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Overview

• Context: Action rule mining

• A weakness of current approaches: 
correlation ≠ causality

• Incorporating causal reasoning in action 
rule mining: A concrete approach

• Experimental validation

• Conclusions



Common setting: 
learning predictive models
• Goal: predict value of target attribute from 

some other attributes

• transductive: make a prediction

• inductive: learn a predictive model

• Much work on this: models in the form of 
if-then-rules, decision trees, ANNs, SVMs, 
probabilistic models, ...



Predictive model: 
decision tree

Service

Sex Rate

0.9 0.2

0.1

0.8 0.5

(example from Yang et al., ICDM 2003)

tree indicates 
loyalty for 

customers in 
different groups

F M

M HL

L H can be used to 
predict loyalty for 

new customer



Predictive model: 
association rule

• Association rule: 

• Suppose wine is bought by 6% of total 
population, but 14% of B&C subpopulation; 
then this rule tells us: people who buy bread 
& cheese are more likely to buy wine

IF bread & cheese THEN wine (14%)



Action mining
Action mining is not concerned with the question:

but, instead, with the question:

Given some values for non-target attributes, 
what’s the most likely value for the target?

Given a desirable value v for the target, how 
should we change the non-target attributes to 

make the target equal to v? 

(e.g., how can we make a customer more profitable?)

Term coined & initial work done by Z. Ras & others



Setting: “cost-effective 
action mining”

• We are given: 

• A set of attributes Ai with domains Di, and cost 
functions Ci: Di × Di →ℝ

• A “target attribute” T with domain DT and profit 
function P:  V →ℝ

• An action A is a set of externally induced changes 
ai→ai’ of attribute values (“interventions”)

• The cost of an action is the sum of the costs of the 
changes: C(A) = ∑(ai→ai’)∈A Ci(ai, ai’)



• Changing one attribute may have an effect on other 
attributes or on the target

• Let t be the original (pre-action) value of the target, and t’ 
the new value

• The profit of an action A is P(t’)-P(t)

• The net profit of A is NP(A)=P(t’)-P(t)-C(A)

• this assumes t’ is known

• The expected net profit of A is ENP(A)=𝑬(P(t’))-P(t)-C(A)

• t’ not known



Action (rule) mining

• Given the Ci and P functions and a dataset D 
⊆ D1×...×Dn×DT

• Find:

• For a given instance x, the action with 
highest ENP [“action mining”, transductive]

• A set of rules that predict for any instance 
x the action with highest ENP [“action 
rule mining”, inductive]



Is it straightforward?

Service

Sex Rate

0.9 0.2

0.1

0.8 0.5

F M

M HL

L H

Fred has high service 
level, high rate;

can we make him 
more loyal?



Is it straightforward?

• Suppose many people buy bread, but few 
buy cheese; and we want to sell more wine 
(high profit).  Can we achieve that by giving 
them cheese for free?

IF bread & cheese THEN wine



It is not straightforward

• The real question is: will changing a value cause 
the target value to change?

• Causal information is necessary!

• Existing methods (e.g., Yang et al.) implicitly assume

• each Ai causally affects T

• no Ai causally affects any Aj, j≠i



bread cheese wine

plans for dinner

bread cheese wine

plans for dinner

Setting 1:
dinner plans affect 
bought products

Setting 2:
promotion affects 

dinner plans



Incorporating causal 
information

• Causal information can be represented as a 
causal network

• Case 1: causal network is available

• Case 2: causal network is not available

B
C

D
E

G

F

T
A



CREAM

• Causal Relationships based Economical Action Mining

• Given a causal network, and a set of interventions (= 
an action), we can compute the effect on T (standard 
algorithm)

• Our task: find the action that results in maximal ENP

• Straightforward approach: try many different actions, 
see how they affect target



CREAM algorithm
Algorithm 1 The CREAM algorithm for learning cost-effective action sets from
causal networks (greedy version).
1 : procedure CREAM (T, O, C, pg, CN )

Input:target attribute T,
object data O,
cost data C,
profit pg,
underlying causal network CN ,

Output: one action set for each object o ∈ O

2 : O− ←{o ∈ O|Pr(T (o) #= tg) > 0}
3 : for each o in O−do
4 : I ← findCandidateActions(o, CN )
5 : Γ← empty action set
6 : repeat
7 : αmax ← argmaxα∈I np(Γ ∪ {α}, o)
8: if np(Γ ∪ {αmax}, o) > np(Γ, o) then
9 : Γ← Γ ∪ {αmax}
10: I← I− {αmax}
11: until I = ∅ or np(Γ ∪ {αmax}, o) ≤ np(Γ, o)
12: assign Γ to o

6 Mining Actions from Observational Data (ICE-
CREAM)

As mentioned before, it is possible to learn causal relationships between at-
tributes from merely non-experimental data to a limited extent. The IC al-
gorithm [8] does exactly this. It returns a partial DAG, in which some edges
have no direction, reflecting the fact that the direction of causality could not be
established in these cases.

Given a dataset without a causal network, one can run an algorithm such
as IC to learn a causal network, then run CREAM to extract optimal actions
from this network. This method, as a whole, is an uninformed action mining
method that we call ICE-CREAM (IC-Enabled CREAM). While this may seem
straightforward, a number of challenges need to be addressed. All of them are
related to the fact that CREAM expects a DAG, but IC returns only a PDAG.
In the following subsection, we discuss these challenges and explain how we
extend CREAM in order to address them. Next, we will discuss ICE-CREAM
as a whole.

6.1 Handling uncertainty
IC returns a partial DAG (PDAG): a graph in which some edges are directed and
others are not, without directed cycles. This PDAG represents a set of DAGs,
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Here greedy (hill-climbing) construction of action; 
an exhaustive version was also implemented.
Will compare CREAM(GS) vs. CREAM(ES).



Case 2: no causal 
information

• CREAM assume a causal network is given

• Usually, this is not the case

• Can we learn the causal network from the 
data?  If yes, problem solved...



ICE-CREAM
• “IC-Enabled CREAM”

• IC, Inductive Causation, is an algorithm for learning 
causal networks from data (Verma & Pearl, 1991)

• Is it actually possible to learn causal relationships by just 
observing data (not intervening)?

• Statistics textbooks: “correlation can be determined 
from observations alone, but causation cannot”

• Pearl (1990-...): In some cases (and under mild 
assumptions), we can determine causation from 
observations!



Inferring causation: the 
basic idea

A B C
A B C
A B C
A B C

A B C

Suppose there is evidence that A and B are directly 
dependent, and B and C too, but no direct connection 
between A and C (could be based on pre-existing 
knowledge, or observations of dependencies)

No direct link between 
A and C; all information 

flow goes through B
4 different causal 

connections possible



Inferring causation: the 
basic idea

A B C A B C

A B C A B C

- A and C correlate
- Fixing B removes correlation

- A and C correlate
- Fixing B removes correlation

- A and C do not correlate
- Fixing B introduces correlation

- A and C correlate
- Fixing B removes correlation

Find a number of cases with the same value for B...



Examples

Sprinkler Rain

Wet

TrafficJam

Late Grumpy

Late ⫫ Grumpy
Late ⫫ Grumpy | TrafficJam

Sprinkler ⫫ Rain
Sprinkler ⫫ Rain | Wet



Partial causal networks

• For some edges in a network, the direction can 
be determined; for others it cannot

• This gives only partial causal information

• How can we deal with that?

B
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D
E

G

F

T
A

What is the effect of A on T?



• The question cannot be answered with certainty: not enough 
information

• But we need to do something with it...

• Our solution: make different guesses of the complete 
network, perform inference in these, combine results.

• Ugly, but no better solution available.
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ICE-CREAM algorithm

• Run IC (actually a variant by Margaritis, 2003) to derive a 
partial causal network

• For any action A, estimate ENP(A) as follows:

• repeat n times:  create a random complete 
network CN consistent with the partial one; 
compute ENP in CN

• return the average of all ENPs thus computed

• Otherwise, same as CREAM



Experiments

• Experiments on some “real” (pre-existing) and 
artificial (created for this purpose) datasets

• For all these datasets, we know the real causal model

• Thus, we can compare:

• methods that ignore causality (e.g., Yang et al.’s)

• methods that use the causal network (CREAM)

• methods that use the estimated, partial causal 
network (ICE-CREAM)



Results

Network CREAM(ES) CREAM(GS) ICE-CREAM(ES) ICE-CREAM(GS) Yang
ChestClinic 0.58 0.58 0.49 0.49 0.41

Fire 0.81 0.81 0.81 0.81 0.80
usa2000 0.75 0.71 0.66 0.59 0.56

Headache * 0.73 0.72 0.71 0.71 0.22
Alarm * 0.56 0.56 0.54 0.54 0.11

Hailfinder * 0.89 0.90 0.80 0.79 0.63
sample7 0.35 0.35 0.34 0.34 0.25

sample15 * 0.39 0.39 0.36 0.36 0.23
sample30 * 0.35 0.37 0.28 0.30 0.14
sample45 * 0.40 0.39 0.35 0.34 0.17

Table 4: Average normalized net profit obtained by CREAM, ICE-CREAM
and Yang’s method on different networks. Asterisks indicate where ES was
interrupted.

for Hailfinder, where it was repeated only 5 times due to its computational
cost): Generate random cost data for the network (according to the procedure
explained above); randomly select 100 objects where T != tg; use each method
to find the most profitable action for each object in the set; report for each
method the average nnp obtained. These results were again averaged over the
10 (or 5) runs with different random costs. The final result is shown in Table 4.

Inspection of the table shows the following.

1. As expected, the results for ICE-CREAM, which is uninformed, are less
good than for the informed CREAM method. However, the difference is
often small. This suggests that ICE-CREAM can be used effectively in
real-world problems.

2. ICE-CREAM outperforms Yang in each network. Again, this is not sur-
prising, given that Yang implicitly relies on strong assumptions about
causality, which seem unrealistic in practice, and are definitely invalid for
the datasets used here.

3. Greedy search works well, in comparison to exhaustive search. On the
four datasets where ES could be completed, GS obtained the same result
in three datasets, and only slightly worse in the fourth (usa2000). This
holds for CREAM as well as for ICE-CREAM.

As said, there are many differences between ICE-CREAM and Yang, so
one may wonder to what extent the improved performance is related to the
use of causal information, and not simply to the fact that the dataset has a
structure that lends itself better to modeling with Bayesian networks (of which
causal networks are an instance) than with decision trees. To check this, we have
learned a Bayesian network and a decision tree on each dataset, and evaluated it
using cross-validation. This type of evaluation tells us how well the used learning
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Average ENP of actions suggested by the method:



Conclusions

• Traditional methods for action rule learning 
make strong assumptions about causality

• Better results are possible by taking real 
causation into account (CREAM)

• It is possible to (incompletely) learn causal 
relationships from data (IC)

• Incorporating limited information about causality 
can give much more accurate action rules


