job in V2. Since there are 3q jobs in V2 and each job in V1 is the
predecessor of exactly three jobs in V2, we infer that the schedule T = (t1, . . . , t3q+|M |) is such that
each of the q first scheduled jobs in V1 is immediately followed by three jobs in V2. We consider the
subset M ′ ⊆ M built as follows: a triple mi belongs to M ′ if and only if the corresponding job in
V1 is scheduled among the first q such jobs. It is not difficult to see that M ′ is a matching, which
implies that we have a yes-instance of 3DM. This concludes the proof.

From Lemma 1, we have the following complexity result for Problem 2.

Corollary 2. Problem 2 is strongly NP-hard, even when Rℓ = 1 and |Sℓ| = 3 for each group
activity ℓ, and πi = 1/n and ti = 0 for each box i.

In other words, Corollary 2 applies to the case where all group activities have a unit cost and
exactly three associated boxes, and all boxes are identical with a zero inspection cost.

5 Some easy subproblems

In this section, we identify special cases of Problem 1 and Problem 2 that can be solved in polynomial
time.

5.1 Sℓ ∩ Sℓ′ = ∅ for any two group activities ℓ and ℓ′

In this case there is no difference between the conjunctive and the disjunctive case, thus Problem 1
and Problem 2 coincide. The precedence graph of the equivalent scheduling problem is a forest of
depth two. Therefore, we can solve this special case with Horn’s algorithm for a forest [8]. The
time complexity is O(n logn).

5.2 |Sℓ| = 1 for each group activity ℓ

For the conjunctive case the group activities can now be eliminated by adding to each box cost ti
the group activity costs Rℓ for which i ∈ Sℓ. Next we may again apply Smith’s rule. Alternatively,
since the precedence graph of the equivalent scheduling problem is an upside-down forest (of depth
two), we may also apply Horn’s algorithm for upside-down forests [8]. For the disjunctive case
in each rooted upside-down tree, we keep only one edge (ℓ, i) with smallest cost Rℓ, reducing the
problem to the previous case (Section 5.1). The time complexity for the conjunctive as well as the
disjunctive case is again O(n log n).
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5.3 |Sℓ| = 2 for each group activity ℓ

We will show that Problem 2 can be solved in polynomial time under the assumotions of Corollary 2
when in addition each group activity has exactly two associated boxes (instead of three). This result
is true even if the cost of each group activity is different from one (but the same) and the cost
of searching a box is different from zero (but the same). We call a box that does not appear in
any subset Sℓ a free box. Furthermore, a solution to an instance of Problem 2 is called a maximal
solution when it has the form (α2, α1, α0), where each group activity ℓ in αk is immediately followed
by exactly k boxes in Sℓ (k = 0, 1, 2). We need the following lemma.

Lemma 2. Any optimal solution to an instance of Problem 2 without free boxes, with Rℓ = 1 and
|Sℓ| = 2 for each group activity ℓ, and with πi = 1/n and ti = 0 for each box i, is a maximal
solution.

Proof. First observe that, since searching a box has a zero cost, it is a dominant decision to search
a box as soon as it is available. Therefore we may assume that in any optimal schedule, all
unsearched boxes in a set Sℓ are immediately searched after group activity ℓ is performed. Since
each group activity is associated with exactly two boxes, in any optimal solution each group activity
is followed by either two, one or zero boxes. Unexecuted group activities ℓ for which all boxes in Sℓ

have already been searched, can be placed at the end of the schedule without increasing the cost.
Since we assume that the instance contains no free boxes, it remains to be shown that in an optimal
solution we should always search the boxes that can be sequenced in pairs before the boxes that
can only be searched one by one. Assume, by contradiction, that there is an optimal schedule for
which this is not true. In this schedule we identify the first group activity ℓ that is followed by both
boxes in Sℓ but for which the preceding k boxes are all immediately preceded by a group activity
(k ≥ 1). If we move ℓ and Sℓ directly before the group activity that precedes the first of these k
boxes, the expected cost of each of the two boxes in Sℓ decreases with k, whereas the expected cost
of each of the k boxes increases by one. This operation thus results in a net decrease of the total
expected cost equal to k with k > 0, and therefore it cannot be optimal.

Theorem 3. Problem 2 is polynomially solvable when each group activity ℓ has equal cost Rℓ := R
and |Sℓ| = 2, and all boxes i are identical with πi = 1/n and ti := t.

Proof. Without loss of generality, we may assume that R = 1 and t = 0. Indeed, if z is the expected
cost of any feasible solution when R = 1 and t = 0, then the expected cost of that same solution
for any value of R and t, is Rz+ 1

n

∑n
i=1 it. We may also assume that there are no free boxes since

these can always be scheduled first at zero cost.
Let I be an instance of Problem 2 that meets all these requirements. In other words, for

instance I, each group activity has a unit cost and is associated with exactly two boxes. Further-
more, all boxes are identical with zero inspection cost, and none of the boxes are free boxes. For
instance I, we construct an undirected graph G in which each node corresponds with a box, and
where there is an edge between two nodes i and j if and only if there is a group activity ℓ such
that Sℓ = {i, j}. The graph G can be constructed in polynomial time. In the remainder of this
proof, we will show that an optimal solution to I can be constructed in polynomial time by finding
a maximum-cardinality matching in the graph G.

In this paragraph, we show that with each maximal solution α = (α2, α1, α0) to I, we can
associate a maximal matching M in G, and vice versa. On the one hand, for a maximal solution
α = (α2, α1, α0), an edge {i, j} of G belongs to M if i and j are consecutive boxes in α2. Edges
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of M cannot have a node in common because otherwise α2 would contain a group activity that
is immediately followed by only one box. Therefore, M is a matching. The matching M is max-
imal because α1 and α0 do not contain two consecutive boxes. On the other hand, let M be a
maximal matching of G with cardinality b. By construction, there are b distinct group activities,
say ℓ1, . . . , ℓb, such that M = {Sℓ1 , . . . , Sℓb}. From this matching M , we can construct a feasible
solution α to I that is maximal, as follows. First, we execute the group activities ℓi immediately
followed by a search of the two boxes in Sℓi , for each i = 1, . . . , b. The order in which the group
activities are performed or the two boxes in a subset Sℓ are searched is of no importance because
this will not change the expected cost of the solution. Since M is a maximal matching and we
have assumed that the instance contains no free boxes, there can be no two boxes of the remaining
n− 2b boxes that are searched consecutively. Moreover, for each of those n− 2b unsearched boxes,
there exists a different group activity that is not yet scheduled. We may complete the solution α
by scheduling each of those group activities, each time followed by a search of the corresponding
box. Finally, the remaining group activities are scheduled, if any are left. The construction of α
can be done in polynomial time.

Finally, we will prove that a maximal solution to I is optimal if and only if the associated max-
imal matching in G is a maximum-cardinality matching. Since the maximum-cardinality matching
problem is known to be polynomially solvable [3], the theorem then follows from Lemma 2. The
total expected cost of the constructed maximal solution is 1

n(
∑b

i=1 2i+
∑n−2b

i=1 (b+ i)), which equals
1
n(b(b+1)+(n−2b)(n+1)/2). By eliminating constant terms and factors, we can see that minimiz-
ing this function is equivalent to minimizing b(b− n). The latter function is monotone decreasing
in b when b ≤ n/2. Since the number of edges b in a matching of an undirected graph with n nodes
is bounded by ⌊n/2⌋, minimizing b(b− n) is equivalent to maximizing b.

6 Future work

As future work, we would like to settle the conjunctive case when the number of boxes associated
with each group activity is two and three, respectively. If we can show that the latter problem is easy,
this would show that, in terms of computational complexity, the disjunctive case is more difficult
than the conjunctive case. We would also like to discover the complexity status of the special case of
Problem 1 described at the end of Section 3, where the equivalent scheduling problem has a convex
bipartite precedence graph. It is worth noting that the instances of Problem 1 for which Wagner
and Davis [16] tested their LP model all have this property, and so their experimental findings may
suggest that a polynomial algorithm exists in this particular setting. We would also like to see if
the result of Corollary 2 remains valid when convexity is added to the problem structure. Finally,
we would like to verify whether Theorem 3 can be extended to the case of arbitrary probabilities.
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