Guest presentation at

Multi-scale urban climate and air-quality modelling improvement and scenarios with COSMO-CLM and AURORA

Short overview

- Introduction:
 - Motivation
 - Overview of urban parametrizations in the CLM-community
 - Overview of activities of VITO
- Urban parametrizaton of TERRA-ML
 - 'Offline' evaluation for Marseille and Toulouse
- Urban parametrization of COSMO-CLM/TERRA_ML
 - Test results over Europe
- Further outlook

Motivation (1/2)

- Large discrepancy exists between urban and natural areas
- Cities: where most people of the world live!
- Urban climate and air quality affects human health

Motivation (2/2)

- How to counter these hazardous effects?
 - Investigate processes with regional climate and air-quality simulations
- Therefore, a correct representation of urban climate is needed

Regional climate model COSMO-CLM

- Based on COSMO, developed at DWD
- Horizontal resolution: up to 1km x 1km
- Developed and used by an active and growing european cooperation: CLM-community
- 'Nesting'-capability

Overview of different urban parametrizations within the CLM-community

Name	TEB alongside TERRA_ML	TEB inside CLandM	TERRA_MLU	TERRA_ML / PEB
Responsability	Kristina Trusilova	Matthias Demuzere	Hendrik Wouters	Sebastian Schubert
Features	inner building temperature snow model, water skin layer roofs/walls/roods, tiled urban fraction	idem	Direct representation of the urban surface using a tile approach, new surface-layer transfer coefficients, anthropogenic heat and water puddles	Street canyon model advanced double-canyon radiation scheme, shadows, radiation trapping, roof/wall/ground fluxes
input		Urban properties dataset	Urban fraction (EEA), Yearly-averaged anthropogenic heat (NCAR)	Full 3D cityGML
References	Trusilova et al 2008, Masson 2001	Masson 2001, Oleson et al. 2008, Jackson et al. 2010	Wouters et al. 2012, Flanner 2010, Demuzere et al. 2008, De Ridder, 2006	Schubert et al. 2012, Martilli et al. 2002,Gröger et al. 2008
Aims	Urban climate of Europe and Germany	Urban climate mitigation for Melbourne (Australia)	urban climate impact on Air-quality simulations over Antwerp, Urban climate of Europe	Urban climate of Berlin and Basel

Different urban parametrizations in COSMO-CLM. Why?

- There is no perfect model...
 - Large vs. Small # of parameters
 - Computational cost vs. Speed
 - Built-in extension vs. External module
 - Different approaches have different applications
- Comparison study is planned: as the urban parametrizations are implemented into one single climate model (COSMO_CLM), one can discover more precisely the strengths and weaknesses of each
- Eventually, features that are found most important may be transferred from one to another.

Urban upgrade of TERRA_ML

urban upgrade from scratch in the line of earlier studies with ARPS/LAICA

ARPS/LAICA: Sarkar and De Ridder., 2010 Wouters et al., 2013 (under review)

Urban implementation strategy

- Urban implementation in TERRA-ML standalone
- Offline evaluation TERRA-MLU at urban sites
- Apply this upgrade to the coupled model
 - → COSMO-CLM/TERRA-MLU

Urban implementation strategy

- Urban implementation in TERRA-ML standalone
- Offline evaluation TERRA-MLU at urban sites
- Apply this upgrade to the coupled model
 - → COSMO-CLM/TERRA-MLU

Urban upgrade of TERRA-ML standalone

- Urban aerodynamic upgrade:
 - Bluff-rough thermal roughness length parametrization is valid for urban surfaces (De Ridder 2006), which can represent the heat trapping inside the street canyons
 - Therefore the **Zilitinkevich (1993)** Bluff-rough thermal roughness parametrization is adopted which was tested by Demuzere et al. (2008)
 - A non-iterative procedure for the calculation of surface-layer transfer coefficients is adopted as well (Wouters et al., 2012), replacing the Louis-type scheme
- **urban land-use** class with specific surface parameters (*Sarkar and De Ridder, 2010*): albedo, emissivity, conductivity, heat capacity
- Anthropogenic heat
- A water 'puddle' store for the impervious urban surface

A first evaluation

- Marseille Escompte campaign (Cros et al., 2003): Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions
- Tower measurements for offline forcing:
 - $U, T, q_v, P, K \downarrow, L \downarrow, \text{rain}$
- Scintillometry measurements of sensible heat during a 6-day summer clear-sky period

A first evaluation

Offline runs with CAPITOUL

- CAPITOUL (Masson et al., 2008): The Canopy and Aerosol Particles Interactions in TOulouse Urban Layer experiment
- Measurements for offline forcing of the surface model:

$$U, T, q_v, P, K \downarrow, L \downarrow, \text{rain}$$

• Measurements for validation:

$$Q_{\mathrm{H}}, Q_{\mathrm{E}}, K \uparrow, L \uparrow$$

- One-year (!) offline runs are possible
 - Evaluation for every seaon
 - Sensitivity tests for finding the best parameter values for the urban surface

Evaluation without 'urban evaporation'

$$\mu = \sqrt{\lambda c_p}$$

$$\mu_{02} = 1.65$$

$$\mu_{12} = 1.82$$

$$\mu_{22} = 2.01$$

$$\mu_{32} = 2.23$$

$$\mu_{42} = 2.46$$

 $\cdot 10^3 \mathrm{Jm}^{-2} \mathrm{s}^{1/2} \mathrm{K}^{-1}$

Evaluation without 'urban evaporation'

	Q_L			Q_H				
winter	urb12	urb22	urb32	urb42	urb12	urb22	urb32	urb42
RMSE	4.978	4.571	4.253	4.058	26.349	25.246	24.296	23.551
MAE	5.956	5.553	5.221	4.938	28.937	28.735	28.592	28.661
BIAS	5.373	5.031	4.673	4.277	-21.493	-22.294	-23.184	-24.243
R2	0.977	0.980	0.982	0.983	0.848	0.860	0.870	0.879
spring	urb12	urb22	urb32	urb42	urb12	urb22	urb32	urb42
RMSE	11.752	9.904	8.110	6.520	32.365	30.129	28.387	27.484
MAE	10.729	9.383	8.221	7.313	37.474	36.172	35.154	34.364
BIAS	-8.851	-8.283	-7.689	-7.061	-34.504	-32.943	-31.353	-29.709
R2 🍃	0.992	0.993	0.993	0.993	0.960	0.959	0.958	0.957
summer	urb12	urb22	urb32	urb42	urb12	urb22	urb32	urb42
RMSE	13.542	11.393	9.173	6.918	29.589	28.053	27.114	27.095
MAE	15.113	14.815	14.497	14.125	28.315	27.242	26.516	26.712
BIAS	-15.110	-14.815	-14.497	-14.125	-20.822	-20.149	-19.433	-18.608
R2	0.995	0.995	0.996	0.996	0.965	0.964	0.963	0.962
fall	urb12	urb22	urb32	urb42	urb12	urb22	urb32	urb42
RMSE	6.649	5.685	4.751	3.846	25.002	24.322	23.763	23.396
MAE	5.334	4.530	3.790	3.104	28.210	28.336	28.608	29.018
BIAS	0.284	-0.063	-0.359	-0.612	-22.408	-22.902	-23.398	-23.886
R2	0.991	0.993	0.995	0.996	0.840	0.838	0.836	0.834

$$\mu = \sqrt{\lambda c_p}$$

$$\mu_{02} = 1.65$$

$$\mu_{12} = 1.82$$

$$\mu_{22} = 2.01$$

$$\mu_{32} = 2.23$$

$$\mu_{42} = 2.46$$

$$\cdot 10^3 \mathrm{Jm}^{-2} \mathrm{s}^{1/2} \mathrm{K}^{-1}$$

Puddle store for impervious soil

Inspired by a formulation for tree canopy interception
De Ridder (2001)

Evaporation

w [mm]

Rain/condensation

Evaporation

$$\frac{dw}{dt} = -E = -E_p \left(1 - e^{-\frac{w}{w_f}} \right)$$

Solution:
$$w(t+\Delta t) = w_f \ln \left[e^{-E_p \frac{\Delta t}{w_f}} \left(e^{\frac{w(t)}{w_f}} - 1 \right) + 1 \right]$$

 w_f : water storage at which the evaporation diminishes with respect to the maximum potential evaporation (E_p)

→ controls how fast water evaporates

Run-off

$$\frac{dw}{dt} = R_f = R_0 \left[1 - e^{-c_f \left(1 - \frac{w}{w_m} \right)} \right]$$

Solution:

$$\mathbf{w}(\mathbf{t} + \Delta t) = (w_m - \frac{w_m}{c_f} \ln \left[1 - \left(1 - e^{c_f \left(1 - \frac{w(t)}{w_m} \right)} \right) e^{-c_f \frac{R\Delta t}{w_m}} \right]$$

 \mathbf{W}_{m} : ~ maximum water storage

 → controls how much water evaporates (or otherwise goes to run-off)

Puddle store

One-year offline evaluation of TERRA-MLU

One-year offline evaluation of TERRA-MLU

		Q_L			Q_H			Q_E	
winter	urbkbm2	urb12	usp12	urbkbm2	urb12	usp12	urbkbm2	urb12	usp12
RMSE	4.394	4.978	4.782	40.044	26.349	26.825	14.098	13.604	12.645
MAE	7.168	5.956	6.230	35.560	28.937	28.274	17.331	17.669	16.434
BIAS	7.168	5.373	5.882	-22.378	-21.493	-19.951	16.783	17.279	15.593
R2	0.982	0.977	0.979	0.824	0.848	0.842	0.362	0.412	0.523
spring	urbkbm2	urb12	usp12	urbkbm2	urb12	usp12	urbkbm2	urb12	usp12
RMSE	16.137	11.752	8.593	82.244	32.365	27.993	18.615	19.370	14.816
MAE	28.612	10.729	7.402	64.857	37.474	27.751	23.642	22.738	12.314
BIAS	28.612	-8.851	-3.887	-34.424	-34.504	-21.652	23.642	22.689	4.537
R2	0.947	0.992	0.995	0.943	0.960	0.959	0.708	0.687	0.851
summer	urbkbm2	urb12	usp12	urbkbm2	urb12	usp12	urbkbm2	urb12	usp12
RMSE	16.776	13.542	13.482	93.184	29.589	29.541	23.757	23.757	23.520
MAE	20.547	15.113	14.677	74.168	28.315	27.737	20.094	20.094	19.605
BIAS	20.547	-15.110	-14.641	-51.336	-20.822	-19.823	18.267	18.267	17.683
R2	0.968	0.995	0.995	0.965	0.965	0.965	0.639	0.639	0.607
fall	urbkbm2	urb12	usp12	urbkbm2	urb12	usp12	urbkbm2	urb12	usp12
RMSE	4.741	6.649	5.146	44.429	25.002	22.900	13.220	13.287	13.719
MAE	6.120	5.334	4.955	34.021	28.210	23.171	16.999	16.951	12.721
BIAS	6.110	0.284	2.727	-25.772	-22.408	-16.303	16.130	16.066	7.247
R2	0.989	0.991	0.991	0.868	0.840	0.849	0.522	0.527	0.533

Conclusions for the standalone/offline runs

- TERRA-MLU module is able to simulate the surface fluxes for an urban site in Toulouse very well by prescribing urban key parameters.
 - Improvements are obtained when subsequently applying the bluff-rough urban aerodynamic upgrade and implementing a water puddle store
 - It is verified that a bluff-rough thermal roughness parametrization is necessary and suitable for urban surface-flux simulations
- The latent heat remains a difficult process to model and to observe, even for simpler water processes for urban areas compared to vegetative sites

Urban upgrade COSMO-CLM/TERRA-ML coupling

- Tile approach for TERRA_ML in COSMO_CLM → easily extendable for other tiles
- TERRA-ML → TERRA-MLU
 - In addition, implementation of (the diurnal/annual cycle of)
 anthropogenic heat based on
 Flanner (2009)

Anthropogenic heat (Flanner, 2009):

Test configuration of COSMO-CLM

CORDEX EU domain (25km resolution)

- Input:
 - **External parameters** (elevation, NDVI, LAI, surface type and roughness lengths...) from EXPAR-tool of the CLM-community
 - annual-mean Anthropogenic heat (Flanner 2009)
 - Satellite-derived urban impervious fraction (soil-sealing @ 100m resolution) from EEA
- **Boundary conditions: ERA-INTERIM** (75km resolution)
- 2 runs during 1999: with vs. without urban surface features → impact?

CORDEX Europe

"Unclassifiable" (no due to e.g. cloud

30-49 %

Test configuration of COSMO-CLM

CORDEX EU domain (25km resolution)

- Input:
 - External parameters (elevation, NDVI, LAI, surface type and roughness lengths...) from EXPAR-tool of the CLM-community
 - annual-mean Anthropogenic heat (Flanner 2009)
 - Satellite-derived urban impervious fraction (soil-sealing @ 100m resolution) from EEA
- Boundary conditions: ERA-INTERIM (75km resolution)
- 2 runs during 1999: with vs. without urban surface features → impact?

CORDEX Europe

Results

Results

domain-averaged

Urban (> 25%)

domain-averaged

Conclusions for the COSMO-CLM European test-runs

- The urban upgrade successfully captures urban climate features on the regional scale
 - Reduced evapotranspiration, increased thermal inertia, heat trapping and anthropogenic heat leads to a bigger storage heat which gets released during the night -> nocturnal UHI
 - The diurnal cycle of the UHI is related to, but different from the diurnal cycle of the sensible heat impact because of boundary-layer stability
 - Urban cooling during the day due to increased storage heat may occur as well because of high heat capacity of the urban surface
- Precipitation increase over urban areas is minimal (~4%)
- During Summer: Reduction of latent heat and anthropogenic heat are equal sources for the urban heat-island intensity
- During Winter: Anthropogenic heat gains importance

1. Air-quality model AURORA

Developed at VITO

Applications: air-quality modeling (1/2)

- 2)What are the driving processes determining the urban air quality?
 - Relevance of mesoscale meteorology (1-10km)
 - e.g. urban heat island, topography...
 - Versus large-scale meteorology (100–1000km)
 - Versus (uncertainty) emissions

- 3) Why do we care?
 - → Set priorities for the improvement of urban air-quality modelling

Applications: air-quality modeling (2/2)

More applications

 Urban climate scenarios for Belgium (MACCBET, KU Leuven)

- The Urban Climate of the European continent: urbanization doubling (metropoles versus urban sprawl)
- Conditional water spray cooling for cities

•

