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Abstract 

Fall incidents and the sustained injuries represent the main causes of accidents for elderly people, and also the 
third cause of chronic disability. The rapid detection of a fall event can reduce the mortality risk, avoiding 
also the aggravation of injuries. In this paper an automatic fall detector based on microwave radar 
measurements is presented. A Continuous Wave (CW) Doppler radar is used to detect the changes in speed of 
different persons experienced during four activities, namely falling, walking, sitting, and no movement. The 
measurements, performed with the radar fixed on the wall, are introduced in a machine learning process to 
estimate an activity classification model. A sliding window principle is then used to detect fall incidents in 
signals consisting of multiple activities. Experimental results, conducted on real human volunteers in a real 
room setting, have shown a success rate of 95% in detecting fall events. Moreover, no false positives have 
been reported. 
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1 Introduction 

The elderly population has been steadily increasing worldwide. This situation, together 
with the shortage of nursing homes and the natural desire to stay at home, has resulted in a 
growing need for healthcare approaches that emphasize routine long-term monitoring in the 
home environment. Elderly people who live alone are usually exposed to health risks which 
in some cases may cause fatality. In fact, fall incident among the elderly is considered one 
of the major problems worldwide, and often result in serious physical and psychological 
consequences [1]. Research pointed out that 30% to 45% of the persons older than 60 years 
fall at least once a year. People who experience a fall event at home, and remain on the 
ground for an hour or more, may suffer from many medical complications, such as 
dehydration, internal bleeding, and cooling, and half of them die within six months [2]. The 
delay in hospitalization increases mortality risk. Studies have shown that the longer the 
person lies on the floor, the poorer is the outcome of medical intervention [3-4]. For that 
reason, it is imperative to detect falls as soon as they occur such that immediate assistance 
may be provided. 

Current health monitoring systems are based on necklace or wristwatch with a button 
that is activated by the patient in case of an accident. However, in emergency situations, 
this imposes an important risk factor. In fact, the person may forget to wear the device, or 
likely may no longer be able to press the button. The ideal solution is therefore a contactless 
approach that avoids the need for actions by the elderly person. Systems under investigation 
in the latter category are based on video cameras, floor vibration, and acoustic sensors. In 
the case of the video camera method, researchers are currently trying to address challenges 
related to low light, field of view, and image processing, but also privacy is a concern [5]. 
Floor vibration and acoustic sensors have limited success due to the environmental 
interference and background noise [6].  



Due to the disadvantages of existing fall detection technologies, there is a need for 
further solutions. An alternative approach based on radar techniques has been demonstrated 
by the authors [7], [8]. The system uses a machine learning technique to distinguish fall 
events from normal movements as described in [9].  

In this paper an automatic fall detector based on microwave radar measurements is 
presented. In comparison to [9], where the technique is applied to classify signals consisting 
of one single activity whose starting and ending points are known, a sliding window is now 
introduced to estimate and to process signals consisting of multiple activities. The size and 
the overlapping among sliding windows have been optimized for this application. 

In Section 2 the automatic fall detector is presented, and the experimental results are 
discussed in Section 3. 

 

2 Automatic fall detector 

The health monitoring system used to design the automatic fall detector has been 
described by the authors in [8]. It consists of a sensor, combining both radar and wireless 
communications features, and a base station for data processing (Fig. 1). The sensor 
integrates a radar module, a Zigbee module, and a microcontroller, while the base station 
consists of a Zigbee module, a microcontroller, and a laptop. 

A Continuous Wave (CW) waveform at 5.8 GHz is generated and used to detect the 
speed signals produced by the test persons during four different activities, namely falling, 
walking, sitting down, and no movement. The resulting baseband signals are digitized and 
transmitted to a base station to be processed using Matlab.  

 

 
Fig. 1.  Simplified block diagram of the health monitoring system. 

 

A movement classification based on a Least Squares Support Vector Machines (LS-
SVM) approach combined with Global Alignment (GA) kernel [9] is applied to analyze the 
digitized baseband speed signals in order to distinguish falls from the other activities. The 
fall detector aims at assessing the changes in speed experienced during a fall or a normal 
movement. During a fall, in fact, the speed continuously increases until the sudden moment 
when the movement stops abruptly. During a normal movement, the Doppler signal 
experiences a controlled movement. More precisely, while a person is sitting down, the 
speed first gradually increases, and then decreases to a smooth stop, whereas during a walk, 
instead, the speed is quite constant over time.  

The developed algorithm consists of two stages of data analysis, namely the training 
phase and the testing phase (Fig. 2). Both phases use the digitized speed signal as input. 



 
Fig. 2.  Automatic fall detector block diagram. 

 

A. Training phase 

The training phase consists of activity detection and segmentation, feature extraction, 
feature selection, and model estimation. Two classification models have been estimated for 
the different types of events. More precisely, the four activities are divided in two main 
groups, namely fall events and normal movements (i.e., walking, sitting, and no 
movement). These acquired activities are used to build a data set. However, before learning 
a model, each activity is grouped in a segment of 2 seconds, considered sufficient to cover 
the details of the activities and mainly the fall event. This operation of segmentation 
consists in the detection of the activity energy’s peak and in cutting the signal around this 
peak. Given such segments, the data is preprocessed, namely it is first standardized, such 
that each dimension has zero mean and unit standard deviation, and then transformed using 
the Short Time Fast Fourier Transform (STFT) from which only the magnitude spectrum is 
retained. As opposed to the FFT, the STFT can represent time dependent structures and 
therefore results in higher performance in case of signals that experience a gradual change 
in velocity. The STFT is performed by cutting first the segments into 50% overlapping 
frames which are each multiplied with a Hamming window after which the FFT is 
computed on each of these frames. Prior to the learning phase, the data is again 
standardized. Once the learning process is finalized, the model is created and stored in a 
memory to be used in the validation stage.  

 
B. Testing phase 

To validate the classification models, an independent test set, with data not used in the 
training phase, is needed. For this purpose, the stored test signals consist of multiple 
activities invoked at unknown instants.  

The algorithm performed in this phase presents a structure similar to the data processing 
of the training phase (Fig. 3). However, the main difference lies in the segmentation stage 
where the sliding window principle is applied due to the fact that the starting and ending 
points of the activities are unknown. The size of the sliding window is fixed to 2 sec., to be 
consistent with the length of the activities’ segments in the training phase, while the 
overlapping should be optimized in order to be sufficiently adequate to distinguish a fall 
from normal movements taking into the account the number of required recourses and the 
computational burden in achieving the algorithm. Experimental tests have demonstrated 



that a sliding window of 2 sec. with 75% overlapping is adequate to cover the details of the 
acquired signals. The segments are then re-preprocessed and subsequently arranged to build 
the test set that is compared with the classification models. 

 

 
Fig. 3.  Block diagram of the testing phase. In the sliding windows stage, the signal is cut in segments of 2 seconds with 
an overlapping of 75%. 

 

3 Experimental results 

A training set containing 50 activities executed by a single test person is used to 
estimate the activity classification models. The models have consequently been tested on 20 
speed signals containing multiple activities acquired on 3 different test persons, whose total 
durations varied from 10 to 30 seconds. Each of these signals was acquired with a single 
volunteer in the room at a time, and who had not contributed to the training model. 
Moreover, each signal contains only one fall event invoked in a random instant. The 
success rate of the algorithm was calculated as the percentage of detected falls.  

The results have indicated that the fall detector was able to detect 19 falls, with a 
success rate of 95%. Moreover, no false positives have been reported.  

Fig. 4 shows a test signal of 10 seconds. It consists respectively of a walking movement 
in the first four seconds, a no movement, a fall event starting at about 6 seconds, and 
another no movement. The results show that the fall detector detects the fall when the 
sliding window intercepts the event. 
 

 
Fig. 4.  Speed signal including a fall event (F) and normal movements (N). The frequency of the signal is proportional to 
the radial velocity of the person during the movement. Each detector box corresponds to a window of 2 seconds, dividing 
the full signal in 17 windows. 



  4    Conclusions 

This paper shows the feasibility of an automatic fall detector based on machine learning 
techniques and sliding window’s principle. Speed signals, acquired from a human 
volunteer, have been used to learn an activity model to distinguish automatically fall events 
from movements (i.e., walking, sitting down, and no movement). The evaluation was 
performed on data acquired from different persons that have not contributed to the learning 
of the activity classification model. Experimental results have shown a success rate of 95% 
in detecting fall events. 

Future research will focus on a larger set of activities and on achieving the validation test 
in real time. 
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