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A multivariate depth for functional data is defined and studied. By the multi-

variate nature and by including a weight function, it acknowledges important

characteristics of functional data, namely differences in the amount of local

amplitude, shape and phase variation. Both population and finite sample

versions are studied. The multivariate sample of curves may include warping

functions, derivatives and integrals of the original curves for a better overall

representation of the functional data via the depth. A simulation study and

data example confirm the good performance of this depth function.

Keywords: statistical depth, functional data, time warping, multivariate

data.

1 Introduction

Nowadays, functional data are frequently observed and many statistical methods

have been developed to retrieve useful information from these data sets. Typically,

the observed data consist of a set of N curves, each measured at different time points
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t1, . . . , tT . For an overview, see Ramsay and Silverman (2006); Ferraty and Vieu

(2006). Basic questions of interest in functional data analysis (FDA) are (i) the

estimation of the central tendency of the curves, (ii) the estimation of the variability

among the curves, (iii) the detection of outlying curves, as well as (iv) classification

or clustering of such curves.

In this paper we consider multivariate functional data. We observe for all obser-

vation units at each time point a K-dimensional vector of measurements, which arise

from an underlying set of K curves. A popular example is the bivariate gait data set,

which contains the simultaneous variation of the hip and knee angles for 39 children

at 20 equally space time points (Ramsay and Silverman, 2006). Berrendero et al.

(2011) have K = 3 when recording daily temperature functions at 3, 9 and 12cm

below the surface during N = 21 days. Sangalli et al. (2009) and Pigoli and Sangalli

(2012) present several multivariate functional data from medical studies.

Different types of multivariate functional data arise by computing additional

curves, starting from one observed set of univariate functional data. A well-studied

situation is the addition of the first order derivatives which provides additional in-

formation on the shape of the curves and consequently is interesting to detect curves

with an outlying shape (Cuevas et al., 2007). Note that this is different from a com-

mon practice in chemometrics, where observed spectral data are often replaced by

their first-order derivatives in order to eliminate baseline features. Also higher order

derivatives could be added. This has been applied thoroughly in the Berkeley growth

data set (Ramsay and Silverman, 2006), which contains the heights of children and

the estimated acceleration curves that correspond to the second-order derivatives.

In this paper we introduce to the depth calculation the inclusion of other func-

tions of the original set of curves (such as warping functions, derivatives, integrals,. . . )

which allows us to obtain more powerful conclusions about the data-driven process.
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Some interesting functions are obtained from a warping procedure, which often pre-

cedes the analysis of functional data. Typically some warping method (also known

as curve alignment) is applied to the observed curves as a preprocessing step, but

no further information is retained from this analysis. In Slaets et al. (2012) it is

shown how the information from the warping procedure can be incorporated into a

clustering procedure of functional data. In Section 4.3 we show the benefits of a

multivariate analysis of the warped data together with the curves obtained via the

warping function.

A different augmentation of the data is presented in Section 3. It contains the

analysis of a real data set which consists of acceleration signals over time from an

industrial machine (De Ketelaere et al., 2011). Most of the observed curves, see

Figure 1(a), follow a similar nonlinear pattern, but we also notice several curves with

a deviating trend, most prominently at the final stage of the production. Additionally

to these acceleration signals, we do not use their derivatives but rather the integrated

curves as they represent the underlying velocity, see Figure 1(b). Also here, we see a

global structure as well as deviating signals. On both plots we have added the cross-

sectional mean curve, colored orange. Further we have plotted our new estimator for

the central tendency of the curves, shown in dark red color. It is already obvious that

these estimates are less influenced by the outlying curves. For the velocity curves,

the effect is less pronounced as the outlying curves occur in both directions of the

central pattern.

Our approach to estimate the central tendency of multivariate functional data is

based on the concept of depth. Depth functions were initially defined for multivariate

data. They provide an ordering from the center outwards such that the most central

object gets the highest depth value and the least central objects the smallest depth.

More recently, several notions of depth have been proposed for univariate functional
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Figure 1: (a) Acceleration and (b) velocity signals, with cross-sectional mean curve

(in orange) and depth-based median curve (in dark red).

data, such as the Fraiman and Muniz depth (FM, Fraiman and Muniz, 2001), the

h-mode and random projection depth (RP, Cuevas et al., 2007), the band depth and

modified band depth (MBD, López-Pintado and Romo, 2009) and the half-region

depth (López-Pintado and Romo, 2011). The FM depth and MBD depth are quite

similar, as they both consider a (univariate) depth function at each time point t

and define the functional depth as the average of these depth values over all time

points. Cuevas et al. (2007) have proposed to consider the curves and their derivatives,

yielding the bivariate random projection depth (RPD). For a number of random

projections, they project both sets of curves on each direction, apply a multivariate

depth function on the bivariate sample and finally average the depth values over the

random projections.

We generalize several of these ideas by constructing a depth function for K-variate

curve samples, which we define the multivariate functional depth (MFD). Our defini-

tion also averages a multivariate depth function over the time points, but in addition
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it includes a weight function, which accounts for variability in amplitude, to adapt

to the functional nature of the data. More specifically we choose Tukey’s halfspace

depth (Tukey, 1975) as the building block, which leads to the multivariate functional

halfspace depth (MFHD).

The population and finite-sample definition of MFD and MFHD and their main

properties are given in Section 2. We define and characterize the MFHD median,

as the curve with maximal MFHD. In Section 3 we illustrate on the industrial data

set how this new depth concept can be used to estimate the central tendency of the

curves, as well as the variability among the curves. In Section 4 we provide the

results of a simulation study in which we compare several depth functions and several

augmented data sets (such as derivatives and warping functions). Section 5 concludes

and gives directions for further research. All proofs are collected in the Appendix.

2 Definition and properties of multivariate func-

tional depth

2.1 Notation

Consider aK-variate (finiteK), real-valued stochastic process of continuous functions

Y = (Y1, . . . ,YK) with for j = 1, . . . , K, Yj : U → R : t 7→ Yj(t) continuous on a

compact interval U and denote its cumulative distribution by FY . Thus, for every

finite set of time points t1, . . . , tT ∈ U , (Y(t1), . . . ,Y(tT )) is a random variable on(
RK

)T
and at each time point t ∈ U , Y(t) is a K-variate random variable with

associated cumulative distribution function (cdf) FY(t).

Real numbers, vectors, continuous functions on an interval U and vectors of func-

tions are all used in conjunction with each other. To avoid confusion, we provide an
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overview of the notation that is used throughout this paper. The set of continuous

functions on U is denoted by C(U). Elements thereof and their graphs are denoted

by capital letters (e.g. X). For K-vectors of continuous functions in C(U)K and their

graphs, bold capital letters are used (e.g. X) or the vector notation (X1, X2, . . . , XK)

where Xi ∈ C(U). The function value of a curve X at a time point t is denoted by

X(t) ∈ R. The vector of function values of an element X in C(U)K at a time point

t is denoted by X(t) = (X1(t), . . . , XK(t)). The empirical cumulative distribution

function based on a sample {Y 1(t), . . . ,Y N(t)} each with the same distribution as

Y(t) is denoted by FY(t),N . For vectors in RK , bold lowercase letters are used (e.g a)

or the vector notation (a1, a2, . . . , aK) ∈ RK . For matrices capital letters early in the

alphabet are used (e.g A), while later letters (e.g. X) are reserved for curves. For

real numbers, lowercase letters are used (e.g. a).

2.2 Population definition

2.2.1 A general multivariate depth as building block

A depth function provides an ordering from the center outwards such that the most

central objects get the highest depth and the least central objects the smallest depth.

Let D(·;FX ) : RK → [0, 1] be a statistical depth function for the probability distri-

bution of a K-variate random vector X with cdf FX , according to Zuo and Serfling

(2000a). Associated with the depth function is the depth region Dα(FX ) at level

α > 0, defined as Dα(FX ) = {x ∈ RK : D(x;FX ) > α}.

The new definition of multivariate functional depth combines the local depths of

Y(t) at each time point t ∈ U and takes the local changes in the amount of variability

in amplitude (vertical variability) into account by including a weight function.

Definition 1. Consider a K-variate stochastic process {Y(t), t ∈ U} on RK with cdf
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FY that generates continuous paths in C(U)K. Let D be a statistical depth function

on RK and α ∈ (0, 1] such that
∫
U
vol{Dα(FY(u))}du ∈ (0,+∞). Take an arbitrary

X ∈ C(U)K. The multivariate functional depth (MFD) of X is defined as

MFD(X;FY , α) =

∫
U

D(X(t);FY(t)) · wα(t;FY(t)) dt, (1)

for a fixed choice of α ∈ (0, 1] with

wα(t;FY(t)) = vol{Dα(FY(t))}
/∫

U

vol{Dα(FY(u))}du.

The weight function wα(t;FY(t)) is proportional to the volume of the depth region

at time point t. This implies that for regions where all curves nearly coincide the

weight is small, heuristically, the order of the curves does not matter much here.

For regions where the amplitude variability is large, there is a visual ordering of the

curves, and the influence of those regions on the functional depth will be large.

While the definition of MFD needs a user-specified value of α, for many cases the

definition does not depend on α. In general, the value of α is irrelevant when at each

time point t the volumes of the depth regions are proportional to a fixed function of

α. For many depth functions, this holds for elliptical symmetric distributions (Zuo

and Serfling, 2000b) at each time point.

In Theorem 1 we show that the multivariate functional depth satisfies some key

properties, adapted to a functional data context, that were put forward by Zuo and

Serfling (2000a). All proofs as well as the conditions are relegated to the Appendix.

Theorem 1. Assume that the depth function D satisfies the four properties listed

in Zuo and Serfling (2000a), i.e. affine invariant, maximal at the center, monotone

relative to the deepest point and vanishing at infinity. Then MFD, as defined in

Definition 1, is a statistical depth function satisfying the following key properties:

(i) Affine invariance (invariance w.r.t. the underlying coordinate system).

MFD(X;FY , α) = MFD(AX(ct+d) + X̃(ct+d);FAY(ct+d)+X̃(ct+d)
, α),
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with AY (ct+d) + X̃(ct+d) the stochastic process {AY( s−d
c
) + X̃( s−d

c
), s ∈ S = [cl +

d, cu+ d]} for any constants c ∈ R0, d ∈ R, any vector of functions X̃ ∈ C(U)K and

any matrix A ∈ RK×K with det(A) ̸= 0, and X̃(ct+d) the curve {s, X̃( s−d
c
)}, with

s ∈ S = [cl + d, cu+ d].

(ii) Maximality at the center. MFD(Θ;FY , α) = supX∈C(U)K MFD(X;FY , α), for any

distribution PY which has a uniquely defined point of symmetry Θ.

(iii) Monotonicity relative to the deepest point. MFD(X;FY , α) 6 MFD(Θ+ a(X −

Θ);FY , α), for any distribution PY with a deepest point Θ and for any a ∈ [0, 1].

(iv) Vanishing at infinity. For 1 6 k 6 K and for a series of curves Yn,k with

limn→∞ |Xn,k(t)| = ∞ for almost all time points t in U : limn→∞ MFD(Xn,k;FY) = 0.

In the original multivariate setting, the fourth property, ‘vanishing at infinity’,

requires that for a vector x ∈ RK the depth of x should converge to 0 for ∥x∥ → ∞.

When a curve behaves in accordance with the sample on the majority of the interval

and converges to infinity near the border, one might not wish to attribute zero depth.

The vanishing at infinity property for functional depth holds as stated in (iv).

2.2.2 Halfspace depth as a building block

In the remainder of the paper we mainly focus on halfspace depth (Tukey, 1975). The

resulting MFD depth is called the multivariate functional halfspace depth (MFHD).

For X a random variable on RK with cumulative distribution function FX and a

vector x ∈ RK the population halfspace depth (Tukey depth) is defined as

HD(x;FX ) = inf
u∈RK ,∥u∥=1

P (u′X > u′x). (2)

It is well known that the halfspace depth regions are compact convex subsets of RK

(Rousseeuw and Ruts, 1999). Theorem 2 of Mizera and Volauf (2002) then guarantees

through the uppersemicontinuity of the depth regions and the compactness of U ,
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together with the closedness and boundedness of the depth regions that the weight

function is well defined. Moreover, at unimodal elliptic symmetric distributions, the

contours of the depth regions coincide with density contours, which implies that the

choice of α in MFHD becomes irrelevant (at least at the population level). We also

choose HD because it satisfies the requirements of a building block for the functional

depth as stated in Theorem 1. Consequently MFHD is affine invariant, maximal at the

point (curve) of symmetry, monotone relative to the deepest point, and vanishing at

infinity. An additional advantage of HD is its robustness with respect to outliers. The

influence function of the HD of any multivariate point in RK is bounded (Romanazzi,

2001) and the deepest point (Tukey median) has a positive breakdown value between

1/(K + 1) and 1/3 at absolutely continuous distributions (Chen and Tyler, 2002).

Finally, fast algorithms exist for the computation of HD at multivariate data, as well

as for the depth regions and the Tukey median (see Section 2.3 for details).

Theorem 2 states the existence of a deepest MFHD curve at absolutely continuous

distributions PY with a unique deepest point at each time point. As a result a MFHD

median can be defined, see Definition 2.

Theorem 2. Assume condition (A.1). Consider the curve Θ which equals at each

time point t the vector in RK with maximum value of HD(·;FY(t)). Then,

1. If the process Y is such that H : U × RK → R : (t,x) 7→ HD(x, FY(t)) is

continuous, then Θ is continuous: Θ ∈ C(U)K.

2. Θ has maximal MFHD: for all X ∈ C(U)K,

MFHD(X;FY , α) 6 MFHD(Θ;FY , α).

3. Any curve Θ̃ ∈ C(U)K with maximal MFHD should have maximal HD at each

time point t, i.e. Θ̃(t) = θ̃t with HD(θ̃t;FY(t)) = maxx∈RK HD(x;FY(t)).
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Definition 2. We define MMFHD(Y) = Θ the MFHD median of Y, in which Θ(t)

is the vector in RK with maximum value of HD(·;FY(t)).

Remark. When uniqueness of the deepest point at each time point is not assumed,

we can define Θ(t) as the center of mass of the set of points in RK with maximum

value of HD(·;FY (t)). In that case we obtain the upper hemicontinuity of the multi-

function t 7→ argmaxxHD(x, FY (t)) = G(t). It might be possible to find conditions

that guarantee that taking the center of mass of the set G(t) ⊂ RK is continuous as

a function of t ∈ U , however, this would lead too far for the present purpose.

2.3 Finite sample definition

2.3.1 A general multivariate depth as building block

In practice one does not observe curves, but rather curve evaluations at a set of time

points t1 < t2 < . . . < tT in U = [t1, tT ], not necessarily equidistant.

Definition 3. For a sample of multivariate curve observations {Y 1(tj), . . . ,Y N(tj); j =

1, . . . , T}, with at each time point t cdf FỸ(t),N , the sample multivariate functional

depth at X ∈ C(U)K is defined by

MFDN(X;α) =
T∑

j=1

D(X(tj);FY(tj),N)wα(tj;FY(tj),N) (3)

with wα(tj;FY(tj),N)

= vol{Dα(FY(tj),N)}(tj+1 − tj−1)/
{ T∑

j=1

vol{Dα(FY(tj),N)}(tj+1 − tj−1)
}
.

The next theorem starts from the curves observed at a grid of time points and

shows that the sample MFD is consistent for the population MFD under some con-

ditions, when both N and T go to infinity.
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Theorem 3. (Consistency) Let Y 1, . . . ,Y N be a sample with the same distribution

as Y ∈ C(U)K with E(Y) finite, satisfying (A.1). We only observe these curves at

time points t1 < t2 < . . . < tT in U from a design generated as in (A.2). It holds that

sup
X∈C(U)K

|MFDN(X;α)−MFD(X;FY , α)| → 0, a.s. P,

as N → ∞ and T → ∞ when the statistical depth D is such that it satisfies the

conditions of Definition 1, as well as (i) supx∈RK

∣∣D(x;FN)−D(x;F )
∣∣ → 0, a.s. P ,

for FN → F as N → ∞ and (ii) P ({x ∈ RK : D(x;F ) = α}) = 0.

In the appendix we show that the finite sample MFDN can be written as a popu-

lation MFD applied to a set of interpolating continuous K-dimensional processes Ỹ ,

see (4), for which it holds that MFDN(X;α) = MFD(X;FỸ,N , α).

2.3.2 Halfspace depth as a building block

As in the population case, we define the finite-sample multivariate functional halfspace

depth (MFHDN) as in Definition 3 with D the sample halfspace depth based on

{Y 1(t), . . . ,Y N(t)} (Tukey, 1975),

HD(x;FY(t),N) =
1

N
min

u∈RK ,∥u∥=1
#{Y n(t), n = 1, . . . , N : u′Y n(t) > u′x(t)}.

The finite-sample Tukey median is defined as the center of gravity of the deepest

depth region. The median curve of the sample {Y 1(tj), . . . ,Y N(tj); j = 1, . . . , T} is

defined as the Tukey median at each time point.

Exact computation of the MFHDN can be done with fast algorithms for the half-

space depth up to dimension K = 4 (Bremner et al., 2008) and the depth contours

up to dimension at least K = 5 (Hallin et al., 2010; Paindavaine and Šiman, 2012).

In this paper we used the R-packages depth and aplpack which implement fast algo-

rithms for bivariate and trivariate data (Rousseeuw and Ruts, 1996, 1998; Rousseeuw
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and Struyf, 1998; Rousseeuw et al., 1999). Approximate halfspace depth in higher

dimensions can be computed by means of the random Tukey depth (Cuesta-Albertos

and Nieto-Reyes, 2008), but it is no longer affine invariant.

3 Example

We illustrate our new depth function on an industrial data set that produces one

part during each cycle (De Ketelaere et al., 2011). The behavior of the cycle as

monitored by an accelerometer provides a fingerprint of the cycle and, related, of the

quality of the produced part. If a deviating acceleration signal occurs, the process

owner should be warned. Figure 2(a) shows the acceleration signal of N = 224 parts

measured during 120ms. Measurements are available every millisecond, hence the

time signal ranges from t1 = 1 up to tT = 120. To augment this univariate data set,

we could consider the derivatives of the curves as additional information, but in this

example, we decided to use the integrated curves instead. As the velocity at time

tj, V (tj) =
∫ tj
−∞ A(t)dt with A(t) the acceleration at time t, we approximated the

velocity by V (tj) ≈ V (tj−1) + {A(tj−1) + A(tj)}/2 starting with V (t1) = 0. Note

that the choice of the integration constant is not important here, due to the affine

invariance of MFHD. The resulting velocity curves are depicted in Figure 2(b). Next,

we performed a bivariate analysis on this data set, and computed the MFHD of all

signals with α = 0.25. The resulting depth values can be visualized by means of

the so-called rainbow plot (Hyndman and Shang, 2010). It shows the curves colored

according to their MFHD value. We first order the curves from maximal to minimal

depth. Then we go from dark red for the deepest curve, to green for the curve

with rank N/2, and move to dark blue for the curve with minimal depth. Such a

representation of the data is in particular useful to visualize potential outliers, as they
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Figure 2: All signals colored according to their bivariate MFHD depth.

are expected to have a lower MFHD depth and consequently should be colored dark

blue. In Figure 2 we see that the extreme outlying curves indeed are all colored dark

blue, which is a confirmation that our depth measure assigns them a low depth value.

Computing the MFHD on the bivariate data (A(t), V (t)) also yields the median

curves, printed in dark red on Figure 1 for the acceleration and velocity curves. We

see that these median curves are not attracted by the outlying values at the end of

the cycle. Also the acceleration estimates in the valleys around time points 50 and

75 are lower than those of the mean curve, illustrating the robustness of the median

curve towards the upward contamination values in these regions. Note that the color

of the mean and the median curve are chosen according to their MFHD. The mean

curve has depth 0.217 which corresponds with the 0.75 quantile of all MFHD values.

The median curve has depth 0.461, whereas the maximal depth among all observed

curves is 0.317.

Apart from estimating the global pattern of the curves, we are interested in the

variability of the curves. Our depth-based approach allows to visualize this dispersion
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by means of the central regions, introduced in López-Pintado and Romo (2009). The

β-central region consists of the band delimited by the [nβ] curves with highest depth.

If we draw the 25%, 50% and 75% central regions, we obtain a representation of the

data as in the enhanced functional boxplot of Sun and Genton (2011). Also here,

we use the color scheme induced by the rainbow plot. Similarly, we can for example

consider the 10%, 50% and 90% central regions. This yields Figures 3(a)–(b) for the

acceleration curves and (c)–(d) for the velocity curves. Obviously, the 90% central

regions contain outlying curves and hence increase the area of that central region.

Based on these central regions, we define for each univariate set of curves their

dispersion curves sβ(t) as the width of the β-central region at each t. These dispersion

curves for β = 0.1, 0.25, 0.5, 0.75 and 0.9 are presented in Figure 4. They clearly

expose the heteroscedasticity of both the acceleration and velocity signals, and they

give an indication of the amount of outlying signals. Note that these curves are defined

on each of the univariate curves, but the underlying computation of the central regions

is based on the bivariate MFHD. The s0.5(t) dispersion curve can be considered as a

kind of functional IQR, as already explained in Sun and Genton (2011). A related

concept, the scale curve, is defined in López-Pintado et al. (2010). It measures the

area of the central region for β ranging from 0 to 1, and could be considered here as

well. Also the notions of β-trimmed mean and β-trimmed variance (as the mean and

variance of all curves in the β-central region), see Fraiman and Muniz (2001), can be

extended in a straightforward way.

4 Simulations

In this section we present four simulations settings each designed to illustrate a

particular aspect of the behavior of MFHD. In all cases, we generate N = 50
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Figure 3: (a)–(b) Central regions for the acceleration curves and (c)–(d) for the

velocity curves.

univariate curves {Y1(t), Y2(t), . . . , YN(t)} from a stochastic process Y , denoted as

the uncontaminated curves {Y (t)}N . Then we replace five curves of {Y (t)}N with

curves sampled from a contaminating stochastic process Yε, yielding a data set

{Y ε
1 (t), Y

ε
2 (t), . . . , Y

ε
N(t)} = {Yε(t)}N with 10% contamination. All curves are eval-
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Figure 4: Dispersion curves for (a) the acceleration and (b) the velocity signals, for

β = 0.1 (red), β = 0.25 (orange), β = 0.5 (green), β = 0.75 (light blue) and β = 0.9

(dark blue).

uated on a grid of T = 100 equispaced time points t1, t2, . . . , tT in [0, 2π]. Each

experiment was replicated 100 times. In a first set of simulations (Section 4.2) we

consider the bivariate MFHD applied on the curves and their derivatives. We com-

pare its behavior with several univariate functional depths and the bivariate random

projection depth. In Section 4.3 we illustrate the advantage of using the warping func-

tions (or a function thereof) as additional curves. First we describe how we evaluate

the performance and robustness of the functional depths.

4.1 Evaluation criteria

ASE of the estimated central curve: the averaged squared scaled distance between

the true and the estimated central curve,

1

T

T∑
j=1

(
m̂Yε(tj)−mY(tj)

sY(tj)

)2

,
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where mY is the central curve of Y , m̂Yε is the estimated central curve, and sY(t) is

the interquartile range of Y(t).

ASE of the estimated dispersion curve: the average squared difference between

the logarithm of the (0.5)-dispersion curves computed on the contaminated and the

uncontaminated data,

1

T

T∑
j=1

(
log

(
sε0.5(tj)

s0.5(tj)

))2

,

where s0.5(t) is the width of the (0.5)-central region of {Y (t)}N as defined in Section 3.

Analogously, sε0.5(t) is the dispersion curve computed from {Yε(t)}N .

Normalized maximum depth of outliers. To have an easily comparable criterion,

we normalize by dividing the maximum depth with the depth of the deepest curve.

Formally, let FDN(Y
ε
n , FYε,N) denote the (finite-sample) functional depth of any of the

curves Y ε
n (t) from {Yε(t)}N , and denote Ic the index set of the contaminated curves

from {Yε(t)}N . Then we consider maxn∈Ic FDN(Y
ε
n , FYε,N)/maxn=1,...,N FD(Y ε

n , FYε,N).

4.2 Simulations with curves and their derivatives

We generate three types of univariate curves, contaminated with 10% outlying curves,

and we evaluate MFHD on the bivariate samples {(Yε(t), Y
′
ε (t))}N . We consider both

α = 1/4 and α = 1/6, resulting in MFHD(1/4) and MFHD(1/6). Since the latter

depth function works with larger depth regions, this could make it less robust. In

both cases the estimated central curve m̂Yε(t) is the MFHD median, as in Definition 2.

We compare the behavior of MFHD on the bivariate samples, first, to three ap-

proaches applied on the univariate curves {Yε(t)}. (1) The cross-sectional average

(CSA): m̂Yε(t) = 1
50

∑50
n=1 Y

ε
n (t). The corresponding depth is the univariate Maha-

lanobis depth, with σ̂Yε(t) the cross-sectional standard deviation,

MD(Yn(t)) =

{
1 +

(
Yn(t)− m̂Yε(t)

σ̂Yε(t)

)2
}−1

.
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(2) The modified band depth (MBD) of López-Pintado and Romo (2009). This cor-

responds with MFD(Yi,Yε) as in (3) with the simplicial depth (Liu, 1990) as depth

function D and with constant weight function wα = 1/T . The curve with largest

MBD is considered as m̂Yε(t). We use the implementation provided in the R package

depthtools. (3) The MFHD with α = 1/4 applied on the univariate curves {Yε(t)}N ,

which we denote by UFHD(1/4). Note that the deepest curve in this case corresponds

with the cross-sectional median.

Next, we compare with the bivariate random projection depth (RPD) of Cuevas

et al. (2007), using the default settings from the implementation in the R package

fda.usc (Febrero-Bande and Oviedo de la Fuente, 2012). Here, the curves and their

derivatives are projected on a random direction, yielding a bivariate sample on which

the (bivariate) modal depth (Cuevas et al., 2006) can be computed for all observations.

The RPD of a curve then corresponds with the average modal depth over 50 random

projections. Note that this approach does not satisfy the affine equivariance property

as stated in Theorem 1.

The functional derivatives are computed using B-splines using the default settings

and the algorithms from the R-package fda.usc.

4.2.1 Simulation setting I: Shifted Outliers

This simulation setting illustrates the behavior of MFHD in cases where the true

curves are homoscedastic and all derivative curves follow the same process. We gen-

erated curves of the form

Y ε
n (t) = (1− cn){a1n sin(t) + a2n cos(t)}+ cn{a1n sin(t) + a2n cos(t) +

1

4
},

where t is a grid of 100 equispaced values on [0, 2π] , cn is 1 for 10% of the curves

and 0 otherwise. The random coefficients a1n and a2n follow independent uniform

18



(a) (b) (c)

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0 1 2 3 4 5 6
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 1 2 3 4 5 6

0
2

4
6

8

(d) (e) (f)

0 1 2 3 4 5 6

−
0.

00
4

−
0.

00
2

0.
00

0
0.

00
2

0.
00

4

0 1 2 3 4 5 6

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

0 1 2 3 4 5 6

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4
0.

6

Figure 5: Simulation settings. Main curves (black) and outliers (red) for the curves

(1st row) and their derivatives (2nd row) for (a),(d) the shifted outliers; (b),(e) the

Gaussian processes; (c),(f) the log-normal processes.

distributions on [0, 0.05]. Figure 5(a) depicts the real (black) and outlying (red)

curves curves and Figure 5(d) the corresponding derivatives.

The first panel in Figure 6 depicts, for each of the functional depth methods, the

ASE of the central curves. CSA is highly influenced by the outlying curves, and RPD

to a lesser extend. The middle panel in Figure 6 depicts the ASE of the dispersion

curve. The effects of the outliers on the CSA estimate of dispersion s0.5(Y
ε
n (t)) is

more muted because the outlying curves are located too far to be included in the set

of 25 curves with largest Mahalanobis depth. RPD contains some large values too.

All other methods perform well on both criteria. The third panel in Figure 6 depicts

the (normalized) maximum depth of outliers. Here again, CSA assigns a high depth

to the outliers. Both univariate functional depths (MBD and UFHD) assign higher
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Figure 6: Setting I: shifted outliers. ASE of the estimated central curve (top), of the

0.5-dispersion curve (middle) and outlier depth (bottom).

depths to the outliers than the bivariate depth functions. The value of α for MFHD

has a negligible effect on all three performance criteria.

4.2.2 Simulation setting II: Gaussian Process

The Gaussian processes Yn(t) ∼ N(µ(t),Σ(t)) are generated as follows. Denote x =

{xi}20i=1 20 equidistant points on [0, 2π]. The covariance kernel of the xi’s is given

by Kxx(i, j) = exp
(
− (xj−xi)

2

2δ2

)
, with δ = 0.25. For the time points t = {tj}100j=1

equidistant on [0, 2π], we define Ktx and Ktt analogously. Then, the weight matrix

for the mean of the process is Km = Ktx(Kxx +D)−1 where D is a diagonal matrix

that directs the heteroscedasticity of the final process, D = Diagi=1,...,20{min((π −

xi)
2, 1)}, so that the variance of the process is minimized at t = π. The mean

function of the regular curves is taken as µ(t) = Km(a1 sin(x) + a2 cos(x)), where
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Figure 7: Setting II: Gaussian processes. ASE of the estimated central curve (top),

of the 0.5-dispersion curve (middle) and outlier depth (bottom).

a1 ∼ U(−2, 2) and a2 ∼ U(−1, 1) are randomly generated. For the outlying curves

we took µ∗(t) = Km(sin(6x) + µ(x)). The covariance matrix of the process is given

by Σ = Ktt −Ktx(Kxx +D)−1K ′
tx. The curves are mildly heteroscedastic, as can be

seen from Figure 5(b).

This configuration was designed to penalize those estimators that do not use the

information from the derivatives of the curves to assign depths. This is particularly

visible in the third panel of Figure 7, where the MBD, CSA and UFHD are unable to

detect the outlying curves. The outliers do not affect the CSA in terms of ASE of the

central and the dispersion curves since the range of the response values is the same

for all curves. Although RPD uses the derivatives, it does not perform well according

to our three evaluation criteria.
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Figure 8: Setting III: log-normal processes. ASE of the estimated central curve (top),

of the 0.5-dispersion curve (middle) and outlier depth (bottom).

4.2.3 Simulation setting III: Log-normal process

Highly heteroscedastic curves are obtained by substituting the normal distribution

in setting II by a log-normal distribution. For a generated sample of curves and

the corresponding derivatives, see Figure 5(c),(f). The difference with the Gaussian

setting is most noticeable in terms of ASE of the central curve (top panel in Figure 8)

where the scales are more than twice as large as compared to Figure 7). Again, RPD

is not estimating the central curve well, and it does not assign low depths to the

outlying curves. MFHD retains its good behavior.

22



4.3 Simulation with warped curves

Warping can make outlying curves more difficult to detect by pulling them towards

the uncontaminated ones. See Figure 9 for an example where outlying curves are

initially visible but are then hidden by the warping process. Here, using a bivariate

approach can help with the ranking of the curves. For MFHD we compare two

bivariate approaches. First, we create a bivariate sample of curves by using the

warped curves together with the individual warping functions. Second, we use as

a bivariate sample of curves the warped curves together with the derivatives of the

warping functions. Adding the curves related to warping alleviates the information

loss induced by the warping procedure.

For the warping functions, our simulation design follows that used in the first

simulation setting of Arrabis-Gil and Romo (2012). The warping functions for the

good curves are generated as explained on their page 405, formula (3.7). The inverse

of

hn(t) =
arctan(βn(2t− 1))

2 arctan(βn)
+ 1/2, t ∈ [0, 1]

with βn equally spaced between 10 and 14 is used as warping function for the outliers.

We use the same amplitude functions for all curves such that the difference in warping

functions corresponds to original curves with different shapes and phases. To make the

results comparable with those of simulation setting I, we use Yn(t) = a1i sin(t/(2π))+

a2i cos(t/(2π)). A sample of curves and warped curves is depicted in Figure 9, together

with the warping functions and their derivatives. For comparison we use two versions

for UFHD: only the unwarped curves, and only the warped curves.

Figure 10 contains a summary of the performance criteria. As expected, once

warped, the outlying curves have no influence on the estimation of the central (or

dispersion curves) and this is visible in the first two panels of Figure 10 where UFHD

has low MSE on both measures. At the same time, warping makes the curves with
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Figure 9: Simulation setting IV. (a) Original curves, (b) warped curves, (c) warping

functions, (d) derivatives of the warping functions. Outlying curves are shown in red.

different shapes similar to the other curves, causing a poor behavior of UFHD on the

warped curves in the third panel. Adding the warping functions, or their derivatives

in a bivariate analysis completely addresses the information loss introduced by the

warping procedure.
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Figure 10: Setting IV. ASE of the estimated central curve (top) and the 0.5-dispersion

curve (middle) and outlier depth (bottom). Using the original curves (yraw), the

warped curves (ywarped) and their warping functions (ht) with derivatives h′
t.

5 Discussion

We have presented a new depth function for multivariate functional data (MFD),

defined as a weighted average of the cross-sectional multivariate depths. It assigns a

ranking to curves from the center outwards, whilst accounting for differences in am-

plitude. Shape and phase variation can be accommodated by including derivatives

and/or warping functions. Interesting theoretical properties and computational ad-

vantages are achieved when using the multivariate halfspace depth, which leads to the

MFHD depth function. The multivariate functional median curve can then be com-

puted explicitly and estimates the central behavior of the curves. MFHD also allows

to visualise and quantify the variability amongst the curves. Simulations have shown
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the benefit of adding derivatives or warping information to univariate curves, and

they have illustrated the better performance of MFHD compared with the bivariate

random projection depth.

Depth functions are regularly used for the classification and clustering of multi-

variate data, see e.g. Ghosh and Chaudhuri (2005), Dutta and Ghosh (2011), Hubert

and Van der Veeken (2010), Jörnsten (2004). This has been extended to the classifi-

cation of functional data, as in Cuevas et al. (2007), López-Pintado and Romo (2006)

and Hlubinka and Nagy (2012). It will be interesting to study the use of MFHD for

the classification of multivariate curves, as well as for the classification of univariate

curves augmented with their derivatives or warping functions. Some preliminary re-

sults indicate that this will indeed be beneficial (Slaets, 2011). Combining MFDH

with the DD-plot of Li et al. (2012) is another interesting topic of further research.

We will also investigate the possible use of MFHD for online quality control.

As illustrated on the data example and in the simulations, MFHD assigns lower

depth to curves which deviate strongly from the majority of the curves. This ro-

bustness towards outliers is inherited from the halfspace depth which is applied at

every time point. It is however well known that other depth functions, such as pro-

jection depth (Zuo, 2003), attain a higher breakdown value and thus could lead to

a more robust MFD. Alternatively one could replace the integral in (1) (or equiva-

lently the average in (3)) by an infimum as proposed in Mosler and Polyakova (2012).

More theoretical and numerical studies are needed to compare these different depth

functions.

A Appendix

Some of this material might later be put in a supplementary materials file. We include

it here to facilitate the review.
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A.1 Assumptions

(A.1) The stochastic process Y has continuous sample paths. That is, for each set

B in the Borel-algebra of RK the function t 7→ PY(t)(B) = P (Y(t) ∈ B) is

continuous in t. The probability PY is absolutely continuous and PY(t) has a

unique deepest point for every t ∈ U .

(A.2) Let the time points come from a design density fT with G(t) =
∫ t

−∞ fT (u)du

such that tj = G−1( j−1
T−1

) and that U = [G−1(0), G−1(1)] is compact. We assume

that fT is differentiable and that inft∈U fT (t) > 0.

A.2 Proofs of Section 2

Lemma 1. Consider a K-variate, real valued stochastic process of continuous func-

tions Y with continuous sample paths on a compact interval U . For an arbitrary

x ∈ RK, the function t 7→ HD(x;FY(t)) is continuous.

Proof. We show that ∀ϵ > 0,∃δ > 0 such that for all t with |t−t1| < δ : |HD(x;FY(t))−

HD(x;FY(t1))| < ϵ. Take t1 ∈ U , x ∈ RK and ϵ > 0 arbitrary but fixed. Since Y(t)

has continuous paths, there exists a δ > 0 such that ∀u ∈ RK with ∥u∥ = 1 and

∀t ∈ U with |t− t1| < δ: |P (u′Y(t1) ≥ u′x)−P (u′Y(t) ≥ u′x)| < ϵ/2, and thus also

inf
u

P (u′Y(t1) > u′x) 6 P (u′Y(t) > u′x) + ϵ/2

inf
u

P (u′Y(t) > u′x) 6 P (u′Y(t1) > u′x) + ϵ/2,

which implies that

inf
u

P (u′Y(t1) > u′x) 6 inf
u

P (u′Y(t) > u′x) + ϵ/2

inf
u

P (u′Y(t) > u′x) 6 inf
u

P (u′Y(t1) > u′x) + ϵ/2.

And thus |HD(x;FY(t))− HD(x;FY(t1))| 6 ϵ/2 < ϵ.
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Lemma 2, below, is applicable for halfspace depth using Lemma 1 and Donoho

and Gasko (1992, Lemma 6.1).

Lemma 2. Consider a K-variate, real valued stochastic process of continuous func-

tions Y with continuous sample paths on a compact interval U . For a depth function D

for which t 7→ D(x;FY(t)) is continuous for all x ∈ RK and for which x 7→ D(x;FY(t))

is upper-semicontinuous for all t ∈ U , the following statement holds. Take Θ ∈

C(U)K. If there exists a t1 ∈ U and a θt1 ∈ RK with D(Θ(t1);FY(t1)) < D(θt1 ;FY(t1))

then there exists an interval [t1 − δ, t1 + δ], δ > 0 on which D(Θ(t);FY(t)) <

D(θt1 ;FY(t)).

Proof. There exist values δ1 > 0 and δ2 > 0 such that ∀a ∈ R with |a−D(Θ(t1);FY(t1))| 6

δ1 and ∀b ∈ R with |b−D(θt1 ;FY(t1))| 6 δ2: a < b. In particular: D(Θ(t1);FY(t1)) +

δ1 < D(θt1 ;PY(t1))− δ2. Since D(·;FY(t1)) is upper semi-continuous on U , there exists

a δ3 > 0: D(x;FY(t1)) 6 D(Θ(t1);FY(t1))+ δ1/2 for |x−Θ(t1)| < δ3. Take x = Θ(t).

Since Θ is a continuous function it holds that for a δ4 > 0, |Θ(t)−Θ(t1)| < δ3 when

|t − t1| < δ4. So far we thus have that D(Θ(t);FY(t1)) + δ1/2 < D(θt1 ;FY(t1)) −

δ2 for |t − t1| < min(δ3, δ4). By the continuity of the function t 7→ D(x;FY(t)) there

exists a δ5 > 0 such that ∀t ∈ U with |t − t1| < δ5: D(Θ(t);PY(t1)) + δ1/2 >

D(Θ(t);FY(t)) and there exists a δ6 > 0, such that for |t− t1| < δ6: D(θt1 ;FY(t1)) 6

D(θt1 ;FY(t)) + δ2. Together this implies that for t with |t − t1| < min(δ3, δ4, δ5):

D(Θ(t);FY(t)) < D(θt1 ;FY(t1)) − δ2 and ∀t with |t − t1| < min(δ3, δ4, δ5, δ6) = δ:

D(Θ(t);FY(t)) < D(θt1 ;FY(t)).

Proof of Theorem 1

Proof. (i) For a depth function D that is affine invariant and since vol{Dα(Y(t))} =

|det(A)|· vol(Dα{AY(t) +X(t))}, the affine invariance also holds for MFD.
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(ii) For a center of symmetry Θ ∈ C(U)K such that PY−Θ = PΘ−Y for a stochastic

process Y , it holds that for each t ∈ U , Θ(t) is a center of symmetry for PY(t). Since

D has maximality at the center, this ends the proof.

(iii) and (iv) are immediate from the assumptions on D.

Proof of Theorem 2

Proof. (1) We use Berge’s maximum theorem (e.g. Abalo and Kostreva, 2005, Cor. 1).

Define the function H : U × RK → R : (t, x) 7→ HD(x, FY(t)) = H(t, x).For H

continuous and by uniqueness of the argmaxx∈RK HD(x, FY(t)) for every t ∈ U , the

continuity of Θ follows.

(2) This holds without assuming uniqueness of the deepest point. For any t ∈

U there exists a point xt in RK with maximum depth for PY(t) (Rousseeuw and

Ruts, 1999, proposition 7). Denote HD(at;FY(t)) = αt. The set of all points with

maximum depth at time t, Dαt(FY(t)), is convex and bounded (Rousseeuw and Ruts,

1999, propositions 1 and 5). The existence of a deepest curve is proven by defining

Θ(t) = θt, the center of mass of Dαt(FY(t)). The convexity of Dαt(FY(t)) guarantees

that θt is a deepest point for all t ∈ U .

(3) We prove by contradiction that a deepest curve implies deepest points at every

t ∈ U . We denote θt = ΘHD(t) the deepest point of PY . Suppose that there exists a

t1 ∈ U with HD(Θ(t1);FY(t1)) < HD(θt1 ;FY(t1)). Because of Lemma 2: ∃δ > 0 with

for |t− t1| < δ: HD(Θ(t);FY(t)) < HD(θt1 ;FY(t)) < HD(θt;FY(t)). This implies that

MFHD(Θ;FY , α) =

∫
U

HD(Θ(t);FY(t))wα(t;FY)dt

<

∫
|t−t1|>δ

HD(ΘHD(t);FY(t))wα(t;FY)dt+

∫ t1+δ

t1−δ

HD(θt;FY(t))wα(t;FY)dt

= MFHD(ΘHD;FY , α),

which is in contradiction with the fact that Θ is a deepest curve.
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Finite sample MFD. Calculation of (3)

In order to apply Definition 1 to the curve observations at a grid of time points,

we use linear interpolation on each interval [tj, (tj + tj+1)/2] to connect the values

(tj, Ynk(tj)) with the average of the function values at time tj in the middle of the time

interval ((tj + tj+1)/2, Ȳk(tj) = N−1
∑N

n=1 Ynk(tj)), for j = 1, . . . , T − 1 and for each

k = 1, . . . , K. Similarly, for j = 1, . . . , T −1, on the interval [(tj+ tj+1)/2, tj+1], linear

interpolation is used to connect the values ((tj + tj+1)/2, Ȳk(tj)) and (tj+1, Ynk(tj+1)).

This yields a sample of continuous K-dimensional processes Ỹn, n = 1, . . . , N on the

interval [t1, tT ] of which the kth component (k = 1, . . . , K) is defined by

Ỹn,k(t) =

 Ynk(tj)
tj+tj+1−2t

tj+1−tj
+ Ȳk(tj)

2(t−tj)

tj+1−tj
for t ∈ [tj, (tj + tj+1)/2]

−Ynk(tj+1)
tj+tj+1−2t

tj+1−tj
− Ȳk(tj)

2(t−tj+1)

tj+1−tj
for t ∈ [(tj + tj+1)/2, tj+1].

(4)

The empirical cumulative distribution function of this sample is denoted by FỸ,N .

Note that the definition of the K-variate processes Ỹn depends on both N and T .

Using the definition of MFD on population level, see (1), with the processes Ỹn, and

the affine invariance of the depth function gives Definition 3. Indeed,

MFD(X;FỸN
, α) =

T−1∑
j=1

{∫ (tj+tj+1)/2

tj

D(X(tj);FYN (tj))
|Aj(t)|volDα(FYN (tj))∫ tT
t1

volDα(FYN (u))du
dt

+

∫ tj+1

(tj+tj+1)/2

D(X(tj+1);FYN (tj+1))
|(−1)KAj(t)|volDα(FYN (tj+1))∫ tT

t1
volDα(FYN (u))du

dt

}
,

where, with IK the identity matrix with K rows,

Aj(t) = Det(
tj + tj−1 − 2t

tj+1 − tj
IK) =

(
tj + tj−1 − 2t

tj+1 − tj

)K

,

implying that∫ (tj+tj+1)/2

tj

|Aj(t)|dt =
∫ tj+1

(tj+tj+1)/2

|(−1)KAj(t)|dt =
tj+1 − tj
2(K + 1)

.

The denominator in the weight function can similarly be written as∫ tT

t1

volDα(FYN (u))du =
T∑

j=1

volDα(FYN (tj))
tj+1 − tj−1

2(K + 1)
.
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Proof of Theorem 3

Proof. On the space of curves in C(U)K we define the uniform distance ρ(X, Y ) =

supt∈U ∥X(t)−Y (t)∥, with ∥·∥ the Euclidean norm in RK . We first show that the func-

tions {Ỹn : U → RK : t 7→ Ỹn,1(t), . . . , Ỹn,K(t), n = 1, . . . , N} for N → ∞ and T →

∞ converge weakly to Y . Since E(Y) is finite, the law of large numbers implies that

for each t ∈ U and for k = 1, . . . , K, Ȳk(t) = N−1
∑N

n=1 Ynk(t)→N→∞E[Yk(t)], a.s.

By the design assumption (A.2), |tj+1−tj| = |(G−1)′(ξj)|/(T−1) = c/(T−1), for a

constant c and ξj in between tj and tj+1. For each t ∈ U there is precisely one interval

[tj, tj+1) that contains t and since the interpolating process agrees with the observed

curve on the time points t1, . . . , tT , it follows that for each value n = 1, . . . , N ,

0 ≤ ρ(Ỹn,Y n) 6 2 sup
|s−t|≤c/(T−1)

∥Y n(t)− Y n(s)∥ = 2wY n(c/(T − 1)),

with wY the modulus of continuity of Y . Since U is compact and each function Y n is

continuous, this function is also uniformly continuous and thus wY n(c/(T + 1)) → 0

as T → ∞. Since the sample of curves is i.i.d. and by Theorems 3.2 and 7.5 of

Billingsley (1999), there is weak convergence of the interpolating processes ỸN to Y

as N → ∞ and T → ∞. It holds that

sup
X∈C(U)K

∣∣∣MFD(X;FỸ,N , α)−MFD(X;FY , α)
∣∣∣ 6 (5)

sup
X∈C(U)K

∫
U

∣∣∣D(X(t);FỸ,N)−D(X(t);FY(t))
∣∣∣ dt+∫

U

∣∣∣wα(t;FỸ(t),N)− wα(t;FY(t))
∣∣∣ dt.

Under the stated assumptions, Theorem 4.1 of Zuo and Serfling (2000b) yields the

a.s. convergence of the α-trimmed regions Dα(FỸ(t),N) to Dα(FY(t)), together with

a nesting property such that for 0 < ϵ < α, Dα(FỸ(t),N) ⊂ Dα−ϵ(FY(t)) for all

t ∈ U . By the dominated convergence, the right-hand side of (5) converges to 0 as

N, T → ∞.
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