Incorporating causal reasoning in cost-effective action mining

Hendrik Blockeel Dept. of Computer Science, KU Leuven

Based on P. Shamsinejadbabaki, M.H. Saraee, H. Blockeel, *Causality-based cost-effective action mining*, submitted, 2012

COSTS workshop @ ICDM 2012

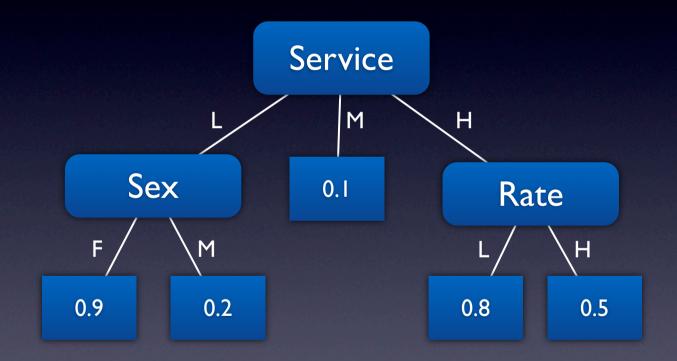
Overview

- Context: Action rule mining
- A weakness of current approaches: correlation ≠ causality
- Incorporating causal reasoning in action rule mining: A concrete approach
- Experimental validation
- Conclusions

Common setting: learning predictive models

- Goal: predict value of target attribute from some other attributes
 - transductive: make a prediction
 - inductive: learn a predictive model
- Much work on this: models in the form of if-then-rules, decision trees, ANNs, SVMs, probabilistic models, ...

Predictive model: decision tree



tree indicates loyalty for customers in different groups

can be used to predict loyalty for new customer

(example from Yang et al., ICDM 2003)

Predictive model: association rule

Association rule:

IF bread & cheese THEN wine (14%)

 Suppose wine is bought by 6% of total population, but 14% of B&C subpopulation; then this rule tells us: people who buy bread & cheese are more likely to buy wine

Action mining

Action mining is not concerned with the question:

Given some values for non-target attributes, what's the most likely value for the target?

but, instead, with the question:

Given a desirable value v for the target, how should we change the non-target attributes to make the target equal to v?

(e.g., how can we make a customer more profitable?)

Term coined & initial work done by Z. Ras & others

Setting: "cost-effective action mining"

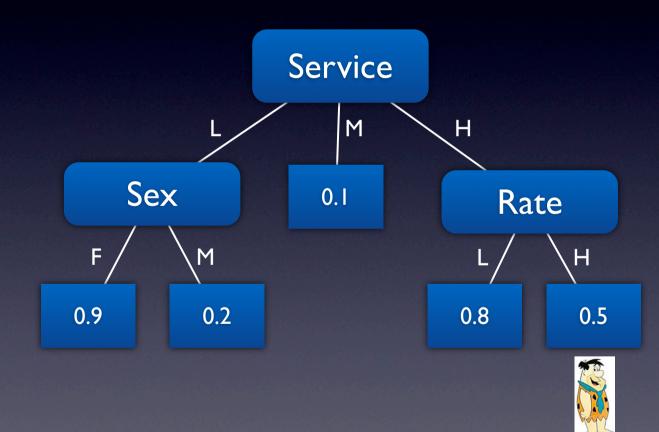
- We are given:
 - A set of attributes A_i with domains D_i , and cost functions $C_i: D_i \times D_i \rightarrow \mathbb{R}$
 - A "target attribute" T with domain D_T and profit function P: $V \rightarrow \mathbb{R}$
- An <u>action</u> A is a set of externally induced changes $a_i \rightarrow a_i$ of attribute values ("interventions")
- The <u>cost</u> of an action is the sum of the costs of the changes: $C(A) = \sum_{(ai \rightarrow ai') \in A} C_i(a_i, a_i')$

- Changing one attribute may have an effect on other attributes or on the target
- Let *t* be the original (pre-action) value of the target, and *t*' the new value
- The profit of an action A is P(t')-P(t)
- The <u>net profit</u> of A is NP(A)=P(t')-P(t)-C(A)
 - this assumes t' is known
- The <u>expected net profit</u> of A is ENP(A) = E(P(t')) P(t) C(A)
 - t' not known

Action (rule) mining

- Given the C_i and P functions and a dataset D $\subseteq D_1 \times ... \times D_n \times D_T$
- Find:
 - For a given instance x, the action with highest ENP ["action mining", transductive]
 - A set of rules that predict for any instance x the action with highest ENP ["action rule mining", inductive]

Is it straightforward?



Fred has high service level, high rate; can we make him more loyal?

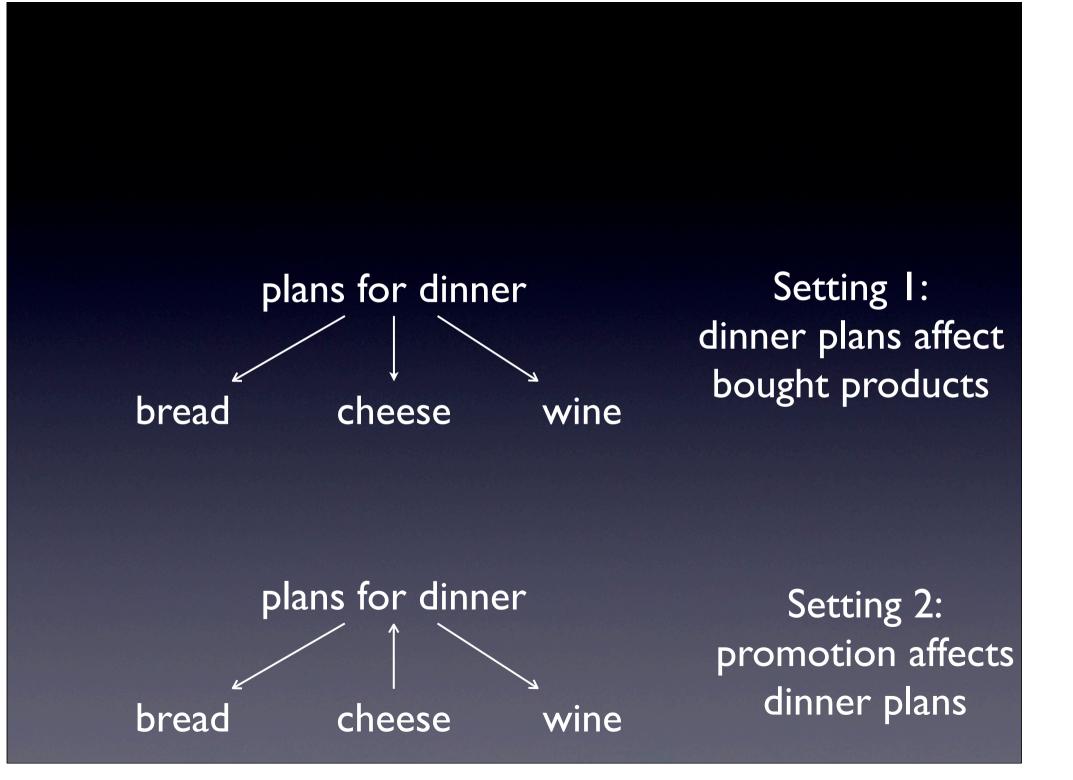
Is it straightforward?

IF bread & cheese THEN wine

 Suppose many people buy bread, but few buy cheese; and we want to sell more wine (high profit). Can we achieve that by giving them cheese for free?

It is not straightforward

- The real question is: will changing a value **cause** the target value to change?
- Causal information is necessary!
- Existing methods (e.g., Yang et al.) implicitly assume
 - each A_i causally affects T
 - no A_i causally affects any A_j , $j \neq i$



Incorporating causal information

- Causal information can be represented as a causal network
- Case I: causal network is available
- Case 2: causal network is not available



CREAM

- Causal Relationships based Economical Action Mining
- Given a causal network, and a set of interventions (= an action), we can compute the effect on T (standard algorithm)
- Our task: find the action that results in maximal ENP
- Straightforward approach: try many different actions, see how they affect target

CREAM algorithm

Algorithm 1 The CREAM algorithm for learning cost-effective action sets from causal networks (greedy version). 1 : procedure CREAM (T, O, C, p_a, CN) Input:target attribute T, object data O, cost data \mathcal{C} , profit p_a , underlying causal network \mathcal{CN} , Output: one action set for each object $o \in O$ $\mathbf{O}^- \leftarrow \{ o \in O | Pr(T(o) \neq t_a) > 0 \}$ 2:for each o in O^-do 3: $\mathbf{I} \leftarrow findCandidateActions(o, CN)$ 4 : 5: $\Gamma \leftarrow \text{empty action set}$ 6:repeat 7: $\alpha_{max} \leftarrow \arg \max_{\alpha \in \mathbf{I}} np(\Gamma \cup \{\alpha\}, o)$ if $np(\Gamma \cup \{\alpha_{max}\}, o) > np(\Gamma, o)$ then 8: $\Gamma \leftarrow \Gamma \cup \{\alpha_{max}\}$ 9: $\mathbf{I} \leftarrow \mathbf{I} - \{\alpha_{max}\}$ 10: until $\mathbf{I} = \emptyset$ or $np(\Gamma \cup \{\alpha_{max}\}, o) \leq np(\Gamma, o)$ 11: 12:assign Γ to o

Here greedy (hill-climbing) construction of action; an exhaustive version was also implemented. Will compare CREAM(GS) vs. CREAM(ES).

Case 2: no causal information

- CREAM assume a causal network is given
- Usually, this is not the case
- Can we *learn* the causal network from the data? If yes, problem solved...

ICE-CREAM

- "IC-Enabled CREAM"
- IC, Inductive Causation, is an algorithm for learning causal networks from data (Verma & Pearl, 1991)
- Is it actually possible to learn causal relationships by just observing data (not intervening)?
 - Statistics textbooks: "correlation can be determined from observations alone, but causation cannot"
 - Pearl (1990-...): In some cases (and under mild assumptions), we can determine causation from observations!

Inferring causation: the basic idea

Suppose there is evidence that A and B are directly dependent, and B and C too, but no direct connection between A and C (could be based on pre-existing knowledge, or observations of dependencies)

A-B-C

No direct link between A and C; all information flow goes through B $A \longrightarrow B \longrightarrow C$ $A \leftarrow B \leftarrow C$ $A \leftarrow B \rightarrow C$ $A \leftarrow B \rightarrow C$ $A \rightarrow B \leftarrow C$

4 different causal connections possible

Inferring causation: the basic idea

Find a number of cases with the same value for B...

 $A \rightarrow B \rightarrow C$

- A and C correlate - Fixing B removes correlation

A←B→C

- A and C correlate - Fixing B removes correlation

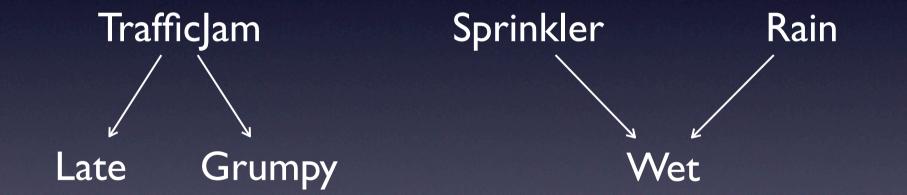
A←B←C

- A and C correlate - Fixing B removes correlation

 $A \rightarrow B \leftarrow C$

- A and C *do not* correlate - Fixing B introduces correlation

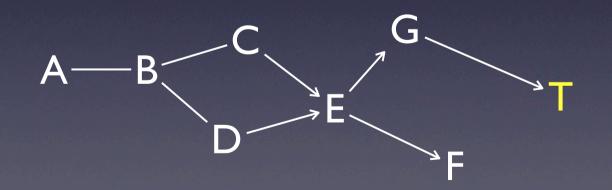
Examples



Late ⊥ Grumpy Late ⊥ Grumpy | TrafficJam Sprinkler ⊥ Rain Sprinkler ⊥ Rain | Wet

Partial causal networks

- For some edges in a network, the direction can be determined; for others it cannot
- This gives only partial causal information
- How can we deal with that?



What is the effect of A on T?

- The question cannot be answered with certainty: not enough information
- But we need to do something with it...
- Our solution: make different guesses of the complete network, perform inference in these, combine results.
- Ugly, but no better solution available.

ICE-CREAM algorithm

- Run IC (actually a variant by Margaritis, 2003) to derive a partial causal network
- For any action A, estimate ENP(A) as follows:
 - repeat n times: create a random complete network CN consistent with the partial one; compute ENP in CN
 - return the average of all ENPs thus computed
- Otherwise, same as CREAM

Experiments

- Experiments on some "real" (pre-existing) and artificial (created for this purpose) datasets
- For all these datasets, we know the real causal model
- Thus, we can compare:
 - methods that ignore causality (e.g., Yang et al.'s)
 - methods that use the causal network (CREAM)
 - methods that use the estimated, partial causal network (ICE-CREAM)

Results

Average ENP of actions suggested by the method:

		1			
Network	CREAM(ES)	CREAM(GS)	ICE-CREAM(ES)	ICE-CREAM(GS)	Yang
ChestClinic	0.58	0.58	0.49	0.49	0.41
Fire	0.81	0.81	0.81	0.81	0.80
usa2000	0.75	0.71	0.66	0.59	0.56
Headache *	0.73	0.72	0.71	0.71	0.22
Alarm *	0.56	0.56	0.54	0.54	0.11
Hailfinder *	0.89	0.90	0.80	0.79	0.63
sample7	0.35	0.35	0.34	0.34	0.25
sample15 *	0.39	0.39	0.36	0.36	0.23
sample30 *	0.35	0.37	0.28	0.30	0.14
sample45 $*$	0.40	0.39	0.35	0.34	0.17

Conclusions

- Traditional methods for action rule learning make strong assumptions about causality
- Better results are possible by taking real causation into account (CREAM)
- It is possible to (incompletely) learn causal relationships from data (IC)
- Incorporating limited information about causality can give much more accurate action rules