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Abstract

It will be shown that extended Krylov subspaces –under some assumptions– can
be retrieved without any explicit inversion or system solves involved. Instead we
do the necessary computations of A−1v in an implicit way using the information
from an enlarged standard Krylov subspace.

It is well-known that both for classical and extended Krylov spaces, direct
unitary similarity transformations exist providing us the matrix of recurrences.
In practice, however, for large dimensions computing time is saved by making
use of iterative procedures to gradually gather the recurrences in a matrix.
Unfortunately, for extended Krylov spaces one is required to frequently solve,
in some way or another a system of equations. In this article both techniques
will be integrated. We start with an orthogonal basis of a standard Krylov
subspace of dimension m+m+ p. Then we will apply a unitary similarity built
by rotations compressing thereby significantly the initial subspace and resulting
in an orthogonal basis approximately spanning the extended Krylov subspace

Km,m(A, v) = span
{
A−m+1v, · · · , A−1v, v, Av,A2v, . . . , Am−1

}
.

Numerical experiments support our claims that this approximation is very
good if the large Krylov subspace contains

{
A−m+1v, · · · , A−1v

}
and thus can

culminate in nonneglectable dimensionality reduction and as such also can lead
to time savings when approximating, e.g., matrix functions.

Keywords : Krylov, extended Krylov, iterative methods, Ritz-values, trunca-
tion, rotations, QR factorization
MSC : Primary : 65F60, Secondary : 65F10, 47J25, 15A16.
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Abstract. It will be shown that extended Krylov subspaces –under some assumptions– can be retrieved without
any explicit inversion or system solves involved. Instead we do the necessary computations of A−1v in an implicit
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It is well-known that both for classical and extended Krylov spaces, direct unitary similarity transformations
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subspace and resulting in an orthogonal basis approximately spanning the extended Krylov subspace

Km,m(A, v) = span
{
A−m+1v, · · · , A−1v, v, Av,A2v, . . . , Am−1

}
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Numerical experiments support our claims that this approximation is very good if the large Krylov subspace
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1. Introduction. There is an intimate relation between orthogonal polynomials, their
recurrence relations, and the associated matrix formalism in terms of classical Krylov spaces,
the orthogonal basis vectors spanning this space, and their recurrences. This link proved to
be of bidirectional prosperity for both research incentives, as illustrated by, e.g., numerically
reliable retrieving weights for Gauss quadrature [11] and the convergence analysis of Krylov
based algorithms relying on approximation theory and potential theory [17, 18, 29]. Approx-
imations of functions by Laurent polynomials and rational functions are around for a long
time (see [4] and the references therein), but in [24] the matrix analogue in terms of Krylov
subspaces was introduced for the first time.

Since then rational Krylov spaces have been the subject of many studies; it is therefore
impossible to provide an exhaustive listing of all relevant literature. We attempt to highlight
those references closest related to this publication. As the focus of this manuscript goes to the
extended (pole free) case we elaborate more on this in the next paragraph. Ruhe initiated this
research and constructed several algorithms related to (generalized) eigenvalue computations
based on rational Krylov spaces, e.g., [25–27]. The relations with matrices and potential
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numerical issues were further investigated in [6,7,19,21]. Fasino proved in [9] that the matrix
capturing the recurrence coefficients, though dense, is highly structured and dominated by low
rank parts. Various techniques exploit this low rank structure already [32–35]. An analysis of
the convergence is presented in [3, 5], but the main bottleneck in the design of these rational
iterative methods still remains computing the vectors spanning the Krylov subspace, requiring
successive system solves, where we are not even mentioning the numerical difficulties that
might arise for some selections of poles [20].

Rational Krylov methods [12], and extended Krylov methods in particular are popular for
numerically approximating the action of a matrix function f(A) to a vector v by computing
f(A)v, e.g., see [8, 13–15]. Extended Krylov subspace have also been exploited to solve
Lyapunov equations [16] or for model order reduction [1].

In an extended Krylov space, not only multiplications with positive powers of A, but also
with negative powers are admitted. This extra flexibility often admits extended spaces to be
chosen much smaller than the standard Krylov subspaces to achieve a certain accuracy. So the
matrix A is transformed in H = V ∗AV , being much smaller than the projected counterpart
from the standard Krylov subspace, but still contains the vital properties of A. This means
that by using extended Krylov subspaces one can reduce the cost for further computations
with H , like f(H) or the solution of the Lyapunov equation XH +HX +B = 0.

For the extended Krylov subspace one has to compute A−1v. In the numerical exam-
ples in the above mentioned papers this is often done by using the MATLAB R© function
backslash or a direct solver. For large systems direct solvers often require too much
storage or too much computation time. Therefore it is sometimes necessary to switch to an
iterative solver, which are in turn often based again on a Krylov subspace method. The ap-
proach we are going to present here merges the Krylov subspaces utilized in the computation
of A−kv, k = 1, 2, . . . with the extended Krylov subspace.

More precisely, our algorithm is initiated by building a large standard Krylov subspace.
Once a certain dimension is reached our compression procedure is initiated, and cleverly
chosen unitary similarity transformations on the large Krylov subspace are executed. It is
crucial to state that these similarities do not alter the starting vector v, but do mix up the
Krylov space. As a result a much smaller approximate Krylov subspace is obtained, which is
no longer of classical but of extended form. It must be stated that we are free in the selection
of our extended space, so we can arbitrarily choose the succession of positive and negative
powers k in the matrix vector product Akv.

Before we explain the details of our new algorithm in Section 4, we review in Section 2
some essential facts on extended Krylov spaces, rotations, and operations one can do with
them. We provide an extension of the implicit Q-theorem for extended Hessenberg matrices
compulsory for the validation of our results in Section 3. Section 5 is confined to the error es-
timates introduced by the truncation of the standard Krylov space to an approximate extended
space. In the numerical experiments in Section 6 we show that our new approach is feasi-
ble for some but not all cases where extended Krylov subspaces are used. More specifically,
experiments for approximating matrix functions, approximately solving Lyapunov equations,
computational timings, and visualizations of the Ritz-value behavior are included.

2. Preliminaries. In this article the following notation is employed: matrices are typeset
as upper case letters A, vectors as lower case v. The Hermitian conjugate of a matrix A is
marked by a superscripted asterisk A∗.

Let A ∈ Cn×n be a matrix and v ∈ Cn a vector. The Krylov subspace Km(A, v) is
the subspace spanned by Km(A, v) = span

{
v,Av,A2v, . . . , Am−1v

}
. If the dimension of
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Km(A, v) is m, then there exists an orthogonal matrix V , so that

span {V:,1:k} = span
{
v,Av,A2v, . . . , Ak−1v

}
∀k ≤ m, (2.1)

where V:,1:k stands for the first k columns of V (MATLAB colon notation). It is well-known
that H = V ∗AV is an upper Hessenberg matrix, having Hi,j = 0, ∀i > j + 1. If A and v
are clear from the context we write short Km for Km(A, v).

It is beneficial to the understanding of the algorithm to work on a factored form of the
associated projected counterpart V ∗AV , where V spans a particular (extended) Krylov space.
More precisely we will utilize the QR factorization of V , where the matrix Q itself is factored
in essentially 2 × 2 rotations. This section eludes on how to operate on rotations, and links
the appearance of negative and positive powers of A in the extended Krylov subspace to the
ordering of the rotations in the Q factor stemming from the QR factorization of the projected
counterpart.

2.1. Rotations and how to manipulate them. Rotations, and especially so-called Gi-
vens or Jacobi rotations, are commonly used to zero some entries of a matrix, e.g., to retrieve
its QR decomposition. Let us recall the definition.

DEFINITION 2.1 (From [10]). Matrices G(i, j, θ), everywhere equal to the identity,
except for the 4 positions G(i, i) = c = cos(θ), G(i, j) = s = sin(θ), G(j, i) = −s̄, and
G(j, j) = c̄ are called Givens rotations.

In this paper we will restrict ourselves to transformations of the form G(i, i+1, θ), acting
on neighbored columns resp. rows. Throughout the remainder of the text we will address them
as rotations and denote them briefly as Gi.

It is easy to see that rotations are orthogonal. This means especially that applying G
to a vector leaves the 2-norm unchanged. When speaking about the action of a rotation, we
denote the rows/columns affected when forming the rotation-matrix product. As the action is
essential in the development of our algorithm, we will graphically represent each rotator by
using brackets having tiny arrows pointing to the rows resp. columns affected, e.g.,

��
[
× ×
0 ×

]
=

[
× ×
× ×

]
.

A special case, necessary for our algorithm, is the application of a descending series of rota-
tions to ek, the kth column of the identity matrix, e.g.,

��
��

��


0
0
0
1

 =

��
��


0
0
s1
c1

 =


s1s2s3
s1s2c3
s1c2
c1

 .

Since si ≤ 1 and ci ≤ 1, we have s1s2s3 ≤ 1 and so on. Clearly the 2-norm is untouched
and remains 1, but whereas the weight on the left is concentrated in the trailing element, after
applying the rotations, it is smeared out, and distributed over several components.

In this article, as mentioned before, we will nearly always operate on the QR factoriza-
tion, and in particular on the factorization in rotations of the matrix Q. The role of the upper
triangular matrix R is inferior, as we can transfer from the left to the right through the upper
triangular matrix without destroying its upper triangularity. More precisely, if we apply a
rotation acting on neighbored rows from the left to an upper triangular, then we destroy the
sparsity pattern by introducing a non-zero on the sub-diagonal. We can always restore the
upper triangular structure by applying a rotation on the corresponding columns (the elements
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marked with a tilde are the only ones affected by the transfer operation):

��


× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

 =


× × × ×
0 ×̃ ×̃ ×̃
0 ×̃ ×̃ ×̃
0 0 0 ×

 =


× ×̃ ×̃ ×
0 ×̃ ×̃ ×̃
0 0 ×̃ ×̃
0 0 0 ×

 �� .

Of course, one can transfer them from right to left as well. Moreover, let Q be a matrix
factored in 2 × 2 rotations, obeying a particular pattern. Transferring one rotator after the
other through the upper triangular matrix shows that the rotational pattern remains unaffected.
So, a matrix A having an RQ-factorization A = R̂Q̂ admits a QR factorization, where the
rotational factorization of Q and Q̂ obey the same pattern.

2.2. Non-periodic extended Krylov spaces. Generically an extended Krylov subspace
is of the following form

Km,m(A, v) = span
{
A−m+1v, · · · , A−1v, v, Av,A2v, . . . , Am−1

}
.

When building such a space, one adds vectors to the extended space one by one. For gener-
ality, we allow arbitrary successions of multiplications with A and A−1. To track this non-
periodic ordering and adding of the vectors a selection vector s is associated to the extended
Krylov space. This selection vector selects the vectors taken out of the bilateral sequence

. . . , Amv,Am−1v, . . . , A2v,A1v, v, A−1v,A−2v, . . . , A−m+1v,A−mv, . . . (2.2)

to be included next in the extended Krylov space. The first vector of the extended space
is always v; the second vector is Av if s1 = `, or A−1v for s1 = r. The ith successive
vector in the Krylov space is taken left whenever si−1 = ` or right if si−1 = r out of the
bilateral sequence, and next to the last picked vector on that side. An alternative notation to
Km,m(A, v) is thus Ks,k(A, v) where k = m+m+1 stands for the number of vectors taken
out of (2.2) to generate the extended Krylov space. The number of times ` appears in the first
k− 1 components of s equals m, and m the amount of occurrences of r. The selection vector
characterizes thus uniquely the extended Krylov space.

EXAMPLE 2.2. For example, a classical Krylov space’s selection vector has only val-
ues `. The selection vector accompanying a pure (only inverse powers involved) extended
Krylov space only comprises values r. The alternating occurrence of `’s and r’s leads to an
extended Krylov space of the form

Ks,k(A, v) = span
{
v,Av,A−1v,A2v,A−2v,A3v,A−3v, . . .

}
,

which, for unitary matrices, links closely to CMV -matrices [30], see also Example 2.5.
In our setting there is no particular reason to restrict to periodic vector successions, e.g.,

s =
[
r` rrr` r . . .

]
corresponds to

Ks,k(A, v) = span
{
v,A−1v,Av,A−2v,A−3v,A−4v,A2v,A−5, . . .

}
.

2.3. The projected counterpart, extended Krylov spaces, and patterns in the QR
factorization. This section examines the connection between the extended Krylov subspace
and the structure of the QR factorization of the projected counterpart.
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Let us first consider a Hessenberg matrix. It is well known that its QR decomposition
can be written as a descending series of rotations times an upper triangular matrix, e.g.,

× × × × × ×
× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

 =

��
��

��
��

��


× × × × × ×

× × × × ×
× × × ×

× × ×
× ×

×

 .

The unitary matrix is decomposed into n − 1 rotations according to a position vector p =
[` ` ` ` ` ], who captures the mutual positioning of successive rotations. An entry pi = `
signifies that rotation Gi is positioned to the left of rotation Gi+1, whereas pi = r indicates
that Gi is positioned to the right of Gi+1.

When going from classical Krylov spaces to extended Krylov spaces, there is a price
to pay: we cannot guarantee the projected counterpart to remain of Hessenberg form. Nev-
ertheless these matrices, let’s name them extended Hessenberg matrices, share major prop-
erties with the classical Hessenberg matrix when comparing their QR factorizations. Each
extended Hessenberg matrix admits a QR factorization with Q factored in n − 1 rotations
Gi for i = 1, . . . , n − 1. Recall that Gi acts on neighboring rows i and i + 1. Due to non-
commutativity, it clearly matters whether, for |i − j| = 1, Gi is positioned to the left or to
the right of Gj . So the mutual arrangement of successive rotators is stored in the position
vector, uniquely characterizing the rotational pattern in the QR factorization of an extended
Hessenberg matrix.

DEFINITION 2.3. Let A be a matrix having a QR decomposition A = QR. If the unitary
matrix Q admits a decomposition into at most n− 1 rotations all acting on different pairs of
neighbored rows, then we will call A an extended Hessenberg matrix.

If Q can be decomposed in exactly n− 1 rotations differing from the identity we will call
A an unreduced extended Hessenberg matrix.

Typically not being unreduced does not pose any problems as this means we have found
an invariant subspace.

EXAMPLE 2.4. Equation (2.3) displays the pattern showing up in the QR factorization
of a Hessenberg (left), a CMV matrix (middle), and an inverse Hessenberg matrix (right).
Only the rotational pattern of the Q factor is depicted.

��
��

��
��

��

��
�

�
�

�
�

�
�

�

�
�

�

�
�

�
�

�
�

�

. (2.3)

In [34,35] the link between these extended Hessenberg matrices and the extended Krylov
spaces is examined. The position and selection vector nicely tie both concepts together: they
are identical. Therefore, from now on we will stick to the selection vector for both concepts.
Summarizing, consider an extended Krylov space determined by its selection vector s. Let V
be an orthogonal basis for this extended space such that

span {V:,1:k} = Ks,k(A, v) ∀k ≤ n, (2.4)

then the matrix V ∗AV will be of extended Hessenberg form. More precisely, the Q factor
in the QR decomposition of V ∗AV admits a decomposition in m− 1 rotations Gi acting on
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rows i and i+1, where Gi is positioned to the left of Gi+1 if si = ` or positioned to the right
for si = r.

EXAMPLE 2.5. Reconsider Examples 2.2 and 2.4. Classical Krylov subspaces identify
with a selection vector of only `’s and hence a descending sequence of rotators as in the left
of (2.3). It is not hard to see that a classical Krylov space, generated for A−1, results in a
projected counterpart V ∗A−1V being of Hessenberg form, obviously V ∗AV will thus be of
inverse Hessenberg form. Both the pure extended space and the inverse Hessenberg matrix
are described by a selection vector of solely r’s. The alternating vector s = [` r` r . . . ] results
in a zigzag shaped pattern, associated to the CMV decomposition.

3. Implicit Q-theorem for the extended case. The relations between the position and
selection vector proposed in the previous section are quite strict, as shown in the next theorem.

THEOREM 3.1 (From [34,35]). Let A be a non-singular matrix and s a selection vector.
Let V and V̂ be two unitary matrices sharing the first column, i.e. V e1 = V̂ e1, having both
projected counterparts QR factored as

QR = H = V ∗AV, and Q̂R̂ = Ĥ = V̂ ∗AV̂ . (3.1)

If Q and Q̂ can be written as a series of rotations following the ordering imposed by s and all
these rotations differ from the identity1, then the matrices H and Ĥ are essentially the same.

Theorem 3.1 is an extension of the so called implicit Q-theorem, initially only formulated
for Hessenberg matrices, stating that once the matrix structure –determined by the selection
vector– and first vector V e1 are fixed, everything is implicitly defined. For our purpose,
this theorem is not general enough. We require some essential uniqueness of the projected
counterparts, which are, of a strictly smaller dimension. Moreover, the associated selection
vector need only be defined for the first k components. Let us generalize this. First we
reformulate Theorem 3.1 to deal also with reducible matrices.

THEOREM 3.2. Let A be a non-singular matrix and s a selection vector. Let V and V̂ be
two unitary matrices sharing the first column, i.e. V e1 = V̂ e1, having both projected coun-
terparts QR factored as in (3.1), following the ordering imposed by s. Denote the individual
rotations appearing in the factorization of Q and Q̂ as GQ

i and GQ̂
i respectively, where i and

i+ 1. Define k̂ as the minimum i for which either GQ
i or GQ̂

i equals the identity, i.e.,

k̂ = min
i

{
1 ≤ i ≤ n− 2, such that GQ

i = I or GQ̂
i = I

}
,

if none such rotation exists, set k̂ = n − 1. Then the upper left k̂ × k̂ parts of H and Ĥ are
essentially the same as are the first k̂ columns of V and V̂ .

We postpone the proof of Theorem 3.2 until Theorem 3.5.
COROLLARY 3.3. Under the assumptions of Theorem 3.2 and k̂ = n− 1, the two tuples

(V ,H) and (V̂ ,Ĥ) are essentially unique as a result of the unitarity of V and V̂ .
Whereas Theorem 3.2 again states something only related to a full projection, i.e., square

matrices V and V̂ , we are typically confronted with rectangular V . Obviously the conclusions
are not the same as the following example illustrates.

EXAMPLE 3.4. Take a 5 × 5 matrix A = diag(1, 2, 3, 4, 5) and initial vector v =
[1, 1, 1, 1, 1]T . Consider two Krylov spaces not of full dimension: K = span

{
v,Av,A2v

}
1Otherwise there is welcome breakdown, since we have found an invariant subspace containing v.
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and K̂ = span
{
v,Av,A−1v

}
. The associated orthogonal matrices V and V̂ are

V =



1√
5

−2√
10

2√
14

1√
5

−1√
10

−1√
14

1√
5

0 −2√
14

1√
5

1√
10

−1√
14

1√
5

2√
10

2√
14

 and V̂ =



1√
5

−2√
10

.52
3α

1√
5

−1√
10

−.425
3α

1√
5

0 −.37
3α

1√
5

1√
10

−.065
3α

1√
5

2√
10

.34
3α

 ,

having α2 = 7.0775. Using V and V̂ in the similarity we get H = V ∗AV , and Ĥ = V̂ AV̂ :

H =


3 −

√
2

−
√
2 3

√
14
10√

14
10 3

 and Ĥ =

 3 −
√
2

−
√
2 3 1.1089

1.1089 2.3133


Obviously both H and Ĥ admit an identical shape in the Q factor of both QR factoriza-
tions, and secondly the matrices V and V̂ share the first column. Nevertheless, the projected
counterparts are non-identical, neither are the third vectors of V and V̂ .

The difference is subtle. Only considering the selection vector associated to the projected
counterparts, we see that s = [`] suffices, for the Krylov space, however, as long as it has
not reached its full dimension, the selection vectors s = [`, `] and ŝ = [`, r] differ and are
compulsory to reconstruct the spaces K and K̂. We modify Theorem 3.2 accordingly.

THEOREM 3.5. Let A be a non-singular matrix and s and ŝ be two selection vectors. Let
V and V̂ be two n× (k + 1) rectangular matrices having orthonormal columns and sharing
the first column V e1 = V̂ e1. Let V and V̂ be the principal leading n × k submatrices of V
and V̂ respectively. Consider

AV = V H + rw∗
k = V H = V Q R, (3.2)

AV̂ = V̂ Ĥ + r̂ŵ∗
k = V̂ Ĥ = V̂ Q̂ R̂,

where Q and Q̂ are decomposed into a series of rotations ordered as imposed by s and ŝ.
Then define k̂ as follows

k̂ = min
i

{
1 ≤ i ≤ n− 2 such that, GQ

i = I,GQ̂
i = I, or si−1 6= ŝi−1

}
, (3.3)

if none such k̂ exists, set it equal to n− 1.2

Then the first k̂ columns of V and V̂ , and the upper left k̂ × k̂ blocks of V ∗AV and
V̂ ∗AV̂ are essentially the same.

To prove Theorem 3.5 a reformulation of Theorem 3.7 from [35] is required. With ei
the ith standard basis vector is denoted and Ik is the identity matrix of size k × k. A non-
calligraphic K represents the Krylov matrix having as columns the vectors iteratively con-
structed for generating the associated Krylov space.

THEOREM 3.6. Let H be an n × n matrix, with HPk̂ where Pk̂ = [Ik̂, 0]
T ∈ Rn×k̂ of

(rectangular) extended Hessenberg form. Assume that the unitary matrix Q, where QR =
HPk̂, has its first k̂ rotations in its decomposition ordered according to the selection vector
s, which is a (k̂ − 1)-tuple.

2The case k̂ = n requires a reformulation of (3.2), and is therefore excluded. One can fall back on Theorem 3.2.
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Then we have that Sj = Ks,j(H, e1), for 1 ≤ j ≤ k̂, is upper triangular.
The proof is not repeated as the inductive procedure of [35] can be used here as well.

The clue is the necessity of having element sj available to make a statement for the (j + 1)st
subspace and to have nontrivial rotations as well.

Proof. Let us now prove Theorem 3.5. First we need to increase the matrices V , H , and
their variants with a hat in size. Let Ve and V̂e be augmented square unitary matrices, sharing
the first columns with V , and V̂ respectively. The enlarged matrices He, and Ĥe are defined
as the projected counterparts V ∗

e AVe = He and V̂ ∗
e AV̂e = Ĥe. By Theorem 3.6, with k̂ as in

(3.3) we have Ks,j(He, e1)Pk̂ = Sj and Kŝ,jPk̂ = Ŝj , both upper triangular for 1 ≤ j ≤ k̂.
Elementary computations provide us

VeKs,n−1(He, e1) = Ks,n−1(VeHeV
∗
e , Vee1) = Ks,n−1(A, Vee1) = Ks,n−1(A, V e1),

and similarly V̂eKŝ,n−1(Ĥe, e1) = Kŝ,n−1(A, V̂ e1). Combining everything and projecting
onto the first columns leads to

VeKs,n−1(He, e1)Pk̂ = Ks,n−1(A, V e1)Pk̂ = Kŝ,n−1(A, V̂ e1)Pk̂ = V̂eKŝ,n−1(Ĥe, e1)Pk̂.

Uniqueness of the partial QR factorizations in the outer left and outer right factorizations pro-
vide us the essential equality of the first k̂ vectors of V and V̂ . The rest follows trivially.

4. Implicit Extended Krylov Subspace Algorithm. Building an extended Krylov sub-
space typically requires solutions of some linear systems. For large matrices these solutions
are sometimes computed using iterative solvers based on Krylov subspaces, or block Krylov
subspaces if one wishes to solve several systems at once. In this section we will compute an
approximation to an extended Krylov subspace without explicit system solves.

Let us explain our algorithm (see Algorithm 1 for a pseudo-code version) with an exam-
ple having selection vector s = [` r . . . ]. First, we have to choose an oversampling param-
eter p. This parameter determines how many vectors we additionally put into the standard
Krylov subspace before we start the shrinking procedure. A large p makes the whole al-
gorithm more expensive but also the approximation to the extended Krylov subspace more
accurate. Then, we compute the Krylov subspace Kk̃(A, v) with dimension k̃ = |s|+ 1 + p,
where |s| denotes the length of the vector s. Let V be an orthogonal matrix forming a basis
of Kk̃(A, v), satisfying (2.1). The matrix H = V ∗AV is upper Hessenberg. We have

AV = V H + re∗
k̃
.

In the next step the QR decomposition of H = QR using a series of rotations is com-
puted:

× × × × · · · × ×
× × × × · · · × ×

× × × · · · × ×
× × · · · × ×

. . .
. . .

... ×
× × ×

× ×

 =

��

��

��

. . .

��︸ ︷︷ ︸
=Q



× × × × · · · × ×
× × × · · · × ×

× × · · · × ×
× · · · × ×

. . .
...

...
× ×

×


︸ ︷︷ ︸

=R

.

Probably there are much more economical manners of retrieving the QR factorization of H ,
by storing, e.g., H directly in factored form and updating the factors as in the SYMMLQ
case [23]. This is, however, beyond the goal of the current paper.
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We will now transform H via unitary similarity transformations into the desired shape,
linked to the extended Krylov subspace having selection vector s = [` r . . . ]. The first rota-
tion will always remain unaltered, since we require to keep V ’s first column untouched. The
first entry in s is an ` entailing the second rotation to be on the right-hand side of the first
one. Since this is already the case we do not have to do anything. The next entry is an r
meaning the third rotation must be brought to the other side. To this end, we first transfer all
the rotations starting from the third one through the upper triangular R:

AV = V

��

��



× × × × · · · × ×
× × × · · · × ×

× × · · · × ×
× · · · × ×

. . .
...

...
× ×

×


��

. . .

��︸ ︷︷ ︸
=W

+ re∗
k̃
.

Whenever the matrix H is highly structured, e.g., tridiagonal, the QR decomposition
partially destroys the existing structure. Typically sort of structure transfer takes place and a
new, exploitable, structure emerges. We do not want to defer too much from the core message
of the current article and as such do inspect this in detail.

After multiplying with W ∗ from the right-hand side we set Ṽ = VW ∗ and get

AṼ = Ṽ

��

�
�

�
�

. . .

��︸ ︷︷ ︸
=Q̃



× × × × · · · × ×
× × × · · · × ×

× × · · · × ×
× · · · × ×

. . .
...

...
× ×

×


︸ ︷︷ ︸

=H̃

+ re∗
k̃
W ∗.

We note that W is an orthogonal matrix and hence also Ṽ . The first three rotations in H̃
have now the shape for a selection vector kicking off with [` r ]. Next we go through all the
other entries in s. If the entry in s is r we transfer the trailing rotations to the right and bring
them back to the left. If the next entry is ` we do nothing. In each step we fix thus one more
rotation in the correct position. We repeat this until the end of s is reached to get H̃ in the
desired shape.

Now we have an approximation to the extended Krylov subspace with too many vectors.
So the last step is to chop off all except the first |s| + 1 columns of V and the upper (|s| +
1)× (|s|+ 1) block of H . This chop off is necessary since we have smeared out the residual
from the nice shape re∗

k̃
to re∗

k̃
W ∗. The key vector is Wek̃, having the following form

. . .

��
��


...
0
0
1

 =

. . .

��


...
0
α1

β1

 =


...

α1α2

α1β2

β1

 ,

with α1, α2, β1β2 ≤ 1. The product
∏

j αj is expected to be smaller than one and is hopefully
decaying to zero fast. This of course depends on the properties of H , A, and Kk̃(A, v).
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Algorithm 1: Computing an Extended Krylov Subspace without Inversion

Input: A ∈ Cn×n, v ∈ Cn, s, e.g., s =
[
` r` r . . .

]
, oversampling parameter p

Output: H , V with AV = V H + V:,k+1e
∗
k + %h∗ ≈ V H + V:,k+1e

∗
k

k̃ := |s|+ 1 + p; k := |s|+ 1;1

Compute V spanning the standard Krylov subspace Kk̃(A, v), H := V ∗AV , and2

% := (AV − V H)ek̃, with AV = V H + re∗
k̃

and ek̃ = I:,1:k̃;
h := ek̃;3

Compute the QR-factorization of QR = H into k̃ − 1 rotations G1G2 . . . Gk̃−1 := Q4

and an upper triangular R;
for j = 1, . . . , |s| do5

if s(j) == r then6

Compute the RQ-factorization of R
∏k̃−1

i=j+1 Gi :=
∏k̃−1

i=j+1 GiR;7

V := V
∏j+1

i=k̃−1
G∗

i ;8

h :=
∏j+1

i=k̃−1
Gih;9

end10

end11

if ‖%‖2 ‖h1:k‖2 is small enough then12

V := V:,1:k, H := H1:k,1:k;13

return V and H;14

else15

Choose a larger p and start again;16

end17

The hope is that at least the first |s| + 1 entries of (e∗
k̃
W ∗)1:|s|+1 are negligibly small.

We will show in Section 5 that this is the case if A−1v has a good approximation within the
space spanned by V . If this is the case, the residual AṼ:,1:|s|+1 − Ṽ:,1:|s|+1H̃1:|s|+1,1:|s|+1

is dominated by the perturbation Ṽ:,|s|+2H̃|s|+2,1:|s|+1. The matrix H̃1:|s|,1:|s| is an extended
Hessenberg matrix, whose QR decomposition admits a factorization of Q into |s|−1 rotations
ordered as in s.

COROLLARY 4.1. Having computed Ṽ and H̃ as described above, assume the matrix
r(e∗

k̃
W ∗)1:|s|+1 is zero, and none of the rotations in Q̃ is the identity, then Ṽ and H̃ are

essentially the same as if V were computed as the orthogonal basis of the extended Krylov
subspace Ks(A, v) and H = V ∗AV .

Proof. The first rotation remains unaltered and as such V e1 = Ṽ e1. Applying Theo-
rem 3.5 yields the result.

5. Error bounds. In this section we will show that our algorithm computes a good ap-
proximation to the extended Krylov subspace if A−1v has a good approximation in the large
Krylov subspace Kk̃. Therefore, we will first construct a matrix Ã for which our algorithm
computes the exact extended Krylov subspace. From Corollary 4.1 we know that Algorithm 1
computes the exact solution if the residual ‖r‖ is zero. Let us consider the matrix

Ã = A− rv∗
k̃
.
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Obviously we have Ãvi = Avi,∀i < k̃, since the columns of V are orthonormal. That means
that up to size k̃ the Krylov subspaces Kk̃(A, v) and Kk̃(Ã, v) are identical. Further we have

Ãvk̃ = Avk̃ − rv∗
k̃
vk̃ = V H:,k̃

and thus ÃV = V H. Hence Ã is the sought matrix for which our algorithm computes the
exact extended Krylov subspace. Unfortunately, the norm ‖Ã− A‖2 is too large, even if the
algorithm produces a good approximation, hence so the norm-wise difference is not a good
error measure.

We now assume that in the selection vector s only one r appears and so the extended
Krylov subspace contains only a single vector A−1v besides positive powers of A times v.
This means that in fact our algorithm computes Ks,k(Ã, v) instead of Ks,k(A, v). The Krylov
subspaces Ks,k(A, v) and Ks,k(Ã, v) are spanned by the joined vectors v,Av,A2v, . . . , Ak−2v

and by A−1v respectively Ã−1v. Hence the norm ‖A−1v − Ã−1v‖2 is a measure for the ac-
curacy of the computed extended Krylov space approximation. In the next lemma we will
link this norm to the approximation accuracy of A−1v in subspace Kk̃ = span {V }. This
accuracy can be measured by

∥∥(I − V V ∗)A−1v
∥∥.

LEMMA 5.1. Let A and Ã be defined as above. Let V be the matrix of orthonormal
columns spanning Kk̃(A, v) = Kk̃(Ã, v) and γ = ‖V V ∗A(I − V V ∗)‖2 and let H = V ∗AV
be invertible. Then we have that∥∥∥A−1v − Ã−1v

∥∥∥
2
≤

(
1 + γ

∥∥H−1
∥∥
2

∥∥V ∗∥∥
2

) ∥∥(I − V V ∗)A−1v
∥∥
2
.

Proof. It yields from ÃV = V H that Ã−1V = V H−1 and ÃV = V V ∗AV . We have
(for all norms)∥∥∥A−1v − Ã−1v

∥∥∥ ≤
∥∥(I − V V ∗)A−1v

∥∥+
∥∥∥V V ∗A−1v − Ã−1v

∥∥∥
≤

∥∥(I − V V ∗)A−1v
∥∥+

∥∥∥Ã−1ÃV V ∗A−1v − Ã−1v
∥∥∥

≤
∥∥(I − V V ∗)A−1v

∥∥+
∥∥∥Ã−1V V ∗AV V ∗A−1v − Ã−1v

∥∥∥ . (5.1)

The projection of v on V is again v, hence we have v = V V ∗v. As V V ∗ is a projection
we have V V ∗ = V V ∗V V ∗. Using the sub-multiplicativity of the 2-norm we can bound the
second norm of (5.1) by∥∥∥Ã−1(V V ∗)V V ∗AV V ∗A−1v − Ã−1(V V ∗)v

∥∥∥
2
≤

∥∥∥Ã−1V V ∗
∥∥∥
2

∥∥V V ∗AV V ∗A−1v − v
∥∥
2

Further we have ∥∥∥Ã−1V V ∗
∥∥∥
2
=

∥∥V H−1V ∗∥∥
2
≤ ‖V ‖2︸ ︷︷ ︸

=1

∥∥H−1
∥∥
2
‖V ∗‖2 .

The proof is completed by the following bound from [28, Proposition 2.1]∥∥V V ∗AV V ∗A−1v − v
∥∥
2
≤ γ

∥∥(I − V V ∗)A−1v
∥∥
2
.

The lemma tells us that Algorithm 1 computes a good approximation to the sought ex-
tended Krylov subspace if A−1v is approximated well enough in Kk̃.
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6. Numerical Experiments. In this section we will first compare the accuracy of our
novel approach with the examples from [14] where explicit matrix inversions are used to ap-
proximate matrix functions. In a second example, taken from [16] and related to the approx-
imate solution of Lyapunov equations, we illustrate the gain in compression with the implicit
approach. Thirdly, in Section 6.2 the behavior of the Ritz values is examined when executing
the compression technique. And finally, in Section 6.3 the computational complexity of the
new method is analyzed.

6.1. Accuracy of approximating matrix functions. The approach of computing the
extended Krylov subspace implicitly is suitable for the approximation of (some) matrix func-
tions as the following numerical experiments will show. For our numerical experiments we
use and compare with the examples from Jagels and Reichel in [14]. Four different selection
vectors are used: with no r’s, with an r every second entry, every third, and every forth entry.
In this section the variable k, determining the chop off, is always taken |s|+1. The computa-
tions are performed in MATLAB. The main idea of these examples is to show that we can do
equally well without explicit inversions as in [14], whenever the inverse operation of A on v
is approximated well enough in the large subspace.

The implicit extended Krylov subspace method is used for the approximation of f(A)v.
We have H̃ = Ṽ ∗AṼ . So f(A)v can be approximated by

f(A)v ≈ V f(H̃)Ṽ ∗v = V f(H̃)e1 ‖v‖2 .

Three functions were tested: f(x) = exp(−x)/x, f(x) = log(x), and f(x) = 1/
√
x. It

is known that in these cases the approximations stemming from extended Krylov subspaces
are often quite good. In the figures the plotted error measures the relative distance between
f(A)v and its approximation.

In the first example we are able to reproduce the figures from [14], meaning that the
implicit approach performs equally well as the explicit one.

EXAMPLE 6.1. The first example is a symmetric positive definite Toeplitz matrix A,
having

ai,j =
1

1− |i− j|
.

We use a 1000× 1000 matrix as in [14, Example 5.1-2]. Figure 6.1 and 6.2 show the relative
error of the approximation of f(A)v for different selection vectors. In Figure 6.1 f(x) =
exp(−x)/x, and in Figure 6.2 f(x) = log(x). The vector v has normally distributed random
entries with mean zero and variance one. It is known that both functions can be approximated
by an extended Krylov subspace well. We choose the oversampling parameter p = 100 and
observe that A−1v has a very good approximation within K100(A, v). An almost identical
behavior as in [14, Fig. 5.1/5.2] is reported.

In the next examples, agreeing with the 4th and 5th one form [14], the results are less
good, but still reasonable approximations are retrieved.

EXAMPLE 6.2. In this example the matrix A is the discretization of the operator L(u) =
1
10uxx − 100uyy on the unit square. For the discretization in each direction a three point
stencil with 40 equal distributed interior points has been used. Together with a homogeneous
boundary condition this yields a 1600×1600 symmetric positive matrix A. The initial vector
v is chosen to be vj = 1/

√
40,∀j. Figure 6.3 shows the relative approximation error for

f(x) = exp(−x)/x and Figure 6.4 for f(x) = 1/
√
x.

We notice that the oversampling parameter p = 100 is not large enough, as the subspace
Kk̃, depicted by the upper green line in Figure 6.3 is not approximating A−1v nor f(A)v up
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Fig. 6.1: Relative error in approximating f(x) = exp(−x)/x for various selection vectors s
and k = 12, 24, 36, 48, 60.
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Fig. 6.2: Relative error in approximating f(x) = log(x) for various selection vectors s and
k = 12, 24, 36, 48, 60.

to a satisfactory accuracy. After the truncation (for p = 100) we arrive at the middle lines
revealing an almost identical accuracy for the extended space as for the large untruncated
Krylov space (depicted again by the green line containing, however, p additional vectors). We
are thus able to reduce the standard Krylov subspace of dimension 112 to an approximation
of an extended Krylov subspace with only 12 vectors, while retaining an almost identical
relative error for f(x) = exp(−x)/x, which is more than 3 orders smaller than the error for
a standard Krylov subspace of dimension 12.

Next a large oversampling parameter of 200 is tested and we notify a reduction of dimen-
sion 212 to an extended Krylov subspace containing only 12 vectors, with again a comparable
error and, once more an approximation of 6 orders better than the classical Krylov space.

For f(x) = 1/
√
x we observe almost the same when reducing a space of dimen-

sion 136 resp. 236 to an extended Krylov subspace of dimension 36 with selection vector
[r` r` r` . . . ].
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Fig. 6.3: Relative error in approximating f(x) = exp(−x)/x for various selection vectors s
and k = 12, 24, 36, 48, 60.
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Fig. 6.4: Relative error in approximating f(x) = 1/
√
x for various selection vectors s and

k = 12, 24, 36, 48, 60.

The third example uses a matrix A for which A−1v does not lie in the standard Krylov
subspace. So our algorithm is expected to fail here.

EXAMPLE 6.3. In this example we use a symmetric indefinite matrix of the following
form:

A =

[
B C
C∗ −B

]
∈ R1000×1000,

with a tridiagonal matrix B with 2’s on the diagonal and −1’s on the subdiagonals and C is
a matrix with all zero entries except for a 1 in the lower left corner. For the computation of
Figure 6.5, we approximate again f(A)v with f(x) = exp(−x)/x and the random v from
Example 6.1. We see that we perform equally bad as the standard Krylov space.

In [14], the extended Krylov subspace was successful in the approximation of f(A)v,
but an explicit solve with the MATLAB function backslash has been used. Such a solver
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is typically not available for large matrices and, moreover in practice often another iterative
solver is used to approximate the inverse multiplication with A, which would lead to similar
problems as observed here.
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Fig. 6.5: Relative error in approximating f(x) = 1/
√
x for various selection vectors s and

k = 12, 24, 36, 48, 60.

The last example in this section shows that one can also use implicit extended Krylov
subspaces for the solution of Lyapunov equations

EXAMPLE 6.4. We use the Example 4.2 from [16]. The matrix A ∈ R5000×5000 is a
diagonal matrix having eigenvalues

λ = 5.05 + 4.95 cos(θ), θ ∈ [0, 2π].

We solve the Lyapunov equation

AX +XA∗ +BB∗ = 0,

with B a vector with normally distributed entries with variance one and mean zero. The
results in Figure 6.6 show the relative 2-norm difference of the approximation X̃ computed
via

X̃ = V1:k̃Y V ∗
1:k̃

, where Y is the solution of H̃Y + Y H̃ + (V ∗
1:rB)(V ∗

1:rB)∗ = 0 (6.1)

and the exact solution computed with the MATLAB function lyapchol. We have chosen an
oversampling parameter p = 50. Compared to the standard Krylov subspace we can reduce
the dimension of the small Lyapunov equation in (6.1) by 50 – 65% for achieving the same
accuracy.

6.2. Ritz values. In the next three examples we would like to highlight the fact that our
algorithm commences with the information from the Krylov subspace and then commences to
squeeze the available information into a smaller extended space. The experiments reveal that
the truncated subspace will try to keep possession of all information linked to the extended
space as long as possible.

EXAMPLE 6.5. We choose a simple diagonal matrix of size 200 × 200, with equal
distributed eigenvalues between 0 and 2, and a uniform starting vector consisting solely of
1’s. For this matrix we first compute the standard Krylov subspace of dimension 180. In
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Fig. 6.6: Relative error in approximate solutions of AX + XA + BB∗ = 0 for k =
12, 24, 36, 48, 60.

Figure 6.7(a) the Ritz values for standard Krylov subspaces up to dimension 180 are plotted in
each iteration step (which equals the number of Krylov vectors generated so far) shown on the
x-axis. Red crosses reveal Ritz values approximating eigenvalues quite well, having absolute
error smaller than 1 e−7.5; yellow crosses are good approximations, with errors between
1 e−7.5 and 1 e−5; the green markers okay approximations, i.e., errors between 1 e−5 and
1 e−2.5; and the blue ones the remaining Ritz values. Classical Ritz value convergence is
observed, where first the extreme eigenvalues are found.

The next plot, Figure 6.7(b), shows the Ritz values obtained after our truncation algo-
rithm is applied to approximate an extended Krylov subspace, in this case the selection vector
contains alternatingly `’s and r’s . The truncation is initiated once the Krylov subspace of size
180 was reached. Again the Ritz-values according to the number of Krylov vectors retained
are plotted. We start with dimension 180 and so cannot be better than the final column of the
first plot: Figure 6.7(a).

Furthermore, the algorithm is also unable to do better than the third plot, Figure 6.7(c),
since this plot shows the eigenvalues for the exact extended spaces of dimension up to 180.

To envision what happens more clearly, a video (equal spaced pos HQ.mp4) is
generated. The animation first shows the Ritz-value plots for the classical Krylov space. The
Ritz values are plotted concurrently while increasing the subspace’s size. After dimension
180 is reached, the final column is separated from the plot and put on hold on the right on
the screen, the classical Ritz values are kept in the background in gray. Next the Ritz-value
plot for the extended space is generated. One can now clearly see the difference between
the extended and the classical case, where obviously the emphasis of the extended case is
more towards zero. Now the interesting part starts: the extended space is kept where it is
and we start the truncation algorithm based on the Ritz values positioned on the outer right.
The outer-right vector moves back into the picture and in each consecutive truncation step
(diminishing of the subspace size), the Ritz values from the extended space are overwritten
by the ones of the truncated space. One sees clearly now how the truncation algorithm tries
hard to match the extended space, but is strongly limited by the initial available information.
Eventually the truncation plot almost entirely integrates in the extended plot.

EXAMPLE 6.6. In the second example again a diagonal matrix is taken with equal dis-
tributed eigenvalues, but now between −1/2 and 1/2. We see that traditional Krylov, again

http://people.cs.kuleuven.be/~thomas.mach/extKrylov/equal_spaced_pos_HQ.mp4
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Fig. 6.7: Ritz plots for equal spaced eigenvalues in [0, 2].

first locates the outer eigenvalues (Figure 6.8(a)). Extended Lanczos on the other hand (Fig-
ure 6.8(c)), due to its pole at zero converges rapidly to the interior eigenvalues. The truncation
strategy starts with the information from the standard Krylov space and tries to approximate
the extended space as good as possible. Figure 6.8(b) visualizes that the truncation strategy
tries to retain as much information as possible from the interior of the spectrum, and rapidly
disposes of the information near the edges. It is expected that the truncation strategy will fail
in delivering accurate results when used for, e.g., approximating matrix functions. Again a
video (equal spaced sym HQ.mp4) is generated along the same lines as in Example 6.5.
In this case we see that the truncation algorithm quickly throws away most of the valuable
information in its attempt to approximate the extended space, caused by the clear discrepancy
between the approximations reached by the classical and the extended Krylov spaces.

EXAMPLE 6.7. In the final example again a diagonal matrix was taken, but now with the
eigenvalues according to the distribution (see Figure 6.9)

α+ 1

2
(1− |x|)α,

http://people.cs.kuleuven.be/~thomas.mach/extKrylov/equal_spaced_sym.mp4
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Fig. 6.8: Ritz plots for equal spaced eigenvalues in [−.5, .5].

where α = −3/4, as in [18]. The distribution shows that most of the eigenvalues are situated
at the boundaries −1 and 1. Based on potential theory [17, 18] one knows that for this dis-
tribution first the inner eigenvalues, located around 0 are discovered first by classical Krylov.
This implies that the classical Krylov space will have a similar goal as the extended Krylov
approach namely first find the eigenvalues situated around the origin. Like before, the Fig-
ures 6.10(a)-6.10(c) are generated. In this case the truncation strategy will work very well. A
visualization video (heavy tail HQ.mp4) is also available.

6.3. Computational efficiency. In this section we will compare the computational effi-
ciency, and the accuracy of the classical approach and the new algorithm w.r.t. matrix function
evaluations. Assume a matrix linked to a Krylov space of dimension |s|+ p is built and then
truncated to an extended space of dimension |s|. In practice it is impossible to estimate the
time needed for building the Krylov space, as typically the matrix vector multiplications are
the dominant factor and its complexity heavily depends on the algorithm or structures used.
As this time is identical for both approaches we do not report on it. Bare in mind, however,
that overall it might occur to be the dominating computation. But, even in this case, the pro-

http://people.cs.kuleuven.be/~thomas.mach/extKrylov/heavy_tail.mp4
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Fig. 6.9: Eigenvalue distribution.

posed method is able to significantly reduce the size of the subspace resulting in equivalently
significant memory savings.

So, for now we forget about the time needed to construct the Krylov space and only
investigate the forthcoming computations on the projected counterparts of sizes |s| and |s|+p
including the time required for executing the compression. Each parameter ` in the selection
vector s implicates a transferring of at most |s| + p rotations through an upper triangular
matrix. Such a transferring costs O(|s| + p) flops, as there are at most |s| `’s, we have an
upper bound of O

(
|s|(|s|+ p)2

)
to complete the truncation process. Additionally we apply

the transferred rotations to V . This costs O(n), with n the dimension of A, per rotation
or O (n|s|(|s|+ p)) in total. Naturally this is not the end, and additional computations are
exerted on the truncated and untruncated projected counterpart. For instance assume this
second phase to have cubical complexity. Then we arrive at a total cost of O

(
(|s|+ p)3

)
for

the untruncated matrix and at O (|s|(|s|+ p))+O
(
|s|3

)
operations for the truncated matrix.

Clearly the crossover to arrive at cheaper algorithms is early.
EXAMPLE 6.8. We use again the same operator as in Example 6.2, but we now discretize

with 70 equal distributed interior points, so that A is of size 4900×4900. On the dense matrix
A the computation of f(A)v based on the optimized MATLAB function expm took 18.4 s.
Due to the properties of A we need a large oversampling parameter p = 1600 to achieve good
results. On the standard Krylov subspace of dimension 1604 we needed 0.66 s to compute the
f(A)v with an relative accuracy of 5.15 e−11. With our reduction approach we were able to
reduce the Krylov subspace to an extended Krylov subspace of dimension 4 ([` r` ]) in 0.59 s.
Within this subspace we could compute f(A)v to the same accuracy as in the large Krylov
subspace in 0.001 s. The computation of the large Krylov subspace was the most expensive
part of the computation and took 126.6 s.3

So far we have only an MATLAB implementation for Algorithm 1. This means the part
of complexity O (|s|(|s|+ p)) requiring more time per flop as the approximation of f(A)v,
which is of complexity O

(
(|s|+ p)3

)
resp. O

(
|s|3

)
. We assume that a better implementa-

tion would increase the advantage of our new approach.
To remove the effect of different degrees of optimization we are going to use a plain flop

count plot in the next example.

3The computation of the Krylov subspace was also done without any special tricks or optimization. This explains
the large gap to the 18.4 s for the computation on the full dense matrix.
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Fig. 6.10: Ritz plots for strong eigenvalue concentrations near the borders of [−1, 1].

EXAMPLE 6.9. In this example we only show flop counts. Let A be a matrix of size
n × n with n = 10, 000. We assume that we again compute f(A)v and to do so use the
eigendecomposition of the matrix A or a compressed matrix V ∗AV . Let this cost 15N3,
with N the dimension of A resp. V ∗AV . Once we have computed the Krylov subspace of
dimension |s| + p (costs about 2n(|s| + p)2) we can continue on two different ways. On
the one hand we can continue directly computing the eigendecomposition, or on the other
hand we can first do the compression to an extended Krylov subspace of dimension |s|. This
compression requires about |s|(2n(|s|+p)+2(|s|+p)2). Together we need 15|s|3+|s|(2Nn+
2n2) versus 15(|s|+ p)3. For different values of |s| and |s|+ p the flop counts are shown in
Figure 6.11.

7. Conclusions. We have presented a new algorithm, often computing sufficiently good
approximations to extended Krylov subspaces without using explicit inversion or explicit
solves of linear systems. The numerical examples clearly illustrate these claims, whenever
the larger subspace approximates the action of A−1 on the starting vector v well enough. If,
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Fig. 6.11: Complexity plot.

however, this constraint was not satisfied, it was shown that the presented approach was able
to significantly reduce the size of the Krylov space by bringing it to extended form, without
notable loss of accuracy w.r.t. the larger space. A larger compression can have multiple
advantages, such as reduced storage costs, and a reduced operation count for forthcoming
computations. A final set of numerical experiments illustrated this latter statement revealing
a nonneglectable reduction of computational efforts.

This research poses quite some questions. How is this related to implicitly restarted
Lanczos [2, 22, 31], and can this truncation be used for restarts? Is it possible to go from
extended Lanczos to rational Lanczos, allowing the usage of shifts. Are there good heuristics
to determine the selection vectors, size of the initial large Krylov space, size of the truncated
part, and so forth.
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