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Abstract. Opening doors is an essential task that a robot should per-
form. In this paper, we propose a logical approach to predict the action
of opening doors, together with the action point where the action should
be performed. The input of our system is a pair of bounding boxes of the
door and door handle, together with background knowledge in the form
of logical rules. Learning and inference are performed with the proba-
bilistic programming language ProbLog. We evaluate our approach on a
doors dataset and we obtain encouraging results. Additionally, a com-
parison to a propositional decision tree shows the benefits of using a
probabilistic programming language such as ProbLog.
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1 Introduction

In the context of the EU-project on Flexible Skill Acquisition and Intuitive Robot
Tasking for Mobile Manipulation in the Real World3 (First-MM), one of the
goals of autonomous robots is to perform mobile manipulation tasks in indoor
environments. In this setting, an essential condition is that the robot can operate
doors during navigation. A complete solution to this general problem requires
a system that can solve several tasks: detecting and localising the door and its
handle, recognising the grasping points, finding the right actionable point and
action and finally, performing the action on the handle. In this work we focus
on two of these tasks: detecting the actionable point and the action movement
itself. We assume that the door and handle are detectable by the robot. This is
an object detection problem that has been addressed previously in the literature
using several approaches, using either 2D [1] or 3D information [3, 4, 19].

Detecting the action and action points is a challenging manipulation task. It
depends on the sensorimotor control of the robot, the gripper, the type of handle
and the properties of the door. To be opened, each door requires different actions
depending on the side of the door that the robot is approaching. The action also
depends on the type of the handle, its relative position to the door and sometimes
even the objects around the door. Usually if hinges are detected on the side of
the door and the light switch on the opposite side next to the handle, the door

3 More information available at: http://www.first-mm.eu
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needs to be pulled. Similarly, while the shape of the handle can be quite a good
indicator of a suitable action point (i.e., knob), sometimes it cannot be detected
reliably, for example when an L-shaped handle is confused with a horizontal one.
This may directly influence valid graspable points, given the robot hand type,
and limit the actionable handle points. In this case, the relative position of the
contact points with the door, the relative positions of the candidate action point
to the door sides or other points in the point cloud of the handle may play a key
role for grasping and performing the action [18, 11].

In the cases mentioned above, generalisations over opening directions, point
positions in the point cloud and types of handles are needed. Additionally, it is
highly likely that a robot will encounter a door or handle that it has not seen
before. Hence it is not possible to enumerate all possible doors and handles.
Moreover, the objects in the surrounding environment, such as the hinges, play
a role in predicting the correct action and action point for opening the door.
Following this idea, Rosman and Ramamoorthy [16] introduced approaches to
learn the symbolic spatial relationships between objects which allow performing
various robotic tasks. Thus, they take the relations in the environment into
account. Similarly, Bereson et al. [2] takes contextual information into account
when planning grasps.

In this work we propose the use of statistical relational learning (SRL) [5,
14] to generalise over doors and handles in order to predict door opening actions
and handle actionable points. SRL combines logical representations, probabilistic
reasoning mechanisms and machine learning and thus is suitable for our task.
Although several existing SRL approaches could be used to solve our problem [10,
15], in this work we consider probabilistic logic programming languages (PPLs).
Our choice is mainly motivated by the fact that PPLs are specially designed
to describe and infer probabilistic relational models or, more generally, logic
theories. In particular, we use Problog [6], a PPL, that allows us to specify our
problem declaratively, using symbolic rules, while being able to deal with noisy
data due to its probabilistic language. Other SRL frameworks could be used
as well, however ProbLog is very convenient for encoding world knowledge due
to: i) its declarative nature; ii) the fact that weights can be directly viewed as
probabilities; iii) its capability to handle numerical values, which is something to
consider when dealing with point clouds (for future developments of this work).

Thus, the main contribution of this paper is the use of a ProbLog theory
to predict the actions to open doors and well as the action points. We use as
input solely extracted properties of door images. In our logical representation of
the domain, every visual scene is mapped to a logical interpretation. However,
ProbLog could also model the noisy nature of the detection aspects and the
uncertainty of the environment where the robot operates. As a key element, we
encode background knowledge about the domain, in a natural way, using a set
of logical rules which reduce the number of parameters of the theory. Finally,
we use a learning from interpretations setting [7] to learn the parameters of our
ProbLog theory. The approach is general enough to be able to deal with point
clouds as well as 2D visual images.
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We evaluated our approach on a dataset containing 60 images of doors. The
results are promising and motivate us to continue this work with a real robot sce-
nario. Additionally we compare against a random classifier, a majority classifier
and a propositional decision tree. We report superior results using our relational
approach, which shows the role of background knowledge when solving the open-
ing door problem. Some work on predicting how to best open a door by a robot
setting exists [12]. However, it does not make use of logical representations as
we do.

The outline of this paper is as follows: in Section 2 we introduce the problem
and the approach used to solve it, and in Section 3 we present our learning
and inference setting. We show experimental results in Section 4, after which we
conclude and mention future directions in Section 5.

2 Problem Modeling

2.1 Problem Description

We first introduce an initial setting for a high-level logical and relational rea-
soning system that can be used by a robot for opening doors. We assume the
robot is able to detect doors and door handles, so we assume to have access
to bounding boxes in the image for both the door frame and the door handle.
Figure 1 presents two such examples of detected door frame (in red) and handle
(in blue) with their bounding boxes. Later, we can add prior probabilities on the
positions of the frame and handle for a more realistic scenario which involves
object detection uncertainty. The setting can be expanded to include other de-
tected objects in the environment to help us identify the action needed to open
the door by providing additional relational contextual cues.

Fig. 1. Annotated doors: (a) push down action, (b) push in.

In this setting, we are interested in predicting the high-level (initial) action
the robot needs to perform in order to open the door, and where this action
should be applied (action point). Once these are determined, the robot can
grasp the handle and execute the action. In a more advanced setting it can be
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imagined that we can generalise over possible grasping points depending on the
specific robot hand. Here, we are just interested in predicting the action/action
point pairs.

We assume that the robot can open a door by pushing it in any of the six
3D directions, labelled as in, out, left, right, up, down, and turning the handle in
two directions: clockwise and counterclockwise. In total, there are eight possible
high-level actions. At a high-level, we think of the action point in terms of which
end of the handle needs to be acted upon, so we will discretise this into 5 different
values: up, down, left, right and centre. For future work, we plan to upgrade our
model with continuous actionable points in the handle point cloud.

Although currently the proposed model does not include explicit relations
between objects or object points in the scene, it can be easily extended to in-
corporate such information. For example, if the object is represented by a point
cloud, knowing that two points are very close spatially allows us to exploit syme-
tries and redundancies in the domain. By using such a relation we can generalize
over points in the cloud, and thus produce a more compact model.

2.2 Approach

From the bounding boxes for the door frame and handle we obtain a set of posi-
tions in the x− y plane for both the door and handle: (xmin, ymin, xmax, ymax).
Based on these we define five features (F1, ..., F5), namely: the handle aspect
ratio, the handle width relative to the door width (or handle relative width), the
handle height relative to the door height (or handle relative height), the position
of the centre of the handle relative to the door frame in the x-axis and in the
y-axis (or handle relative width/height positions).

We assume that these features are independent and additionally, we discretize
them. Handle aspect ratio can take the values {big-width, small-width, square,
small-height, big-height}. Handle relative width and height can take the values
{small, medium, large}. Finally, the position of the handle relative to the door
can take the values {center-pos, up-pos, down-pos, left-pos, right-pos} on the
x-axis or y-axis.

Action prediction An initial intuition is that we can use a Naive Bayes clas-
sifier [17] in order to predict the action based on these features. The Bayesian
Network for our Naive Bayes model is illustrated in Figure 2.2. Given our com-
puted features F1, ..., F5 from the observed x and y positions of the bounding
boxes of the door frame and handle and using our independence assumption, we
can compute the conditional probability [17] of an action A as:

P (A|F1, ..., F5) =
P (A) ∗ P (F1, ..., F5|A)

P (F1, ..., F5)
=

P (A) ∗ P (F1|A) ∗ ... ∗ P (F5|A)

P (F1) ∗ ... ∗ P (F5)
.

Then, in order to predict A, we compute the maximum a posteriori (MAP)

probability estimate as: arg maxA P (A) ∗
∏5

i=1 P (Fi|A). However, in a fully
propositional setting this requires the learning of many parameters, even in such



Opening Doors: An Initial SRL Approach 5

a small domain with five features, taking values from a small discretised set. We
propose to go towards a relational setting, where background knowledge can be
used as a set of logical rules to reduce the number of parameters that need to
be learnt, and thus the number of learning examples that need to be used, and
at a later stage to generalise over our setting.

Fig. 2. The Bayesian Network used for the Naive Bayes classifier for action prediction.

Action point prediction The action point can be determined both by the
type of the already predicted action and the features F1, ..., F5. Since the action
and these features are not independent, we cannot use our previous approach
that we used for predicting the action. For the purpose of predicting the action
point we define a Bayesian Network and learn its parameters. The Bayesian
Network is illustrated in Figure 3. In order to predict the position, we need to
compute: arg maxPos P (Pos|A,F1, ..., F5).

Similarly to the action prediction task, we augment our model with back-
ground knowledge in the form of logical rules which constrain the action point
based on the action and related features. For example, a push in or out on a
handle with a big width or height (or big aspect ratio) should be done at the
centre of the handle. This also helps us reduce the number of parameters that we
need to learn. In practice, our experiments show that the action point prediction
is influenced only by the action, relative position of the centre of the handle on
the x-axis and handle relative height.

For both tasks we can use ProbLog to compute the probabilities. In the next
section we describe our learning and inference setting with ProbLog.

3 Learning and Inference with ProbLog

ProbLog is a probabilistic extension of the Prolog programming language. We
first review the main principles and concepts underlying ProbLog. Afterwards,
we explain how we perform learning and inference with our model within the
ProbLog language.

In ProbLog – as in Prolog – an atom is an expression of the form a(t1, . . . , tk)
where a is a predicate of arity k with t1, . . . , tk terms. A term can be a variable, a
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Fig. 3. The Bayesian network for action point prediction.

constant, or a functor applied to other terms. An expression is called ground if it
does not contain variables. Definite clauses are universally quantified expressions
of the form h : −b1, . . . , bn, where h and bi are atoms. A fact is a clause without
the body. Additionally, in ProbLog a clause ci may be labeled with a probability
pi in the form pi :: h : −b1, . . . , bn. Similarly, a ProbLog labeled fact signifies
that the fact is true with probability pi.

A ProbLog theory T consists of a set of facts F and a set of definite clauses
BK which express the background knowledge. The semantics of a set of definite
clauses is given by its least Herbrand model, the set of all ground facts entailed
by the theory. If T = {p1 :: c1, . . . , pn :: cn}, ProbLog defines a probability
distribution over logic theories L ⊆ LT = {c1, . . . , cn} in the following way:
P (L|T ) =

∏
ci∈L

pi
∏

ci∈LT \L
(1− pi). Additionally, in ProbLog we are interested in

computing the probability that a query q succeeds in the theory T . The success
probability P (q|T ) corresponds to the probability that the query q has a proof,
given the distribution over logic programs.

For our prediction tasks, we first build a ProbLog theory of the Bayesian Net-
works, which we augment with logical rules reflecting our background knowledge.
The theory then supports inference for predicting both tasks by answering prob-
abilistic queries. In our case the end goal query is the conditional probability of
a particular action (or action point) given the set of observations made about
the world, that is about the handle in relation with the door. The logical rules
are (general) background knowledge and they are able generalize over different
properties of the handle relative to the door, actions or action points. In this way,
we generalise by reducing the number of parameters of a fully ground model.
Because our goal is to solve both action prediction and action point prediction,
our ProbLog theory will contain two models, one for each task.

We next present an excerpt from our ProbLog theory used to answer proba-
bilistic queries.

%theory for action prediction

%parameters for the Naive Bayes model
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0.0:: action(push_up).

0.43:: action(push_in).

0.05:: action(push_out).

...

0.74:: har(small_height,left).

0.11:: har(big_height,left).

...

0.31:: hrw(small,in).

0.13:: hrw(medium,in).

0.56:: hrw(large,in).

...

0.998:: hrh(small,turnc).

0.997:: hrh(small,turncc).

0.001:: hrh(large,turnc).

...

0.60:: hrwp(left_point,down).

0.004:: hrwp(center_pos,down).

0.24:: hrwp(center_pos,right).

...

0.017:: hrhp(down_pos,up).

0.34:: hrhp(center_pos,up).

0.001:: hrhp(up_pos,out).

...

%definite clauses for the Naive Bayes (action prediction)

handleAspectRatio(square):- action(turnc), har(square,turnc).

handleAspectRatio(square):- action(turncc), har(square,turncc).

handleAspectRatio(Ar):- action(Ac), har(Ar,Ac), Ar\=square.

handleAspectRatio(Ar):- action(Ac), har(Ar,Ac),

Ac\=turnc, Ac\=turncc.

handleRelativeWidth(large):- action(in), hrw(large,in).

handleRelativeWidth(large):- action(out), hrw(large,out).

handleRelativeWidth(Rw):- action(Ac), hrw(Rw,Ac), Rw\=large.

handleRelativeWidth(Rw):- action(Ac), hrw(Rw,Ac), Ac\=in, Ac\=out.

%similar relations for relative height

...

handleRelativePosition\_X(RwP):- action(Ac), hrhp(HrWp,Ac).

handleRelativePosition\_Y(RhP):- action(Ac), hrhp(HrHp,Ac).

%extended theory with action point prediction

%parameters for the Bayesian Network model

0.09:: ap(center,up,right_pos).

0.06:: ap(center,left,right_pos).
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0.17:: ap(center,up,left_pos).

...

0.09:: ap(down,left,left_pos).

%definite clauses for the Bayesian Network

%(action point prediction)

actionPoint(center):- handleRelativeWidth(large).

actionPoint(center):- handleRelativeHeight(large).

actionPoint(center):- handleRelativeWidthPosition_X(center_pos).

actionPoint(center):- action(turnc).

actionPoint(center):- action(turncc).

actionPoint(center):- action(in).

actionPoint(center):- action(out).

actionPoint(center):- action(Ac), ap(center,Ac,HrWp),

handleRelativeWidthPosition_X(RwP), Ac\=turnc,

Ac\=turncc, Ac\=in, Ac\=out, RwP\=center_pos.

actionPoint(left):- action(Ac), ap(left,Ac,HrWp),

handleRelativeWidthPosition_X(RwP), Ac\=turnc,

Ac\=turncc, Ac\=in, Ac\=out, RwP\=center_pos.

...

%similarly for the rest of action points

The Naive Bayes model for action prediction can be directly encoded in
ProbLog using rules such as:
handleAspectRatio(Ar)← action(Ac), har(Ar, Ac).
handleRelativeWidth(Rw)← action(Ac), hrw(Rw, Ac).
where har(Ar, Ac) is a probabilistic fact representing the conditional probability
of the handle aspect ratio given the action and hrw(Rw, A) is a probabilistic fact
representing the conditional probability of the handle relative width given the ac-
tion. The probabilities of its groundings (e.g., 0.74 :: har(small height, left),
0.11 :: har(big height, left), . . . ) are parameters of the model. However, to
reduce them, we augment the rules with additional background knowledge. For
example, the rule encoding the handle relative width feature can be extended to
encode that if the handle relative width or height is large, the action that needs
to be performed is either a push in or a push out (as illustrated in Figure 1(b)).
We encode this in ProbLog using two rules the following way:
handleRelativeWidth(large)← action(Ac), Ac = in, hrw(l, Ac).
handleRelativeWidth(large)← action(Ac), Ac = out, hrw(l, Ac).
Similarly, if the handle is a knob, it needs to be turned in one of the two direc-
tions clockwise or counterclockwise. In this case the handle is characterized by
a handle aspect ratio close to 1 (i.e. a bounding box close to a square) and we
encode this case in ProbLog using two other rules:
handleAspectRatio(square)← action(Ac), Ac = turn clock, har(square, Ac).
handleAspectRatio(square)← action(Ac), Ac = turn clockwise,

har(square, Ac).
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Similar rules are defined for the action prediction task for:
handleRelativeHeight(Rh)
handleRelativePosition Y(RhP)
handleRelativePosition X(RwP).

The model can also be extended later with background contextual knowledge
gathered from the environment, like the presence of other objects near the door
which could give an indication about how to open it. Furthermore, ProbLog
allows us to add priors (e.g., Gaussian) on the x and y axis positions of the
detected door frame and handle to model uncertainty in object detection.

The theory defined for the action prediction task can be extended with extra
rules to encode the ProbLog model of the BN associated with the action point
task. Similarly, it will contain the respective background knowledge in the form
of logical rules, which enables us to generalise.

The BN model for action point prediction can be encoded in ProbLog using
a rule such as:
actionPoint(center) : −action(Ac), ap(center, Ac, RwP),

handleRelativeWidthPosition X(RwP).
where ap(Point, Ac, RwP) is a probabilistic predicate representing the conditional
probability of the action point given the action and the relative position of the
centre of the handle on the x-axis. These probabilities are the model parameters.
Similarly, to reduce their number, we augment the rules with additional back-
ground knowledge. From experience we know that any turn action requires the
robot to perform a caging grasp of the knob, which means grabbing the handle
at the centre. This can be encoded as definite rules as follows:
actionpoint(centre)← action(Ac), A = turn counterclock.
actionpoint(centre)← action(Ac), A = turn clockwise.
Once these background rules are added, we would not need the model parameters
ap(center, turn counterclock, RwP) and ap(center, turn clockwise, RwP) any-
more. Similar rules one can define for the left, right, up and down action points.
A clear advantage of such models is in the context of predicting exact points in
a point cloud. Then, such rules will generalize over similarly spatially displayed
points in the cloud.

Now our model is encoded via probabilistic facts and logical clauses. ProbLog
can be used both to learn the parameters or answer probabilistic queries [9].

3.1 Learning

In order to perform either task, additionally to the theory we need examples,
which in this case are facts characterizing the world, and thus each example
defines an interpretation of the image. Interpretations are used for parameter
learning in the training phase and as evidence to query the theory in the inference
phase. An interpretation and example for learning the parameters of the door
action prediction model is illustrated in Example 1.

Example 1.
example(1).
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known(1, handleAspectRatio(small height), true).
known(1, handleRelativeHeight(long), true).
known(1, handleRelativeWidth(medium), true).
known(1, handleRelativePosition Y(up point), true).
known(1, handleRelativePosition X(left point), true).
known(1, action(in), true).

We are in a learning from interpretation setting, thus we learn the param-
eters of our models using ProbLog LFI (or the learning from partial inter-
pretations setting within ProbLog) [7]. Given a ProbLog program T (p) where
the parameters p = 〈p1, ..., pn〉 of the probabilistic labeled facts pi :: ci in
the program are unknown, and a set of M (possibly partial) interpretations
D = I1, ..., IM , known as the training examples, ProbLog LFI estimates using
a Soft-EM algorithm the maximum likelihood probabilities p̂ = 〈p̂1, ..., p̂n〉 such

that p̂ = arg maxP P (D|T (p)) = arg maxP

∏M
m=1 Pw(Im|T (p)), where Pw(I) is

the probability of a partial interpretation I = (I+, I−) with the set of all true
atoms I+ and the set of all false atoms I−. ProbLog LFI is also able to learn
parameters in the case of partial observations, which is useful to generalise over
the cases when the door or handle is not fully observed.

In essence, the algorithm constructs a propositional logic formula for each
interpretation that is used for training and uses a Soft-EM to estimate the
marginals of the probabilistic parameters. For more details please see [7]4.

3.2 Inference

After the learning phase setting, we performed inference in order to do either
action recognition or action point prediction. It is assumed that the robot can
observe the properties of the world (door and handle in our case) and it needs to
infer which action needs to be performed to open the door and which point to ac-
tion. This resumes to querying the ProbLog theory for the conditional probabil-
ities P (A|F1, . . . , F5) for each of the 8 possible actions and P (Pos|A,F1, . . . , F5)
for each of the 5 possible discretized action points. We then compute the MAP
probability estimate of the action, and afterwards of the action point.

4 Experiments and Results

For the purpose of our initial experimental setup, we collected a set of 60 door
images. Most of these were taken from the Caltech and Pasadena Entrances 2000
dataset5 and from the CCNY Door Detection Dataset for Context-based Indoor
Object Recognition [20]. To increase variation in the different types of doors and
handles we also added a few images from a Google image search. The images
were manually annotated with bounding boxes for the door and handles, as well

4 In practice we have used the implementation available at:
http://dtai.cs.kuleuven.be/problog/tutorial-learning-lfi.html.

5 Available at: http://www.vision.caltech.edu/html-files/archive.html
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as the action needed to open the door and the action point. We randomly split
this dataset into two sets of 30 images, one to be used for training the ProbLog
model by running ProbLog LFI to learn parameters, and one for testing by
running inference to make first predictions about the action and then about the
action point for the predicted action. Each experiment was run five times with
different train and test sets and the results averaged.

In Table 1 we can see some examples of doors and the predictions produced
by our logical approach. The correct predictions are shown in green, while the
incorrect ones in red, with the ground truth value shown between brackets.

Table 1: Example doors and predictions: correct predictions are in green, incor-
rect ones in red. The ground truth value is between brackets.

Action: turncc (out) Action: in (right) Action: in (in)
Position: center (down) Position: center (up) Position: center (center)

Action: out (out) Action: in (in) Action: in (in)
Position: center (right) Position: center (center) Position: center (center)

Action: in (in) Action: down (down) Action: turncc (turncc)
Position: center (center) Position: left (left) Position: center (center)
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On this dataset, we compared our approach against three other baseline
approaches. We compared against the following approaches on our collected door
dataset: a random classifier, a majority classifier, and a propositional learner
setting, for which we used a decision tree. These approaches are intended as a
baseline to justify the benefit of using our logical approach. We will show that we
obtain better prediction rates for the two prediction tasks of action prediction
and action point prediction on the dataset.

We first set up a random classifier. We obtained the prior probabilities for the
action and action point for each of the five training sets of 30 images, and then use
a random classifier for the two prediction tasks. The results are summarized in
Table 2 for the action prediction task, and Table 3 for the action point prediction
task.

Similarly, we then set up a majority classifier. We determine from the train-
ing sets which are the action and action point majority classes and use this
information in a majority classifier on the test sets. The majority class for the
action is out in three of the training data sets, and in in the other two. The
majority class for the action point is center in all the training datasets. The
results of the two prediction tasks are also summarized in Table 2 and Table 3.

For the propositional learner setting baseline, we modelled a decision tree
classifier in Weka [8]. We used the J48 decision tree algorithm in Weka, a version
of the C4.5 [13] decision tree algorithm. We trained the decision tree on the
training sets data. An example of a learned decision tree from a training set
for predicting the action needed to open the door can be seen in Figure 4. An
example of a learned decision tree from a training set for predicting the action
position needed to open the door can be seen in Figure 5.

Fig. 4. Example obtained decision tree for predicting the action.

We used the learned decision trees on the tests sets. The results of the two
prediction tasks are also summarized in Table 2 and Table 3.
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Fig. 5. Example obtained decision tree for predicting the action position.

Table 2: Action prediction.

Method Total experiments Avg. Success Percentage

Random Classifier 30 8.6 28.67%
Majority Classifier 30 9.2 30.67%

Decision Tree 30 21.4 71.33%
Relational Approach 30 23.6 78.67%

The results of our preliminary experiments against the three mentioned base-
lines are promising. The results show that our relational approach outperforms
the three baseline approaches and so that even our initial prior rules add a bene-
fit and thus justify the benefit of using a relational approach. We plan to extend
our model with the ideas suggested in this paper and perform more extensive
experiments that would extend the relational domain of our initial setting.

Table 3: Action point prediction.

Method Total experiments Avg. Success Percentage

Random Classifier 30 16 53.33%
Majority Classifier 30 21.2 70.67%

Decision Tree 30 22.6 75.33%
Relational Approach 30 23 76.67%

5 Conclusion and Future Work

We described an initial approach that uses SRL, and in particular ProbLog,
to predict the action a robot needs to perform in order to open doors and the
point it needs to action. The experiments showed that our relational approach
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produced better results than a random classifier, a majority classifier, and a J48
decision tree.

Although the initial model is limited, there are future ideas on adding more
context by considering other objects in the environment and extending the ac-
tion point prediction to consider multiple interest points on the handle which are
relationally related. These can be obtained by automatically detecting different
grasping points for the handle [11]. Additionally, we plan to include probabilis-
tic priors on the doorframe and handle positions to model real-world detection
uncertainty. Furthermore, our model can be extended with a temporal relational
aspect to generalise over opening doors that need a sequence of actions (e.g.,
first push the handle down, then pull the door).

Our final goal is to test the algorithms with a realistic simulator – a common
evaluation setup in the robotic community, as well as with real robots. However,
this is a rather challenging task, given that even obtaining a dataset for train-
ing is difficult and error-prone. However, some solutions exist. One of them is
introduced by Saxena et al. [18], where they employ an automated technique to
generate a realistic, synthetic dataset. In particular, the use 3D-models of objects
together with computer graphics algorithms to construct 2D-images with known
ground truth seems feasible and works well in practice. Therefore, as feature
work we plan to extend our work with synthetic generated datasets to perform
experiments with real-world data. Finally, we will use a realistic simulator to
extend our work to multiple robotic hands opening different doors.
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