

26/04/2013

How much spatial details in meteorological parameters is needed for modelling urban airquality?

Hendrik Wouters, Koen De Ridder, Matthias Demuzere, Bino Mahieu, Nele Veldeman, Peter Viaene, Felix Deutch, Erwan Brisson

Overview

- 1. Motivation
- 2. The regional climate model COSMO-CLM
- 3. Urban parameterization of COSMO-CLM
- 4. Urban climate observations
- 5. Model setup and configuration
- 6. Model evaluation
- 7. Conclusions
- 8. Outlook and applications

26/04/2013 © 2013, VITO NV

1. Motivation (1/2)

- » Large discrepancy exists between urban and natural areas
- » Cities: where most people of the world live!
- » Urban climate and air quality affects human health

1. Motivation (2/2)

» How to counter these hazardous effects?

Investigate for relevant processes with urban climate and air-quality simulations

» Representation of urban climate is needed!

This allows us to assess the impact of urban climate on air quality

2. Regional climate model COSMO-CLM

- » Climate version of the NWP model COSMO (DWD, Meteoswiss...)
- » Currently actively used and developed by a growing climate research community
- » Horizontal resolution up to 1 km
- » The standard version no urban parametrization

2. Urban parameterization

of TERRA-ML and COSMO-CLM

2. Urban parameterization (1/4)

- » Based on in-depth urban climate modeling research
 - » De Ridder, Geophys. Res. Lett., 2006
 - » Demuzere et al., J. Geophys. Res., 2008
 - » Wouters et al., Boundary-Layer Meteorol., 2012
 - » De Ridder et al., J. Geophys. Res., 2012

KU Leuven - BELGIUM

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES

Sarkar and De Ridder, Boundary-Layer Meteorol., 2011

Fig. 2 Simulated (*solid line*) versus observed (*symbols*) 2-m air temperature for the period 1–12 June 2006, for the stations Paris-Montsouris (*upper panel*), Melun (*middle panel*), as well as the 2-m air temperature difference between the Paris and Melun stations (*lower panel*)

2. Urban parameterization (2/4)

» Urban upgrade of TERRA-ML -> TERRA-MLU

2. Urban parameterization (3/4)

- » Urban upgrade of TERRA-ML -> TERRA-MLU
 - **wrban land-use** class with specific surface parameters (*De Ridder et al. 2012; Demuzere et al. 2008*) for albedo, emissivity, conductivity, heat capacity
 - » New surface-layer transfer coefficients (Wouters et al., 2012)
 - **Brutsaert/Kanda**Bluff-rough thermal roughness parametrization
 - » Anthropogenic heat (Flanner 2009)
- » It has been tested in offline mode for urban sites (Marseille, Toulouse and Basel)

2. Urban parameterization (4/4)

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES KU Leuven - BELGIUM

- > Urban fraction determined from EEA soil-sealing database (250m res.)
- » Annual-averaged anthropogenic heat (Flanner 2009)

» Tile approach

3. Urban climate observations

3. Urban climate observations (1/3)

- » Established especially for (UHI) modelling purposes:
- » high-quality measurements (T2M, RH, SW↓, wind) with identical and calibrated equipment at urban and rural locations

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES

KU Leuven - BELGIUM

3. Urban climate observations (2/3)

Antwerp (Belgium)

Koninklijk Lyceum Antwerpen

"Aren't we a

modelers?"

bunch of

DEPARTMEN

ENVIRON

3. Urban climate observations (3/3)

Ghent (Belgium)

DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES

KU Leuven - BELGIUM

4. Model Configuration

4. Model Configuration

5. Evaluation and Results

26/04/2013 © 2013, VITO NV 17

5. Evaluation and Results (1/4)

» Results Antwerp with COSMO4.8-CLM11 standard version (no urban parameterization)

5. Evaluation and Results (2/4)

» Results Antwerp with COSMO-CLM11 + urban parameterization

5. Evaluation and Results (3/4)

» Results for Ghent with COSMO-CLM11 + urban parameterization

2012-08-16 00:00:00UTC

26/04/2013 © 2013, VITO NV 21

2012-08-19 00:00:00UTC

2012-08-18 15:00:00UTC

5. Conclusions

- w urban parameterization in COSMO-CLM/TERRA-ML was successfully implemented and tested on 1km resolution over Belgium
- The temporal and spatial variatiability of the UHI intensity are very well reproduced
- » Additional computational cost was negligible (+3% CPU-time)
- » Number of needed extra parameters is small and readily available globally
- » An underestimation of the UHI may be caused by:
 - » Insufficient near-surface cooling in rural areas for nocturnal stable conditions
 - » unresolved radiative and turbulent flow mechanisms at the stations

5. Outlook and applications

- DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES KU Leuven - BELGIUM
- » Air-quality modeling with AURORA (developed at VITO)
 - » What are the **driving processes determining urban air quality**?
 - » Relevance of micro-scale meteorology (1-10km): UHI, topography
 - » Versus large-scale meteorology (10–1000km)
 - » Versus uncertainty emissions (top-down versus bottom-up)

Emissions at 3km resolution over Flanders

Emissions at 1km resolution over Brussels/Ghent/Antwerp

27

5. Outlook and applications

- » Air-quality modeling with AURORA (VITO NV)
 - » What are the **driving processes determining urban air quality**?
 - » Relevance of micro-scale meteorology (1-10km): UHI, topography
 - » Versus mesoscale meteorology (10–1000km)
 - » Versus uncertainty emissions for VOC's, PM10, PM2.5, NOX (top-down versus bottom-up)
 - » Why do we care?
 - -> to set priorities for the improvement of urban air-quality modelling

26/04/2013 © 2013, VITO NV DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES

KU Leuven - BELGIUM

5. Outlook and applications (2/2)

- » Urban land-use change scenarios:
 - » Investigate the impact of land-use change and global climate change on urban climate

the uncertainty on the emissions...

- » comparing bottom-up versus top-down emission datasets
- Investigate impact of uncertainty on air-quality modelling with our inhouse model AURORA

Nox emissions over Belgium 2009 (top-down)

