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Abstract

This paper deals with the numerical modelling of free ®eld traf®c-induced vibrations during the passage of a vehicle on an uneven road.

The road unevenness subjects the vehicle to vertical oscillations that cause dynamic axle loads. The latter are calculated from the vehicle

transfer functions and the frequency content of the road pro®le as experienced by the vehicle axles. A transfer function between the source

and the receiver that accounts for the dynamic interaction between the road and the soil is used to calculate the free ®eld response. Its

calculation is based on a dynamic substructure method, using a boundary element method for the soil and an analytical beam model for the

road. The methodology is validated with analytical results and is ®nally illustrated by a numerical example where the free ®eld vibrations

during the passage of a vehicle on a traf®c plateau are considered. q 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Numerical modelling; Traf®c-induced vibrations; Vehicle transfer functions

1. Introduction

Traf®c-induced vibrations are a common source of envir-

onmental nuisance as they may cause malfunctioning of

sensitive equipment, discomfort to people and damage to

buildings. They are mainly due to heavy lorries that pass

at relatively high speed on a road with an uneven surface.

Interaction between the wheels and the road surface causes a

dynamic excitation, which generates waves that propagate

in the soil and impinge on the foundations of nearby struc-

tures. Wave propagation is of great importance as it couples

the source and the receiver. The focus in this paper will,

therefore, be on the prediction of traf®c-induced vibrations

in the free ®eld.

The dynamic axle loads are determined by the vehicle

dynamics, the road unevenness and the road ¯exibility. As

the road is much stiffer than the vehicle's suspension or

tyres [5,17,30], the calculation of the dynamic axle loads

is in a ®rst approximation uncoupled from the calculation of

the soil response.

For linear vehicle models, vehicle frequency response

functions (FRF) facilitate the calculation of the axle loads

[5,6,10,21] from the road unevenness and the equations of

motion of the vehicle. Non-linear suspension characteristics

or loss of contact cannot be modelled with these models,

however [5].

The road unevenness is de®ned as the deviation of a

travelled surface from a true planar surface that has char-

acteristic dimensions that affect ride quality, vehicle

dynamics, dynamic pavement loads and pavement drainage

[36]. The road unevenness can be described in a determi-

nistic way or in a stochastic way by a power spectral density

(PSD) [15,23]. The PSD of the axle loads can be calculated

from the vehicle FRF and the PSD of the road unevenness

[5,10,21].

The calculation of the response to moving loads is often

based on the dynamic reciprocity theorem [33], where it is

assumed that the road is invariant in its longitudinal direc-

tion. An extensive survey of calculation methods for solids

or structures under moving loads is given by FruÂba [16].

Grundmann et al. [18] have recently applied the dynamic

reciprocity theorem for the calculation of free ®eld vibra-

tions due to a moving time-dependent load along the surface

of a layered halfspace.

When the road unevenness is de®ned by a PSD, the

response for a single vehicle passage is a non-stationary

problem and a time-varying PSD should be calculated

[26,28]. This stochastic solution procedure is based on

time±frequency analysis. The calculation of the response

for a continuous stream of vehicles, at a distance signi®-

cantly greater than the mean vehicle spacing, can be consid-

ered as a stationary problem [10,19,22,32].
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In most of the aforementioned references, the load is

immediately applied to the soil and the dynamic soil±struc-

ture interaction between the road and the soil is disregarded.

The latter can be accounted for by means of a substructuring

technique [2,3,9,34], where an analytical beam model is

used for the road, while the soil is modelled by means of

boundary elements [7,8]. The objective of this paper is to

demonstrate how this substructure formulation can be

coupled to a vehicle model to compute traf®c-induced vibra-

tions in the free ®eld [27,28]. First, it is shown how the

dynamic axle loads are computed using simple 2D vehicle

models. Second, the transfer functions that describe the

dynamic interaction between the road and the soil are

derived. Third, these ingredients are used in the dynamic

reciprocity theorem to compute the free ®eld response due

to a vehicle moving on a road, whose uneveness is described

in a deterministic way. Next, the substructure formulation

and the theory on moving loads are validated by means of

the solution of Mandel and Avramesco [31] for the response

at the surface of an elastic halfspace for a stationary moving

load. The complete solution procedure is ®nally illustrated

by a numerical example where the free ®eld response due to

the passage of a truck on a traf®c plateau is considered.

The problem of moving loads has also received consider-

able attention in the ®eld of railway-induced vibrations.

Advanced track models have been proposed that are coupled

with the soil through the sleepers and the ballast. Van den

Broeck and De Roeck [35] and Knothe and Wu [25] have

recently proposed very similar track models where a ®nite

element model is used for the track and a boundary element

formulation is used to calculate the impedance of the

layered soil. Apart from through-soil coupling of the slee-

pers, different excitation mechanisms as quasi-static loading

due to moving axles, parametric excitation, transient excita-

tion due to rail joints and wheel¯ats and excitation due to

wheel and rail roughness are incorporated.

2. The dynamic axle loads

Each longitudinal road pro®le is characterized by uneven-

ness, which subjects the vehicle to vertical oscillations that

cause dynamic axle loads. These dynamic axle loads are

determined by the road pro®le, the vehicle characteristics

and the vehicle speed.

2.1. The vehicle dynamics

Vehicle models consisting of discrete masses, springs and

dampers have often been used and have proven good perfor-

mance [5,6,10,17]. Either 2D or 3D vehicle models can be

used. 2D vehicle models only account for the 2D plane

motion of the vehicle, while 3D vehicle models include

effects as vehicle rolling. As the contribution of vehicle

rolling to the dynamic axle loads is expected to be small,

a 2D model is suf®cient [5].

A 2D 4 DOF vehicle model for a passenger car is shown

in Fig. 1. A distinction is made between the vehicle body

and the wheel axles, that are both assumed to be rigid

inertial elements. The primary suspension system links the

body and the axles, while the tyres connect the wheel axles

to the road. Both the suspension system and the tyres are

represented by a spring-dashpot system. More complex

vehicle models are used to study vehicle ride behaviour,

comfort or safety. The size of these models can successfully

be reduced using the Irons±Guyan reduction technique,

distinguishing between master and slave DOF [20].

The equations of motion of the vehicle can be written in

the following generalized form:
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where the vectors ub and ua collect the displacement compo-

nents of the car body and the axles, respectively, while the

vectors Fext
b and Fext

a contain external forces applied directly

to the car body and the wheel axles. The superscripts p and t

in the stiffness and damping matrices refer to the primary

suspension and the tyres. uw=r and ur collect the time

histories of the road unevenness and the road displacements

at the vehicle axles, respectively. The interaction forces Fint
w=r

between the vehicle axles and the road depend on the differ-

ence between the axle displacements ua and the sum of the

irregularities uw=r of the road surface and the road displace-

ments ur at the axle positions:

Fint
w=r � Kt

aa�ua 2 �ur 1 uw=r��1 Ct
aa� _ua 2 � _ur 1 _uw=r�� �2�

G. Lombaert et al. / Soil Dynamics and Earthquake Engineering 19 (2000) 473±488474

Fig. 1. 2D 4 DOF model for a passenger car.



where Kt
aa and Ct

aa are diagonal matrices containing the

stiffness and damping coef®cients ktk and ctk of all axles k.

It has been shown before that the in¯uence of the road

displacements ur on the dynamic axle loads can be

neglected, due to the high stiffness of the road with respect

to the vehicle suspension and the tyres [5,26]. The calculation

of the axle loads will therefore be based on the road uneven-

ness and the vehicle dynamics only and will be decoupled

from the road±soil interaction problem.

2.2. The longitudinal road pro®le

The road unevenness uw=r�y� represents the deviation of

the pavement surface from a true planar surface at a point y

along the road. Local road irregularities as well as global

road roughness can be described by a deterministic function

uw=r�y�:
A forward Fourier transformation of y to the wavenumber

ky results in the wavenumber domain representation ~uw=r�y�
of uw=r�y� :

~uw=r�ky� �
Z1 1

2 1
uw=r�y�exp�1ikyy� dy �3�

Table 1 shows a classi®cation of road roughness which is

based on the wavelength ly � 2p=ky of the road irregulari-

ties [14]. The range of road unevenness, which is important

for vehicle dynamics is characterized by wavelengths ly

between 0.5 and 50 m. Since the size p of the footprint of

the tyre typically varies between 100 and 200 mm for

passenger cars and trucks, the ratio p=ly is small and the

contact between the tyre and the road can be approximated

as a point contact.

Global road roughness can also be described in a statis-

tical way by a power spectral density (PSD) as in the ISO

8608 standard [23]. These PSD-curves can be used to gener-

ate an arti®cial road pro®le uw=r�y�: A large number of deter-

ministic simulations with different arti®cial pro®les is

needed, however, to calculate the statistical properties of

the response for a single vehicle passage. An alternative

and more ef®cient way to treat the stochastic description

of the road unevenness consists in calculating the time-vary-

ing PSD of the response from the PSD of the axle loads,

based on time±frequency analysis [26,28].

2.3. The vehicle frequency response functions

The distribution of n axle loads can be written as the

summation of the product of Dirac functions that determine

the position of the force and a time-dependent function

gk�t� :

Fint
w=r�x; y; z; t� �

Xn

k�1

d�x�d�y 2 yk 2 vt�d�z�gk�t� �4�

yk is the initial position of the kth axle load that moves with

the vehicle speed v along the y-axis. Since the road displa-

cements ur can be neglected in the calculation of the inter-

action forces, the time history gk(t) of a single axle load is

calculated from the contribution of all n vehicle axles and

the road surface pro®le:

gk�t� �
Xn

l�1

Zt

2 1
hfkul
�t 2 t�ul

w=r�t� dt �5�

The contribution of axle l is calculated as the convolution

integral of an impulse response function hfkul
�t�; represent-

ing the time-history of the axle load at axle k when a unit

impulse excitation is applied to axle l, and the time history

ul
w=r�t� of the road unevenness experienced by axle l. The

latter follows from the longitudinal road pro®le uw=r�y�; the

initial axle position yl and the vehicle speed v:

ul
w=r�t� � uw=r�yl 1 vt� �6�

The representation of the interaction force ĝk�v� in the

frequency domain results from the Fourier transform of

Eq. (5):

ĝk�v� �
Z1 1

2 1
gk�t� exp�2ivt� dt �

Xn

l�1

ĥfkul
�v�ûl

w=r�v� �7�

where ĥfkul
�v� is the frequency response function (FRF) of

the axle k due to an excitation at axle l [5,21]. The FRFs are

found by solving the equations of motion (1) of the vehicle

in the frequency domain, where the external forces are set to

zero and ûw=r�v� represents a vector with a unit harmonic

displacement applied to axle l. As the road de¯ection is

neglected, the FRFs are calculated from the axle displace-

ments as:

ĥfkul
�v� � �ktk 1 ivctk��ûak�v�2 dkl� �8�

with dkl the Kronecker delta. In Eq. (7), ûl
w=r�v� is the repre-

sentation in the frequency domain of the unevenness experi-

enced by axle l. It follows from the wavenumber domain

representation ~uw=r�ky� of the road pro®le uw=r�y� :

ûl
w=r�v� � 1

v
~uw=r 2

v

v

� �
exp iv

yl

v

� �
�9�

This expression reveals that the quasi-static value of the

road pro®le experienced by the vehicle axles decreases as

the vehicle speed increases, while the frequency content

increases. Using Eqs. (7) and (9), the contribution of all

axles to a single axle load can be represented by a single
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Table 1

Classi®cation of road roughness

Class Range

Microtexture ly , 5 £ 1024 m

Macrotexture 5 £ 1024 m , ly , 5 £ 1022 m

Megatexture 5 £ 1022 m , ly , 0:5 m

Unevenness 0:5 m , ly , 50 m



FRF ĥfku�v�:

ĝk�v� � 1

v
~uw=r 2

v

v

� �Xn

l�1

ĥfkul
�v� exp iv

yl

v

� �

� 1

v
~uw=r 2

v

v

� �
ĥfku�v� �10�

This equation shows that the phase lag between the road

pro®le inputs for the vehicle axles diminishes for increasing

vehicle speed.

3. The road±soil transfer function

The road±soil transfer function hz(x,y,z,t) represents the

road or soil displacements due to a vertical impulse load on

the road. Its calculation is based on a dynamic substructuring

method that accounts for dynamic interaction between the

road and the soil (Fig. 2). This procedure has been proposed

by Clouteau et al. [8] and is brie¯y recapitulated here.

An analytical beam model is used for the road and a

boundary element formulation, based on the Green's func-

tions of a horizontally layered halfspace, is used for the soil.

The solution of two subproblems is needed. First, the soil

tractions at the road±soil interface are calculated for a Dirac

impulse applied in (xS,0,0) at time t � 0: The displacements

at an arbitrary location (x,y,z) at time t are subsequently

calculated from these soil tractions, resulting in the transfer

function hz�x; y; z; t�:
3.1. The road±soil interaction problem

The road is assumed to be invariant with respect to the

longitudinal direction y. It is further assumed that its cross-

section is rigid. Therefore, the vertical road displacements

urz�x; y; t� are independent of the vertical coordinate z and

can be written in function of the vertical translation urz�y; t�
of the cross-section's centre of gravity and the rotation

bry�y; t� about this centre:

urz�x; y; t� � urz�y; t�1 xbry�y; t� � fr�x�ar�y; t� �11�
The displacement modes of the rigid cross section are

collected in a vector fr � {1x}T
; while the vector ar

collects the displacement urz and the rotation bry: The latter

can be interpreted as unknown participation factors on the

deformation modes of the rigid cross section.

The foregoing kinematical assumptions immediately

result in the following equilibrium equations for the road:

1EIx

24urz

2y4
1 rA

22urz

2t2
� f e

rz 1 d�x 2 xS�d�y�d�z�d�t� �12�

2GC
22bry

2y2
1 rIp

22bry

2t2
� me

ry 1 xSd�x 2 xS�d�y�d�z�d�t�
�13�

These equations govern the longitudinal bending and

torsional deformation of the road in function of the transla-

tion urz and the rotation bry; respectively. A is the road's

cross section, Ix the moment of inertia with respect to x, C

the torsional moment of inertia and Ip the polar moment of

inertia; E is the Young's modulus, G the shear modulus and

r the density of the road. The vertical force per unit length

f e
rz and the torsional moment per unit length me

ry in the right-

hand side of Eqs. (12) and (13) are the forces exerted by the

soil on the road along the interface Srs: The other terms in

the right hand side represent a Dirac load applied in a point

(xS,0,0) at time t � 0:

A double forward Fourier transformation is performed to

transform the time t to the circular frequency v and the

longitudinal coordinate y to the horizontal wavenumber ky.

The latter is allowed as the road and the soil are invariant in

the y-direction. The displacement decomposition (11) for

the vertical road displacements becomes:

~urz�x; ky;v� � ~urz�ky;v�1 x ~b ry�ky;v� � fr�x� ~a r�ky;v�
�14�

In the following, it is understood that a tilde above a variable

denotes its representation in the frequency±wavenumber

domain so that the arguments ky and v can be omitted.

The equilibrium Eqs. (12) and (13) become:

EIxk4
y 0

0 GCk2
y

24 35 2 v2
rA 0

0 rIp

" #0@ 1A ~urz

~b ry

( )

�
~f e
rz

~me
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8<:
9=; 1

1

xS
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These equations can alternatively be written in matrix±

vector notation:

� ~Kr 2 v2 ~Mr� ~ar � ~fr 1 ~f
d
r �16�

with ~Kr the stiffness matrix, ~Mr the mass matrix and ~f
d
r the
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Fig. 2. The road±soil interaction problem.



force vector related to the Dirac load. The vector ~fr follows

from the equilibrium at the road±soil interface Srs :

~fr � 2
Z
Srs

fr ~tsz� ~us� dG �17�

where ~tsz� ~us� is the frequency±wavenumber representation

of tsz�us�; the vertical component of the soil tractions ts �
ssn on a boundary with a unit outward normal n for a

displacement ®eld us.

In the frequency±wavenumber domain, the displace-

ments in the horizontally layered soil are decomposed on

the basis of the scattered elastodynamic wave ®elds,

radiated by the bending and torsional modes of the road:

~us�x; z� � ~fs�x; z� ~as �18�
The matrix ~f s collects the scattered wave ®elds in the soil,

while the vector ~a s collects the modal participation factors.

The following welded boundary conditions are applied on

the interface Srs :

~ur�x� � ~us�x; z � 0� �19�
The vertical forces ~f

d
r on the road will generally cause both

horizontal and vertical tractions at the road±soil interface.

Only the vertical tractions have a non-zero resultant. When

the loaded area is small compared to the wavelength in the

soil, it can be assumed that the horizontal tractions have a

small in¯uence on the free ®eld displacements. Therefore,

no restrictions are imposed on the displacements in the x-

and y-direction so that the following continuity condition

prevails for the vertical displacement components:

~urz�x� � ~usz�x; z � 0� �20�
These relaxed boundary conditions imply that the in¯uence

of the horizontal tractions is neglected in the following.

The application of the displacement decompositions (14)

and (18) to the relaxed boundary condition (20) results in:

fr�x� ~ar � ~fsz�x; z � 0� ~as �21�
In the following, the case will be considered where, for each

frequency v and wavenumber ky, the scattered wave ®eld
~fsz�x; z � 0� at the road±soil interface Srs equals the road

displacement modes fr�x�; so that:

~ar � ~as �22�
Therefore, the subscript r or s in the participation factor ~a
can be omitted.

Using the displacement decomposition (18) together with

the result of Eq. (22), the force vector (17) can be elaborated

as:

~fr � 2
Z
Srs

fr ~tsz� ~fs� ~a dG �23�

The equilibrium equation (16) becomes:

~Kr 2 v2 ~Mr 1
Z
Srs

fr ~tsz�fs� dG

� �
~a � ~f

d
r �24�

The solution of this system of equations gives the complex

participation factors ~a of the torsional and bending modes

of the road. The terms on the left hand side correspond to the

internal and inertial forces of the road and the impedance of

the soil, while the terms on the right hand side correspond to

the external load. From these participation factors, the soil

tractions at the road±soil interface can be calculated as

follows:

~tsz�x; z � 0� � ~tsz� ~fs��x; z � 0� ~a �25�

3.2. Boundary element method for the soil

A boundary element method is used to calculate the trans-

formed soil tractions ~ts� ~fs� at the soil±road interface for the

scattered wave ®elds ~fs originating from the bending or

torsional modes of the road. The boundary element formu-

lation is based on integral equations, resulting from the

application of the Betti±Rayleigh reciprocity theorem in

the frequency±wavenumber domain:

~us�j1; j3� �
ZP

rs

~uG�x; z�~ts�x; z� dG 2
ZP

rs

~t
G�x; z� ~us�x; z� dG

�26�
where ~u G�x; z� and ~t

G�x; z� are the representations of the 3 by

3 Green's displacement and traction tensors uG(x,y,z,t) and

tG(x,y,z,t) in the frequency±wavenumber domain [11].

These Green's tensors represent the fundamental solutions

of a horizontally layered halfspace in a point x when a Dirac

load in space and time is applied in a point j1 in one of the

coordinate directions [29].

As the road is located at the soil's surface Srs; it is under-

stood that all functions in the integrands of Eq. (26) are

evaluated for z � 0; the Green's tensor ~t
G�x; z� is therefore

zero. Furthermore, the geometry is invariant in the x-direc-

tion and the Green's function only depends on j1 2 x for a

source and receiver located at the surface �j3 � 0 and z �
0�: Eq. (26) simpli®es to:

~us�j1; j3 � 0� �
ZP

rs

~uG�x 2 j1; z � 0�~ts�x; z � 0� dG �27�

where ~u G�x 2 j1; j3 � 0� represents the fundamental solu-

tion for a source at the origin. As only continuity of the

vertical displacement ~usz�j1; j3 � 0� is imposed, a single

equation remains:

~usz�j1; j3 � 0� �
ZP

rs

~uG
zz�x 2 j1; z � 0�~tsz�x; z � 0� dG �28�

and only one element ~u G
zz�x; z� of the Green's displacement

tensor is needed.

In the frequency±wavenumber domain, the Green's func-

tion ~uG
zz�x; ky; z;v� is calculated as the following inverse
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Fourier transformation:

~uG
zz�x; ky; z;v� � 1

2p

Z1 1

2 1
~~u

G
zz�kx; ky; z;v�exp�2ikxx� dkx

�29�
where the Green's function ~~u

G
zz�kx; ky; z;v� can be written in

terms of the axisymmetric Green's function ~uGax
zz �kr; z;v� :

~~u
G
zz�kx; ky; z;v� � 2p ~uGax

zz �
����������
k2

x 1 k2
y

q
; z;v� �30�

The Green's function ~uGax
zz �kr; z;v� is calculated with a

direct stiffness method for a horizontally layered soil

[12,13,24]. The correspondence principle is applied to the

LameÂ coef®cients to represent hysteretic material damping

in the soil. This moves the poles of the axisymmetric

Green's function in Eq. (30) into the complex plane, allow-

ing for numerical evaluation of the inverse wavenumber

integral (29).

A collocation method with constant elements is used for

the calculation of the soil tractions, which are consequently

interpolated from the values at the elements' centres of

gravity by means of global shape functions Nl(x) that are

equal to 1 on the element l considered and zero elsewhere:

~tsz�x; z � 0� �
Xn

l�1

~tszlNl�x� �31�

Eq. (28) can now be rewritten for each centre of gravity jk

by means of the discretization introduced in Eq. (31):

~usz�jk; j3 � 0� �
Xn

l�1

~tszl

ZP
rs

~uG
zz�x 2 jk; z � 0�Nl�x�dG �32�

This results in the following system of n equations and n

unknowns:

G~tsz � ~usz �33�
where the coef®cients of the matrix G are calculated through

an integration of the Green's functions. This system of equa-

tions allows to calculate the unknown soil tractions ~tsz for

the scattered wave ®elds ~usz; originating from the bending

and torsional deformations of the road, for which

~usz�jk; j3 � 0� � 1 and ~usz�jk; j3 � 0� � jk; respectively.

3.3. The transfer function between the road and the soil

The reciprocity theorem (28) is used once again to calcu-

late the road±soil transfer function ~hz�j1; j3�; which repre-

sents the soil displacements in the frequency±wavenumber

domain due to a vertical impulse loading on the road:

~hz�j1; j3� �
ZP

rs

~uG
z �x 2 j1; z � 0�~tsz�x; z � 0� dG �34�

where ~tsz�x; z � 0� are the vertical soil tractions at the inter-

face and ~uG
z �x; z� represents the Green's tensor of a layered

halfspace due to a vertical source in �0; 0; j3�:
When only the vertical displacements are considered, the

following equation prevails:

~hzz�j1; j3� �
ZP

rs

~uG
zz�x 2 j1; z � 0�~tsz�x; z � 0� dG �35�

4. The response to the moving dynamic axle loads

The dynamic Betti±Rayleigh reciprocal theorem is used

to calculate the response of the soil or the road. When the

problem geometry is assumed to be invariant with respect to

y, the displacements are calculated as the following convo-

lution integral of the vertical axle loads gk(t) and the transfer

function hz(x,y,z,t) between the source and the receiver:

u�x; y; z; t� �
Xn

k�1

Zt

1 1
hz�x; y 2 yk 2 vt; z; t 2 t�gk�t� dt

�36�
The representation of this solution in the frequency±wave-

number domain is:

~u�x; ky; z;v� �
Z1 1

2 1

Z1 1

2 1
uz�x; y; z; t� exp�2ivt�

� exp�1ikyy� dt dy

� ~hz�x; ky; z;v�
Xn

k�1

ĝk�v 2 kyv� exp�ikyyk� �37�

Note that a frequency shift kyv is applied to the argument of

the interaction force ĝk�v 2 kyv�; where v is the frequency

at the receiver, while v 2 kyv corresponds to the frequency

emitted at the source. The latter will be denoted as ~v in the

following. The displacements û�x; y; z;v� in the frequency

domain are found as the inverse Fourier transform of Eq.

(37):

û�x; y; z;v� � 1

2p

Z1 1

2 1
~uz�x; ky; z;v� exp�2ikyy� dky

� 1

2p

Z1 1

2 1
~hz�x; ky; z;v�

Xn

k�1

ĝk�v 2 kyv�

£ exp�2iky�y 2 yk�� dky �38�

A change of variables according to ky � �v 2 ~v�=v moves

the frequency shift from the axle load to the transfer

function:

û�x; y; z;v� � 1

2pv

Z1 1

2 1
~hz x;

v 2 ~v

v
; z;v

� �Xn

k�1

ĝk� ~v�

� exp 2i
v 2 ~v

v

� �
�y 2 yk�

� �
d ~v �39�
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Eq. (39) can be fully elaborated as follows:

û�x; y; z;v� � 1

2pv

Z1 1

2 1
ĥz x;

v 2 ~v

v
; z;v

� �
1

v
~uw=r 2

~v

v

� �

�
Xn

k�1

Xn

l�1

ĥfkul
� ~v� exp i ~v

yl

v

� �

� exp 2i
v 2 ~v

v

� �
�y 2 yk�

� �
d ~v �40�

and illustrates that traf®c-induced vibrations are caused by

dynamic vehicle loads that cause wave propagation in the

soil. The dynamic axle loads result from the interaction of

the vehicle and the road unevenness. The transfer function

accounts for dynamic road±soil interaction and couples the

source to the receiver.

When the moving source is a single harmonic force

g�t� � exp�1i ~v0t�; the frequency content ĝ� ~v� � 2pd� ~v 2
~v0� and Eq. (39) becomes:

û�x; y; z;v� � 1

v
~hz x;

v 2 v0

v
; z;v

� �
exp 2i

v 2 ~v0

v

� �
y

� �
�41�

We consider the case where the speed v of the source is

lower than the Rayleigh wave velocity Cr. When the

source approaches the receiver, only waves travelling in

the positive y-direction contribute to the response. As the

phase velocity Cry � v=ky is larger than Cr, where the

wave number ky is equal to �v 2 v0�=v; the Rayleigh

wave contribution to the response is situated at frequen-

cies v between ~v and ~v =�1 2 �v=Cr��; this frequency

interval becomes larger for increasing speed of the source

with respect to Cr. When the source is receding from the

receiver, it can be demonstrated that the Rayleigh wave

contribution is situated between ~v =�1 1 �v=Cr�� and ~v :

This phenomenon is known as the Doppler effect. Analo-

gous conclusions can be drawn for shear and dilatational

waves.

The vertical displacements in the time domain are ®nally

obtained by the evaluation of the inverse Fourier transform:

u�x; y; z; t� � 1

2p

Z1 1

2 1
û�x; y; z;v� exp�ivt� dv �42�

5. Validation

In this section, the foregoing theoretical developments are

validated by means of analytical solutions for the response

at the surface of a homogeneous halfspace due to a moving

vertical point load. Mandel and Avramesco [31] have calcu-

lated the response for a stationary moving load by means of

a Galilean transformation to a moving coordinate system.

In Eq. (4) of the paper by Mandel and Avramesco [31],

the analytical solution for the vertical displacement for a

stationary load is given for a material without hysteretic

damping. This solution will be compared to numerical

results obtained with Eq. (39). For a stationary load, the

time-dependent part of the moving load g�t� � Q0: Its Four-

ier transform equals ĝ�v� � 2pQ0d�v� and the soil response

follows from Eq. (39):

ûz�x; y; z;v� � Q0

v
~hzz x;

v

v
; z;v

� �
exp 2i

v

v

� �
y

� �
�43�

First, the case is considered where no road is present and the

load is immediately applied to the soil. The vertical compo-

nent ~hzz�x; ky; z;v� of the transfer function in Eq. (43) is then

equal to the Green's function ~uG
zz�x; ky; z;v� of the soil. In the

following calculations, the soil has a Young's modulus E �
1:08 £ 108 N=m2

; a Poisson's ratio n � 0:25 and a density

r � 1800 kg=m3
: The shear wave velocity Cs � 154:9 m=s

and the dilatational wave velocity Cp � 268:3 m=s: A small

hysteretic material damping ratio b � 0:005 in shear and

volumetric deformation is used in this example. This low

value does not correspond to real soil behaviour, but

removes the surface wave pole from the real axis; it is

low enough to limit the in¯uence of material damping on

the computational results. Fig. 3 shows the time history of

the soil's response at a distance of 24 m from the source

line, for a constant load Q0 � 1 and a speed v � 100 m=s:

The underestimation of the response at both small and large

times t is caused by the material damping.

Next, the load is applied at the centre of a road on top of

the same halfspace and the response is calculated from Eq.

(43) with a transfer function ~hzz�x; ky; z;v� that accounts for

the dynamic interaction between the road and the soil. Both

a ¯exible and a rigid road will be considered. In both cases,

the road has a width 2B � 1 m; a height h � 0:40 m and a

density r � 2000 kg=m3
:

Fig. 4a shows the time history of the response at a

distance of 24 m for the case of a ¯exible road with a

Young's modulus E � 5:44 £ 108 N=m2
: As expected, the

small width and the bending stiffness barely in¯uence the

response. Therefore, the numerical results agree well with
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line. The dashed line corresponds to the solution of Mandel and Avramesco,

while the solid line corresponds to the numerical results.



the analytical results. Fig. 4b shows the time history of the

response at a distance of 24 m for a rigid road with a

Young's modulus E � 5:44 £ 1017 N=m2
: As expected, the

maximum displacement is much smaller.

6. Numerical example

6.1. Problem outline

The free ®eld vibrations during the passage of a truck on a

traf®c plateau, located on a road supported by a homoge-

neous halfspace are calculated (Fig. 5).

The original truck model with 29 DOF is reduced by an

Irons±Guyan reduction to an equivalent 4 DOF vehicle

model, as shown in Fig. 1, with the following parameters:

mb � 13 280 kg; Ib � 60 397 kg m2
; ma1 � 1250 kg; ma2 �

650 kg; l1 � 21:775 m; l2 � 12:225 m; kp1 � 1:26�1 1
0:20i� £ 106 N=m; cp1 � 0 Ns=m; kp2 � 0:66�1 1 0:80i� £
106 N=m; cp2 � 8000 Ns=m; kt1 � 2:80 £ 106 N=m; ct1 �
4200 Ns=m; kt2 � 1:40 £ 106 N=m and ct2 � 2100 Ns=m:
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Fig. 5. Problem outline for the passage of a truck on a traf®c plateau.



The road has a width 2B � 8 m; a height h � 0:40 m; a

Young's modulus E � 5:44 £ 108 N=m2
; a shear modulus

G � 2:10 £ 108 N=m2 and a density r � 2000 kg=m3
:

The soil has a Young's modulus E � 1:08 £ 108 N=m2
; a

Poisson's ratio n � 1=3; a density r � 1800 kg=m3 and a

hysteretic material damping ratiob � 0:025 in shear and volu-

metric deformation. The shear wave velocity Cs � 150:0 m=s

and the dilatational wave velocity Cp � 300:0 m=s:

The vertical free ®eld response will be calculated in a

point A on the road, in the points B, C and D in the soil

on a line perpendicular to the road, centrally located with

respect to the slopes of the traf®c plateau, and in the points I,

J, K and L in the soil on a line parallel to the longitudinal

axis of the road (Fig. 5).

6.2. The road pro®le

The longitudinal pro®le uw=r�y� of the traf®c plateau is

described as [4]:

uw=r�y� �

H uyu ,
L

2

H 1 2 cos
2p�uyu 2 L=2 1 l�

2l

� �� �
L

2
, uyu ,

L

2
1 l

0 uyu .
L

2
1 l

8>>>>>>><>>>>>>>:
�44�

with H � 0:12 m the height of the plateau, L � 10 m the

length of the top surface and l � 1:20 m the length of both

sinusoidal slopes as shown in Fig. 6a.

The wavenumber domain representation of this road

pro®le can be calculated analytically:

~uw=r�ky� � h�L 1 l�sinc

"
ky�L 1 l�

2

#"
1

1 2 �kyl=p�2
#

cos

 
kyl

2

!
�45�

Fig. 6b shows the representation of the road pro®le in the

wavenumber domain. The ®rst factor h�L 1 l� of Eq.

(45) is the quasi-static value; the sin c function repre-

sents a lobed function, with a separation between the

lobes that is inversely proportional to the mean length

l 1 L of the plateau. The bracketed term has a pole at

ky � ^p=l; which is canceled by the cosine function.

The product of both terms results in a lobed function, with

zeros at wavenumber intervals that are inversely propor-

tional to the length l of the slopes. The latter cannot be

distinguished in Fig. 6b.

6.3. The dynamic axle loads

The time history of the road pro®le as experienced by the

front axle for a vehicle speed v � 14 m=s is shown in Fig. 7a.

The spectrum of the road pro®le is calculated from the

wavenumber domain representation in Fig. 6b. As ~v �
2vky; the separation between the lobes is proportional to

the ratio of the vehicle speed v to the mean length L 1 l of

the plateau. Fig. 7c shows the FRF for the front axle load,

which is dominated by the pitch and bounce modes (1.6 and

1.9 Hz) and the axle hop modes (9.1 Hz at the front axle and

9.5 Hz at the rear axle) of the vehicle. According to Eq. (10),

the spectrum of the front axle load (Fig. 7e) is obtained as

the product of the Fourier transform of the road pro®le (Fig.

7b) and the vehicle's FRF (Fig. 7c). This spectrum also

shows a lobed behaviour and is dominated by the vehicle's

pitch and bounce modes. The time history of the front axle

load (Fig. 7d) is found by means of an inverse FFT algo-

rithm and clearly shows the impact at the ascending and the

descending slope of the traf®c plateau. An analogous proce-

dure can be followed for the determination of the rear axle

load.
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Fig. 7. The calculation of the front axle load.



6.4. The free ®eld response of the road and the soil

The road±soil transfer function ~hzz�x; ky; z;v� is calcu-

lated in the frequency±wavenumber domain for a load at

the centre of the road �xS � 0� and receivers located at the

surface �z � 0� at x � 0; 8, 18 and 24 m. Twenty boundary

elements of equal length (0.40 m) are used for the discreti-

zation of the road±soil interface, while the Green's func-

tions are integrated by means of a Gauss±Legendre

quadrature method, using four Gaussian points per interval.

Fig. 8 shows the modulus of the transfer function
~hzz�x; ky; z;v� for x � 8 m as a function of the dimensionless

wavenumber �ky � kyv=Cs and the frequency v: The large

peak at �ky � 1:073 corresponds to the propagation of

Rayleigh waves in the y-direction.

Fig. 9 shows the time history and frequency content of the

vertical road and soil velocities in the points A, B, C and D

on a line perpendicular to the road. The frequency content is

calculated according to Eq. (38), while the time history is

obtained with an inverse FFT. The spectrum is dominated

by both the pitch and bounce modes and the axle hop modes

of the vehicle; the lobed behaviour that originates from the

frequency content of the road pro®le is also clearly obser-

vable. A comparison of the vibration levels in the points A,

B, C and D shows that the peak particle velocity (PPV)

decreases, while the frequency content of the signal is

reduced, for increasing distance to the road. This is due to

radiation and material damping in the soil.

Fig. 10 shows the time history and the frequency content

of the vertical soil velocities in the points I, J, K and L on a

line parallel to the longitudinal axis of the road. These points

are located at the same distance to the road as the point B

�x � 8 m�: Following Eq. (38), the transfer function ~hzz�x �
8; ky; z � 0; v� of Fig. 8 is used to calculate the frequency

content of the response. The latter is once again dominated

by the pitch and bounce modes and the axle hop modes of the

vehicle. The time history clearly shows that the impact at the

ascending of the plateau generates the largest vibration levels

in the point J, while the descending of the plateau generates the

largest levels in the point K. An analogous observation can be

made regarding the vibration levels in the points I and L.

6.5. The in¯uence of the vehicle speed

As the vehicle speed is one of the most important factors

for free ®eld traf®c-induced vibrations, the vertical soil

velocities in the point B are subsequently calculated for a

vehicle speed v equal to 8, 12, 16 and 20 m/s. The left-hand

side of Fig. 11 shows the frequency content of the road

pro®le experienced by the vehicle axles. As follows from

Eq. (9) the quasi-static value decreases, while the separation

between the lobes enlarges as the frequency content shifts to

higher frequencies. The right-hand side of Fig. 11 shows the

frequency content of the front axle load. Due to the weak

coupling between the vehicle axles, the in¯uence of the

speed-dependent phase lag in Eq. (10) is small; the variation

of the frequency content of the axle loads with the vehicle

speed is dominated by ûl
w=r�v�:

The left-hand side of Fig. 12 shows the time history of the

soil velocities in the point B. As the vehicle speed increases,

the time delay between the impact at the ascending and the

descending of the plateau decreases and the peak particle

velocity (PPV) increases. The right-hand side of Fig. 12

shows the frequency content of the soil velocities in the

point B. From these ®gures, it is clear that an increasing

vehicle speed shifts the frequency content to the axle hop

modes, resulting in a higher PPV. It also follows from Eq.

(38) that the frequency content of the axle loads widens for

increasing vehicle speeds. This example therefore illustrates

that the relationship between vehicle speed and vibration

levels is a function of the suspension system and the condi-

tion of the road surface, as has also been observed earlier

during in situ measurements [1].

7. Conclusion

A numerical model has been presented that enables the

calculation of free ®eld traf®c-induced vibrations. Vehicle

transfer functions have been used for the calculation of the

dynamic axle loads from the longitudinal road pro®le and a

linear vehicle model. The calculation of the road and soil

vibrations is based on an application of the Betti±Rayleigh

reciprocity theorem for moving point loads. The main

assumptions are the invariance of the road in the longitudi-

nal direction and the rigidity of the road section. Crucial in

the mathematical description is the transfer function

between the road and the receiver in the free ®eld. Its calcu-

lation is based on a dynamic road±soil interaction model.

A numerical example demonstrates the in¯uence of the

vehicle speed, the vehicle's transfer functions, the road

pro®le and the dynamic soil characteristics on the frequency

content of the response. A comparison of the results

obtained at various distances on a line perpendicular to

the road shows the decay of the vibrations due to wave
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Fig. 9. Time history (left) and frequency content (right) of the vertical velocity in the points A, B, C and D on a line perpendicular to the road.
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Fig. 10. Time history (left) and frequency content (right) of the vertical velocity in the points I, J, K and L on a line parallel to the longitudinal axis of the road.
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Fig. 11. Frequency content of the road pro®le experienced by the vehicle axles (left) and frequency content of the front axle load (right) for a vehicle speed v

equal to 8, 12, 16 and 20 m/s.
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Fig. 12. Time history (left) and frequency content (right) of the vertical soil velocity in the point B for a vehicle speed v equal to 8, 12, 16 and 20 m/s.



propagation in the soil. As expected, larger vehicle speeds

lead to increasing vibration levels.
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