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Abstract. The standard IEEE 1149.1 (Test Access Port and Boundary-Scan Architecture, also 
known as JTAG port) provides a useful interface for embedded systems development, debug, 

and test. In an 1149.1-compatible integrated circuit, the JTAG port allows the circuit to be 

easily accessed from the external world, and even to control and observe the internal scan 
chains of the circuit. However, the JTAG port can be also exploited by attackers to mount 

several cryptographic attacks. In this paper we propose a novel architecture that implements a 

secure JTAG interface. Our JTAG scheme allows for mutual authentication between the device 

and the tester. In contrast to previous work, our scheme uses provably secure asymmetric-key 
based authentication and verification protocols. The complete scheme is implemented in 

hardware and integrated with the standard JTAG interface. Detailed area and timing results are 

also presented. 
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1.  Introduction 

 

Joint Test Action Group (JTAG) is the common name for what was later standardized as the IEEE 
1149.1 Standard Test Access Port and Boundary-Scan Architecture [1]. JTAG has remained as the 
ubiquitous test and debug interface standard for circuits and printed circuit boards in the 
semiconductor industry for more than two decades. The companion standard, IEEE Standard 1532 
(Boundary-Scan-Based In-System Configuration of Programmable Devices) has extended JTAG to 
support on-board programming [2]. A current IEEE standard proposal (P1687, also known as Internal 
JTAG) seeks to further enhance JTAG by allowing block transfer of data and special instruction sets 
in order to speed up In-System Programmability. 

JTAG was initially designed without a concern for security. As the capability of hardware 
attackers is increasing, more and more side-channels are discovered, which can compromise the 

security of a device. One such important side-channel is the improper use of the JTAG port. There 

have been many practical attacks on secure devices such as set-top box (STB) decoders using the 
JTAG interface [3]. ARM11 (Cortex) microcontroller, which is used in latest smartphones, has 

extensive test and debug facilities through the JTAG port. This is a well-known backdoor that is 



currently used for instance to jailbreak iPhones/iPad, or to unlock protected services in mobile 

phones [4]. Even if not documented, it is reasonable to think that JTAG could be used to 
compromise the security of other applications such as mobile e-payments, or Wireless Sensor Nodes 

(WSNs) [5, 6]. 

 

Another security flaw due to JTAG is related to FPGAs. The configuration bitstream which 
contains the Intellectual Property (IP) information of a reconfigurable design is mostly programmed 

via the JTAG interface into FPGAs [7]. The firmware update of set-top boxes used in pay-TV 

subscriptions also happens in most cases through the JTAG port. An insecure JTAG access would 
allow on one side to re-program parts of the system at the hacker’s will, and on the other side it 

could be used to sniff configuration bits thus allowing retrieving the IP information. 

 
Though there are several approaches for securing the JTAG interface, which can be found in the 

literature [8, 9, 10, 11, 12], most of them are based on symmetric-key approaches. They have an 
inherent key management problem. This is what we intend to overcome through the use of Public-key 
Cryptography (PKC) in our secure JTAG scheme. Though there is previous work on a protected 
JTAG scheme using ECC-based authentication protocol [26], the scheme uses PKC in a non-standard 
way causing key-management problems. Moreover, the paper also does not present any timing or area 
results. Though several PKC protocols can be used for establishing a secure authentication for JTAG, 
we use the ECC-based Schnorr protocol which is an efficient and provably secure protocol [13]. 

In this paper, we seek to provide security features to the IEEE 1149.1 JTAG interface by including 
a Schnorr-based secure test protocol, and present an efficient hardware implementation of the 
protocol using elliptic curve cryptography. Moreover, our approach does not make any modifications 
to the existing JTAG interface. To the best of our knowledge, this is the first paper that proposes a 
mechanism for mutual authentication between the secure device and the tester based on a well known 
and studied public key authentication protocol. Earlier work is either based on symmetric key systems 
or only proposes one way authentication, limiting the scenarios in which these systems can be used.  
The area requirement to incorporate this secure test infrastructure on the JTAG has been optimized to 
increase the scope of our proposed scheme in a wide range of application scenarios. 

The rest of the paper is structured as follows. In Section 2, we present the past work that has been 
done in the area of secure JTAG implementation. A comparison of these approaches with our scheme 
is also made. The motivation for our work is given in Section 3. Section 4 presents the attacker model 
for the JTAG mechanism, and the idea for the Schnorr-based authentication protocol that is the basis 
of our secure JTAG strategy. This section also includes a discussion on the public key authenticity. 
Section 5 presents the Secure JTAG implementation. Two designs are presented using affine and 
projective coordinates. The area and timing results are shown in Section 6 and we conclude the paper 
in Section 7. 

 

2. Previous Work 

 

An ordinary JTAG standard [1] consists of a pre-defined interface, containing a serial input called 
TDI, a serial output called TDO, an input for the clock TCK and a mode select input called TMS. By 
controlling the TMS signal, the user can travel between the 16 states of the JTAG finite state 
machine, shown in Appendix F. Then, the request for executing the instructions and the transference 
of data between the circuit and the host is performed by connecting the input TDI and the output TDO 
to internal shift registers. Thus a malicious host can manipulate the JTAG inputs and execute any 
instruction. 

One of the first approaches for implementing a secure JTAG appears in [8]. It presents a 
locking/unlocking mechanism for controlling the access to the JTAG instructions. It is based on 
storing a secret key inside the chip boundaries. To gain access to the JTAG features the user must 
shift in the secret key, otherwise the JTAG bypasses all the data on the TDI input to the TDO output. 
The scope of this approach does not consider the case where a fake circuit requests updates which 
may compromise the intellectual property. 



 A detailed evaluation of the JTAG test standard, its security problems, attackers’ capabilities, 
possible attacks and countermeasures has been done in [9]. It presents a JTAG security protocol using 
a stream cipher (Trivium), hash function and a message authentication code. The authors suppose that 
the service server is trusted, performing one-way authentication. However, to protect the data from 
unauthorized servers, the data is encrypted. 

An anti-tamper JTAG Test Access Port (TAP) is described in [10] that uses SHA-256 secure hash 
and a true random number generator (TRNG) to create a low gate overhead challenge/response based 
access system employing an on-chip internal JTAG P1687 instrument. It is mentioned by the authors 
that malicious designers could modify the designs in order to observe the secret key, implying a one-
way authentication scenario. 

A multi-level security access system for controlling access to individual scan cells for preventing 
malicious opcodes from being loaded into the JTAG controller is presented in [11]. This approach 
also supposes the design is trusted, and thus it is not possible for fake circuits to obtain proprietary 
updates. 

An elaborate three-party secure JTAG protocol using certificates involving SHA-1 hash algorithm, 
AES block cipher and several arithmetic operators is presented in [12]. The authors describe the 
possible attack cases, but the protocol is not proven to be secure. 

    There are also industrial solutions for providing security to the JTAG interface. The Secure 
JTAG Controller (SJC) which features in Freescale Semiconductors i.MX31 and i.MX31L 
Multimedia Applications Processors is one such example. Similarly there are tools available from 
various vendors such as Discretix and Lauterbach TRACE32 PowerTools, which provides Secure 
JTAG Debug module giving OEMs a highly secure, authenticated way to debug SoC errors 
throughout a system’s lifetime. A detailed overview of the JTAG related fuses and security features in 
the AVR microcontroller can be found in [14]. Some use-cases and application scenarios involving 
JTAG security are presented in [15]. 

To the best of our knowledge, the work in [26] is the only JTAG security solution that is also 
based on asymmetric key cryptography. In contrast to our work, this solution only provides one-way 
authentication from the test server to the JTAG device. Moreover, this solution does not improve key 
management related to symmetric solutions, as it requires the test server to have secure access to a 
database that contains all the unique private keys related to each device. Because of the non-standard 
setup of the authentication protocol, every JTAG device has a unique private key that is stored in a 
database. This key is retrieved by the test server in order to authenticate itself to the device. In our 
solution, we employ a standard use of public/private keys in which the prover uses its own private 
key and a certificate signed by a CA to prove its authenticity and not a private key related to the 
verifier as in [26]. 

Most of the previous approaches [8, 9, 10, 11, 26] suppose a one-way authentication, where either 

the circuit or the server is considered trusted. In this paper, we propose a suitable solution in cases 

where neither the circuit nor the server is trusted. Additionally, most of the previous solutions are not 

provably secure as the Schnorr protocol used in this paper.  
 

 

3. Motivation 
 

    JTAG is mainly used for manufacturing and in-the-field test-and-diagnosis of VLSI circuits and 

boards. It may be disabled in the chip-die after initialization of a product. However, there are some 
applications where JTAG is kept enabled for code or firmware updates. Especially, in case of 

reconfigurable devices like set-top boxes, where even remote reprogramming may be done through 

JTAG port based on updates received from the service provider. For instance, the STi7101 low-cost 
HDTV set-top box decoder and the TI MSP430 used in some set-top boxes have the JTAG open for 

product support and service. 

 
    In this work, we solve the inherent key-management problem of existing Symmetric-Key 

Cryptography (SKC) based secure JTAG approaches using Public-Key Cryptography (PKC). 
Specifically, if SKC is used for securing JTAG, there will be a common master secret key for all 



products or a large secret-key database needs to be maintained at the tester/updater side, which are not 
good options for mass electronic products. PKC implementations are inherently more hardware 
expensive and slower than SKC based approaches. Therefore it is a challenging task to incorporate 
PKC in a resource constrained environment like JTAG. 

The use of asymmetric primitives and the related public/private key pairs substantially improve 
the complexity involved in key management in this setting of tester against the device. If we take for 
example the automobile industry, then we expect to bring our car to virtually any garage in the world 
and get our car serviced. Servicing cars now also includes updating software in one of the on-board 
units (OBUs) which may be through the JTAG interface. Currently these updates can be pushed to the 
OBU as soon as it is powered on; no other security measures are used. One of most important reasons 
for the current lack of authentication is the fact that it presents car manufacturers with a large key 
management problem that is inherent to the use of symmetric solutions in large scale systems. In 
symmetric solutions, the verifier needs a copy of the same key that was also used to generate the 
authentication token (e.g., a message authentication code or MAC on the firmware). This implies that 
the use of a single master key is very risky as it will be wide spread in many devices and likely to leak 
at one point in time (see Section 4 for more details on who is the verifier in our approach). Therefore, 
symmetric key based solutions require unique keys to be installed at every verifier. In large scale 
systems, this would require a large database that link the identity of the prover to its key and a means 
for verifiers to securely access and authenticate this service. Alternatively, key derivation schemes 
could be used, but they only lower the risk related to a single master key. There are many other 
application scenarios where similar key-management problems can occur. 

To overcome this problem, the solution proposed in this paper offers the possibility of using 

certificates instead of shared symmetric keys. This would for example allow the use of the same 

signed firmware update for a wide range of OBUs, without the risk of installing the same symmetric 

key in this range of devices. They just need a valid copy of the manufacturers’ public key for 
signature verification. 

 

 

4. Proposed Secure JTAG Scheme 

4.1 Attacker Model 

 We have considered the following application scenarios for our attacker model. The JTAG 
interface of a VLSI circuit is normally used for testing the device, as well as for updating the internal 
code and firmware in some applications. We assume that the external JTAG interface of the target 
device is enabled and is accessible to the attacker. In [9], the attacker models are described based on 
malicious IP cores inside a SoC. However, in this paper, we have considered the following two 
attacker scenarios where internal IP cores are assumed to be trusted, and the attacker is an external 
entity to the cryptographic SoC. We assume that it is impossible to extract the stored private key 
(present in secure memory) on the device containing the JTAG interface. 

Manufacturing test/firmware or code update at manufacturer’s end: We have considered the 

manufacturing environment to be controlled and the manufacturer’s test server to be trusted. The 
device may be a fake one (or a clone) trying to get unauthorized code or firmware updates through 

the JTAG interface. The test server should allow only genuine devices to have access to the updates. 

Hence, in this scenario, a one-way entity authentication of the device to the Test Server is required. 
The device needs to prove to the Test Server that it is in possession of the correct private key, 

without revealing it to the server. This is achieved through the use of the Schnorr protocol to be 

employed in our secure test scheme. Here the prover is the device with secure JTAG, while the 
verifier is the Test Server. This is represented symbolically by the block diagram below: 
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A possible use-case for this scenario is system integration, where the integrator procures VLSI 
chips from different third-party vendors. He needs to make sure that each chip is a genuine one, and 

not a fake one or clone which can compromise the integrity of the complete system. This can be 

achieved through the addition of a security feature to the JTAG using an authentication mechanism. 

 
In-the-field update, debug and test: When devices are deployed in-the-field, the environment is 

considered uncontrolled and both the Test Server and the device with the JTAG may be potential 
attackers. Hence, mutual entity authentication is required between the device and the Test Server. The 
Test Server might be a hacker or a malicious user trying to extract the internal secrets from the device 
through the test infrastructure. Similarly, the device may be malicious or even a fake one, trying to 
procure unauthorized code or firmware updates through the JTAG interface. 

 Hence, both the device and the Test Server need to prove their identity to each other without 
revealing their secrets (their private keys). For the mutual authentication using ECC based Schnorr 
protocol, when the Secure JTAG is the prover, the Test Server is the verifier. Similarly when the Test 
Server is the prover, the Secure JTAG is the verifier. 

This is represented graphically by the following block diagram: 
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A possible application of this attacker model is the firmware update of set-top boxes used in pay-

TV subscriptions. The user of the set-top box might be a possible attacker trying to get an 
unauthorized update from the server using the JTAG port to watch pay channels for free. Similarly, 
an unauthorized update from a remote hacker using the JTAG port might compromise the secret keys 
stored in the smart card of the set-top box. 

The Schnorr protocol itself is proven secure in a very strong attacker model [13]. This means that 
no information about the private key is leaked to the verifier or any of the attackers that fit the 
attacker model in [13]. As a result, the system can only be attacked by extracting the private key 
through side-channel attacks (though our designs are protected against Simple Power Analysis), leaks 
during installation/generation of the keys, attacks on the CA facilities, etc. In this paper we present an 
efficient implementation of the Schnorr protocol that makes its use cost effective for low cost JTAG 
devices. Side channel attacks on this implementation or attacks related to software bugs, etc. or not in 
scope of this paper. We claim that our solution is secure in the two scenarios described above, as it is 
a straightforward use of the Schnorr protocol that is proven secure. 

 

 

4.2   Secure Test Authentication Based on Schnorr Protocol 

 
We use an enhanced version of ECC-based Schnorr Protocol [13] as the public-key cryptographic 

protocol in our secure JTAG test scheme. Various public-key implementations, such as RSA or ECC, 
may be used to solve the key-management problems present in previous secure JTAG approaches. 
We chose ECC as it offers the same security as RSA, with much smaller area footprint. Area 
overhead is of critical importance, since we are constrained in terms of silicon area required to 
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incorporate security features into JTAG, owing to the small test interface available in most 
applications. Similarly, various protocols using ECC may been used. We chose the Schnorr protocol 
as it is provably secure and allows efficient implementation on space-constrained hardware.  

An added positive side-effect of Schnorr is that it is “zero-knowledge” and thus no information 
about the secret key of the prover leaks during a protocol run. The zero-knowledge property may be 
useful in an uncontrolled in-the-field code update, debug or test environment where the 
communication channel between the test server and JTAG is untrusted and the secret need not be 
shared or linked to a communicating entity. Moreover, Schnorr is a very established protocol, and is 
used in Radio Frequency Identification (RFID) protocols [16, 17]. The related ECC-based Schnorr 
authentication protocol [13] is described in appendix A. 

 

4.3 Public Key Verification 
 

When using public key cryptography for authentication purposes, it is essential to verify the 
authenticity of the prover’s public key. Traditionally, the link between a user’s public key and some 
identifier of the user is captured in a digital certificate that is signed by a trusted third party (e.g., 
certificate authority or CA). By verifying this certificate, a verifier is assured that the public key that 
is provided by the prover is genuine. This means that it is sufficient to have a copy of the CA’s public 
key in order to verify all public keys that are certified by the CA. It is clear that storing a single CA’s 
public key is far more practical than storing a collection of symmetric keys that are shared with each 
possible prover. Therefore, we argue that our protocol, although more resource consuming, does 
provide a more practical solution when compared with previous JTAG authentication mechanisms 
that are based on symmetric cryptography only. 

We propose two modes of operation, one is purely offline and the other uses an online connection 
to a trusted Authentication Server (AS). 

In the offline mode, we assume that every prover has a certified public key and this certificate is 

signed by a trusted CA. Every verifier has a copy of the CA’s public key. Before the actual Schnorr 
authentication protocol, the prover sends his certificate to the verifier. The verifier simply uses the 

CA’s public key to verify the certificate. In case, the verifier has access to a “clock”, the verifier can 

also check an optional expiration date inside the certificate. In case the JTAG device is the verifier, 
this clock will probably not be available and no expiration date can be verified. Note that in this 

scenario, it is not possible to revoke certificates, as it is not possible to use an online server to obtain 

revocation lists or use an Online Certificate Status Protocol (OCSP) like protocol. 

In case the verifier has the possibility to contact the online trusted AS, we propose to use a 
simplified version of the OCSP protocol. The protocol steps are depicted in the next figure: 

 

                            Authentication Server (AS) 
 

                                                                     SigAS(PKP ⊕ C ⊕  IDP) 

                                                C || IDP                             

                                              

                                              IDP 

                Prover                                Verifier 

                                             PKP 

                                                                 Check Sig on PKP using public-key of AS 
 
SigAS denotes signature of the prover’s public key with the private key of the Authentication 

Server, IDP and PKP are the Identity and Public-key of the Prover respectively.   

      The prover starts with sending its IDP and its public key PKP to the verifier. The verifier then 
initiates a call to the AS by sending a fresh random challenge C and the ID of the prover to the AS. 
The AS will now lookup the public key of the prover, check whether it is still valid, and if so send a 
signature on the XOR of PKP, C and IDP back to the verifier. The verifier will only accept the public 
key received from the prover upon reception of a valid signature by the CA on the generated 

challenge PKP ⊕ C ⊕ IDP. We are XORing the ID, challenge and the public key (instead of 



appending) in order to make sure that we can sign this value without first using a cryptographic hash 
function. In case the messages we wish to sign becomes longer than the field length of the ECC 
module we use, we would first have to reduce this length by employing a cryptographic hash function 
(and potentially cropping the result). As the implementation of such a hash function would consume 
too much area, we have designed our protocol to operate without a hash function.  

      The signature scheme can be implemented using Elliptic Curve Digital Signature Algorithm 
(ECDSA). This consumes less area overhead than a 1024-bit RSA signature scheme. An area-
efficient implementation is presented in [18]. In our implementation, we have modified the ECC 
Schnorr controller to allow ECDSA. The hashing involved in the ECDSA signature verification is 
avoided as we use 192-bit signatures (the same length as the message that is signed, which is the 
public-key of the prover). Through this public key certificate we protect the Schnorr protocol from 
man-in-the-middle attack too. Devices which have adequate resources (online connection to the 
authentication server) to support this authentication process can opt for an online mode, while other 
devices can have an offline mode of authentication.    

      In this paper, we provide two different implementations. One is over projective coordinates 
and another is over affine coordinates. In the first design, we do not implement an inversion module 
whereas it is included in the second design. Due to projective coordinates the first design invokes 
very few inversions which are performed iteratively on a multiplier unit following Fermat’s little 
theorem. However, in affine coordinates inversion is performed at every iteration of point 
multiplication algorithm. Thus, a dedicated inversion unit based on extended Euclidian algorithm is 
implemented which also helps efficient execution of ECDSA on our secure JTAG scheme. Here we 
provide implementation details for both designs which provide better design variations and the user 
can opt for one of them in practice.     

 

 

5. Secure JTAG Implementation 

 
5.1 Integration of the ECC-processor with JTAG 

 
       An important contribution in our paper is the integration of the ECC based Schnorr controller 

and ECC point multiplier with the JTAG interface along with the other modules. This has been done 
in a seamless manner so as not to affect the timing aspects of the IEEE 1149.1 JTAG standard, and 
also keeping the behavior of the TAP finite state machine (illustrated in Appendix F) unchanged. 

       Our proposed architecture is shown in Fig. 1. The ordinary JTAG circuitry is enclosed within 
dotted lines, and it is divided into its two main components: the TAP finite state machine and the 
instruction decoder. The Schnorr protocol (described in Appendix A), as well as the ECDSA 
signature authentication are performed by the Schnorr controller, placed in the center of Fig. 1. It 
interacts with a modified JTAG instruction decoder, ECC module, and a 192-bit random number 
generator (a Linear Feedback Shift Register). The base point coordinates (curve parameters) are 
fetched from an external non-volatile memory. 
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Fig. 1. JTAG-ECC controller Integration Architectural Block Diagram 

 

       The system is supposed to be locked in the beginning. In order to unlock it, the tester must 
manipulate the JTAG inputs to enter the new ‘UNLOCK’ instruction. Then, the instruction decoder 
informs the Schnorr controller to start the protocol, by means of the ‘request_unlock’ signal. As soon 
as the authenticity of the test server is verified, the Schnorr controller activates the ‘release_unlock’ 
signal, informing the instruction decoder that other instructions can now be performed. For instance, 
if the system is unlocked, the design under test (DUT) boundary scan register can be controlled. 
Meanwhile, when ‘release_unlock’ signal is not active, the instruction decoder sets the multiplexer 
‘MUX1’ to always select the output from the multiplexer ‘MUX2’, which is controlled by the 
Schnorr controller, impeding the shift out of any DUT specific register. 

       During the protocol execution, the communication with test server consists of using the 
Schnorr shift registers (192 bits) to shift in and out information required for the protocol. For instance, 
the transmission of the intermediate values, ‘Ta’ and ‘Tb’ (Protocol in Appendix A) is performed by 
means of shifting out the value ‘Ta’ (or ‘Tb’) once the ECC point multiplication is finished. It is 
important to notice that the shifting is always controlled by the test server, and that the timing for 
executing point multiplications depends on the scalar multiplier. It means that the Schnorr controller 
must inform the test server that it has finished each operation of the protocol. This synchronization is 
achieved by always adding one flip-flop at the end of the Schnorr shift register that is set to ’1’ if the 
information in the shift register is valid, otherwise the multiplexer ‘MUX2’ selects the TDI input and 
the synchronization flip-flop is set to ‘0’. Thus, the test server keeps on shifting at least this one bit to 
detect that the Schnorr controller is ready for receiving the next data. The step-wise detailed ECC-
based Schnorr protocol for Secure JTAG is described in Appendix B. 

 

5.2 Implementation of the ECC processor 

       The exponentiations involved in the Schnorr protocol may be implemented using RSA or ECC. 

However, ECC involves much smaller bit lengths compared to RSA and is efficient in hardware. 
Hence we implement the Schnorr protocol using 192-bit ECC over prime fields which offers higher 

security compared with 1024-bit RSA. Highly efficient ECC and ECDSA implementations for 

contrained environments can be found in [28][29]. However, in this work, we present two new 

designs which are optimized both for area and timing suited for integration with the standard JTAG. 



 

We use the 192-bit NIST ECC curve P192 and work in prime fields (Fp). The curve parameters 
used in our ECC implementation is as follows [19]: 

 

p : The order of the prime field Fp. 

a,b: The coefficients of the elliptic curve y
2
 = x

3
+ax+b. 

n: The (prime) order of the base point P. 

h: The cofactor. 

x, y: The x and y coordinates of P. 
 

P-192: p = 2
192

−2
64

−1, a =−3, h = 1 

b = 0x 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1 
n = 0x FFFFFFFF FFFFFFFF FFFFFFFF 99DEF836 146BC9B1 B4D22831 

x = 0x 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD 82FF1012 

y = 0x 07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811 

 
     The point operations over affine and projective coordinates are performed by standard formula 

taken from the literature, and are provided in Appendix C. In the projective coordinate, we represent 

a point as: (x=X/Z, y=Y/Z, c=1, d=1). In general, projective coordinates are introduced to avoid the 
relatively more costly inversion used in point-operation over affine coordinates. However, relativity 

among the costs of multiplication and inversion in Fp varies on their implementations. For example, 

when modular multiplication is computed in a bit serial fashion, it leads to log2 p number of 
iterations (clock cycles); whereas, when inversion is performed by binary Euclidean algorithm, it 

requires at most 2 log2 p number of iterations (clock cycles). Following the above design technique, 

the point operations over affine coordinates outperform projective coordinates.  
 

 

5.2.1  Design I: ECC over Projective Coordinates  
 

     In this implementation, we use the 1998 Cohen–Miyaji–Ono mixed coordinates for point addition 

[20] and the 2007 Bernstein–Lange formulae [21] for point doubling from Explicit Formula database 
for Short Weierstrass curves [22]. The equations are mentioned in Appendix C. To reduce area 

overhead, the adder and the Montgomery multiplier used in ECC have been optimized. The ordinary 

adder/subtractor (required for the intermediate operations of the Montgomery Multiplier) has been 

combined with the modular adder/subtractor (required for the addition/subtraction operations used to 
implement ECC in projective coordinates) using a 2-bit select signal. This helps reduce the area 

overhead further. The modules employed in our design are described below. 

 
Schnorr & ECDSA controller modules: Figure 2 shows the block diagram of the Design I 

implementation. 
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Fig. 2. Block diagram of the security architecture 

  



 

The Schnorr protocol consists of two main operations: ECC point multiplication and modular 
multiplication. In order to perform an ECC point multiplication, the Schnorr controller loads 

correctly the inputs of the ECC & ECDSA controller, and sets the “mode” signal to ‘0’. Then it 

disables the “reset” signal of the ECC & ECDSA controller so it can initiate the execution. Then the 

Montgomery multiplier and the modular/ordinary adder/subtractor blocks are used to perform the 
point multiplication. As it can be seen, the adder/subtractor block is shared between the ECC 

controller and the Montgomery multiplier. If the ECC controller is using it, it sets the “select” signal 

to ‘1’ and then it chooses the operation type by setting the “mod_kind” signal (‘0’ for addition and 
‘1’ for subtraction). Each ECC scalar multiplication is performed using the Montgomery Powering 

Ladder algorithm, which is also protected against Simple Power Analysis (SPA) attacks. 

 
On the other hand, to perform a modular multiplication, we reuse the Montgomery multiplier. For 

that purpose we use the order of the prime number as modulus instead of the prime number itself. 

The Schnorr controller sets the mode to ‘1’ and then uses the ECC controller as an interface to the 

Montgomery multiplier block. This interfacing was implemented in order to reuse the ECC 
controller finite-state-machine. 

 

The ECDSA operation is performed partially by the ECC & ECDSA controller and partially by 
the Schnorr controller. It first executes all the ECDSA steps which require only integer 

multiplications by setting the mode to ‘2’ and loading the signature into the ECDSA block. Then the 

Schnorr controller saves these intermediate values and reuses the ECC controller block to run the 
two final point multiplications. For executing the inversion present in the ECDSA protocol we used 

the Itoh-Tsujii algorithm [23] based on the Fermat’s little theorem that allows to execute inversions 

using a modular multiplier. The Pseudo-Random Number Generator (PRNG) in the diagram which 

generates the random numbers required in the Schnorr protocol is a 192-bit LFSR. We are reseeding 
the LFSR after every authentication execution, with a new seed to avoid starting it with the same 

initial value on power up, in order to prevent replay attacks. Efficient LFSR reseeding techniques 

[30, 31, 32] using seed storage methods or seed derivation from the modules of the design can be 
used for the purpose. For security, the LFSR length must be large enough to prevent brute-force 

attacks (192-bit in our design) and irreducible polynomials used for the feedback taps to have all 

possible sequences (2
192

 – 1, in our case). Moreover, the reseeding must be done quite often to 

prevent prediction of generated sequences (at the beginning of every authentication as in our case). 
The new seed value is loaded into the LFSR as soon as the 'request_unlock' signal in Figure 1 goes 

high. Alternatively, for enhanced security, True Random Number Generators (TRNGs) based on 

Fibonacci or Galois Ring Oscillators [27], which have similar area overhead as LFSRs and 
substantially high randomness and unpredictability properties, can also be employed. 

 

Montgomery multiplier.  Montgomery’s algorithm is the most common method for a fast 
implementation of modular multiplications. 

Algorithm 1 in Appendix D presents an efficient implementation of this algorithm. As one can 

notice, the final comparison is optimized exploiting carry-save-adders (CSA). CSAs are used for the 

intermediate computations and then a full addition is performed to convert the final carry-save result 
into a conventional form, such as presented in the Algorithm 2, Appendix D, and Figure 3.b. The 

CSA adders have indeed a small area and avoid carry propagation, i.e. are computed in constant time 

independently of the operands’ length. 
 

     However, as a modular adder/subtractor is needed for ECC, we have decided to use the initial 

algorithm. We have indeed modified the adder/subtractor block to have an ordinary 

addition/subtraction also, in order to use this block in our Montgomery multiplication 
implementation. Optimizing the area is indeed our main objective, so using existing resources is 

better than implementing CSA adders. As a consequence, our implementation takes more or less 

twice as many cycles, but it is the one that optimizes most of the area. In the end, we have managed 

to optimize the area by more than 16%, in comparison with the RTL description of the original 



design with an unoptimized implementation of the adder/subtractor. This optimized arithmetic block 

is presented in Apendix E. 
 

 

5.2.2  Design II: ECC over Affine Coordinates  

 

The execution of the Schnorr protocol and ECDSA consists of several finite field operations 
(including inversion) and operations on elliptic curves. In Weierstrass elliptic curve, a point is 

primarily defined over Affine (x, y) coordinates which is further redefined over several Projective 

coordinates with the help of a third variable (X, Y, Z) in order to avoid inversion in point operations 
performed by chord-and-tangent method. Explicit formulae are provided in Appendix C. A single 

inversion is eliminated by several (4-12) multiplications in Projective coordinates – still research is 

going on for finding coordinate systems to lower down multiplications in a point operation. 

 
However, the implementation technique also plays an important role for improving efficiency of 

elliptic curve operations under a resource constrained environment like JTAG. It is already described 

in Section 5.2 that delay of a binary inversion/division method is just twice that of a bit-serial 
multiplication where both of them are assumed to be implemented by simple adder circuits – 

demands area in the same decimal order (3 times). On the other hand, efficient implementation of 

modular (Montgomery) multiplication could be achieved through digit-serial (parallel) architecture 
which demands much more area (order of digit length) and may not be affordable in the application 

of secure JTAG implementation. Thus design II attempts to implement a compact and flexible 

architecture for executing Schnorr protocol and ECDSA over Affine coordinates. Besides, this 

design computes all modular operations directly on 2’s complement binary domain that avoids cost 
of domain conversions compared to the first design.  

 

Flexible Datapath. In order to reduce the complexity of the controller logic, design II consists of a 
flexible datapath having all arithmetic blocks. There are two top level controllers in the current 

secure JTAG implementation – namely ECDSA-controller and Schnorr-controller. These controllers 

generate instructions like PointAdd, PointMult, FieldAdd, FieldMult, FieldInv, FieldSub. In the next 
lower level, there is an ECMULT-controller which primarily generates two instructions - PointAdd 

and PointDbl. All instructions generated by top level controllers are first checked by the ECMULT-

controller which further passes through the next lower level. Except PointMult, all other instructions 

are directly executed by the datapath shown in Fig. 4. The instruction PointMult consists of 
PointAdd and PointDbl instructions which are generated in proper sequence by the ECMULT-

controller. All controller logic in design II are realized as finite state-machines in which the final 
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Fig. 3. Montgomery multiplier.  a: Classical architecture  b: CSA architecture 
 



state sends a done signal to its predecessor. With the help of five temporary registers the datapath 

shown in Fig. 4 computes a point operation (point doubling or point addition) as a single instruction 
– in which case the output of an execution is stored and supplied back to the memory through x3 and 

y3 ports. On the other hand, the outputs for all other finite field operations are directly generated 

from individual arithmetic units. In order to execute PointAdd instruction the datapath takes the 

input data from ‘x1’, ‘y1’, ‘x2’, ‘y2’, ‘p’, and ‘a’ ports, whereas for executing individual finite field 
operation the ports are configured by the upper level controller logic.  

 

Prime field Multiplication. In this design we use Blakley multiplication which is based on the 
iterative execution of doubling and addition.  All internal operations are performed in respective 

prime field, that is intermediate results are always in their reduced form. Hence, the costly final 

reductions are eliminated. The multiplier unit contained in the datapath block (Fig. 4) computes a 
multiplication ab mod p in log2 p number of clock cycles, assuming that both a and b also have 

lengths of log2 p. 

 

Prime field Inversion and Division. The prime field inversion and division could be efficiently 
computed by binary inversion division algorithm, which is based on binary Euclidian algorithm. The 

current design follows the implementation of such a unit that is described in [24]. The current 

module can compute one inversion (used on ECDSA) as well as one division (used to execute 
PointAdd and PointDbl) in 2 log2 p number of clock cycles.  

 

PointAdd

FieldMult

FieldAdd

done

FieldAdd

FieldMult

PointAdd

FieldInv

PointAdd

PointDbl
done

Prime field 

adder

Prime field 

subtractor

Blakley

Multiplier

Inversion 

Module

Data-

path 

Con-

troller

M

u

l

t

i

p

l
e

x

e

r

s

Registers
t1

t2

t3

x3

y3

Memory 

Module

x1

y1

x2

y2

p
a

ECMULT 

Controller

ECDSA 

Controller

Schnorr

Controller address

enables

M-start

I-start

selects

M-done

I-done

P
o

in
tM

u
lt

DATAPATH

done

d
o

n
e

 
Fig. 4. Datapath of the design II 

  

 

Design II executes a PointAdd instruction in 5 log2 p + 6 clock cycles and PointDbl in 4 log2 p + 8 

clock cycles. The clock cycles required to execute a PointMult instruction is: log2 k * (4 log2 p + 8) 
+ (#k-1) * (5 log2 p + 6), where k represents the scalar multiplier in kP and #k indicates the 

Hamming weight of k. 
 

 

6. Results 

 

We present here the area and timing results of our implementation. Both ASIC and FPGA results 
of the overall secure JTAG design with the sub-modules are mentioned. Though our design is larger 

than earlier methods, owing to the use of public-key cryptography (as opposed to symmetric-key 

usage in the other approaches), this helps solve the key-management problem inherent in other 

approaches to a great extent. 
 

6.1 Area Overhead 

 
The ASIC area requirements in terms of gate equivalents (GEs) (synthesized with Synopsys 

Design Compiler v2009.06 for a Faraday 130 nm library) for the modules used in our ECC 



implementation are given in the table below. The FPGA Synthesis results on Xilinx ISE 12.4 (with 

Virtex 6 xc6vlx75t family) for the modules are also presented. 
 

Table 1: Hardware cost of secure JTAG 

 

Module  Design I 

ASIC 

(GEs) 

Design II 

ASIC 

(GEs) 

Design I 

FPGA  

(Slices) 

Design II 

FPGA 

(Slices) 

Arithmetic unit (modular adder 
and subtractor) 

1374 5128 164 311 

Modular multiplier * 5152 7314 615 756 

Inversion module -- 24313 -- 1482 

Controller and data multiplexers 40190 10295 2189 531 

Total 46716 47050 2968 3080 

          *Montgomery multiplier for Design I, while Blakley multiplier for Design II 

 

 

       Hence, as shown in the table, we require a total of 46716 GEs for design I and 47050 GEs for 

Design II to implement the secure JTAG Scheme with the Schnorr and ECDSA controllers. We 
choose the solution described in [12] for having an estimative of area overhead of our approach. The 

cost of that solution is 25k gates. It means that our solution is around twice larger than the solution 

in [12]. Our solution is based on public-key cryptography, which inherently demands more hardware 
resources than symmetric-key based approaches. The area calculations do not consider the overhead 

of the Hash function implementation which takes around 10k gates [33] for SHA-1, in case the 

message lengths become longer than the ECC field size (as mentioned in Section 4.3). However, this 
is not applicable for properly designed protocols, as in our case. It must be also noted that all secure 

authentication schemes including the one proposed in this paper require Non-volatile memory for 

storing cryptographic keys. 

 
The area requirement in our designs can be reduced further by making use of a tiny custom 

microcontroller with an Instruction Set Extension (ISE), as in [28]. Here only the top-level ECDSA 

commands are managed with a processor. Moreover, replacing the Montgomery Multiplier (suitable 
for general prime-field operations) with more efficient multipliers employing Mersenne-like NIST 

prime reduction suitable for prime fields over Fp (with the prime number p being a Pseudo Mersenne 

number as used in NIST curves) can also help reduce the execution time for an Elliptic Curve scalar 

multiplication. 
 

There are of course much more compact implementations available in the literature, for instance, 

the 192-bit ECDSA implementation in [28] employing the same NIST recommended curve as in our 
case requires only 19.1 KGEs (thus consuming 23.5% less than the approach in [12]) and 859,188 

cycles in total for the combined operations of ECDSA, Hash and Random number generation 

required for the protocol execution. Similarly the most area efficient 163-bit ECC implementation in 
[29] consumes only 12.5 KGEs (thus taking half the area in [12]) and 275,816 cycles for one Elliptic 

Curve scalar multiplication. In this paper, though we did not achieve such high compactness, we 

have shown the feasibility of integration of the JTAG with the ECC and ECDSA modules by 

presenting combined area and timing results which have limited overheads. 
 

 

6.2 Timing overhead 

 

The impact of the proposed solution in the use of the JTAG standard consists of an initial delay 

for executing the Schnorr protocol/ECDSA. Once the authentication and the signature verification 
steps are finished, the JTAG is unlocked and the JTAG instructions can be used without any timing 

overhead. 



The initial delay is due to three main operations: 1) the time to request the unlock (associated with 

the time to insert the instruction ‘UNLOCK’) and the time to release the lock; 2) the time to shift in 
the protocol inputs and shift out the protocol outputs using the JTAG controller; and 3) the time to 

perform the protocol operations, including ECC point multiplications, ordinary multiplications and 

additional operations to communicate between the dedicated Schnorr protocol modules. The first 

two operation types are measured in test clock cycles that depend on the JTAG frequency, while the 
last operation type is measured in functional clock cycles, the functional clock being usually faster 

than the test clock. The timing overhead is presented in Table 2, where we have distinct four 

scenarios. The first scenario is a one-way authentication (manufacturer environment in Appendix A) 
in which the DUT acts as prover (A) and the test server acts as verifier (B). The only scalar (point) 

multiplication performed for A is na.P for generating Ta. The second scenario is a one-way 

authentication (manufacturer environment in Appendix A), but the roles of prover and verifier are 
reversed. Here the DUT acting as the verifier B performs two scalar multiplications (s.P and nb.Pa). 

The third case is the two-way authentication (in the field update in Appendix A). Here, both A and B 

perform three scalar multiplications (na.P, s1.P and na’.Pb for A, and nb’.P, s.P and nb.Pa for B). 

Finally, the last one is the timing overhead associated with the execution of the ECDSA signature 
verification, which requires two scalar multiplications.  

 

 
Table 2.   Detailed timing estimates 

 

# Clock cycles Clock class Scenario Operation 

Design I Design II  

Unlocking 13 13 Test clock 

Time to shift data in and out 768 768 Test clock 

1. One way 

Authentication 

(DUT is the prover) Protocol (1 k.P* operation) 3068150 240762 Functional clock 

Unlocking 13 13 Test clock 

Time to shift data in and out 768 768 Test clock 

2. One way 
Authentication 

(DUT is the verifier) Protocol (2 k.P* operations) 6136692 482130 Functional clock 

Unlocking 13 13 Test clock 

Time to shift data in and out 960 960 Test clock 

3. Mutual(Two-way) 

Authentication 

Protocol (3 k.P* operations 
each for prover and verifier) 

9204842      722892 Functional clock 

Unlocking 13 13 Test clock 

Time to shift data in and out 576 576 Test clock 

4. ECDSA 

Protocol (2 k.P* operations) 6137075 482324 Functional clock 

* ‘k.P’ indicates one Elliptic Curve Scalar Multiplication.  

 
 

For having an estimation of time in milliseconds, we suppose a 100MHz clock frequency for the 

JTAG Test clock, and 115MHz as functional clock frequency for Design I and 123MHz for Design 
II, as shown in Table 3. The functional clock frequency is the maximum operating frequency 

obtained from FPGA synthesis. The test clock and the functional clock can be also the same without 

involving any design change. Considering the mutual authentication scenario with ECDSA signature 

verification, Design I has an initial delay of 133.42ms while Design II has an initial delay of 9.83ms. 
 

Table 3. Time delay for authentication 

 

Delay for authentication (ms)
#
  Functional 

Clock (MHz) Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Design I 115 26.67 53.37 80.05 53.37 

Design II 123 1.96 3.93 5.89 3.94 

       # Delays are based on 100 MHz clock frequency for JTAG Test clock and respective Functional clock. 

    

 



7. Conclusion  

 
In this paper, we have presented the implementation of a secure test scheme integrating the 

provably secure Schnorr protocol with JTAG-based testing. The key management problem inherent 
in previous symmetric-key based approaches is overcome through the use of public-key 

cryptography in our test scheme. Moreover, we present detailed hardware implementations, area and 

timing results for our ECC and ECDSA-based authentication protocol. To the best of our 

knowledge, this is the first complete work for securing the JTAG interface using public-key 
cryptography which also provides mutual authentication between the device and the tester. 
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Appendix A 

 
ECC-based Schnorr Protocol 
 

In the manufacturer environment scenario, A is the prover (Secure JTAG) and B is the 

verifier (Test server): 

 
Pa is the public key of A and ka is the private key of A, which are related by: 

Pa = ka.P 

where P is the initial point on the Elliptic curve (base point), which is public. ka.P represents a point 
multiplication of scalar ka with base-point P. 

 

Goal: B wants to be ensured the identity of A, in other words A knows ka. 

 
Protocol: 

1) A generates a random number na and sends an intermediate value ‘Ta’ (point multiplication of na 

and P) to B; 
A � B:    Ta = na.P 

2) B generates a random number nb and sends it to A; 

A  B:    nb 
3) A sends ‘s’ to B; 

A � B:    s = na + ka.nb 

Here ka.nb represents an integer multiplication, while ‘+’ indicates an ordinary addition. 

 
B can verify that A is A by calculating the point multiplication of scalar s with base-point P and 

cross-checking it with the modular addition of ‘Ta’ with the point multiplication of nb and Pa: 

 
               s.P = Ta + nb.Pa 

               (na + ka.nb)P = (na.P) + (ka.P).nb  

               na.P + ka.nb.P = na.P + ka.nb.P 
 

Thus B verifies the identity of A by only knowing A's public key Pa. 

 

 



For in-the-field updates, debug and test: 

 
A is the prover (Secure JTAG), when B is the verifier (Test server). 

B is the prover (Test server), when A is the verifier (Secure JTAG). 

 

Pa is the public key of A and ka is the private key of A, which are related by: 
Pa = ka.P, where P is the initial point on the Elliptic curve (base point), which is public. 

 

Pb is the public key of B and kb is the private key of B, which are related by: 
Pb = kb.P, where P is the initial point on the Elliptic curve (base point), which is public. 

 

Goal: B wants to be sure that A is actually A, in other words, that A knows ka. Similarly, A wants to 
be sure that B is actually B, in other words, that B knows kb. 

 

 

Protocol: 
1) A generates a random number na, and sends it along with an intermediate value ‘Ta’ to B, which is 

calculated as:  

               A � B:     Ta = na.P 
2) B generates two random number nb and nb’, and sends nb along with an intermediate value ‘Tb’ to 

A, which is calculated as: 

               A  B:    Tb = nb’.P, nb 
3) A generates another random number na’ and sends it along with sends ‘s’ to B, B sends ‘s1’ to A: 

               A � B:    s = na + ka.nb, na’ 

               A  B :    s1 = nb’ + kb.na’ 

 
B can verify that A is A by calculating: 

         s.P = Ta + nb.Pa 

               (na + ka.nb).P = (na.P) + nb.(ka.P)  
               na.P + ka.nb.P = na.P + nb.ka.P 

 

Similarly, A can verify that B is B by calculating: 

               s1.P = Tb + na’.Pb 
           (nb’ + kb.na’).P = (nb’.P) + na’.(kb.P)  

              nb’.P + kb.na’.P = nb’.P + na’.kb.P 

 
Thus B verifies the identity of A by only knowing A's public key Pa, and A verifies the identity of B 

by only knowing B's public key Pb. 

 
Moreover, na.nb’.P can be used as a session key K to encrypt all future communication between the 

security chip and test server. The reason behind this is that A knows na.P and nb’, while B knows na 

and nb’.P from which they can construct K, but any unauthorized party cannot do so. This may be 
particularly useful for instance, in the case of pay-TV updates happening on the set-top box from a 

remote server using a network communication, where an eavesdropper can listen to the channel in 

between. 

 

 

 

 

 

 

 

 

 



Appendix B 

 

ECC based Schnorr for secure JTAG 

The execution of the Schnorr protocol is now explained in some detail using the block diagram 

below: 
 

1) First, the JTAG public key Pa is calculated. For this, the ECC controller module sends the 

private JTAG key ka (from on-chip storage) and the base point coordinates and other curve 
parameters (prime number, R*R mod n) from the non-volatile memory to the ECC point 

multiplier module. It then instructs the point multiplier module to start an ECC point 

multiplication operation. 

2) The ECC point multiplier then performs a point multiplication of the scalar ka with the base 
point P and returns the result (Pa) back to the ECC controller module. This result is stored in 

a 192-bit temporary register inside the controller module. 

3) A 192-bit random number na is generated by the on-chip random-number generator and sent 
to the ECC controller module. 

4) The ECC controller module then sends this na and the base point coordinates and other curve 

parameters from the non-volatile memory to the ECC point multiplier module. It then 
instructs the point multiplier module to start an ECC point multiplication operation. 

5) The ECC point multiplier then performs a point multiplication of the scalar na with the base 

point P and returns the result (‘Ta’) back to the ECC controller module. This result is stored 

in another temporary register inside the controller module. 
6) The test server then generates a 192-bit random number nb and sends this to the JTAG 

module bit-by-bit through the TDI input. This is then stored in the 192-bit shift (data) 

register of the JTAG. 
7) nb and the private key of the JTAG (ka) is transferred to the ECC.  

8) For the integer multiplication of ka with nb, the ECC controller instructs the arithmetic 

module inside the point multiplier module to perform a modular multiplication of ka with nb 
using the ‘order of the prime’ (fetched from the non-volatile memory storage of curve 

parameters) as the modulus (this is equivalent to integer multiplication of ka with nb). The 

result is stored back in a 192-bit register inside the ECC controller module. 

9) A modular addition of na with ka.nb is then performed in the arithmetic block inside the point 
multiplier module. For this, the appropriate control is provided from the ECC controller 

which also stores the result of the computation (‘s’) in the same 192-bit register. 

10) The ECC controller module then sends ‘s’ and the base point coordinates and other curve 
parameters from the non-volatile memory to the ECC point multiplier module. It then 

instructs the point multiplier module to start an ECC point multiplication operation. 

11) The ECC point multiplier then performs a point multiplication of the scalar ‘s’ with the base 

point P and returns the result back to the ECC controller module. This result is stored in the 
same register inside the controller module. 

12)  Next, the ECC controller module then sends nb and the public key of the JTAG (Pa) and 

other curve parameters from the non-volatile memory to the ECC point multiplier module. It 
then instructs the point multiplier module to start an ECC point multiplication operation. 

13) The ECC point multiplier then performs a point multiplication of the scalar nb with Pa and 

returns the result back to the ECC controller module. This result is stored in another 
temporary register inside the controller module. 

14) A modular addition of the stored ‘Ta’ with nb.Pa is then performed in the arithmetic block 

inside the point multiplier module. For this, the appropriate control is provided from the 

ECC controller which also stores the result of the computation in the same 192-bit register. 
15) The result of the above computation (Ta + nb.Pa) is then compared with s.P computed and 

stored earlier inside the comparator module in the ECC controller module. If they match, 

then only the JTAG is allowed to enter the test and debug modes, otherwise it remains in the 
bypass mode. 

 
 



Appendix C 

 

Point Addition and Point Doubling in Affine Coordinates: 

 

When P = (xP,yP) and Q = (xQ,yQ) are not negative of each other, then P + Q = R where 
 

s = (yP - yQ) / (xP - xQ) 

xR = s
2
 - xP - xQ and yR = -yP + s(xP - xR) 

 

Note that s is the slope of the line through P and Q.  

 

Similarly, When yP is not 0, then 2P = R where 
 

s = (3xP
2
 + a) / (2yP ) 

xR = s
2
 - 2xP and yR = -yP + s(xP - xR) 

 

Recall that a is one of the parameters chosen with the elliptic curve and that s is the tangent on the 

point P. 
 

Formulae for ECC Point Addition and Doubling in Projective Coordinates: 

 

Table C1: Explicit Formulae: 

 

Point Addition Point doubling 

Cost 

12 Field Multiplications + 2 Squarings + 6 

additions + 1 shift. 

7 Multiplications + 3 Squarings + 5 

additions + 4 shifts + 1 cubing. 

Source 

1998 Cohen–Miyaji–Ono [24]  
"Efficient elliptic curve exponentiation 

using mixed coordinates" 

2007 Bernstein–Lange [23] 

 

Formulae 

Y1Z2 = Y1*Z2 

X1Z2 = X1*Z2 

Z1Z2 = Z1*Z2 
u = Y2*Z1 - Y1Z2 

uu = u*u 

v = X2*Z1 - X1Z2 
vv = v*v 

vvv = v*vv 

R = vv*X1Z2 
A = uu*Z1Z2 – vvv - 2*R 

X3 = v*A 

Y3 = u*(R - A) - vvv*Y1Z2 

Z3 = vvv*Z1Z2 

w = 3*(X1 - Z1)*(X1 + Z1) 

s = 2*Y1*Z1 

ss = s*s 
sss = s*ss 

R = Y1*s 

RR = R*R 
B = 2*X1*R 

h = w*w - 2*B 

X3 = h*s 
Y3 = w*(B - h) - 2*RR 

Z3 = sss 

 

Here ‘*’ indicates modular multiplication which in our case has been implemented using the 

Montgomery Multiplier.  The addition and subtraction operations denoted here are all modular in 

nature. Using these set of formulae have the additional advantage that the computations are not 
dependent on the value of parameters ‘a’ and ‘b’. 

 

 

 

 



Appendix D 

 
Algorithm 1: 

Modified Montgomery modular multiplication 
 Algorithm 2: 

Montgomery modular multiplication 

Input: A, B, M  Input: A, B, M 

Output: R = X Y 2
-(n+2)

 mod M  Output: R = X Y 2
-(n+2)

 mod M 

ai : i
th
 bit of A, s0 : LSB of S ai : i

th
 bit of A 

1. S = 0, C = 0; 
2. for i=0 to n+1 

S, C = S + C + ai x B; 

S, C = S + C + s0 x M; 
S = S div 2; 

C = C div 2; 

3. R = S + C 

4. if R ≥ M then R=R-M 
5. return R 

 r0 : LSB of R 
1. R = 0; 

2. for i=0 to n-1 

R = R + ai x B; 
R = R + r0 x M; 

R = R div 2; 

3. if R ≥ M then R=R-M 
4. return R 

 
 

Appendix E 
 
 Modular adder / subtractor. A “naïve” implementation of a modular addition A+B mod P is 

presented in Fig. A1.a; it consists in computing A+B, and then subtracting P to this result. A 

comparison between these two intermediate results allows choosing which one to use for the final 
result. However, this comparator could be avoided by observing the carry (borrow) out signal of 

addition (subtraction) which could be realized by a single OR gate (instead of a 192-bit comparator) 

such as presented in Fig. A1.b. Concerning the subtraction, the principle is the same: computing A-B 

and then A-B+P, and comparing these intermediate results to choose which one to use for the final 
result. A naïve and an optimized version of the subtraction are presented in Fig. A1.c and A1.d. 
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                 (a)              (b)                     (c)                  (d)                          (e) 

 

Fig. A1. Modular addition and subtraction implementations 

 

The two optimized versions (Fig. A1.b and A1.d) have been combined to produce an optimized 

modular adder/subtractor block such as depicted in Fig. A1.e. In this architecture an input (op_type) 
is used to generate whether an addition or a subtraction (put to 1 for an addition and 0 for a 

subtraction). This architecture uses two adder/subtractor blocks (i.e. an addition combined with the 

inversion (or not) of the second operand using XOR gates and the input carry to ‘1’ (or ‘0’)) and the 
optimized comparison implementation depicted earlier. Concerning the architecture used for the 

additions/subtractions, we have used the library provided by the synthesizer which includes highly 

optimized RTL for arithmetic building blocks. 

In the end, an efficient adder architecture combined with an optimized comparison implantation 
have led us optimize the area of more than 90%, by comparison with the area obtained from a 

VHDL file directly generated by our Gezel implementation. 

 

 



Appendix F 

 
16-cycle JTAG TAP Controller State Diagram 
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Fig. A2. TAP controller state diagram 

 


