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Abstract

CoRR abs/1004.2626 states a necessary and sufficient condition,
SIM-HC, for the existence of a perfect matching in an overlapping
bipartite graph, a so-called simultaneous (perfect) matching, a gen-
eralization of Hall’s marriage theorem. A suprisingly small coun-
terexample shows that the condition is not sufficient. A short proof
of the necessity of the condition is given here, and the culprit in the
original proof is identified.



On (an error in) the Simultaneous Hall

Condition∗

Kevin Fockaert
KU Leuven

Laurent Janssens
KU Leuven

Bart Demoen
KU Leuven

Abstract

[1] states a necessary and sufficient condition, SIM-HC, for the exis-
tence of a perfect matching in an overlapping bipartite graph, a so-called
simultaneous (perfect) matching, a generalization of Hall’s marriage theo-
rem. A suprisingly small counterexample shows that the condition is not
sufficient. A short proof of the necessity of the condition is given here,
and the culprit in the original proof is identified.

1 Introduction

Problems with overlapping all different constraints occur all the time1, and they
have been studied extensively. A nice survey about the all different constraint
can be found in [5]. A necessary and sufficient condition (SIM-HC) for the
existence of a solution for a set of overlapping all different constraints would
generalize the famous Marriage Theorem by P. Hall [3]. [1] proves such a SIM-
HC for the existence of a perfect matching in an overlapping bipartite graph,
a so-called simultaneous (perfect) matching, i.e. a solution for two overlapping
all different constraints. We refer to that paper often, in particular its Theorem
2 and use freely its notation: the interested reader should have [1] handy - or
the version at CoRR [2].

We report here on a counterexample to the main theorem in [1] Theorem 2.
Only while writing down this report, we became aware of the PhD thesis [4] of
one of the co-authors of [1] in which the author shows a different (larger) coun-
terexample to that particular theorem: so the (negative) result was previously
known, but we arrived at it independently.

We think it is important to expose the (negative) result better. It is indeed
very tempting to trust [1]: it was written by respectable researchers, peer-
reviewed, and impenetrable. Exposure of the inaccuracy of Theorem 2 could
encourage other researchers to search for and discover the correct version of

∗This research was carried out in the context of a bachelor’s thesis by the first two authors,
in partial fulfilment of the requirements for the degree of Bachelor in Informatics, and under
the supervision of the third author

1E.g. Sudoku, Latin Square, and most scheduling problems.
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that theorem, and not try to prove new results starting from a flawed theorem.
Moreover, we feel like exposing the (negative) result because two years after
(at least a subset of) the authors of [1] themselves became aware of the flaw
in their Theorem 2, they have not yet amended their CoRR version with a
caveat about the theorem.

We also want to report on how we found the counterexample: exploratory
programming played an important role. Exploratory programming is often de-
fined as a technique within software engineering, but it is also a very valid and
useful tool in the discovery and validation of (potential) theorems.

This report is structured as follows: Section 2 explains the theorem for which
a counterexample was found. Section 3 shows the counterexample. Section 4
tries to pinpoint where the proof of Theorem 2 goes wrong. Section 5 explains
how the counterexample was found.

2 Theorem 2 in [1]
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In the figure at the right, we have drawn part of the
bipartite graph (A ∪B,E) about which Theorem 2
speaks: we have the arcs as an arrow in order to make
the mapping N more apparent. The set of nodes A
is the union of two non-empty overlapping sets S and
T . [1] introduces the following notation:

• for P ⊆ A: PS = P ∩ (S \ T ) and
PT = P ∩ (T \ S)

• for P ⊆ A: N(P ) = {v|∃u : (u, v) ∈ P}

• |P | denotes the number of elements in a set P

In the figure, PS = {a, b} and PT = {f, g, h, i}
In what follows, SIM-BM means Simultaneous Bipartite Matching. We now
state

(Erroneous) Theorem 2 from [1]: (Simultaneous Hall Condition (SIM-
HC)). Let G =< A ∪ B,E > and sets S, T be an overlapping bipartite graph.
There exists a SIM-BM, iff |N(P )|+ |N(PS) ∩N(PT )| ≥ |P | ∀P ⊆ A.

In Section 3 we give a counterexample to the if part of the above non-
theorem. A quick proof of the only if part is given below - just to be on the safe
side, it is formulated explicitly:
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Theorem 2.1. If G has a SIM-BM, then
∀P ⊆ A, |P | ≤ |N(P )|+ |N(PS) ∩N(PT )|. 2

Proof Let there be a SIM-BM M for G: M is a function that maps elements
of A to elements of B. Then define SameT as follows:

SameT = {t ∈ AT |∃s ∈ AS ,M(t) = M(s)}
Then M is a perfect match from (A \ SameT ) to N(A). So, by Hall’s theorem
we have |A \ SameT | ≤ |N(A).
Since SameT ⊂ A, we have |A \ SameT | = |A| − |SameT |, and since also
|M(SameT )| = |SameT |, we derive |A| ≤ |N(A)|+ |M(SameT )|
Finally, since M(SameT ) ⊆ (N(AS) ∩N(AT )), we derive:

|A| ≤ |N(A)|+ |N(AS) ∩N(AT )|
Since A has a SIM-BM, every subset P of A has one as well, and satisfies

the same inequality. In summary, we have
∀P ⊆ A, |P | ≤ |N(P )|+ |N(PS) ∩N(PT )|

3 The counterexample

The following is a CLP-like specification of the counterexample:

dom(U,[1,2]), dom(V,[1]), dom(X,[1,2,3]), dom(Y,[1,3]),
alldiff([U,V,X]), alldiff([V,X,Y])

In terms of [1], {U,V,X,Y} equals the set A, {1,2,3} equals the set B, S =
{U,V,X} and T = {V,X,Y}. Figure 1 shows it at the left. One can check that
it satisfies SIM-HC.
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Figure 1: At the left the example; the other two show propagation at work

V has only one neighbour, so one can remove edge (V,1). That results in
the graph in the middle. Then U and Y both have only one neighbour, and the
result is at the right: there remain no possibilities for X.

To see that the initial graph satisfies SIM-HC, it sufficies to notice that

• for P ⊂ A with |P | = 1, N(P ) contains at least one element

2We formulate it this way because we became acquainted with Hall’s theorem by a formula
containing |P | at the left side. The formulation in [3] uses natural language expressing the
same.
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• for P ⊂ A with |P | = 2, N(P ) contains at least two elements

• for P ⊂ A with |P | = 3, N(P ) contains always three elements

• for P = A we have |P | = 4, |N(P )| = 3 and |N(PS)∩N(PT )| = |{1}| = 1

In all cases |P | ≤ |N(P )|+ |N(PS) ∩N(PT )|.

4 Where does the proof in [1] go wrong ?

The proof of the if-part of the theorem clearly does not work.
Take the example in 1: Case 1 of [1] does not apply to it. Consider in Case

2 P = {V }, then the resulting graph Q is exactly the graph in the middle of
Figure 1. It clearly does not satisfy SIM-HC: it suffices to take (in this new
graph) P = {U,X, Y }.

This means that the analysis in Case 2 must be incorrect.
One problem with checking the proof in [1] is that it mixes the if and only-if

part of the statement of the theorem. That results in confusion. However, con-
sider the counterexample, and take in Case 2 of the proof P = {V }: clearly
|P | = |N(P )| + |N(PS) ∩ N(PT )| = 1 as PS = PT = ∅. The graph Q subse-
quently constructed in the proof consists of the edges {(U, 2), (X, 2), (X, 3), (Y, 3)},
i.e. the graph in the middle of Figure 1. Then the proof says (we cite literally)

We claim that the SIM-HC holds also for Q
It is clear that SIM-HC does not hold for Q, so the error is somewhere in

the proof of the claim.
In the proof, it says at some point:

Similarly N(PS ∪ PS′
) = N(PS) ∪NQ(PS′

)

However, PS = ∅, and PS′
= {U} so the statement is equivalent to N({U}) =

NQ({U}); but N({U}) = {1, 2}, while NQ({U}) = {1}, so, apparently, this line
is in error.

5 How the counterexample was derivered

We tried to verify by explorative programming Theorem 2 in [1]. We were
not expecting to find a counterexample, even though some details of the proof
escaped us: we trusted it to be true. We used the following approach:

For a given number of variables V , and domain size D, we first generate
random set S and T of variables so that S ∩ T 6= ∅ and |S ∪ T | = V . We then
associate each variable with domain 1..D. That constitutes the initial constraint
problem CSPu and we continue only if this has a solution.

repeat

copy CSP_u to CSP_s;

randomly remove one value from a domain of a variable in CSP_u;

until not(has_a_solution(CSP_u))
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At the end of this program, we know that CSPs has a solution while CSPu

has not, and that CSPs and CSPu differ only by one domain element for one
variable. So CSPs and CSPu are at the edge of having a SIM-BM or not, and
they are good candidates for checking the necessary and sufficient SIM-HC of
[1]. About 5% of the generated CSPu satisfied the SIM-HC: the counterexample
shown above is just one of them. The program was written in [6].

6 Future Work

We intend to work on establishing a sufficient condition for the existence of a
SIM-BM, and to generalize the condition to more than two overlapping all different
constraints.
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