

Secure JTAG implementation using Schnorr

Protocol

Amitabh Das
1
, Jean Da Rolt

2
, Santosh Ghosh

1
, Stefaan Seys

1
, Sophie Dupuis

2
, Giorgio Di

Natale
2
, Marie-Lise Flottes

2
, Bruno Rouzeyre

2
, and Ingrid Verbauwhede

1

1 KU Leuven and IMinds, ESAT/COSIC, Leuven, Belgium

{firstname.lastname}@esat.kuleuven.be

2 LIRMM (Université Montpellier II /CNRS UMR 5506), Montpellier, France
{darolt, dinatale, flottes, rouzeyre, dupuis}@lirmm.fr

Abstract. The standard IEEE 1149.1 (Test Access Port and Boundary-Scan Architecture, also
known as JTAG port) provides a useful interface for embedded systems development, debug,

and test. In an 1149.1-compatible integrated circuit, the JTAG port allows the circuit to be

easily accessed from the external world, and even to control and observe the internal scan
chains of the circuit. However, the JTAG port can be also exploited by attackers to mount

several cryptographic attacks. In this paper we propose a novel architecture that implements a

secure JTAG interface. Our JTAG scheme allows for mutual authentication between the device

and the tester. In contrast to previous work, our scheme uses provably secure asymmetric-key
based authentication and verification protocols. The complete scheme is implemented in

hardware and integrated with the standard JTAG interface. Detailed area and timing results are

also presented.

Keywords: JTAG, secure testing, IP protection, secure code and firmware updates,

cryptographic circuits, Schnorr protocol, Elliptic Curve Cryptography, mutual authentication.

1. Introduction

Joint Test Action Group (JTAG) is the common name for what was later standardized as the IEEE
1149.1 Standard Test Access Port and Boundary-Scan Architecture [1]. JTAG has remained as the
ubiquitous test and debug interface standard for circuits and printed circuit boards in the
semiconductor industry for more than two decades. The companion standard, IEEE Standard 1532
(Boundary-Scan-Based In-System Configuration of Programmable Devices) has extended JTAG to
support on-board programming [2]. A current IEEE standard proposal (P1687, also known as Internal
JTAG) seeks to further enhance JTAG by allowing block transfer of data and special instruction sets
in order to speed up In-System Programmability.

JTAG was initially designed without a concern for security. As the capability of hardware
attackers is increasing, more and more side-channels are discovered, which can compromise the

security of a device. One such important side-channel is the improper use of the JTAG port. There

have been many practical attacks on secure devices such as set-top box (STB) decoders using the
JTAG interface [3]. ARM11 (Cortex) microcontroller, which is used in latest smartphones, has

extensive test and debug facilities through the JTAG port. This is a well-known backdoor that is

currently used for instance to jailbreak iPhones/iPad, or to unlock protected services in mobile

phones [4]. Even if not documented, it is reasonable to think that JTAG could be used to
compromise the security of other applications such as mobile e-payments, or Wireless Sensor Nodes

(WSNs) [5, 6].

Another security flaw due to JTAG is related to FPGAs. The configuration bitstream which
contains the Intellectual Property (IP) information of a reconfigurable design is mostly programmed

via the JTAG interface into FPGAs [7]. The firmware update of set-top boxes used in pay-TV

subscriptions also happens in most cases through the JTAG port. An insecure JTAG access would
allow on one side to re-program parts of the system at the hacker’s will, and on the other side it

could be used to sniff configuration bits thus allowing retrieving the IP information.

Though there are several approaches for securing the JTAG interface, which can be found in the

literature [8, 9, 10, 11, 12], most of them are based on symmetric-key approaches. They have an
inherent key management problem. This is what we intend to overcome through the use of Public-key
Cryptography (PKC) in our secure JTAG scheme. Though there is previous work on a protected
JTAG scheme using ECC-based authentication protocol [26], the scheme uses PKC in a non-standard
way causing key-management problems. Moreover, the paper also does not present any timing or area
results. Though several PKC protocols can be used for establishing a secure authentication for JTAG,
we use the ECC-based Schnorr protocol which is an efficient and provably secure protocol [13].

In this paper, we seek to provide security features to the IEEE 1149.1 JTAG interface by including
a Schnorr-based secure test protocol, and present an efficient hardware implementation of the
protocol using elliptic curve cryptography. Moreover, our approach does not make any modifications
to the existing JTAG interface. To the best of our knowledge, this is the first paper that proposes a
mechanism for mutual authentication between the secure device and the tester based on a well known
and studied public key authentication protocol. Earlier work is either based on symmetric key systems
or only proposes one way authentication, limiting the scenarios in which these systems can be used.
The area requirement to incorporate this secure test infrastructure on the JTAG has been optimized to
increase the scope of our proposed scheme in a wide range of application scenarios.

The rest of the paper is structured as follows. In Section 2, we present the past work that has been
done in the area of secure JTAG implementation. A comparison of these approaches with our scheme
is also made. The motivation for our work is given in Section 3. Section 4 presents the attacker model
for the JTAG mechanism, and the idea for the Schnorr-based authentication protocol that is the basis
of our secure JTAG strategy. This section also includes a discussion on the public key authenticity.
Section 5 presents the Secure JTAG implementation. Two designs are presented using affine and
projective coordinates. The area and timing results are shown in Section 6 and we conclude the paper
in Section 7.

2. Previous Work

An ordinary JTAG standard [1] consists of a pre-defined interface, containing a serial input called
TDI, a serial output called TDO, an input for the clock TCK and a mode select input called TMS. By
controlling the TMS signal, the user can travel between the 16 states of the JTAG finite state
machine, shown in Appendix F. Then, the request for executing the instructions and the transference
of data between the circuit and the host is performed by connecting the input TDI and the output TDO
to internal shift registers. Thus a malicious host can manipulate the JTAG inputs and execute any
instruction.

One of the first approaches for implementing a secure JTAG appears in [8]. It presents a
locking/unlocking mechanism for controlling the access to the JTAG instructions. It is based on
storing a secret key inside the chip boundaries. To gain access to the JTAG features the user must
shift in the secret key, otherwise the JTAG bypasses all the data on the TDI input to the TDO output.
The scope of this approach does not consider the case where a fake circuit requests updates which
may compromise the intellectual property.

 A detailed evaluation of the JTAG test standard, its security problems, attackers’ capabilities,
possible attacks and countermeasures has been done in [9]. It presents a JTAG security protocol using
a stream cipher (Trivium), hash function and a message authentication code. The authors suppose that
the service server is trusted, performing one-way authentication. However, to protect the data from
unauthorized servers, the data is encrypted.

An anti-tamper JTAG Test Access Port (TAP) is described in [10] that uses SHA-256 secure hash
and a true random number generator (TRNG) to create a low gate overhead challenge/response based
access system employing an on-chip internal JTAG P1687 instrument. It is mentioned by the authors
that malicious designers could modify the designs in order to observe the secret key, implying a one-
way authentication scenario.

A multi-level security access system for controlling access to individual scan cells for preventing
malicious opcodes from being loaded into the JTAG controller is presented in [11]. This approach
also supposes the design is trusted, and thus it is not possible for fake circuits to obtain proprietary
updates.

An elaborate three-party secure JTAG protocol using certificates involving SHA-1 hash algorithm,
AES block cipher and several arithmetic operators is presented in [12]. The authors describe the
possible attack cases, but the protocol is not proven to be secure.

 There are also industrial solutions for providing security to the JTAG interface. The Secure
JTAG Controller (SJC) which features in Freescale Semiconductors i.MX31 and i.MX31L
Multimedia Applications Processors is one such example. Similarly there are tools available from
various vendors such as Discretix and Lauterbach TRACE32 PowerTools, which provides Secure
JTAG Debug module giving OEMs a highly secure, authenticated way to debug SoC errors
throughout a system’s lifetime. A detailed overview of the JTAG related fuses and security features in
the AVR microcontroller can be found in [14]. Some use-cases and application scenarios involving
JTAG security are presented in [15].

To the best of our knowledge, the work in [26] is the only JTAG security solution that is also
based on asymmetric key cryptography. In contrast to our work, this solution only provides one-way
authentication from the test server to the JTAG device. Moreover, this solution does not improve key
management related to symmetric solutions, as it requires the test server to have secure access to a
database that contains all the unique private keys related to each device. Because of the non-standard
setup of the authentication protocol, every JTAG device has a unique private key that is stored in a
database. This key is retrieved by the test server in order to authenticate itself to the device. In our
solution, we employ a standard use of public/private keys in which the prover uses its own private
key and a certificate signed by a CA to prove its authenticity and not a private key related to the
verifier as in [26].

Most of the previous approaches [8, 9, 10, 11, 26] suppose a one-way authentication, where either

the circuit or the server is considered trusted. In this paper, we propose a suitable solution in cases

where neither the circuit nor the server is trusted. Additionally, most of the previous solutions are not

provably secure as the Schnorr protocol used in this paper.

3. Motivation

 JTAG is mainly used for manufacturing and in-the-field test-and-diagnosis of VLSI circuits and

boards. It may be disabled in the chip-die after initialization of a product. However, there are some
applications where JTAG is kept enabled for code or firmware updates. Especially, in case of

reconfigurable devices like set-top boxes, where even remote reprogramming may be done through

JTAG port based on updates received from the service provider. For instance, the STi7101 low-cost
HDTV set-top box decoder and the TI MSP430 used in some set-top boxes have the JTAG open for

product support and service.

 In this work, we solve the inherent key-management problem of existing Symmetric-Key

Cryptography (SKC) based secure JTAG approaches using Public-Key Cryptography (PKC).
Specifically, if SKC is used for securing JTAG, there will be a common master secret key for all

products or a large secret-key database needs to be maintained at the tester/updater side, which are not
good options for mass electronic products. PKC implementations are inherently more hardware
expensive and slower than SKC based approaches. Therefore it is a challenging task to incorporate
PKC in a resource constrained environment like JTAG.

The use of asymmetric primitives and the related public/private key pairs substantially improve
the complexity involved in key management in this setting of tester against the device. If we take for
example the automobile industry, then we expect to bring our car to virtually any garage in the world
and get our car serviced. Servicing cars now also includes updating software in one of the on-board
units (OBUs) which may be through the JTAG interface. Currently these updates can be pushed to the
OBU as soon as it is powered on; no other security measures are used. One of most important reasons
for the current lack of authentication is the fact that it presents car manufacturers with a large key
management problem that is inherent to the use of symmetric solutions in large scale systems. In
symmetric solutions, the verifier needs a copy of the same key that was also used to generate the
authentication token (e.g., a message authentication code or MAC on the firmware). This implies that
the use of a single master key is very risky as it will be wide spread in many devices and likely to leak
at one point in time (see Section 4 for more details on who is the verifier in our approach). Therefore,
symmetric key based solutions require unique keys to be installed at every verifier. In large scale
systems, this would require a large database that link the identity of the prover to its key and a means
for verifiers to securely access and authenticate this service. Alternatively, key derivation schemes
could be used, but they only lower the risk related to a single master key. There are many other
application scenarios where similar key-management problems can occur.

To overcome this problem, the solution proposed in this paper offers the possibility of using

certificates instead of shared symmetric keys. This would for example allow the use of the same

signed firmware update for a wide range of OBUs, without the risk of installing the same symmetric

key in this range of devices. They just need a valid copy of the manufacturers’ public key for
signature verification.

4. Proposed Secure JTAG Scheme

4.1 Attacker Model

 We have considered the following application scenarios for our attacker model. The JTAG
interface of a VLSI circuit is normally used for testing the device, as well as for updating the internal
code and firmware in some applications. We assume that the external JTAG interface of the target
device is enabled and is accessible to the attacker. In [9], the attacker models are described based on
malicious IP cores inside a SoC. However, in this paper, we have considered the following two
attacker scenarios where internal IP cores are assumed to be trusted, and the attacker is an external
entity to the cryptographic SoC. We assume that it is impossible to extract the stored private key
(present in secure memory) on the device containing the JTAG interface.

Manufacturing test/firmware or code update at manufacturer’s end: We have considered the

manufacturing environment to be controlled and the manufacturer’s test server to be trusted. The
device may be a fake one (or a clone) trying to get unauthorized code or firmware updates through

the JTAG interface. The test server should allow only genuine devices to have access to the updates.

Hence, in this scenario, a one-way entity authentication of the device to the Test Server is required.
The device needs to prove to the Test Server that it is in possession of the correct private key,

without revealing it to the server. This is achieved through the use of the Schnorr protocol to be

employed in our secure test scheme. Here the prover is the device with secure JTAG, while the
verifier is the Test Server. This is represented symbolically by the block diagram below:

 Verifier (V) Prover (P)

Test

Server

Device with

Secure

JTAG

A possible use-case for this scenario is system integration, where the integrator procures VLSI
chips from different third-party vendors. He needs to make sure that each chip is a genuine one, and

not a fake one or clone which can compromise the integrity of the complete system. This can be

achieved through the addition of a security feature to the JTAG using an authentication mechanism.

In-the-field update, debug and test: When devices are deployed in-the-field, the environment is

considered uncontrolled and both the Test Server and the device with the JTAG may be potential
attackers. Hence, mutual entity authentication is required between the device and the Test Server. The
Test Server might be a hacker or a malicious user trying to extract the internal secrets from the device
through the test infrastructure. Similarly, the device may be malicious or even a fake one, trying to
procure unauthorized code or firmware updates through the JTAG interface.

 Hence, both the device and the Test Server need to prove their identity to each other without
revealing their secrets (their private keys). For the mutual authentication using ECC based Schnorr
protocol, when the Secure JTAG is the prover, the Test Server is the verifier. Similarly when the Test
Server is the prover, the Secure JTAG is the verifier.

This is represented graphically by the following block diagram:

 Verifier (V)

A possible application of this attacker model is the firmware update of set-top boxes used in pay-

TV subscriptions. The user of the set-top box might be a possible attacker trying to get an
unauthorized update from the server using the JTAG port to watch pay channels for free. Similarly,
an unauthorized update from a remote hacker using the JTAG port might compromise the secret keys
stored in the smart card of the set-top box.

The Schnorr protocol itself is proven secure in a very strong attacker model [13]. This means that
no information about the private key is leaked to the verifier or any of the attackers that fit the
attacker model in [13]. As a result, the system can only be attacked by extracting the private key
through side-channel attacks (though our designs are protected against Simple Power Analysis), leaks
during installation/generation of the keys, attacks on the CA facilities, etc. In this paper we present an
efficient implementation of the Schnorr protocol that makes its use cost effective for low cost JTAG
devices. Side channel attacks on this implementation or attacks related to software bugs, etc. or not in
scope of this paper. We claim that our solution is secure in the two scenarios described above, as it is
a straightforward use of the Schnorr protocol that is proven secure.

4.2 Secure Test Authentication Based on Schnorr Protocol

We use an enhanced version of ECC-based Schnorr Protocol [13] as the public-key cryptographic

protocol in our secure JTAG test scheme. Various public-key implementations, such as RSA or ECC,
may be used to solve the key-management problems present in previous secure JTAG approaches.
We chose ECC as it offers the same security as RSA, with much smaller area footprint. Area
overhead is of critical importance, since we are constrained in terms of silicon area required to

Test

Server

Prover (P)

Device with

Secure JTAG

Prover (P)

Verifier (V)

incorporate security features into JTAG, owing to the small test interface available in most
applications. Similarly, various protocols using ECC may been used. We chose the Schnorr protocol
as it is provably secure and allows efficient implementation on space-constrained hardware.

An added positive side-effect of Schnorr is that it is “zero-knowledge” and thus no information
about the secret key of the prover leaks during a protocol run. The zero-knowledge property may be
useful in an uncontrolled in-the-field code update, debug or test environment where the
communication channel between the test server and JTAG is untrusted and the secret need not be
shared or linked to a communicating entity. Moreover, Schnorr is a very established protocol, and is
used in Radio Frequency Identification (RFID) protocols [16, 17]. The related ECC-based Schnorr
authentication protocol [13] is described in appendix A.

4.3 Public Key Verification

When using public key cryptography for authentication purposes, it is essential to verify the
authenticity of the prover’s public key. Traditionally, the link between a user’s public key and some
identifier of the user is captured in a digital certificate that is signed by a trusted third party (e.g.,
certificate authority or CA). By verifying this certificate, a verifier is assured that the public key that
is provided by the prover is genuine. This means that it is sufficient to have a copy of the CA’s public
key in order to verify all public keys that are certified by the CA. It is clear that storing a single CA’s
public key is far more practical than storing a collection of symmetric keys that are shared with each
possible prover. Therefore, we argue that our protocol, although more resource consuming, does
provide a more practical solution when compared with previous JTAG authentication mechanisms
that are based on symmetric cryptography only.

We propose two modes of operation, one is purely offline and the other uses an online connection
to a trusted Authentication Server (AS).

In the offline mode, we assume that every prover has a certified public key and this certificate is

signed by a trusted CA. Every verifier has a copy of the CA’s public key. Before the actual Schnorr
authentication protocol, the prover sends his certificate to the verifier. The verifier simply uses the

CA’s public key to verify the certificate. In case, the verifier has access to a “clock”, the verifier can

also check an optional expiration date inside the certificate. In case the JTAG device is the verifier,
this clock will probably not be available and no expiration date can be verified. Note that in this

scenario, it is not possible to revoke certificates, as it is not possible to use an online server to obtain

revocation lists or use an Online Certificate Status Protocol (OCSP) like protocol.

In case the verifier has the possibility to contact the online trusted AS, we propose to use a
simplified version of the OCSP protocol. The protocol steps are depicted in the next figure:

 Authentication Server (AS)

 SigAS(PKP ⊕ C ⊕ IDP)

 C || IDP

 IDP

 Prover Verifier

 PKP

 Check Sig on PKP using public-key of AS

SigAS denotes signature of the prover’s public key with the private key of the Authentication

Server, IDP and PKP are the Identity and Public-key of the Prover respectively.

 The prover starts with sending its IDP and its public key PKP to the verifier. The verifier then
initiates a call to the AS by sending a fresh random challenge C and the ID of the prover to the AS.
The AS will now lookup the public key of the prover, check whether it is still valid, and if so send a
signature on the XOR of PKP, C and IDP back to the verifier. The verifier will only accept the public
key received from the prover upon reception of a valid signature by the CA on the generated

challenge PKP ⊕ C ⊕ IDP. We are XORing the ID, challenge and the public key (instead of

appending) in order to make sure that we can sign this value without first using a cryptographic hash
function. In case the messages we wish to sign becomes longer than the field length of the ECC
module we use, we would first have to reduce this length by employing a cryptographic hash function
(and potentially cropping the result). As the implementation of such a hash function would consume
too much area, we have designed our protocol to operate without a hash function.

 The signature scheme can be implemented using Elliptic Curve Digital Signature Algorithm
(ECDSA). This consumes less area overhead than a 1024-bit RSA signature scheme. An area-
efficient implementation is presented in [18]. In our implementation, we have modified the ECC
Schnorr controller to allow ECDSA. The hashing involved in the ECDSA signature verification is
avoided as we use 192-bit signatures (the same length as the message that is signed, which is the
public-key of the prover). Through this public key certificate we protect the Schnorr protocol from
man-in-the-middle attack too. Devices which have adequate resources (online connection to the
authentication server) to support this authentication process can opt for an online mode, while other
devices can have an offline mode of authentication.

 In this paper, we provide two different implementations. One is over projective coordinates
and another is over affine coordinates. In the first design, we do not implement an inversion module
whereas it is included in the second design. Due to projective coordinates the first design invokes
very few inversions which are performed iteratively on a multiplier unit following Fermat’s little
theorem. However, in affine coordinates inversion is performed at every iteration of point
multiplication algorithm. Thus, a dedicated inversion unit based on extended Euclidian algorithm is
implemented which also helps efficient execution of ECDSA on our secure JTAG scheme. Here we
provide implementation details for both designs which provide better design variations and the user
can opt for one of them in practice.

5. Secure JTAG Implementation

5.1 Integration of the ECC-processor with JTAG

 An important contribution in our paper is the integration of the ECC based Schnorr controller

and ECC point multiplier with the JTAG interface along with the other modules. This has been done
in a seamless manner so as not to affect the timing aspects of the IEEE 1149.1 JTAG standard, and
also keeping the behavior of the TAP finite state machine (illustrated in Appendix F) unchanged.

 Our proposed architecture is shown in Fig. 1. The ordinary JTAG circuitry is enclosed within
dotted lines, and it is divided into its two main components: the TAP finite state machine and the
instruction decoder. The Schnorr protocol (described in Appendix A), as well as the ECDSA
signature authentication are performed by the Schnorr controller, placed in the center of Fig. 1. It
interacts with a modified JTAG instruction decoder, ECC module, and a 192-bit random number
generator (a Linear Feedback Shift Register). The base point coordinates (curve parameters) are
fetched from an external non-volatile memory.

TAP

FSM

192-bit

PRNG

NVM

(for curve parameter

Storage)

Schnorr

controller

ECC

point multiplication

&

modular multiplication

Instruction register

Synchronization

Flip-Flop

TMS

TCK

TRST

TDO

Schnorr shift registers

private key

shift_ir/pause_ir/update_ir/capture_ir

shift_dr

pause_dr

update_dr

capture_dr

instruction decoder

request_unlock

release_lock

TDI DUT Boundary scan

DUT specific registers

MUX2

MUX1

Fig. 1. JTAG-ECC controller Integration Architectural Block Diagram

 The system is supposed to be locked in the beginning. In order to unlock it, the tester must
manipulate the JTAG inputs to enter the new ‘UNLOCK’ instruction. Then, the instruction decoder
informs the Schnorr controller to start the protocol, by means of the ‘request_unlock’ signal. As soon
as the authenticity of the test server is verified, the Schnorr controller activates the ‘release_unlock’
signal, informing the instruction decoder that other instructions can now be performed. For instance,
if the system is unlocked, the design under test (DUT) boundary scan register can be controlled.
Meanwhile, when ‘release_unlock’ signal is not active, the instruction decoder sets the multiplexer
‘MUX1’ to always select the output from the multiplexer ‘MUX2’, which is controlled by the
Schnorr controller, impeding the shift out of any DUT specific register.

 During the protocol execution, the communication with test server consists of using the
Schnorr shift registers (192 bits) to shift in and out information required for the protocol. For instance,
the transmission of the intermediate values, ‘Ta’ and ‘Tb’ (Protocol in Appendix A) is performed by
means of shifting out the value ‘Ta’ (or ‘Tb’) once the ECC point multiplication is finished. It is
important to notice that the shifting is always controlled by the test server, and that the timing for
executing point multiplications depends on the scalar multiplier. It means that the Schnorr controller
must inform the test server that it has finished each operation of the protocol. This synchronization is
achieved by always adding one flip-flop at the end of the Schnorr shift register that is set to ’1’ if the
information in the shift register is valid, otherwise the multiplexer ‘MUX2’ selects the TDI input and
the synchronization flip-flop is set to ‘0’. Thus, the test server keeps on shifting at least this one bit to
detect that the Schnorr controller is ready for receiving the next data. The step-wise detailed ECC-
based Schnorr protocol for Secure JTAG is described in Appendix B.

5.2 Implementation of the ECC processor

 The exponentiations involved in the Schnorr protocol may be implemented using RSA or ECC.

However, ECC involves much smaller bit lengths compared to RSA and is efficient in hardware.
Hence we implement the Schnorr protocol using 192-bit ECC over prime fields which offers higher

security compared with 1024-bit RSA. Highly efficient ECC and ECDSA implementations for

contrained environments can be found in [28][29]. However, in this work, we present two new

designs which are optimized both for area and timing suited for integration with the standard JTAG.

We use the 192-bit NIST ECC curve P192 and work in prime fields (Fp). The curve parameters
used in our ECC implementation is as follows [19]:

p : The order of the prime field Fp.

a,b: The coefficients of the elliptic curve y
2
 = x

3
+ax+b.

n: The (prime) order of the base point P.

h: The cofactor.

x, y: The x and y coordinates of P.

P-192: p = 2
192

−2
64

−1, a =−3, h = 1

b = 0x 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1
n = 0x FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831

x = 0x 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012

y = 0x 07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811

 The point operations over affine and projective coordinates are performed by standard formula

taken from the literature, and are provided in Appendix C. In the projective coordinate, we represent

a point as: (x=X/Z, y=Y/Z, c=1, d=1). In general, projective coordinates are introduced to avoid the
relatively more costly inversion used in point-operation over affine coordinates. However, relativity

among the costs of multiplication and inversion in Fp varies on their implementations. For example,

when modular multiplication is computed in a bit serial fashion, it leads to log2 p number of
iterations (clock cycles); whereas, when inversion is performed by binary Euclidean algorithm, it

requires at most 2 log2 p number of iterations (clock cycles). Following the above design technique,

the point operations over affine coordinates outperform projective coordinates.

5.2.1 Design I: ECC over Projective Coordinates

 In this implementation, we use the 1998 Cohen–Miyaji–Ono mixed coordinates for point addition

[20] and the 2007 Bernstein–Lange formulae [21] for point doubling from Explicit Formula database
for Short Weierstrass curves [22]. The equations are mentioned in Appendix C. To reduce area

overhead, the adder and the Montgomery multiplier used in ECC have been optimized. The ordinary

adder/subtractor (required for the intermediate operations of the Montgomery Multiplier) has been

combined with the modular adder/subtractor (required for the addition/subtraction operations used to
implement ECC in projective coordinates) using a 2-bit select signal. This helps reduce the area

overhead further. The modules employed in our design are described below.

Schnorr & ECDSA controller modules: Figure 2 shows the block diagram of the Design I

implementation.

ECC

Point Multiplier

Controller

&

ECDSA

Controller

Modular/

Ordinary

Adder/

Subtractor

Schnorr

Controller

Montgomery

Multiplier

Non-Volatile

Memory

keygenerator

point
modulus

r2

mode

input point

output point

multiplier

mult_inputs

module

mult_result

start

done

PRNG arith_inputs

arith_resultrandom number

done

arith_inputs

module

select

arith_result

mod_kind

op_type

Fig. 2. Block diagram of the security architecture

The Schnorr protocol consists of two main operations: ECC point multiplication and modular
multiplication. In order to perform an ECC point multiplication, the Schnorr controller loads

correctly the inputs of the ECC & ECDSA controller, and sets the “mode” signal to ‘0’. Then it

disables the “reset” signal of the ECC & ECDSA controller so it can initiate the execution. Then the

Montgomery multiplier and the modular/ordinary adder/subtractor blocks are used to perform the
point multiplication. As it can be seen, the adder/subtractor block is shared between the ECC

controller and the Montgomery multiplier. If the ECC controller is using it, it sets the “select” signal

to ‘1’ and then it chooses the operation type by setting the “mod_kind” signal (‘0’ for addition and
‘1’ for subtraction). Each ECC scalar multiplication is performed using the Montgomery Powering

Ladder algorithm, which is also protected against Simple Power Analysis (SPA) attacks.

On the other hand, to perform a modular multiplication, we reuse the Montgomery multiplier. For

that purpose we use the order of the prime number as modulus instead of the prime number itself.

The Schnorr controller sets the mode to ‘1’ and then uses the ECC controller as an interface to the

Montgomery multiplier block. This interfacing was implemented in order to reuse the ECC
controller finite-state-machine.

The ECDSA operation is performed partially by the ECC & ECDSA controller and partially by
the Schnorr controller. It first executes all the ECDSA steps which require only integer

multiplications by setting the mode to ‘2’ and loading the signature into the ECDSA block. Then the

Schnorr controller saves these intermediate values and reuses the ECC controller block to run the
two final point multiplications. For executing the inversion present in the ECDSA protocol we used

the Itoh-Tsujii algorithm [23] based on the Fermat’s little theorem that allows to execute inversions

using a modular multiplier. The Pseudo-Random Number Generator (PRNG) in the diagram which

generates the random numbers required in the Schnorr protocol is a 192-bit LFSR. We are reseeding
the LFSR after every authentication execution, with a new seed to avoid starting it with the same

initial value on power up, in order to prevent replay attacks. Efficient LFSR reseeding techniques

[30, 31, 32] using seed storage methods or seed derivation from the modules of the design can be
used for the purpose. For security, the LFSR length must be large enough to prevent brute-force

attacks (192-bit in our design) and irreducible polynomials used for the feedback taps to have all

possible sequences (2
192

 – 1, in our case). Moreover, the reseeding must be done quite often to

prevent prediction of generated sequences (at the beginning of every authentication as in our case).
The new seed value is loaded into the LFSR as soon as the 'request_unlock' signal in Figure 1 goes

high. Alternatively, for enhanced security, True Random Number Generators (TRNGs) based on

Fibonacci or Galois Ring Oscillators [27], which have similar area overhead as LFSRs and
substantially high randomness and unpredictability properties, can also be employed.

Montgomery multiplier. Montgomery’s algorithm is the most common method for a fast
implementation of modular multiplications.

Algorithm 1 in Appendix D presents an efficient implementation of this algorithm. As one can

notice, the final comparison is optimized exploiting carry-save-adders (CSA). CSAs are used for the

intermediate computations and then a full addition is performed to convert the final carry-save result
into a conventional form, such as presented in the Algorithm 2, Appendix D, and Figure 3.b. The

CSA adders have indeed a small area and avoid carry propagation, i.e. are computed in constant time

independently of the operands’ length.

 However, as a modular adder/subtractor is needed for ECC, we have decided to use the initial

algorithm. We have indeed modified the adder/subtractor block to have an ordinary

addition/subtraction also, in order to use this block in our Montgomery multiplication
implementation. Optimizing the area is indeed our main objective, so using existing resources is

better than implementing CSA adders. As a consequence, our implementation takes more or less

twice as many cycles, but it is the one that optimizes most of the area. In the end, we have managed

to optimize the area by more than 16%, in comparison with the RTL description of the original

design with an unoptimized implementation of the adder/subtractor. This optimized arithmetic block

is presented in Apendix E.

5.2.2 Design II: ECC over Affine Coordinates

The execution of the Schnorr protocol and ECDSA consists of several finite field operations
(including inversion) and operations on elliptic curves. In Weierstrass elliptic curve, a point is

primarily defined over Affine (x, y) coordinates which is further redefined over several Projective

coordinates with the help of a third variable (X, Y, Z) in order to avoid inversion in point operations
performed by chord-and-tangent method. Explicit formulae are provided in Appendix C. A single

inversion is eliminated by several (4-12) multiplications in Projective coordinates – still research is

going on for finding coordinate systems to lower down multiplications in a point operation.

However, the implementation technique also plays an important role for improving efficiency of

elliptic curve operations under a resource constrained environment like JTAG. It is already described

in Section 5.2 that delay of a binary inversion/division method is just twice that of a bit-serial
multiplication where both of them are assumed to be implemented by simple adder circuits –

demands area in the same decimal order (3 times). On the other hand, efficient implementation of

modular (Montgomery) multiplication could be achieved through digit-serial (parallel) architecture
which demands much more area (order of digit length) and may not be affordable in the application

of secure JTAG implementation. Thus design II attempts to implement a compact and flexible

architecture for executing Schnorr protocol and ECDSA over Affine coordinates. Besides, this

design computes all modular operations directly on 2’s complement binary domain that avoids cost
of domain conversions compared to the first design.

Flexible Datapath. In order to reduce the complexity of the controller logic, design II consists of a
flexible datapath having all arithmetic blocks. There are two top level controllers in the current

secure JTAG implementation – namely ECDSA-controller and Schnorr-controller. These controllers

generate instructions like PointAdd, PointMult, FieldAdd, FieldMult, FieldInv, FieldSub. In the next
lower level, there is an ECMULT-controller which primarily generates two instructions - PointAdd

and PointDbl. All instructions generated by top level controllers are first checked by the ECMULT-

controller which further passes through the next lower level. Except PointMult, all other instructions

are directly executed by the datapath shown in Fig. 4. The instruction PointMult consists of
PointAdd and PointDbl instructions which are generated in proper sequence by the ECMULT-

controller. All controller logic in design II are realized as finite state-machines in which the final

1

Xi Y

k+1

P

k+2k+2

r0

k+1

k+2

k+1

k

R

01

R

1 1

Xi Y

CSA

k+1

k+2 k+2

CSA

k+2k+2

k+1k+1

1 0

k+1

k+1

k

P

k+2

k+1

R

k+1

k+1

CS

 (a). (b)

Fig. 3. Montgomery multiplier. a: Classical architecture b: CSA architecture

state sends a done signal to its predecessor. With the help of five temporary registers the datapath

shown in Fig. 4 computes a point operation (point doubling or point addition) as a single instruction
– in which case the output of an execution is stored and supplied back to the memory through x3 and

y3 ports. On the other hand, the outputs for all other finite field operations are directly generated

from individual arithmetic units. In order to execute PointAdd instruction the datapath takes the

input data from ‘x1’, ‘y1’, ‘x2’, ‘y2’, ‘p’, and ‘a’ ports, whereas for executing individual finite field
operation the ports are configured by the upper level controller logic.

Prime field Multiplication. In this design we use Blakley multiplication which is based on the
iterative execution of doubling and addition. All internal operations are performed in respective

prime field, that is intermediate results are always in their reduced form. Hence, the costly final

reductions are eliminated. The multiplier unit contained in the datapath block (Fig. 4) computes a
multiplication ab mod p in log2 p number of clock cycles, assuming that both a and b also have

lengths of log2 p.

Prime field Inversion and Division. The prime field inversion and division could be efficiently
computed by binary inversion division algorithm, which is based on binary Euclidian algorithm. The

current design follows the implementation of such a unit that is described in [24]. The current

module can compute one inversion (used on ECDSA) as well as one division (used to execute
PointAdd and PointDbl) in 2 log2 p number of clock cycles.

PointAdd

FieldMult

FieldAdd

done

FieldAdd

FieldMult

PointAdd

FieldInv

PointAdd

PointDbl
done

Prime field

adder

Prime field

subtractor

Blakley

Multiplier

Inversion

Module

Data-

path

Con-

troller

M

u

l

t

i

p

l
e

x

e

r

s

Registers
t1

t2

t3

x3

y3

Memory

Module

x1

y1

x2

y2

p
a

ECMULT

Controller

ECDSA

Controller

Schnorr

Controller address

enables

M-start

I-start

selects

M-done

I-done

P
o

in
tM

u
lt

DATAPATH

done

d
o

n
e

Fig. 4. Datapath of the design II

Design II executes a PointAdd instruction in 5 log2 p + 6 clock cycles and PointDbl in 4 log2 p + 8

clock cycles. The clock cycles required to execute a PointMult instruction is: log2 k * (4 log2 p + 8)
+ (#k-1) * (5 log2 p + 6), where k represents the scalar multiplier in kP and #k indicates the

Hamming weight of k.

6. Results

We present here the area and timing results of our implementation. Both ASIC and FPGA results
of the overall secure JTAG design with the sub-modules are mentioned. Though our design is larger

than earlier methods, owing to the use of public-key cryptography (as opposed to symmetric-key

usage in the other approaches), this helps solve the key-management problem inherent in other

approaches to a great extent.

6.1 Area Overhead

The ASIC area requirements in terms of gate equivalents (GEs) (synthesized with Synopsys

Design Compiler v2009.06 for a Faraday 130 nm library) for the modules used in our ECC

implementation are given in the table below. The FPGA Synthesis results on Xilinx ISE 12.4 (with

Virtex 6 xc6vlx75t family) for the modules are also presented.

Table 1: Hardware cost of secure JTAG

Module Design I

ASIC

(GEs)

Design II

ASIC

(GEs)

Design I

FPGA

(Slices)

Design II

FPGA

(Slices)

Arithmetic unit (modular adder
and subtractor)

1374 5128 164 311

Modular multiplier * 5152 7314 615 756

Inversion module -- 24313 -- 1482

Controller and data multiplexers 40190 10295 2189 531

Total 46716 47050 2968 3080

 *Montgomery multiplier for Design I, while Blakley multiplier for Design II

 Hence, as shown in the table, we require a total of 46716 GEs for design I and 47050 GEs for

Design II to implement the secure JTAG Scheme with the Schnorr and ECDSA controllers. We
choose the solution described in [12] for having an estimative of area overhead of our approach. The

cost of that solution is 25k gates. It means that our solution is around twice larger than the solution

in [12]. Our solution is based on public-key cryptography, which inherently demands more hardware
resources than symmetric-key based approaches. The area calculations do not consider the overhead

of the Hash function implementation which takes around 10k gates [33] for SHA-1, in case the

message lengths become longer than the ECC field size (as mentioned in Section 4.3). However, this
is not applicable for properly designed protocols, as in our case. It must be also noted that all secure

authentication schemes including the one proposed in this paper require Non-volatile memory for

storing cryptographic keys.

The area requirement in our designs can be reduced further by making use of a tiny custom

microcontroller with an Instruction Set Extension (ISE), as in [28]. Here only the top-level ECDSA

commands are managed with a processor. Moreover, replacing the Montgomery Multiplier (suitable
for general prime-field operations) with more efficient multipliers employing Mersenne-like NIST

prime reduction suitable for prime fields over Fp (with the prime number p being a Pseudo Mersenne

number as used in NIST curves) can also help reduce the execution time for an Elliptic Curve scalar

multiplication.

There are of course much more compact implementations available in the literature, for instance,

the 192-bit ECDSA implementation in [28] employing the same NIST recommended curve as in our
case requires only 19.1 KGEs (thus consuming 23.5% less than the approach in [12]) and 859,188

cycles in total for the combined operations of ECDSA, Hash and Random number generation

required for the protocol execution. Similarly the most area efficient 163-bit ECC implementation in
[29] consumes only 12.5 KGEs (thus taking half the area in [12]) and 275,816 cycles for one Elliptic

Curve scalar multiplication. In this paper, though we did not achieve such high compactness, we

have shown the feasibility of integration of the JTAG with the ECC and ECDSA modules by

presenting combined area and timing results which have limited overheads.

6.2 Timing overhead

The impact of the proposed solution in the use of the JTAG standard consists of an initial delay

for executing the Schnorr protocol/ECDSA. Once the authentication and the signature verification
steps are finished, the JTAG is unlocked and the JTAG instructions can be used without any timing

overhead.

The initial delay is due to three main operations: 1) the time to request the unlock (associated with

the time to insert the instruction ‘UNLOCK’) and the time to release the lock; 2) the time to shift in
the protocol inputs and shift out the protocol outputs using the JTAG controller; and 3) the time to

perform the protocol operations, including ECC point multiplications, ordinary multiplications and

additional operations to communicate between the dedicated Schnorr protocol modules. The first

two operation types are measured in test clock cycles that depend on the JTAG frequency, while the
last operation type is measured in functional clock cycles, the functional clock being usually faster

than the test clock. The timing overhead is presented in Table 2, where we have distinct four

scenarios. The first scenario is a one-way authentication (manufacturer environment in Appendix A)
in which the DUT acts as prover (A) and the test server acts as verifier (B). The only scalar (point)

multiplication performed for A is na.P for generating Ta. The second scenario is a one-way

authentication (manufacturer environment in Appendix A), but the roles of prover and verifier are
reversed. Here the DUT acting as the verifier B performs two scalar multiplications (s.P and nb.Pa).

The third case is the two-way authentication (in the field update in Appendix A). Here, both A and B

perform three scalar multiplications (na.P, s1.P and na’.Pb for A, and nb’.P, s.P and nb.Pa for B).

Finally, the last one is the timing overhead associated with the execution of the ECDSA signature
verification, which requires two scalar multiplications.

Table 2. Detailed timing estimates

Clock cycles Clock class Scenario Operation

Design I Design II

Unlocking 13 13 Test clock

Time to shift data in and out 768 768 Test clock

1. One way

Authentication

(DUT is the prover) Protocol (1 k.P* operation) 3068150 240762 Functional clock

Unlocking 13 13 Test clock

Time to shift data in and out 768 768 Test clock

2. One way
Authentication

(DUT is the verifier) Protocol (2 k.P* operations) 6136692 482130 Functional clock

Unlocking 13 13 Test clock

Time to shift data in and out 960 960 Test clock

3. Mutual(Two-way)

Authentication

Protocol (3 k.P* operations
each for prover and verifier)

9204842 722892 Functional clock

Unlocking 13 13 Test clock

Time to shift data in and out 576 576 Test clock

4. ECDSA

Protocol (2 k.P* operations) 6137075 482324 Functional clock

* ‘k.P’ indicates one Elliptic Curve Scalar Multiplication.

For having an estimation of time in milliseconds, we suppose a 100MHz clock frequency for the

JTAG Test clock, and 115MHz as functional clock frequency for Design I and 123MHz for Design
II, as shown in Table 3. The functional clock frequency is the maximum operating frequency

obtained from FPGA synthesis. The test clock and the functional clock can be also the same without

involving any design change. Considering the mutual authentication scenario with ECDSA signature

verification, Design I has an initial delay of 133.42ms while Design II has an initial delay of 9.83ms.

Table 3. Time delay for authentication

Delay for authentication (ms)
#
 Functional

Clock (MHz) Scenario 1 Scenario 2 Scenario 3 Scenario 4

Design I 115 26.67 53.37 80.05 53.37

Design II 123 1.96 3.93 5.89 3.94

 # Delays are based on 100 MHz clock frequency for JTAG Test clock and respective Functional clock.

7. Conclusion

In this paper, we have presented the implementation of a secure test scheme integrating the

provably secure Schnorr protocol with JTAG-based testing. The key management problem inherent
in previous symmetric-key based approaches is overcome through the use of public-key

cryptography in our test scheme. Moreover, we present detailed hardware implementations, area and

timing results for our ECC and ECDSA-based authentication protocol. To the best of our

knowledge, this is the first complete work for securing the JTAG interface using public-key
cryptography which also provides mutual authentication between the device and the tester.

 Acknowledgment

This work was supported in part by the Research Council KU Leuven: GOA TENSE

(GOA/11/007), by the Flemish iMinds projects, and by the European Commission through the ICT

programme under contract ICT-2007-216676 ECRYPT II. In addition, this work is supported in part
by the Flemish Government, FWO G.0550.12N, by the Hercules Foundation AKUL/11/19, and by

the European Commission through the ICT programme under FP7-ICT-2011-8 HINT. Amitabh Das

was initially funded by the Erasmus Mundus External Cooperation Window Lot 15 (EMECW15)

when part of the work was performed. Santosh Ghosh is a beneficiary of a mobility grant from the
Belgian Federal Science Policy Office co-funded by the Marie Curie Actions from the European

Commission.

References

1. IEEE Standard. 1149.1-1990 - IEEE Standard Test Access Port and Boundary-Scan

Architecture, 1990.

2. IEEE P1687 and In-Circuit Test (ICT). Asset Intertech article, June 2011.

3. Maestra Comprehensive Test for Satellite Testing V5. www.maestra.ca.

4. Greenemeier, L.: iPhone Hacks Annoy AT&T but Are Unlikely to Bruise Apple. Scientific

American, August 30, 2007.

5. Becher, A., Benenson, Z., and Dornseif, M.: Tampering with Motes: Real-World Physical

Attacks on Wireless Sensor Networks. SPC 2006, LNCS 3934, pp. 104–118, 2006.

6. Hartung, C., Balasalle, J., and Han, R.: Node Compromise in Sensor Networks: The Need

for Secure Systems. Technical Report CU-CS-990-05, Dept of Computer Science, Univ of Colorado
at Boulder, 2005.

7. Spartan-3 Generation Configuration User Guide for Extended Spartan-3A, Spartan-3E, and

Spartan-3 FPGA Families. UG332 (v1.6) October 26, 2009, pp. 80.

8. Novak, F., and Biasizzo, A.: Security Extension for IEEE Std. 1149.1. Journal of Electronic

Testing: Theory and Applications 22, pp. 301–303, 2006.

9. Rosenfeld, K., and Karri, R.: Attacks and Defences for JTAG. IEEE Design and Test of
Computers, 2010.

10. Clark, C.J.: Anti-tamper JTAG TAP design enables DRM to JTAG registers and P1687 on-
chip instruments. IEEE Symposium on Hardware-Oriented Security and Trust (HOST) 2010.

11. Pierce, L., and Tragoudas, S.: Multi-level secure JTAG architecture. IOLTS(2011), pp. 208-

209.

12. Park, K., Yoo, S.G., Kim, T., and Kim, J.: JTAG Security System Based on Credentials.

Journal of Electronic Testing: Theory and Applications, September 2010.

13. Schnorr, C.P.: Efficient identification and signatures for smart cards. In G Brassard, ed.

Advances in Cryptology – Crypto '89, pp. 239–252, LNCS 435, 1990.

14. Guide to Understanding JTAG Fuses and Security: An Intermediate Look at the AVR JTAG
Interface. AVRFreaks.net, Sept 2002.

15. Rippel, E.: Security Challenges in Embedded Designs. Discretix Technologies Ltd., Design

& Reuse article. http://www.design-reuse.com/articles/20671/security-embedded-design.html.

16. Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., Verbauwhede, I.: An Elliptic

Curve Processor Suitable For RFID-Tags. IACR Cryptology ePrint Archive, 2006.

17. Batina, L., Guajardo, J., Kerins, T., Mentens, N., Tuyls, P., and Verbauwhede, I.: Public-
Key Cryptography for RFID-Tags. Workshop on RFID Security, pp. 61-76, 2006.

18. Kern, T., and Feldhofer, M.: Low-Resource ECDSA Implementation for Passive RFID Tags,
ICECS 2010.

19. Hankerson, D., Menezes, A., and Vanstone, S.: Guide to Elliptic Curve Cryptography, pp.

262, Sample parameters.

20. Cohen, H., Miyaji, A., and Ono, T.: Efficient elliptic curve exponentiation using mixed

coordinates. ASIACRYPT '98. LNCS 1514, pp. 51-65, 1998.

21. Bernstein, D.J., and Lange. T.: Faster addition and doubling on elliptic curves.
ASIACRYPT 2007. LNCS 4833, pp. 29-50, Springer, 2007.

22. Explicit Formula Database. http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html.

23. Itoh, T., and Tsujii, S.: A Fast Algorithm for Computing Multiplicative Inverses in GF(2
m
)

Using Normal Bases. Information and Computation, 78: pp. 171-177, 1988.

24. Ghosh, S., Mukhopadhyay, D., and Roychowdhury, D.: Petrel: power and timing attack

resistant elliptic curve scalar multiplier based on programmable arithmetic unit. IEEE Transactions

on Circuits and Systems I, Vol 58, No. 11, pp. 1798–1812, 2011.

25. Alam, M., Ray, R., Mukhopadhayay, D., Ghosh, S., Roychowdhury, D., Sengupta, I.: An

Area Optimized Reconfigurable Encryptor for AES-Rijndael, DATE 2007, pp. 1116 - 1121.

26. Buskey, R.F., and Frosik, B.B.: Protected JTAG, Proceedings of the 2006 International

Conference on Parallel Processing Workshops (ICPPW'06), 0-7695-2637-3/06.

27. Jovan Dj. Golic, “New Methods for Digital Generation and Postprocessing of Random

 Data”, IEEE Transactions on Computers, Vol. 55, No. 10, October 2006.

28. Michael Hutter, Martin Feldhofer, Thomas Plos, “An ECDSA Processor for RFID

Authentication”, RFIDSec LNCS 2010, Volume 6370, 2010, pp 189-202.

29. Yong Ki Lee, Kazuo Sakiyama, Lejla Batina, Ingrid Verbauwhede, “Elliptic-Curve-Based

Security Processor for RFID”, IEEE Transactions on Computers, November 2008 (vol. 57 no. 11),
pp. 1514-1527.

30. Stelios Neophytou, Maria K. Michael, Spyros Tragoudas, “Efficient Deterministic Test
Generation for BIST Schemes with LFSR Reseeding”, 12th IEEE International On-Line Testing

Symposium, 2006 (IOLTS’06).

31. Zhanglei Wang, Krishnendu Chakrabarty, and Seongmoon Wang, “Integrated LFSR

Reseeding, Test Access Optimization, and Test Scheduling for Core-Based System-on-Chip”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 28, No. 8, August

2009.

32. Mahmut Yilmaz and Krishnendu Chakrabarty, “Seed Selection in LFSR-Reseeding-Based

Test Compression for the Detection of Small-Delay Defects”, DATE 2009.

33. A. Satoh and T. Inoue, “ASIC-Hardware-Focused Comparison for Hash Functions MD5,

RIPEMD-160, and SHS,” Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC’05), 2005

Appendix A

ECC-based Schnorr Protocol

In the manufacturer environment scenario, A is the prover (Secure JTAG) and B is the

verifier (Test server):

Pa is the public key of A and ka is the private key of A, which are related by:

Pa = ka.P

where P is the initial point on the Elliptic curve (base point), which is public. ka.P represents a point
multiplication of scalar ka with base-point P.

Goal: B wants to be ensured the identity of A, in other words A knows ka.

Protocol:

1) A generates a random number na and sends an intermediate value ‘Ta’ (point multiplication of na

and P) to B;
A � B: Ta = na.P

2) B generates a random number nb and sends it to A;

A B: nb
3) A sends ‘s’ to B;

A � B: s = na + ka.nb

Here ka.nb represents an integer multiplication, while ‘+’ indicates an ordinary addition.

B can verify that A is A by calculating the point multiplication of scalar s with base-point P and

cross-checking it with the modular addition of ‘Ta’ with the point multiplication of nb and Pa:

 s.P = Ta + nb.Pa

 (na + ka.nb)P = (na.P) + (ka.P).nb

 na.P + ka.nb.P = na.P + ka.nb.P

Thus B verifies the identity of A by only knowing A's public key Pa.

For in-the-field updates, debug and test:

A is the prover (Secure JTAG), when B is the verifier (Test server).

B is the prover (Test server), when A is the verifier (Secure JTAG).

Pa is the public key of A and ka is the private key of A, which are related by:
Pa = ka.P, where P is the initial point on the Elliptic curve (base point), which is public.

Pb is the public key of B and kb is the private key of B, which are related by:
Pb = kb.P, where P is the initial point on the Elliptic curve (base point), which is public.

Goal: B wants to be sure that A is actually A, in other words, that A knows ka. Similarly, A wants to
be sure that B is actually B, in other words, that B knows kb.

Protocol:
1) A generates a random number na, and sends it along with an intermediate value ‘Ta’ to B, which is

calculated as:

 A � B: Ta = na.P
2) B generates two random number nb and nb’, and sends nb along with an intermediate value ‘Tb’ to

A, which is calculated as:

 A B: Tb = nb’.P, nb
3) A generates another random number na’ and sends it along with sends ‘s’ to B, B sends ‘s1’ to A:

 A � B: s = na + ka.nb, na’

 A B : s1 = nb’ + kb.na’

B can verify that A is A by calculating:

 s.P = Ta + nb.Pa

 (na + ka.nb).P = (na.P) + nb.(ka.P)
 na.P + ka.nb.P = na.P + nb.ka.P

Similarly, A can verify that B is B by calculating:

 s1.P = Tb + na’.Pb
 (nb’ + kb.na’).P = (nb’.P) + na’.(kb.P)

 nb’.P + kb.na’.P = nb’.P + na’.kb.P

Thus B verifies the identity of A by only knowing A's public key Pa, and A verifies the identity of B

by only knowing B's public key Pb.

Moreover, na.nb’.P can be used as a session key K to encrypt all future communication between the

security chip and test server. The reason behind this is that A knows na.P and nb’, while B knows na

and nb’.P from which they can construct K, but any unauthorized party cannot do so. This may be
particularly useful for instance, in the case of pay-TV updates happening on the set-top box from a

remote server using a network communication, where an eavesdropper can listen to the channel in

between.

Appendix B

ECC based Schnorr for secure JTAG

The execution of the Schnorr protocol is now explained in some detail using the block diagram

below:

1) First, the JTAG public key Pa is calculated. For this, the ECC controller module sends the

private JTAG key ka (from on-chip storage) and the base point coordinates and other curve
parameters (prime number, R*R mod n) from the non-volatile memory to the ECC point

multiplier module. It then instructs the point multiplier module to start an ECC point

multiplication operation.

2) The ECC point multiplier then performs a point multiplication of the scalar ka with the base
point P and returns the result (Pa) back to the ECC controller module. This result is stored in

a 192-bit temporary register inside the controller module.

3) A 192-bit random number na is generated by the on-chip random-number generator and sent
to the ECC controller module.

4) The ECC controller module then sends this na and the base point coordinates and other curve

parameters from the non-volatile memory to the ECC point multiplier module. It then
instructs the point multiplier module to start an ECC point multiplication operation.

5) The ECC point multiplier then performs a point multiplication of the scalar na with the base

point P and returns the result (‘Ta’) back to the ECC controller module. This result is stored

in another temporary register inside the controller module.
6) The test server then generates a 192-bit random number nb and sends this to the JTAG

module bit-by-bit through the TDI input. This is then stored in the 192-bit shift (data)

register of the JTAG.
7) nb and the private key of the JTAG (ka) is transferred to the ECC.

8) For the integer multiplication of ka with nb, the ECC controller instructs the arithmetic

module inside the point multiplier module to perform a modular multiplication of ka with nb
using the ‘order of the prime’ (fetched from the non-volatile memory storage of curve

parameters) as the modulus (this is equivalent to integer multiplication of ka with nb). The

result is stored back in a 192-bit register inside the ECC controller module.

9) A modular addition of na with ka.nb is then performed in the arithmetic block inside the point
multiplier module. For this, the appropriate control is provided from the ECC controller

which also stores the result of the computation (‘s’) in the same 192-bit register.

10) The ECC controller module then sends ‘s’ and the base point coordinates and other curve
parameters from the non-volatile memory to the ECC point multiplier module. It then

instructs the point multiplier module to start an ECC point multiplication operation.

11) The ECC point multiplier then performs a point multiplication of the scalar ‘s’ with the base

point P and returns the result back to the ECC controller module. This result is stored in the
same register inside the controller module.

12) Next, the ECC controller module then sends nb and the public key of the JTAG (Pa) and

other curve parameters from the non-volatile memory to the ECC point multiplier module. It
then instructs the point multiplier module to start an ECC point multiplication operation.

13) The ECC point multiplier then performs a point multiplication of the scalar nb with Pa and

returns the result back to the ECC controller module. This result is stored in another
temporary register inside the controller module.

14) A modular addition of the stored ‘Ta’ with nb.Pa is then performed in the arithmetic block

inside the point multiplier module. For this, the appropriate control is provided from the

ECC controller which also stores the result of the computation in the same 192-bit register.
15) The result of the above computation (Ta + nb.Pa) is then compared with s.P computed and

stored earlier inside the comparator module in the ECC controller module. If they match,

then only the JTAG is allowed to enter the test and debug modes, otherwise it remains in the
bypass mode.

Appendix C

Point Addition and Point Doubling in Affine Coordinates:

When P = (xP,yP) and Q = (xQ,yQ) are not negative of each other, then P + Q = R where

s = (yP - yQ) / (xP - xQ)

xR = s
2
 - xP - xQ and yR = -yP + s(xP - xR)

Note that s is the slope of the line through P and Q.

Similarly, When yP is not 0, then 2P = R where

s = (3xP
2
 + a) / (2yP)

xR = s
2
 - 2xP and yR = -yP + s(xP - xR)

Recall that a is one of the parameters chosen with the elliptic curve and that s is the tangent on the

point P.

Formulae for ECC Point Addition and Doubling in Projective Coordinates:

Table C1: Explicit Formulae:

Point Addition Point doubling

Cost

12 Field Multiplications + 2 Squarings + 6

additions + 1 shift.

7 Multiplications + 3 Squarings + 5

additions + 4 shifts + 1 cubing.

Source

1998 Cohen–Miyaji–Ono [24]
"Efficient elliptic curve exponentiation

using mixed coordinates"

2007 Bernstein–Lange [23]

Formulae

Y1Z2 = Y1*Z2

X1Z2 = X1*Z2

Z1Z2 = Z1*Z2
u = Y2*Z1 - Y1Z2

uu = u*u

v = X2*Z1 - X1Z2
vv = v*v

vvv = v*vv

R = vv*X1Z2
A = uu*Z1Z2 – vvv - 2*R

X3 = v*A

Y3 = u*(R - A) - vvv*Y1Z2

Z3 = vvv*Z1Z2

w = 3*(X1 - Z1)*(X1 + Z1)

s = 2*Y1*Z1

ss = s*s
sss = s*ss

R = Y1*s

RR = R*R
B = 2*X1*R

h = w*w - 2*B

X3 = h*s
Y3 = w*(B - h) - 2*RR

Z3 = sss

Here ‘*’ indicates modular multiplication which in our case has been implemented using the

Montgomery Multiplier. The addition and subtraction operations denoted here are all modular in

nature. Using these set of formulae have the additional advantage that the computations are not
dependent on the value of parameters ‘a’ and ‘b’.

Appendix D

Algorithm 1:

Modified Montgomery modular multiplication
 Algorithm 2:

Montgomery modular multiplication

Input: A, B, M Input: A, B, M

Output: R = X Y 2
-(n+2)

 mod M Output: R = X Y 2
-(n+2)

 mod M

ai : i
th
 bit of A, s0 : LSB of S ai : i

th
 bit of A

1. S = 0, C = 0;
2. for i=0 to n+1

S, C = S + C + ai x B;

S, C = S + C + s0 x M;
S = S div 2;

C = C div 2;

3. R = S + C

4. if R ≥ M then R=R-M
5. return R

 r0 : LSB of R
1. R = 0;

2. for i=0 to n-1

R = R + ai x B;
R = R + r0 x M;

R = R div 2;

3. if R ≥ M then R=R-M
4. return R

Appendix E

 Modular adder / subtractor. A “naïve” implementation of a modular addition A+B mod P is

presented in Fig. A1.a; it consists in computing A+B, and then subtracting P to this result. A

comparison between these two intermediate results allows choosing which one to use for the final
result. However, this comparator could be avoided by observing the carry (borrow) out signal of

addition (subtraction) which could be realized by a single OR gate (instead of a 192-bit comparator)

such as presented in Fig. A1.b. Concerning the subtraction, the principle is the same: computing A-B

and then A-B+P, and comparing these intermediate results to choose which one to use for the final
result. A naïve and an optimized version of the subtraction are presented in Fig. A1.c and A1.d.

P

0 1

S

A B

P

0 1

S

A B

’0’

S

A B

P

1 0

1

S

A B

P

0

1

S

A B op_type

P

0

0 1

 (a) (b) (c) (d) (e)

Fig. A1. Modular addition and subtraction implementations

The two optimized versions (Fig. A1.b and A1.d) have been combined to produce an optimized

modular adder/subtractor block such as depicted in Fig. A1.e. In this architecture an input (op_type)
is used to generate whether an addition or a subtraction (put to 1 for an addition and 0 for a

subtraction). This architecture uses two adder/subtractor blocks (i.e. an addition combined with the

inversion (or not) of the second operand using XOR gates and the input carry to ‘1’ (or ‘0’)) and the
optimized comparison implementation depicted earlier. Concerning the architecture used for the

additions/subtractions, we have used the library provided by the synthesizer which includes highly

optimized RTL for arithmetic building blocks.

In the end, an efficient adder architecture combined with an optimized comparison implantation
have led us optimize the area of more than 90%, by comparison with the area obtained from a

VHDL file directly generated by our Gezel implementation.

Appendix F

16-cycle JTAG TAP Controller State Diagram

Test-Logic-

Reset

Run-Test/

Idle
Select-DR Select-IR

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-IR

Capture-DR

Shift-DR

Exit1-DR

Pause-DR

Exit2-DR

Update-DR

0

1

0

1

0

0

0

1

0

1

0

0

0

0

0

0

0 0

1 1

111

1

0

0 01 1

Fig. A2. TAP controller state diagram

