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ABSTRACT

We use the superconformal method to construct a new formulation for pure off-shell
D = 5, N = 2 Poincaré supergravity and present its internal gauging. The main difference
between the traditional formulation and our new formulation is the choice of the Dilaton
Weyl Multiplet as the background Weyl Multiplet and the choice of a Linear compensating
Multiplet. We do not introduce an external Vector Multiplet to gauge the theory, but instead
use the internal vector of the Dilaton Weyl Multiplet. We show that the corresponding on-
shell theory is Einstein-Maxwell supergravity. We believe that this gauging method can
be applied in more complicated scenarios such as the inclusion of off-shell higher derivative
invariants.
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1 Introduction

Pure on-shell five dimensional supergravity with eight supercharges was first introduced
in [1], its gauging was investigated in detail in [3, 4] and general matter couplings and
their geometrical aspects were studied in [5, 6, 7]. To study general matter couplings it is
useful to work in an off-shell superconformal setting and, eventually, gauge fix the redundant
conformal symmetries. To this end, the N = 2 superconformal program was initiated in
[8, 9].

The pure on-shell theory consists of the metric, graviphoton and gravitino. We denote an
off-shell pure theory as a theory with minimal field content on which the super Poincaré alge-
bra closes off-shell and which reduces, upon going on-shell and decoupling the matter fields,
to the pure on-shell theory. The off-shell nature of the theory implies that, in addition to the
metric, graviphoton and gravitino, they also contain auxiliary fields. Off-shell formulations
are constructed most easily by using the method of superconformal tensor calculus. Different
off-shell formulations can correspond to one physical on-shell theory. They can differ in the
compensator multiplet used to compensate for the redundant conformal symmetries or in
the choice of Weyl multiplet. In 5D superconformal tensor calculus there are two possible
choices for the Weyl multiplet: the Standard Weyl and the Dilaton Weyl Multiplet. These
multiplets contain the same superconformal gauge fields but differ in their matter sector: a
scalar D, an antisymmetric tensor Tab and a symplectic Majorana spinor χi for the Standard
Weyl Multiplet and a scalar σ, a vector Cµ, a 2-form Bµν and a symplectic Majorana spinor
ψi for the Dilaton Weyl Multiplet. In [11] a pure off-shell 5D theory with eight supercharges
is written down using the Standard Weyl Multiplet and a Hypermultiplet compensator, and
in [12], a Nonlinear Multiplet was used as compensator instead of a Hypermultiplet. In this
paper we will write down a different off-shell pure theory using the Dilaton Weyl Multiplet
and a Linear Multiplet compensator.

Off-shell formulations are of great use when studying higher order curvature extensions of
the theory. Off-shell formulations for curvature squared invariants have been constructed in
5 dimensions in [11, 13]. Unlike an effective supergravity Lagrangian of a compactified string
theory which has higher-order correction terms in α′ and which is supersymmetric only order
by order in α′, these invariants can be added to a pure off-shell supergravity theory, and they
are exactly supersymmetric. The invariant constructed in [11] is the supersymmetric com-
pletion of the Weyl tensor squared and makes use of an external Vector Multiplet manifested
in the appearance of a mixed gauge-gravitational Chern-Simons (CS) term A ∧ tr(R ∧ R),
where A denotes the external vector. It is constructed in the background of the Standard
Weyl Multiplet. The invariant constructed in [13] is the supersymmetric completion of the
Riemann tensor squared. It is constructed in the background of the Dilaton Weyl Multiplet
and is based on a map between the Yang-Mills Multiplet and the Dilaton Weyl Multiplet.
It does not require an external Vector Multiplet, but rather it has a purely gravitational CS
term C ∧ tr(R ∧R), where C denotes the internal vector of the Dilaton Weyl Multiplet.

In [8] it was shown that the Dilaton Weyl Multiplet can be obtained by solving the
equations of motion for a Vector Multiplet coupled to the Standard Weyl Multiplet. In
this paper our purpose is to exploit this connection between the Weyl multiplets to obtain
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an off-shell Lagrangian for 5D minimal supergravity in the background of a Dilaton Weyl
Multiplet in which the U(1) R-symmetry is gauged dynamically by the internal vector C,
i.e. the vector field C has a kinetic term in the Lagrangian. This forms a basis for a future
study of the Weyl squared invariant in a Dilaton Weyl background with the external vector
A replaced by the internal one C. A similar discussion in 4D can be found in [14].

The paper is built up as follows. In section 2 we summarize the 5D superconformal cal-
culus and introduce the Standard Weyl Multiplet as well as two types of matter multiplets:
the Linear Multiplet and the Vector Multiplet. In section 3 we construct invariant actions
for the Linear and Vector Multiplet. In section 4 we construct 5D pure off-shell supergravity
by coupling the Standard Weyl Multiplet to a Linear compensator. This procedure is very
similar to the one used in 6D in [15]. We then add a superconformal abelian Vector Mul-
tiplet action to the Linear Multiplet action and compute the field equations for the Vector
Multiplet components. These equations allow us to solve for the matter fields of the Stan-
dard Weyl Multiplet (D, Tab χ

i) in terms of the fields of the Vector Multiplet1 (σ, Cµ, ψi)
plus an additional 2-form (Bµν). Using these expressions in the Lagrangian we obtain the
action for the Linear Multiplet in the background of the Dilaton Weyl Multiplet. Gauge
fixing the redundant conformal symmetries leads to off-shell Poincaré supergravity which
has apart from the graviton and the gravitino, a vector field, a 2-form gauge field, a dilaton,
a symplectic Majorana spinor and a number of auxiliary fields.

In section 5 we develop an off-shell method to gauge the theory. We start with an off-
shell action consisting of the Linear Multiplet action, the Vector Multiplet action and a
coupling between the Vector and Linear Multiplet, all in the background of the Standard
Weyl Multiplet. Then we compute, as in the ungauged case, the field equations for the
Vector Multiplet components to obtain expressions for the Standard Weyl matter fields.
We notice that these expressions get deformed by the Vector-Linear coupling. After using
these expressions in the Lagrangian and gauge fixing the conformal symmetries we obtain
an off-shell expression for U(1)-gauged supergravity. After eliminating the auxiliary fields
and dualizing the 2-form Bµν to a vector C̃µ, we show that the resulting theory is Einstein-
Maxwell supergravity gauged by a linear combination of Cµ and C̃µ. This theory agrees
completely with the one constructed in [3] via the Noether procedure. Finally, we show that
we can consistently eliminate σ, ψ and C̃µ. The resulting on-shell theory is minimal gauged
5D supergravity [3] consisting of the graviton, the graviphoton and the gravitino.

2 Superconformal Multiplets

In this section, we will recall the elements of N = 2, D = 5 superconformal tensor calculus
constructed in [8, 9]. In the first subsection 2.1 we introduce the gauge multiplet of the N =
2, D = 5 superconformal group: the Standard Weyl Multiplet. In the last two subsections,
2.2 and 2.3, we introduce two types of matter multiplets, the Vector Multiplet and the Linear
Multiplet.

1We suggestively denote the fields of the Vector Multiplet with σ, Cµ and ψi. The Vector Multiplet also
has an auxiliary Y ij , but we solve for this auxiliary and use its value in the expressions for D, Tab and χi.
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2.1 The Standard Weyl Multiplet

The N = 2, D = 5 superconformal tensor calculus is based on the superconformal algebra2

F 2(4) with the generators

Pa, Mab, D, Ka, Uij, Qαi, Sαi , (2.1)

where a, b, . . . are Lorentz indices3, α is a spinor index and i = 1, 2 is an SU(2) index.
Here Mab and Pa are the usual Poincaré generators, D is the generator for dilatations, Ka

generates special conformal boosts, Uij is the SU(2) generator and Qαi and Sαi are the
supersymmetry and conformal supersymmetry generators respectively.
For each of the generators above we now introduce the following gauge fields

hµ
A ≡ {eµa, ωµ

ab, bµ, fµ
a, V ij

µ , ψiµ, φiµ} , (2.2)

where µ, ν, . . . are world vector indices. Using the structure constants fAB
C of the supercon-

formal algebra (given e.g. in appendix B of [8]) and the basic rules

δhAµ = ∂µε
A + εChBµ fBC

A ,

Rµν
A = 2∂[µh

A
ν] + hCν h

B
µ fBC

A , (2.3)

one can easily write down the linear transformation rules and the linear curvatures Rµν
A

of the superconformal gauge fields given in (2.2). The linear transformations given in [8]
satisfy the F 2(4) superalgebra, thus resulting in a gauge theory of F 2(4) since we have not
related the generators Pa,Mab to the diffeomorphisms of spacetime. This problem can be
solved by imposing the so-called curvature constraints [8]. These constraints determine the
gauge fields ωµ

ab, φiµ and fµ
a in terms of the independent gauge fields eµ

a, ψiµ, bµ, V ij
µ and,

in addition, achieve maximal irreducibility of the superconformal gauge field configuration.
A simple counting argument shows that the superconformal gauge fields, after imposing

the conventional constraints, represent 21 + 24 off-shell degrees of freedom and therefore
cannot represent a supersymmetric theory. Additional matter fields Tµν(10), D(1) and χi(8)
must be added to the gauge fields in order to obtain an off-shell closed multiplet [8, 9]. This
multiplet is known as the Standard Weyl Multiplet.

Starting from the linear transformation rules of the superconformal fields, the linear
curvatures Rµν

A and the matter fields Tµν , D, and χi we can construct the full nonlinear
N = 2, D = 5 Weyl Multiplet by applying an iterative procedure (described in detail for 6
dimensions in [16]). The results are [8] (we only give Q, S and K transformations):

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = (∂µ + 1
2
bµ + 1

4
ωµ

abγab)ε
i − V ij

µ εj + iγ · Tγµεi − iγµη
i ,

δVµ
ij = −3

2
iε̄(iφj)µ + 4ε̄(iγµχ

j) + iε̄(iγ · Tψj)µ + 3
2
iη̄(iψj)µ ,

δTab = 1
2
iε̄γabχ− 3

32
iε̄R̂ab(Q) ,

2The notation F p(4) refers to a compact form of F (4) with bosonic subalgebra SO(7− p, p).
3We use the conventions of [8, 20]. In particular, the spacetime signature is (−,+,+,+,+) and ψ̄iγ(n)χ

j =
tnχ̄

jγ(n)ψ
i with t0 = t1 = −t2 = −t3 = 1. When SU(2) indices on spinors are omitted, northwest-southeast

contraction is understood.
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δχi = 1
4
εiD − 1

64
γ · R̂ij(V )εj + 1

8
iγab /DTabεi − 1

8
iγaDbTabεi

−1
4
γabcdTabTcdε

i + 1
6
T 2εi + 1

4
γ · Tηi ,

δD = ε̄ /Dχ− 5
3
iε̄γ · Tχ− iη̄χ ,

δbµ = 1
2
iε̄φµ − 2ε̄γµχ+ 1

2
iη̄ψµ + 2ΛKµ , (2.4)

where

Dµχi = (∂µ − 7
2
bµ + 1

4
ωµ

abγab)χ
i − V ij

µ χj − 1
4
ψiµD + 1

64
γ · R̂ij(V )ψµj

−1
8
iγab /DTabψiµ + 1

8
iγaDbTabψiµ + 1

4
γabcdTabTcdψ

i
µ − 1

6
T 2ψiµ − 1

4
γ · Tφiµ ,

DµTab = ∂µTab − bµTab − 2ωµ
c
[aTb]c − 1

2
iψ̄µγabχ+ 3

32
iψ̄µR̂ab(Q) . (2.5)

The relevant modified curvatures are

R̂µν
ab(M) = 2∂[µων]

ab + 2ω[µ
acων]c

b + 8f[µ
[aeν]

b] + iψ̄[µγ
abψν] + iψ̄[µγ

[aγ · Tγb]ψν]

+ψ̄[µγ
[aR̂ν]

b](Q) + 1
2
ψ̄[µγν]R̂

ab(Q)− 8ψ̄[µeν]
[aγb]χ+ iφ̄[µγ

abψν] ,

R̂µν
ij(V ) = 2∂[µVν]

ij − 2V[µ
k(iVν] k

j)−3iφ̄
(i
[µψ

j)
ν] − 8ψ̄

(i
[µγν]χ

j) − iψ̄
(i
[µγ · Tψ

j)
ν] ,

R̂i
µν(Q) = 2∂[µψ

i
ν] +

1

2
ω[µ

abγabψ
i
ν] + b[µψ

i
ν] − 2V ij

[µ ψν]j − 2iγ[µφ
i
ν] + 2iγ · Tγ[µψ

i
ν] .(2.6)

As mentioned before, the dependent fields, which relate the generators Pa,Mab to the diffeo-
morphisms of spacetime, are completely determined by the following curvature constraints

Rµν
a(P ) = 0 ,

eνbR̂µν
ab(M) = 0 ,

γµR̂µν
i(Q) = 0 . (2.7)

Notice that our choices for the above constraints are not unique, i.e. one can impose different
constraints by adding further terms to (2.7). However such additional terms only amount
to redefinitions of the dependent fields defined below. Using the curvature constraints we
identify ωµ

ab, φiµ and fµ
a in terms of the other gauge fields and matter fields

ωµ
ab = 2eν[a∂[µe

b]
ν] − e

ν[aeb]σeµc∂νe
c
σ + 2e [a

µ bb] − 1
2
ψ̄[bγa]ψµ − 1

4
ψ̄bγµψ

a ,

φiµ = 1
3
iγaR̂′µa

i(Q)− 1
24

iγµγ
abR̂′ab

i(Q) , (2.8)

faµ = −1
6
Rµ

a + 1
48
eµ
aR ,

where Rµν ≡ R̂′ ab
µρ (M)eb

ρeνa and R ≡ Rµ
µ. The notation R̂′(M) and R̂′(Q) indicates that

we have omitted the fµ
a dependent term in R̂(M) and the φiµ dependent term in R̂(Q). The

constraints imply through Bianchi identities further relations between the curvatures. The
Bianchi identities for R(P ) imply [8]

Rµν = Rνµ , e[µ
aR̂νρ](D) = R̂[µνρ]

a(M) , R̂µν(D) = 0 . (2.9)
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The full commutator of two supersymmetry transformations is

[δQ(ε1), δQ(ε2)] = δcgct(ξ
µ
3 ) + δM(λab3 ) + δS(η3) + δU(λij3 ) + δK(Λa

K3) , (2.10)

where δcgct represents a covariant general coordinate transformation4. The parameters ap-
pearing in (2.10) are

ξµ3 = 1
2
ε̄2γ

µε1 ,

λab3 = −iε̄2γ
[aγ · Tγb]ε1 ,

λij3 = iε̄
(i
2 γ · Tε

j)
1 ,

ηi3 = −9
4
i ε̄2ε1χ

i + 7
4
i ε̄2γcε1γ

cχi

+1
4
i ε̄

(i
2 γcdε

j)
1

(
γcdχj + 1

4
R̂cd

j(Q)
)
,

Λa
K3 = −1

2
ε̄2γ

aε1D + 1
96
ε̄i2γ

abcεj1R̂bcij(V )

+ 1
12

iε̄2
(
−5γabcdDbTcd + 9DbT

ba
)
ε1

+ε̄2
(
γabcdeTbcTde − 4γcTcdT

ad + 2
3
γaT 2

)
ε1 . (2.11)

For the Q,S commutators we find the following algebra

[δS(η), δQ(ε)] = δD(1
2
iε̄η) + δM(1

2
iε̄γabη) + δU(−3

2
iε̄(iηj)) + δK(Λa

3K) ,

[δS(η1), δS(η2)] = δK(1
2
η̄2γ

aη1) , (2.12)

with
Λa

3K = 1
6
ε̄
(
γ · Tγa − 1

2
γaγ · T

)
η . (2.13)

This concludes our review of the Standard Weyl Multiplet.

2.2 The Vector Multiplet

The off-shell abelian D = 5, N = 2 Vector Multiplet contains 8 + 8 degrees of freedom and
consists of the fields

{Cµ, σ, Y ij, ψi} , (2.14)

with Weyl weights (0,1,2,3/2) respectively. The bosonic field content consists of a vector
field Cµ, a scalar field σ and an auxiliary field Y ij = Y (ij), that is an SU(2) triplet. The
fermion field is given by an SU(2) doublet ψi.

The Q- and S-transformations of the Vector Multiplet, in the background of the Standard
Weyl Multiplet, are given by [7]

δCµ = −1
2
iσε̄ψµ + 1

2
ε̄γµψ ,

δY ij = −1
2
ε̄(i /Dψj) + 1

2
iε̄(iγ · Tψj) − 4iσε̄(iχj) + 1

2
iη̄(iψj) ,

δψi = −1
4
γ · Ĝεi − 1

2
i /Dσεi + σγ · Tεi − Y ijεj + σηi ,

δσ = 1
2
iε̄ψ. (2.15)

4The covariant general coordinate transformations are defined as δcgct(ξ) = δgct(ξ)− δI(ξµhIµ), where the

index I runs over all transformations except the general coordinate transformations and the hIµ represent
the corresponding gauge fields.
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We have used here the superconformally covariant derivatives

Dµ σ = (∂µ − bµ)σ − 1
2

iψ̄µψ ,

Dµψi = (∂µ − 3
2
bµ + 1

4
ωµ

abγab)ψ
i − V ij

µ ψj

+1
4
γ · Ĝψiµ + 1

2
i /Dσψiµ + Y ijψµ j − σγ · Tψiµ − σφiµ, (2.16)

and the supercovariant Yang-Mills curvature

Ĝµν = Gµν − ψ̄[µγν]ψ + 1
2
iσψ̄[µψν] , (2.17)

where Gµν = 2∂[µCν]. The supersymmetry transformation rule for Ĝµν is given by

δĜµν = −1
2
iσε̄R̂µν(Q)− ε̄γ[µDν]ψ + iε̄γ[µγ · Tγν]ψ + iη̄γµνψ . (2.18)

This concludes our discussion on the Vector Multiplet.

2.3 The Linear Multiplet

The off-shell D = 5,N = 2 Linear Multiplet contains 8 + 8 degrees of freedom and consists
of the fields

{Lij, Ea, N, ϕi} , (2.19)

with Weyl weights (3,4,4,7/2) respectively. The bosonic fields consist of an SU(2) triplet
Lij = L(ij), a constrained vector Ea and a scalar N . The fermion field is given by an SU(2)
doublet ϕi. The Q and S supersymmetry transformations of the Linear Multiplet in the
background of the Standard Weyl Multiplet are given by

δLij = iε̄(iϕj) ,

δϕi = −1
2
i /DLijεj − 1

2
iγaEaε

i + 1
2
Nεi − γ · TLijεj + 3Lijηj ,

δEa = −1
2
iε̄γabDbϕ− 2ε̄γbϕTba − 2η̄γaϕ ,

δN = 1
2
ε̄ /Dϕ+ 3

2
iε̄γ · Tϕ+ 4iε̄iχjLij + 3

2
iη̄ϕ , (2.20)

where we used the following superconformally covariant derivatives

DµLij = (∂µ − 3bµ)Lij + 2Vµ
(i
kL

j)k − iψ̄(i
µϕ

j) ,

Dµϕi = (∂µ − 7
2
bµ + 1

4
ωµ

abγab)ϕ
i − V ij

µ ϕj + 1
2
i /DLijψµ j + 1

2
iγaEaψ

i
µ

−1
2
Nψiµ + γ · TLijψµ j − 3Lijφµ j ,

DµEa = (∂µ − 4bµ)Ea + ωµabE
b + 1

2
iψ̄µγabDbϕ+ 2ψ̄µγ

bϕTba + 2φ̄µγaϕ . (2.21)

Finally, we note that the superconformal algebra closes if the following constraint is satisfied

DaEa = 0 . (2.22)

The solution for Ea in terms of a 3-form Eµνρ is

Ea = − 1
12
eµ
ae−1εµνρσλDνEρσλ (2.23)
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and Eµνρ has the following gauge invariance

δΛEµνρ = 3∂[µΛνρ] . (2.24)

Also, for the dual 2-form field we have

Ea = eµ
aDνEµν ,

Eµνρ = eεµνρσλE
σλ ,

δEµν = −1
2
iε̄γµνϕ− 1

2
ψ̄iργ

µνρεjLij − ∂ρΛ̃µνρ ,

DνEµν = ∂νE
µν + 1

2
iψ̄νγ

µνϕ+ 1
4
ψ̄iργ

µνρψjνLij . (2.25)

This concludes our discussion on the Linear Multiplet.

3 Actions

In this section, we will construct the action for a Linear Multiplet and present the action
for Vector Multiplet coupled to the Standard Weyl Multiplet [7]. Our starting point is a
density formula for the product of a Vector Multiplet and a Linear Multiplet. This will
be presented in subsection 3.1. In subsection 3.2 we will use this formula, after embedding
the Linear Multiplet into a Vector Multiplet, to construct the superconformal action for the
Linear Multiplet. In the last subsection 3.3 we present the action for the Vector Multiplet.

3.1 Density formula

We need an expression constructed from the components of the Linear and Vector Multiplet
that can be used as a superconformal action. In [10] a density formula is given for the
product of a Vector Multiplet and a Linear Multiplet

e−1LV L = Y ijLij + iψ̄ϕ− 1
2
ψ̄iaγ

aψjLij + CaP
a

+σ(N + 1
2
ψ̄aγ

aϕ+ 1
4
iψ̄iaγ

abψjbLij) , (3.1)

where Pµ, the pure bosonic part of the supercovariant field Eµ, is defined as

P a = Ea + 1
2
iψ̄bγ

baϕ+ 1
4
ψ̄ibγ

abcψjcLij . (3.2)

Using (2.23), we can express P a as

P a = − 1
12
eµ
ae−1εµνρσλ∂νEρσλ . (3.3)

Using (3.3) and (2.25), one can rewrite LV L as

e−1LV L = Y ijLij + iψ̄ϕ− 1
2
ψ̄iaγ

aψjLij + 1
2
GµνE

µν

+σ(N + 1
2
ψ̄aγ

aϕ+ 1
4
iψ̄iaγ

abψjbLij) . (3.4)
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3.2 Action for the Linear Multiplet

We want to use the density formula (3.1) to construct an action for the Linear Multiplet.
Hence, we start with embedding the components of the Linear Multiplet (Lij, ϕ

i, Ea, N)
into the components of the Vector Multiplet (Y ij, Cµ, σ, ψ

i). Such embeddings are already
considered in 4 and 6 dimensions [15, 16, 19] and here we will follow the same procedure.

As described in 2.3 the Linear Multiplet consists of a triplet of scalars Lij, a constrained
vector Ea, a doublet of Majorana spinors ϕi and a scalar N . One starts the construction
of the Vector Multiplet with the identification σ = N , where σ is the scalar of the Vector
Multiplet. There is, however, a mismatch between the Weyl weights of these fields. Therefore
one needs another scalar field to compensate for this mismatch. For this we will use

L2 = LijL
ij . (3.5)

We can then identify the scalar of the Vector Multiplet as σ = 2L−1N + iϕ̄iϕjL
ijL−3.

This identification has the correct Weyl weight, and the second term is the supersymmet-
ric completion that is determined by the S-invariance of σ. Upon applying a sequence of
supersymmetry transformations, we obtained the following embeddings

σ = 2L−1N + (ϕi-terms) ,

ψi = −2i /DϕiL−1 + 16L−1Lijχ
j + (ϕi-terms) ,

Yij = L−12CLij −DaLk(iDaLj)mLkmL−3 −N2LijL
−3 − EµEµLijL

−3

+8
3
L−1T 2Lij + 4L−1DLij + 2EµLk(iDµLj)kL−3 + (ϕi-terms) ,

Ĝµν = 4D[µ(L−1Eν]) + 2L−1R̂µν
ij(V )Lij − 2L−3LlkD[µL

kpDν]Llp + (ϕi-terms) . (3.6)

Here, we did not write the fermionic terms proportional to ϕi explicitly because in the
following section we will set ϕi to zero to fix the S-gauge.

After plugging the components (3.6) into the density formula (3.1) we end up with a
superconformal action for the Linear Multiplet

e−1LL = L−1Lij2
cLij − LijDµLk(iDµLj)mLkmL−3 −N2L−1 − EµEµL−1

+8
3
LT 2 + 4DL− 1

2
L−3EµνLlk∂µL

kp∂νLpl + 2Eµν∂µ(L−1Eν + V ij
ν LijL

−1)

+iL−1Lijψ̄
i
µγ

µ /Dϕj + 4Lψ̄µγ
µχ+ 1

2
iL−1Nψ̄iµγ

µνψjνLij + (ϕi-terms) , (3.7)

where the superconformal d’Alembertian is given by

Lij2
cLij = Lij(∂

a − 4ba + ωb
ba)DaLij + 2LijVa

i
kDaLjk + 6L2fa

a

−iLijψ̄aiDaϕj − 6L2ψ̄aγaχ− Lijϕ̄iγ · Tγaψja + Lijϕ̄
iγaφja . (3.8)

3.3 Action for the Vector Multiplet

A Vector Multiplet can be embedded into the Linear Multiplet to construct an action using
the invariant action formula 3.1. The action for the abelian Vector Multiplet up to 4-fermion
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terms reads [7]

e−1LV = −1
4
σGµνG

µν + 1
3
σ22cσ + 1

6
σDµσDµσ + σYijY

ij

−4
3
σ3
(
D + 26

3
T 2
)

+ 4σ2GµνT
µν − 1

24
e−1εµνρσλCµGνρGσλ

−1
2
σψ̄ /Dψ − 1

8
iψ̄γ ·Gψ − 1

2
iψ̄iψjYij + iσψ̄γ · Tψ − 8iσ2ψ̄χ

+1
6
σψ̄µγ

µ
(
iσ /Dψ + 1

2
i /Dσψ − 1

4
γ·Gψ + 2σγ·Tψ − 8σ2χ

)
−1

6
ψ̄µγνψ

(
−2σGµν − 8σ2T µν

)
− 1

12
σψ̄λγ

µνλψGµν

+ 1
12

iσψ̄µψν
(
−2σGµν − 8σ2T µν

)
+ 1

48
iσ2ψ̄λγ

µνλρψρGµν

−1
2
σψ̄iµγ

µψjYij + 1
6
iσ2ψ̄iµγ

µνψjνYij , (3.9)

where

2cσ = (∂a − 2ba + ωb
ba)Daσ − 1

2
iψ̄aDaψ − 2σψ̄aγ

aχ

+1
2
ψ̄aγ

aγ · Tψ + 1
2
φ̄aγ

aψ + 2faaσ . (3.10)

4 Ungauged D = 5, N = 2 Supergravity

In the previous section we have constructed an action for the Linear Multiplet and presented
the action for the Vector Multiplet constructed in [7]. A naive attempt to construct the
Poincaré supergravity directly by gauge fixing the Linear or Vector Multiplet action obviously
fails as the equation of motion for D is inconsistent. In this section we combine both actions
to obtain a theory in a Dilaton Weyl background [8] which will solve the inconsistency for D.
In the first subsection 4.1 we combine the Linear Multiplet action and the Vector Multiplet
action and solve for Standard Weyl matter fields. The resulting theory is the superconformal
theory with the matter fields of the Dilaton Weyl Multiplet. In the next subsection 4.2, we
discuss the procedure to gauge fix the redundant conformal symmetries, and give the pure
off-shell Poincaré Supergravity. The schematic description of how to obtain this theory is
given in figure 1.

4.1 Construction of the Superconformal Action

Our starting point is the following Lagrangian

L0 = LL − 3LV , (4.1)

where LL and LV are given in (3.7) and (3.9), and the factor of 3 in front of the Vector
Multiplet action is chosen for later convenience. The equation of motion for the auxiliary
Y ij, and the field equations for σ and ψi allow us to express the Standard Weyl matter fields
Y ij, D and χi in terms of the fields of the Vector Multiplet [8]

Y ij = 1
4
iσ−1ψ̄iψj , (4.2)
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Figure 1
The schematic description of how to obtain off-shell N = 2, D = 5 Poincaré Supergravity

Vector Multiplet
{Y ij, Cµ, σ, ψ

i}
Standard Weyl Multiplet
{eµa, ψiµ, V ij

µ , Tab, χ
i, D, bµ}

Dilaton Weyl Multiplet
{eµa, ψiµ, V ij

µ , Cµ, Bµν , ψ
i, σ, bµ}

EOM for Y ij, Cµ, σ, ψ
i

Linear Multiplet
{Lij, ϕ, Ea, N}

Off-Shell Poincaré Supergravity
{eµa, Cµ, Bµν , σ, Ea, N, V

ij
µ , ψ

i
µ, ψ

i}

bµ = 0 (K-Gauge)

ϕi = 0 (S-Gauge)

Lij = − 1√
2
δijL (SU(2) → U(1)R)

L = −1 (D-Gauge)

χi = 1
8
iσ−1 /Dψi + 1

16
iσ−2 /Dσψi − 1

32
σ−2γ ·Gψi

+1
4
σ−1γ · Tψi + 1

8
σ−2Y ijψj , (4.3)

D = 1
4
σ−12cσ + 1

8
σ−2(Daσ)(Daσ)− 1

16
σ−2GµνG

µν

−1
8
σ−2ψ̄ /Dψ + 1

4
σ−2Y ijYij − 4iσ−1ψ̄χ+ 1

8
σ−2ψ̄µγνψG

µν

− 1
16
iσ−1ψ̄µψµG

µν +
(
− 26

3
Tab + 2σ−1Ĝab + 1

4
iσ−2ψ̄γabψ

)
T ab , (4.4)

where χi and D are given up to 3- and 4-fermion terms respectively. The equation of motion
for Cµ implies a Bianchi identity for an antisymmetric 2-form tensor gauge field Bµν

D[aĤbcd] = 3
4
Ĝ[abĜcd] , (4.5)

where the 3-form curvature tensor Ĥabc is defined as

1
6
εabcdeĤ

cde = 8σ2Tab − σĜab − 1
4
iψ̄γabψ . (4.6)

This equation allows us to identify Tab in terms of the elements of the Vector Multiplet and
the supercovariant field strength Ĥµνρ. As a matter of fact, the fields σ,Cµ, Bµν and ψi along
with the gauge fields eµ

a, ψiµ, bµ, Vµ
ij form an alternative Weyl multiplet: the Dilaton Weyl

Multiplet. Equations (4.4) and (4.6) present a map between the Standard Weyl Multiplet
and the Dilaton Weyl Multiplet.
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The Q, S and K supersymmetry transformations for the fields of the Dilaton Weyl
Multiplet are given by (up to 3-fermion terms)

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = (∂µ + 1
2
bµ + 1

4
ωµ

abγab)ε
i − V ij

µ εj + iγ · Tγµεi − iγµη
i ,

δVµ
ij = −3

2
iε̄(iφj)µ + 4ε̄(iγµχ

j) + iε̄(iγ · Tψj)µ + 3
2
iη̄(iψj)µ ,

δCµ = −1
2
iσε̄ψµ + 1

2
ε̄γµψ,

δBµν = 1
2
σ2ε̄γ[µψν] + 1

2
iσε̄γµνψ + C[µδ(ε)Cν],

δψi = −1
4
γ · Ĝεi − 1

2
i /Dσεi + σγ · Tεi − Y ijεj + σηi ,

δσ = 1
2
iε̄ψ ,

δbµ = 1
2
iε̄φµ − 2ε̄γµχ+ 1

2
iη̄ψµ + 2ΛKµ , (4.7)

where we have underlined5 Y ij, Tµν , D and χi to indicate that they are now composite
fields with the definitions given in (4.6) and (4.4) respectively. The commutator of Q-
transformations picks up the following modifications

[δ(ε1), δ(ε2)] = . . .+ δU(1)(Λ3 = −1
2
iσε̄2ε1) + δB(−1

4
σ2ε̄2γµε1 − 1

2
CµΛ3) , (4.8)

where the ellipses refer to the standard commutation rule and δB is a vector gauge trans-
formation for the field Bµν . From the transformation rule (4.7) for Bµν , we identify the

supercovariant field strength Ĥµνρ as

Ĥµνρ = 3∂[µBνρ] + 3
2
C[µGνρ] − 3

4
σ2ψ̄[µγνψρ] − 3

2
iσψ̄[µγνρ]ψ (4.9)

and the supersymmetry transformation rule for Ĥµνρ is given by

δĤabc = −3
4
σ2ε̄γ[aR̂bc](Q) + 3

2
iε̄γ[abDc]ψ + 3

2
iε̄γ[abψDc]σ

−3
2
σε̄γ[aγ · Tγbc]ψ − 3

2
ε̄γ[aĜbc]ψ − 3

2
ση̄γabcψ . (4.10)

For Ĥµνρ to be gauge invariant Bµν should transform under gauge transformations as follows

δΛBµν = 2∂[µΛν] − 1
2
ΛGµν . (4.11)

Plugging in the expressions for Y ij and the Standard Weyl matter fields, (4.4) and (4.6),
into the Lagrangian (4.1), we obtain the following superconformal action

e−1L0,DW = L−1Lij2
CLij − LijDµLkiDµLjmLkmL−3 −N2L−1 − EµEµL−1

+8
3
LT 2 + 4DL− 1

2
L−3EµνLlk∂µL

kp∂νLpl + 2Eµν∂µ(L−1Eν + V ij
ν LijL

−1)

+iL−1Lijψ̄
i
µγ

µ /Dϕj + 4Lψ̄µγ
µχ+ 1

2
iL−1Nψ̄iµγ

µνψjνLij + (ϕi-terms) , (4.12)

where the subscript DW indicates the fact that this Lagrangian is in the background of
the Dilaton Weyl Multiplet. In the following subsection we will gauge fix the redundant
conformal symmetries to obtain off-shell pure D = 5, N = 2 supergravity.

5The expression for Y ij in (4.4) is bilinear in the fermions and gives rise to 3-fermion terms in the
transformation rule of ψi. However, we did include the term in δψi because, when we will discuss the gauged
theory in the next section, the expression for Y ij gets deformed by a purely bosonic term.
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4.2 Gauge Fixing, Decomposition Rules and the Off-Shell Poincaré
Action

The gauge fixing conditions we adopt here are

Lij = − 1√
2
δij, bµ = 0, ϕi = 0 . (4.13)

The first gauge condition breaks the SU(2) symmetry down to U(1)R, and fixes the dilatation
symmetry by the choice L = −1. The second condition fixes the special conformal symmetry
whereas the last one fixes the S-supersymmetry.
In order for these gauge conditions to be invariant under supersymmetry, one needs to add
compensating conformal boost transformations with parameter

ΛKµ = −1
4
iε̄φµ − 1

4
iη̄ψµ + ε̄γµχ (4.14)

and compensating S-supersymmetry transformations with parameter

ηk = 1
3

(
γ · Tεk + 1√

2
Nδikε

i − 1√
2
i /Eδikε

i − iγµVµ
(i
lδ
j)lδikεj

)
. (4.15)

Performing all the steps of gauge fixing, and using the expressions for the dependent gauge
fields (2.8) into the Lagrangian (4.12), we end up with the following off-shell Lagrangian for
N = 2, D = 5 Poincaré supergravity (up to 4-fermion terms)

e−1L0,DW |L=−1 = 1
2
R− 1

4
σ−2GµνG

µν − 1
6
σ−4HµνρH

µνρ − 3
2
σ−2∂µσ∂

µσ

−N2 + PµP
µ +
√

2PµV
µ − V ′µijV

′µ
ij

−1
2
ψ̄µγ

µνρDνψρ − 3
2
σ−2ψ̄ /D

′
ψ − 3

2
iσ−2ψ̄γµγρψµ∂ρσ

−1
8
iσ−1ψ̄µγ

µνρσψνGρσ − 1
4
iσ−1ψ̄µψνG

µν − 1
4
σ−2ψ̄µγ

µνρψGνρ

+1
2
σ−2ψ̄µγνψG

µν − 1
8
iσ−3ψ̄γ ·Gψ + 1

2
√

2
ψ̄iµγ

µνρψjνPρδij

− 1
24
σ−2ψ̄µγ

µνρσλψνHρσλ + 1
4
σ−2ψ̄µγνψρH

µνρ (4.16)

−1
6
iσ−3ψ̄µγ

µνρσψHνρσ + 1
2
iσ−3ψ̄µγνρψH

µνρ − 5
24
σ−4ψ̄γ ·Hψ ,

where the subscript L = −1 is shorthand for the gauge fixing described in (4.13). Notice that
we have decomposed the field V ij

µ into its trace and traceless part, i.e. V ij
µ = V

′ij
µ + 1

2
δijVµ

with V
′ij
µ δij = 0. The 2- and 3-form field strengths are defined as

Gµν = 2∂[µCν] ,

Hµνρ = Bµνρ + 3
2
C[µGνρ] , (4.17)

where Bµνρ = 3∂[µBνρ], and the U(1)R covariant derivative Dµψ
i
ν and full SU(2) covariant

derivative D′µψ
i are defined as

Dµψ
i
ν =

(
∂µ + 1

4
ωµ

abγab

)
ψiν − 1

2
Vµδ

ijψν j ,

D′µψ
i =

(
∂µ + 1

4
ωµ

abγab

)
ψi + V ′µ

i
jψ

j − 1
2
Vµδ

ijψj . (4.18)

14



The N = 2 off-shell supergravity that we constructed above by means of superconformal
tensor calculus has the following field content

(eµ
a, ψiµ, Cµ, Bµν , ψ

i, σ, Eµ, N, Vµ, V
′ij
µ ) (4.19)

with (10, 32, 4, 6, 8, 1, 4, 1, 4, 10) off-shell degrees of freedoms respectively. Therefore our off-
shell Poincaré multiplet has 40 + 40 off-shell degrees of freedom. The supersymmetry trans-
formations, up to 3-fermions, are

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = (∂µ + 1
4
ωµ

abγab)ε
i − V ij

µ εj + iγ · Tγµεi − iγµη
i ,

δVµ = −3
2
iε̄iφjµδij + 4ε̄iγµχ

jδij + iε̄iγ · Tψjµδij + 3
2
iη̄iψjµδij ,

δV ′µ
ij = −3

2
iε̄(iφj)µ + 4ε̄(iγµχ

j) + iε̄(iγ · Tψj)µ + 3
2
iη̄(iψj)µ + 3

2
iε̄kφlµδklδ

ij

−2ε̄kγµχ
lδklδ

ij − 1
2
iε̄kγ · Tψlµδklδij − 3

4
iη̄kψlµδklδ

ij ,

δCµ = −1
2
iσε̄ψµ + 1

2
ε̄γµψ,

δBµν = 1
2
σ2ε̄γ[µψν] + 1

2
iσε̄γµνψ + C[µδ(ε)Cν],

δψi = −1
4
γ ·Gεi − 1

2
i/∂σεi + σγ · Tεi − Y ijεj + σηi ,

δσ = 1
2
iε̄ψ ,

δEa = − 1
2
√

2
ε̄iγabγ

cV ′c(i
kδj)kψ

bj + 1
4
ε̄γabγ

cEcψ
b + 1

4
iε̄γabNψ

b

− 1
2
√

2
iε̄iγabγ · Tψbjδij + 3

2
√

2
iε̄iγabφ

bjδij ,

δN = − 1
2
√

2
iε̄iγaγbV ′b(i

kδj)kψ
j
a + 1

4
ε̄γaγbEbψa − 1

4
ε̄γaNψ

a

+ 1
2
√

2
ε̄iγaγ · Tψjaδij − 3

2
√

2
ε̄iγaφjaδij − 2

√
2iε̄iχjδij , (4.20)

where the parameter ηi is as described in (4.15).
Note that the U(1)R symmetry of the off-shell supergravity is gauged via the auxiliary

Vµ

δλVµ = ∂µλ, δλψ
i
µ = 1

2
δijλψµj, δλψ

i = 1
2
δijλψj , (4.21)

where λ is the parameter of the U(1)R symmetry. Also note that the CS term, which is
characteristic of the N = 2, D = 5 formulation is hidden inside the term HµνρH

µνρ, and it
becomes manifest in the action in the on-shell formalism due to the dualization of Hµνρ as
we shall discuss in the following section.

Upon going on-shell by solving for the auxiliary fields Eµ, N, Vµ and V
′ij
µ we obtain un-

gauged Maxwell-Einstein supergravity as constructed in [2, 17]. The elimination of auxiliaries
will be discussed in the next section.

5 Minimal Gauged Supergravity

The off-shell theory discussed in subsection 4.2 has two U(1) symmetries: U(1)V and U(1)C .
The first one is related to the auxiliary gauge field Vµ and the second one is related to the
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vector field of the Dilaton Weyl Multiplet Cµ. The fermions in the theory transform under
U(1)V , thus their covariant derivatives contain Vµ. This gauging by Vµ, however, is unde-
sirable since Vµ has no kinetic term. To obtain a dynamical gauging, one may choose to
eliminate Vµ and to promote, in the resulting on-shell theory, the vector field of the Dilaton
Weyl multiplet Cµ to a gauge field by replacing the covariant derivatives of the fermionic
fields with U(1)C covariant derivatives. Such a covariantization in the Lagrangian breaks
supersymmetry and hence g-dependent gauge invariant terms must be added to the La-
grangian in order to restore supersymmetry [3]. The necessary g-dependent gauge invariant
terms can be found by the Noether procedure. However, when considering more complicated
scenarios, such as the inclusion of R2 terms, the step-by-step Noether procedure is tedious
and cumbersome. Therefore, we devote this section to an easier procedure to construct the
internally gauged theory.

In subsection 5.1 we add to the ungauged off-shell Lagrangian L0 (4.1) a vector-linear
coupling gLV L (3.1), where g is a coupling constant. We show that the expressions for the
Standard Weyl matter fields, obtained via the field equations of the Vector Multiplet com-
ponents, get deformed by g-dependent terms. In subsection 5.2 we discuss the elimination of
the auxiliaries Vµ, V

′ij
µ , N, Pµ and dualize the 2-form Bµν to a vector C̃µ. We show that the

resulting theory describes Einstein-Maxwell supergravity [3] in which a linear combination of
Cµ and C̃µ plays the role of the gauge field. Finally, in subsection 5.3, we show that we can
consistently truncate the matter content that is coupled to supergravity, thereby breaking
the gauge group down to a single U(1)R, gauged by Cµ, and obtain the minimal on-shell
gauged supergravity discussed [3].

5.1 The Off-shell Internally Gauged Supergravity

Our starting point for the construction of the internally gauged supergravity is the following
Lagrangian

Lg ≡ L0 − 3gLV L
= LL − 3LV − 3gLV L , (5.1)

where LL, LV and LV L are given in (3.7), (3.9) and (3.1). The field equations for Y ij, σ, ψi

and Cµ give rise to the following map between the Standard Weyl Multiplet and the Dilaton
Weyl Multiplet

Y ij
g = 1

4
iσ−1ψ̄iψj − 1

2
gσ−1Lij , (5.2)

χig = 1
8
iσ−1 /Dψi + 1

16
iσ−2 /Dσψi − 1

32
σ−2γ ·Gψi

+1
4
σ−1γ · Tψi + 1

8
σ−2Y ijψj +

1

8
gσ−2ϕi , (5.3)

Dg = 1
4
σ−12cσ + 1

8
σ−2(Daσ)(Daσ)− 1

16
σ−2GµνG

µν

−1
8
σ−2ψ̄ /Dψ + 1

4
σ−2Y ijYij − 4iσ−1ψ̄χ+ 1

8
σ−2ψ̄µγνψG

µν

− 1
16
iσ−1ψ̄µψµG

µν +
(
− 26

3
Tab + 2σ−1Ĝab + 1

4
iσ−2ψ̄γabψ

)
T ab

+1
4
gσ−2N , (5.4)
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D[aĤbcd] = 3
4
Ĝ[abĜcd] + 1

2
gD[aEbcd] , (5.5)

where
− 1

6
εabcdeĤedc = 8σ2Tab − σĜab − 1

4
iψ̄γabψ . (5.6)

The subscript g in the equations (5.2), (5.3) and (5.4) indicates that the expressions for
Y ij, χi and D now pick up g dependent terms. Note that the expressions for χig and Dg are
given up to 3- and 4-fermion terms respectively. Comparing the above map with the one
in the ungauged case, (4.4) to (4.6), it is clear that the map gets deformed by the gauging.
The Bianchi identity (5.5) implies that

Ĥµνρ = 3∂[µBνρ] + 3
2
C[µGνρ] + 1

2
gEµνρ − 3

4
σ2ψ̄[µγνψρ] − 3

2
iσψ̄[µγνρ]ψ . (5.7)

The above equation for Ĥµνρ is clearly not gauge invariant since Eµνρ has the gauge invariance
δΛEµνρ = 3∂[µΛνρ]. In order to balance that out, Bµν needs to have the additional gauge
invariance

δΛBµν = 2∂[µΛν] − 1
2
ΛGµν − 1

2
gΛµν . (5.8)

Using the above expressions for Y ij, D, Tab and χi in the Lagrangian (5.1) and imposing
the gauge fixing conditions (4.13) we obtain the following off-shell Poincaré Lagrangian

e−1Lg,DW |L=−1 = 1
2
R− 1

4
σ−2GµνG

µν − 2gCµP
µ − 1

6
σ−4HµνρHµνρ −N2 − gN(σ−2 + 2σ)

−g2(1
4
σ−4 − σ−1) + P µPµ +

√
2P µVµ − V ′µijV ′µij − 3

2
σ−2∂µσ∂

µσ

−1
2
ψ̄µγ

µνρDνψρ − 3
2
σ−2ψ̄ /D

′
ψ − 3

2
iσ−2ψ̄γµγρψµ∂ρσ

−1
8
iσ−1ψ̄µγ

µνρσψνGρσ − 1
4
iσ−1ψ̄µψνG

µν − 1
4
σ−2ψ̄µγ

µνρψGνρ

+1
2
σ−2ψ̄µγνψG

µν − 1
8
iσ−3ψ̄γ ·Gψ + 1

2
√

2
ψ̄iµγ

µνρψjνPρδij

− 1
24
σ−2ψ̄µγ

µνρσλψνHρσλ + 1
4
σ−2ψ̄µγνψρHµνρ

−1
6
iσ−3ψ̄µγ

µνρσψHνρσ + 1
2
iσ−3ψ̄µγνρψHµνρ − 5

24
σ−4ψ̄γ · Hψ

+ 1
4
√

2
igσ−2ψ̄iµγ

µνψjνδij + 1
2
√

2
igσψ̄iµγ

µνψjνδij − 1√
2
gψ̄iµγ

µψjδij

+ 1√
2
gσ−3ψ̄iµγ

µψjδij − 1
4
√

2
igσ−1ψ̄iψjδij − 5

4
√

2
igσ−4ψ̄iψjδij , (5.9)

where Hµνρ is defined as

Hµνρ = Bµνρ + 3
2
C[µGνρ] + 1

2
gEµνρ . (5.10)

This Lagrangian is invariant under the transformation rules given in (4.20), where the un-
derlined fields are now to be evaluated using the deformed expressions, (5.2) to (5.6).

This theory has a U(1)V ×U(1)C gauge group parametrized by λ and η respectively. The
fermion covariant derivatives are defined in (4.18) and contain Vµ. The gauge transformations
of the relevant fields are given by

δλVµ = ∂µλ , δηCµ = ∂µη ,

δλψ
i
µ = 1

2
λδijψµj , δλψ

i = 1
2
λδijψj . (5.11)
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5.2 Einstein-Maxwell Supergravity

In this subsection, we will eliminate the auxiliaries Vµ, V
′
µ
ij, N and Pµ, present the dualization

of the 2-form gauge field Bµν to a vector field C̃µ and discuss the resulting on-shell theory. We
will show that the on-shell theory describes Einstein-Maxwell supergravity as constructed in
[3].

Let us start with the field equations for N and V ′µ
ij

0 = 2N + g(σ−2 + 2σ) , (5.12)

0 = V ′µ
ij + 3

4
σ−2ψ̄iγµψ

j . (5.13)

Using these two field equations in (5.9), we obtain the following Lagrangian (up to 4-fermion
terms)

e−1L2 = 1
2
R + g2(2σ−1 + σ2)− 3

2
σ−2∂µσ∂

µσ − 1
4
σ−2GµνG

µν

−1
6
σ−4HµνρHµνρ + P µPµ +

√
2P µVµ − 2gCµP

µ

−1
2
ψ̄µγ

µνρDνψρ − 3
2
σ−2ψ̄ /D

′
ψ − 3

2
iσ−2ψ̄γµγρψµ∂ρσ

−1
8
iσ−1ψ̄µγ

µνρσψνGρσ − 1
4
iσ−1ψ̄µψνG

µν − 1
4
σ−2ψ̄µγ

µνρψGνρ

+1
2
σ−2ψ̄µγνψG

µν − 1
8
iσ−3ψ̄γ ·Gψ + 1

2
√

2
ψ̄iµγ

µνρψjνPρδij

− 1
24
σ−2ψ̄µγ

µνρσλψνHρσλ + 1
4
σ−2ψ̄µγνψρHµνρ

−1
6
iσ−3ψ̄µγ

µνρσψHνρσ + 1
2
iσ−3ψ̄µγνρψHµνρ − 5

24
σ−4ψ̄γ · Hψ

+ 1
4
√

2
igσ−2ψ̄iµγ

µνψjνδij + 1
2
√

2
igσψ̄iµγ

µνψjνδij − 1√
2
gψ̄iµγ

µψjδij

+ 1√
2
gσ−3ψ̄iµγ

µψjδij − 1
4
√

2
igσ−1ψ̄iψjδij − 5

4
√

2
igσ−4ψ̄iψjδij , (5.14)

where

Dµψ
i =

(
∂µ + 1

4
ωµ

abγab

)
ψi − 1

2
Vµδ

ijψj . (5.15)

Before proceeding it is useful to dualize the 2-form Bµν to a vector C̃µ. We do this by
adding a Lagrange multiplier term

L′ = −1
6
εµνρσλBµνρ∂σC̃λ . (5.16)

This Lagrange multiplier introduces another U(1) symmetry in the theory which we will
denote U(1)C̃ and which is parametrized by η̃. Since the Bianchi identity ∂[µBνρσ] = 0 is
now imposed by the field equation for C̃µ, we can treat Bµνρ as an independent field and
compute its field equation. Taking both the Lagrangian (5.14) and the Lagrange multiplier
term into account, the field equation for Bµνρ reads

Hµνρ = −1
2
σ4e−1εµνρσλ∂σC̃λ − 1

8
σ2ψ̄σγ

µνρσλψλ + 3
4
σ2ψ̄[µγνψρ]

+1
2
iσ−3ψ̄σγ

µνρσψ + 3
2
iσψ̄µγνρψ − 5

8
ψ̄γµνρψ (5.17)
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or, using (5.10),

Bµνρ = Hµνρ − 3
2
C [µGνρ] − 1

2
gEµνρ

= −1
2
σ4e−1εµνρσλ∂σC̃λ − 3

2
C [µGνρ] − 1

2
gEµνρ − 1

8
σ2ψ̄σγ

µνρσλψλ

+3
4
σ2ψ̄[µγνψρ] + 1

2
iσ−3ψ̄σγ

µνρσψ + 3
2
iσψ̄µγνρψ − 5

8
ψ̄γµνρψ . (5.18)

From (5.17) we can read of the transformation rule for C̃µ

δC̃µ = −1
2
iσ−2ε̄ψµ + 1

2
σ−3ε̄γµψ . (5.19)

Using (5.18), the Lagrangian now reads (up to 4-fermion terms)

e−1(L2 + L′) = 1
2
R + g2(2σ−1 + σ2) + P µPµ +

√
2P µVµ − 3

2
σ−2∂µσ∂

µσ

−1
4
σ−2GµνG

µν − 1
2
σ4∂[µC̃ν]∂

µC̃ν − 2gCµP
µ + 1

4
e−1εµνρσλGµνCρ∂σC̃λ

+ 1
12
ge−1εµνρσλEµνρ∂σC̃λ − 1

2
ψ̄µγ

µνρDνψρ − 3
2
σ−2ψ̄ /Dψ

−3
2
iσ−2ψ̄γµγρψµ∂ρσ − 1

8
iσ−1ψ̄µγ

µνρσψνGρσ − 1
4
iσ−1ψ̄µψνG

µν

−1
4
σ−2ψ̄µγ

µνρψGνρ + 1
2
σ−2ψ̄µγνψG

µν − 1
8
iσ−3ψ̄γ ·Gψ

+ 1
2
√

2
ψ̄iµγ

µνρψjνPρδij − 1
4
iσ2ψ̄[µψν]∂

µC̃ν − 1
8
iσ2ψ̄µγ

µνρσψν∂ρC̃σ

−σψ̄[µγν]ψ∂
µC̃ν + 1

2
σψ̄µγ

µνρψ∂νC̃ρ + 5
8
iψ̄γµνψ∂

µC̃ν

+ 1
4
√

2
igσ−2ψ̄iµγ

µνψjνδij + 1
2
√

2
igσψ̄iµγ

µνψjνδij − 1√
2
gψ̄iµγ

µψjδij

+ 1√
2
gσ−3ψ̄iµγ

µψjδij − 1
4
√

2
igσ−1ψ̄iψjδij − 5

4
√

2
igσ−4ψ̄iψjδij . (5.20)

Let us now consider the field equations for Vµ and Eµνρ

0 = P µ + 1
4
√

2
ψ̄iνγ

µνρψjρδij − 3
4
√

2
σ−2ψ̄iγ

µψjδ
ij , (5.21)

0 = εµνρσλ∂µ

(
Pν + 1√

2
Vν − gCν − 1

2
gC̃ν + 1

4
√

2
ψ̄τi γντξψ

ξ
jδ
ij
)
. (5.22)

The latter equation implies that

Pµ = ∂µφ− 1√
2
Vµ + gCµ + 1

2
gC̃µ − 1

4
√

2
ψ̄τi γµτξψ

ξ
jδ
ij, (5.23)

where φ is a Stueckelberg scalar that transforms under U(1)V × U(1)C × U(1)C̃ as

δgφ = 1√
2
λ− gη − 1

2
gη̃ . (5.24)

We can break the gauge group down to U(1)2 by fixing the Stueckelberg scalar to a constant
φ = φ0 . If we now use (5.23) in combination with (5.21) we obtain

Vµ =
√

2g(Cµ + 1
2
C̃µ)− 3

4
σ−2ψ̄iγµψ

jδij (5.25)

and find a decomposition law for the U(1) parameters

λ =
√

2g(η + 1
2
η̃) . (5.26)
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Using this in the Lagrangian given in (5.20) we find that the on-shell theory is given, up to
4-fermion terms, by

e−1LEM = 1
2
R + g2(2σ−1 + σ2)− 3

2
σ−2∂µσ∂

µσ − 1
4
σ−2GµνG

µν

−1
2
σ4∂[µC̃ν]∂

µC̃ν + 1
4
e−1εµνρσλGµνCρ∂σC̃λ

−1
2
ψ̄µγ

µνρ∇̃νψρ − 3
2
σ−2ψ̄ /̃∇ψ

−3
2
iσ−2ψ̄γµγρψµ∂ρσ − 1

8
iσ−1ψ̄µγ

µνρσψνGρσ − 1
4
iσ−1ψ̄µψνG

µν

−1
4
σ−2ψ̄µγ

µνρψGνρ + 1
2
σ−2ψ̄µγνψG

µν − 1
8
iσ−3ψ̄γ ·Gψ

−1
4
iσ2ψ̄[µψν]∂

µC̃ν − 1
8
iσ2ψ̄µγ

µνρσψν∂ρC̃σ − σψ̄[µγν]ψ∂
µC̃ν

+1
2
σψ̄µγ

µνρψ∂νC̃ρ + 5
8
iψ̄γµνψ∂

µC̃ν

+ 1
4
√

2
igσ−2ψ̄iµγ

µνψjνδij + 1
2
√

2
igσψ̄iµγ

µνψjνδij − 1√
2
gψ̄iµγ

µψjδij

+ 1√
2
gσ−3ψ̄iµγ

µψjδij − 1
4
√

2
igσ−1ψ̄iψjδij − 5

4
√

2
igσ−4ψ̄iψjδij , (5.27)

where

∇̃µψ
i
ν =

(
∂µ + 1

4
ωµ

abγab

)
ψiν − 1√

2
g(Cµ + 1

2
C̃µ)δijψνj ,

∇̃µψ
i =

(
∂µ + 1

4
ωµ

abγab

)
ψi − 1√

2
g(Cµ + 1

2
C̃µ)δijψj . (5.28)

From (5.11) we find that ψiµ transforms under the remaining gauge symmetry as

δgψ
i
µ = 1√

2
g(η + 1

2
η̃)δijψµj ,

δgψ
i = 1√

2
g(η + 1

2
η̃)δijψj . (5.29)

The theory given in (5.27) describes Einstein-Maxwell Supergravity constructed in [3].
It consists of the fields {eµa, Cµ, ψµi, σ, C̃µ, ψi} accounting for 20 + 20 on-shell degrees of
freedom. The supersymmetry transformation rules, up to 3-fermion terms, are

δeµ
a = 1

2
ε̄γaψµ ,

δψiµ = (∂µ + 1
4
ωµ

abγab)ε
i − 1√

2
g(Cµ + 1

2
C̃µ)δijεj − 1

6
√

2
ig(σ−2 + 2σ)γµδ

ijεj

+ 1
12
iσ−1(γµ

νρ − 4δνµγ
ρ)(Gνρ + σ3∂[νC̃ρ])ε

i ,

δCµ = −1
2
iσε̄ψµ + 1

2
ε̄γµψ,

δσ = 1
2
iε̄ψ ,

δC̃µ = −1
2
iσ−2ε̄ψµ + 1

2
σ−3ε̄γµψ ,

δψi = −1
2
i/∂σεi − 1

12
γµν(Gµν − 2σ3∂µC̃ν)ε

i + 1
3
√

2
g(σ2 − σ−1)δijεj . (5.30)

The theory has a U(1)×U(1) gauge symmetry parametrized by η and η̃. The gauge transfor-
mation rules for the gauge vectors and the fermions are given in (5.11) and (5.29) respectively.
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5.3 Truncation to Minimal Gauged On-Shell Supergravity

In this subsection we show that we can consistently truncate the fields (σ, ψi, C̃µ) to obtain
on-shell pure gauged D = 5, N = 2 supergravity [3].

Consider the field equation for σ

0 = 3σ−22σ − 3σ−3∂µσ∂
µσ + 1

2
σ−3GµνG

µν − 2σ3∂[µC̃ν]∂
µC̃ν

+1
8
iσ−2ψ̄µγ

µνρσψνGρσ + 1
4
iσ−2ψ̄µψνG

µν − 1
2
iσψ̄[µψν]∂

µC̃ν

−1
4
iσψ̄µγ

µνρσψν∂ρC̃σ + 2g2(σ − σ−2)− 1
2
√

2
igσ−3ψ̄iµγ

µνψjνδij

+ 1
2
√

2
igψ̄iµγ

µνψjνδij + (ψi-terms) (5.31)

and the field equation for ψi

0 = −3
2
iσ−2γµγνψiµ∂νσ − 1

4
σ−2γµνρψiµGνρ + 1

2
σ−2γµψ

i
νG

µν

+1
2
σγµνρψiµ∂νC̃ρ − σγ[µψ

i
ν]∂

µC̃ν + 1√
2
gγµψ

µ
j δ

ij

− 1√
2
gσ−3γµψ

µ
j δ

ij + (ψi-terms) , (5.32)

both up to 4-fermion terms. From these equations and from the transformation rules of σ
and ψi in (5.30), we observe that one can consistently eliminate the matter fields (σ, ψi, C̃µ)
by setting σ = 1, ψi = 0 and C̃µ − Cµ = ∂µa, where a is a Stueckelberg scalar. The gauge
transformation of a is given by

δga = η − η̃ . (5.33)

We can break the U(1) × U(1) gauge symmetry down to U(1) by setting a to a constant
a = a0. This implies

Cµ = C̃µ , η = η̃ . (5.34)

Performing this truncation in (5.27) we obtain the on-shell Lagrangian for pure gauged
D = 5, N = 2 supergravity

e−1LEM |σ=1,ψ=0 = 1
2
R + 3g2 − 3

8
GµνG

µν + 1
8
e−1εµνρσλCµGνρGσλ

−1
2
ψ̄µγ

µνρ∇νψρ − 3
8
iψ̄µψνG

µν − 3
16

iψ̄µγ
µνρσψνGρσ

+ 3
4
√

2
igψ̄iµγ

µνψjνδij , (5.35)

where we defined

∇µψ
i
ν =

(
∂µ + 1

4
ωµ

abγab

)
ψiν − 3

2
√

2
gCµδ

ijψνj . (5.36)

This Lagrangian is invariant under the transformation rules for eaµ, ψiµ and Cµ given in (5.30)

with σ = 1, ψi = 0 and C̃µ = Cµ.
The Lagrangian (5.35) agrees completely with the result obtained in [3]. Another off-shell

action is obtained in [6, 11] by coupling the Standard Weyl Multiplet to a Hypermultiplet
compensator. After elimination of the auxiliaries and decoupling of the matter fields, these
results also agree with ours.
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6 Conclusions

In this paper we have constructed the complete (bosonic and fermionic) off-shell action for
minimal gauged D = 5, N = 2 Poincaré supergravity. We obtained this action by using the
methods of superconformal tensor calculus. We first constructed the pure (ungauged) theory
by constructing the superconformal action for a Linear Multiplet in the background of the
Standard Weyl Multiplet (3.7). This action is trivial unless we add the superconformal action
of a Vector Multiplet, also in the Standard Weyl background. Eliminating the Standard Weyl
matter fields via the field equations of the Vector Multiplet components, we arrived at the
superconformal action for the Linear Multiplet in a Dilaton Weyl background. By fixing the
redundant symmetries (D, K, S) we obtained the pure off-shell Poincaré action (4.16).

In a next step we used the internal vector of the Dilaton Weyl Multiplet to gauge the
theory. We started again with the sum of a Linear and Vector Multiplet action, both in a
Standard Weyl background, and added a superconformal coupling proportional to g between
the Linear and Vector Multiplets. Eliminating again the Standard Weyl matter fields via the
field equations of the Vector Multiplet components, we observed that the original expressions
get deformed by g-dependent terms. After fixing the redundant symmetries we obtained the
off-shell action for minimal gauged D = 5, N = 2 Poincaré supergravity (5.9). After solving
for the auxiliaries and dualizing the 2-form Bµν to a vector C̃µ, we showed that the resulting
theory (5.27) is Einstein-Maxwell supergravity as constructed in [3] via the Noether method.
We also showed that the field equations and transformation rules allow to truncate σ, ψi

and C̃µ. After truncation we ended up with the action of pure on-shell supergravity [3].
It would be interesting to investigate the extension of our result with the Weyl squared

off-shell invariant LW 2 constructed in [11]. This superconformal invariant is constructed in
the Standard Weyl background and can be added to our result to yield

LL + LV + gLV L + 1
M2LW 2 , (6.1)

with 1/M2 some arbitrary parameter. Computing the field equations for the vector field com-
ponents we obtain expressions for the Standard Weyl fields that now also get contributions
proportional to 1/M2. Using these expressions and gauge fixing the redundant symmetries
we obtain a higher derivative extension of our gauged result. It is interesting to note that the
CS term C∧ tr(R∧R) now contains the internal vector of the Dilaton Weyl Multiplet. Since
this resulting theory is in the Dilaton Weyl background it is interesting to study if it is pos-
sible to further extend this theory by including the Riemann squared invariant constructed
in [13].

Another interesting problem is to study the matter couplings of our new off-shell Poincaré
theory. It is well known that the D = 5, N = 2 Poincaré supergravity coupled to n Vector
Multiplets goes under a specific geometrical structure, the so called ‘very special geometry’ [2,
18]. In rigid theory, the scalars of the Vector Multiplets stay unconstrained. In supergravity,
however, the gauge fixing condition for the dilatation invariance restricts the scalars to form
a very special real manifold. Similarly, when considering the Hypermultiplet couplings of
the theory, the scalars parametrize a hyper-Kähler manifold for rigid supersymmetry. In
supergravity, the gauge fixing conditions remove four compensating scalars resulting in a
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quaternionic Kähler geometry [6, 7]. In our construction, however, the gauge fixing takes
place via either the elements of the Dilaton Weyl Multiplet or the elements of the Linear
Multiplet. Hence, it would be interesting to study how the constraint on the scalars of the
Vector Multiplets or Hypermultiplet arises and to show how our off-shell formulation gives
rise to the same on-shell theory as constructed in [5, 6].
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