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Abstract

This PhD study aims to develop an efficient and accurate large-eddy simulation
(LES) method for compressible high-Reynolds-number wall-bounded flows. This
work started from an in-house research code FLOWAVE, a second-order code
with the capability of LES. However, this code suffered from several major
drawbacks preventing it becoming a well suited tool to deal with high-Reynolds-
number wall bounded flows. This study seeks to address these problems and
provide a pragmatic and robust LES methodology for high-Reynolds-number
wall bounded flows.

Within the context of LES of high-Reynolds-number wall-bounded flows, the
first challenge is the undesired odd-even decoupling which contaminates the
flow field. In this study, to suppress the odd-even decoupling, conservative
boundary filters are constructed without changing flow structures and flow
properties such as mass flow rate and momentum. The filters are used in
combination with conventional high-order selective filters at the inner points to
provide an effective means to solve the odd-even decoupling. The importance
of conservative filtering is also proved to be important for the sub-grid stress
(SGS) models, in which explicit filters are involved. The conservative filters are
tested over a couple of channel flow test cases and a 2D cavity case to study the
influence the filtering on noise prediction, yielding superior results compared
with conventional non-conservative filters.

The next challenge is the excessive computational cost due to the resolved
LES of high-Reynolds-number wall-bounded flows. In wall-bounded turbulent
flows, the length scale of the viscous sub-layer will decrease as Reynolds number
increases. As a result, for resolved large eddy simulation, the number of grid
points which are needed to resolve the wall layer will increase exponentially.
Nevertheless, large Reynolds number wall-bounded flow tends to be the rule
in most engineering flows. Therefore for those cases wall-resolved LES would
lead to prohibitive computational cost and become impractical. Therefore,
hybrid methods, for instance, wall-stress models (WSM) are usually employed
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iv ABSTRACT

for attached wall flows to prescribe the shear stress at wall, so that the first
grid point can be put far away from the wall to reduce the computational cost.

However, conventional hybrid methods, including the WSM when used in
combination with a standard Smagorinsky model, are prone to the so-called
‘log-layer mismatch’ problem, resulting in poor predictions of the mean velocity
and its gradient. Many attempts have been made to address this problem;
however, they are limited by either their inability to suppress the log-layer
mismatch to an accepted level, or their complexity and uncertainty in real
practice.

In view of this, in this work, a theoretical framework was developed in which the
relationship between the mean velocity gradient and the turbulent kinetic energy
budgets in the log-layer is expressed. In this framework, different factors which
may influence the mean shear can be quantified and analyzed. The analysis is
then extended to the wall-modeled LES. It is shown that over-dissipation does
not necessarily lead over-prediction of the mean shear. Based on this framework,
a self-adaptive Smagorinsky model was proposed in which the Smagorinsky
coefficient is dynamically adjusted so that the problem of log-layer mismatch is
effectively suppressed. The model has been validated for a channel flow with
rough walls at high Reynolds number, yielding desired velocity profile. The
model is extended to include the viscous effect and applied to a couple of smooth
channel flow cases. The log profiles of the mean velocity are more accurately
captured compared with the conventional Smagorinsky model.

Finally, the wall-model LES methodology is applied to a square duct using the
both the conventional Smagorinsky model and the new self-adaptive Smagorinsky
model. A modified log-law is proposed to give a better fit with the experimental
results compared with classic log law. The self-adaptive Smagorinsky model
captures the acceleration near the corner, while the Smagorinsky model fails to
capture such phenomenon. In addition, the errors on the friction velocity of
the self-adaptive Smagorinsky model are lower than those of the Smagorinsky
model, and the modified log law yields more accurate skin frictions compared
with the classic log law.



Beknopte samenvatting

Dit doctoraat heeft als doel de ontwikkeling van een efficiënte en accurate
Large-Eddy-Simulatie (LES) methode voor samendrukbare wandbegrensde
stromingen met hoog Reynoldsgetal. Het startpunt van dit werk was een in-
house onderzoekscode FLOWAVE; een tweede-ordecode met LES mogelijkheden.
Deze code had echter verschillende belangrijke nadelen, waardoor ze niet meteen
gebruikt kon worden voor wandbegrensde stromingen bij hoge Reynoldsgetallen.
Dit onderzoek verhelpt deze problemen en voorziet een pragmatische en robuuste
LES methodologie voor wandbegrensde stromingen bij een hoog Reynoldsgetal.

In de context van LES van wandbegrensde stromingen met hoog Reynoldsgetal,
is een eerste uitdaging de ongewenste roosteroscillaties die het stromingsveld
aantasten. Om deze roosteroscillaties te onderdrukken, worden in deze
studie wandfilters geconstrueerd, die de stromingsstructuren en eigenschappen
zoals massadebiet en momentum onveranderd laten. Deze filters worden
gebruikt in combinatie met conventionele hoge-orde selectieve filters op interne
roosterpunten en voorzien zo een effectieve methode om de roosteroscillaties
te onderdrukken. Er wordt ook aangetoond dat conservatief filteren belangrijk
is voor de sub-grid stress (SGS) modellen waarin expliciete filters toegepast
worden. De conservatieve filters worden getest voor een aantal simulaties van
een kanaalstroming en daarnaast ook voor een 2D caviteit waarin de invloed van
het filteren op geluidsvoorspelling bestudeerd wordt. Voor beide tests leveren
conservatieve filters superieure resultaten t.o.v. conventionele niet-conservatieve
filters.

De volgende uitdaging is de excessieve rekenkost gerelateerd met LES van
wandbegrensde stromingen bij hoge Reynoldsgetallen. In wandbegrensde
stromingen verkleint de lengteschaal van de viskeuze sublaag wanneer het
Reynoldsgetal stijgt. Dit heeft als gevolg voor LES dat het aantal roosterpunten
exponentieel stijgt met het Reynoldsgetal, terwijl dit net het regime is dat
vaak voor komt in de ingenieurspraktijk. Daarom worden hybride methodes
toegepast voor wandbegrensde stromingen, bv. wall-stress models (WSM), die
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de schuifspanning aan de wand voorschrijven. Op die manier kan het eerste
roosterpunt ver van de wand geplaatst worden end de rekentijd verlaagd worden.

Conventionele hybride methodes, inclusief het WSM in combinatie met een
standaard Smagorinskymodel, zijn echter vatbaar voor het zogenaamde ‘log-
layer mismatch’ probleem. Dit resulteert in gebrekkige voorspelling van de
gemiddelde snelheid en zijn gradiënt. Veel pogingen zijn al ondernomen om
dit op te lossen; zij zijn echter gelimiteerd ofwel door hun onvermogen om de
‘log-layer mismatch’ te reduceren tot een aanvaardbaar niveau ofwel door hun
complexiteit en onzekerheid in de praktijk.

Vanuit dit oogpunt werd een theoretisch raamwerk ontwikkeld, waarin de
relatie tussen gemiddelde snelheidsgradiënt en turbulente kinetische energie
budgetten in de log-laag wordt uitgedrukt. In dit raamwerk kunnen de
verschillende factoren die de gemiddelde afschuiving beïnvloeden gekwantificeerd
en geanalyseerd worden. Deze analyse wordt daarna uitgebreid naar wall-
modeled LES. Het wordt aangetoond dat overdissipatie niet noodzakelijk
tot overschatting leidt van de gemiddelde afschuiving. Gebaseerd op dit
raamwerk werd een adaptief Smagorinskymodel voorgesteld, waarin de
Smagorinskycoëfficiënt dynamisch wordt aangepast zodanig dat het probleem
van de ‘log-layer mismatch’ effectief onderdrukt wordt. Het model wordt
gevalideerd voor de kanaalstroming met ruwe wanden en hoog Reynoldsgetal,
waarbij het gewenste snelheidsprofiel werd bekomen. Het model werd
uitgebreid om het viskeus effect mee op te nemen en toegepast op een
aantal cases van gladde kanaalstroming. De logaritmische profielen van
de gemiddelde snelheid worden nauwkeuriger weergegeven dan door het
conventionele Smagorinskymodel.

Tenslotte word de LES methodologie voor wanden onderzocht voor een vierkant
kanaal, gebruik makende van zowel het conventionele Smagorinskymodel als
het nieuwe adaptieve Smagorinskymodel. Een gemodificeerde logaritmische wet
wordt voorgesteld om een betere fit te geven met de experimentele resultaten,
in vergelijking met de klassieke wet. Het adaptieve Smagorinskymodel slaagt
erin om de acceleratie bij de hoeken van het kanaal weer te geven, terwijl het
klassieke Smagorinskymodel faalt om dit fenomeen te voorspellen. Daarenboven
is de fout op de wrijvingssnelheid van het adaptieve Smagorinskymodel kleiner
dan deze van het klassieke Smagorinskymodel, en brengt de gemodificeerde
logaritmische wet een nauwkeurigere wandwrijving in vergelijking met de
klassieke logaritmische wet.
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Chapter 1

Introduction

This study was initiated under the frame of the SBO CAPRICON project
(funded by IWT, Agency for Innovation by Science and Technology, Belgium)
which is dedicated to computational aeroacoutics (CAA). One part of the project
aimed at providing accurate sources using large eddy simulations for sound
propagation emitted from a confined flow in hybrid CAA simulations. As part
of this, a square muffler was built and tested to provide a reference for numerical
simulations [86]. Both the flow field and acoustic field are measured. The Mach
number is 0.1 and the Reynolds number based on the centerline velocity is
around 1.7 × 105. This flow regime falls in both the low-Mach-number and
high-Reynolds-number flow categories.

Large eddy simulation (LES) was chosen as the tool to simulate the confined
flow field in the square muffler to provide accurate sound sources. Before the
LES technique can be applied to CAA problems, it is a prerequisite that the tool
itself must be reliable and trustworthy. Therefore, we faced a major challenge
in this study, which is to develop a robust and pragmatic tool for large eddy
simulation of high-Reynolds-number wall bounded flows, and this is the main
aim of this PhD research. Within this context, this work was started from
FLOWAVE [73], a second-order finite-volume research code combined with the
4th-order explicit Runge-Kutta time scheme and LES capabilities. Though this
is a good starting point for the aforementioned purpose, it suffered from several
major drawbacks which need to be addressed.

The first is its lack of capability to deal with odd-even decoupling, which is a
common problem in the numerical simulations of low-Mach-number compressible
flows. The code employs a central second-order spatial discretization scheme
which is known to be susceptible to odd-even decoupling (or so-called π-
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modes) [48, 82]. This phenomenon is not physical, and may lead to unrealistic
solutions or divergence of the simulations. Moreover, for CAA applications, the
sound sources rely on the quality of the numerical solutions in the source region.
The odd-even decoupling may contaminate the source region, therefore is not
desirable.

Another major challenge is the excessive computational cost due to wall-resolved
LES of high-Reynolds-number confined flows. As will be explained in section
1.2, the number of grid points which are needed to resolve the wall increases
exponentially with the Reynolds number. Besides that, since only explicit
Runge-Kutta time stepping method is implemented in FLOWAVE, the time
step is constrained by the smallest cell in the computational domain and further
by the low Mach number. Thus the wall-resolved LES is impractical for the
flow regime which we are concerned about.

In the next sections, the current work is firstly situated in the state of art of
large eddy simulations, with a focus on the techniques on removing odd-even
decoupling and wall-model LES, in particular, the wall-stress model (WSM)
and the so called ‘log-layer mismatch’ phenomenon. This phenomenon is a
long-persisting problem for the wall-modeled LES, which leads to a wrong
representation of the mean velocity profile near the wall. It will be further
elaborated in section 1.2. Finally the aims and objectives are specified, followed
by the outline of the thesis.

1.1 Controlling odd-even decoupling

The problem of odd-even decoupling is frequently encountered in simulations
in which central finite difference schemes or their finite volume equivalents
are employed. The spurious odd-even decoupling often leads to numerical
instability and thus should be suppressed. The earliest effort to remove odd-
even decoupling dates back to 1981 [36], where artificial dissipative terms
were explicitly added to the governing equations. These terms are a blend of
second-order and fourth-order terms with coefficients depending on the local
pressure gradient. Visbal et al. [88] chose an alternative way and developed a
10th-order non-dispersive spatial filter, which has been shown to be superior
to the added artificial dissipation in terms of both stability and accuracy on
stretched curvilinear meshes. Other studies on eliminating odd-even decoupling
through filtering can be found in [83, 81, 3, 2].

In order to efficiently remove odd-even decoupling with spatial filters, much
attention is paid to local accuracy properties of these filters. In particular,
it is important that the π-modes, which occur as oscillations at the smallest
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resolvable scales on the grid, are removed without affecting large-scale noise
and flow features. Tam et al. [83] proposed the artificial selective damping in a
computation scheme which can effectively eliminate all spurious short waves in
the numerical solution. Bogey and Bailly [3] further constructed selective filters
accurate for waves down to four points per wavelength which are optimized
by minimizing the numerical errors for the same range of wavenumbers. The
corresponding non-centered boundary selective filters are then developed in a
similar way [2].

Nevertheless not much attention has been paid to the global conservation
properties of these high-order filters up till now. In the presence of non-periodic
boundary conditions, and near wall boundaries, this may lead to incorrect
flow predictions. From a theoretical point of view, Vreman [90] showed that a
normalized filter is globally conservative if the filter is self-adjoint, requiring a
filter operator which is symmetric in its arguments. In the current work, starting
from theoretical study by Vreman, a set of high-order globally conservative
filters are proposed to solve this issue.

In addition to the spatial filters which are used to suppress odd-even decoupling,
attention also needs to be paid to the global conservation properties of the
explicit filtering, which is often used in LES for the formulation of LES subgrid-
scale models. One class of models, which have become popular recently, are
the variational multi-scale (VMS) Smagorinsky models first introduced by
Hughes et al. [33, 31]. These models explicitly employ high-pass filters, which
restrict the models effect to small resolved scales, where turbulent energy needs
to be removed from the flow. In recent years, development and testing of
VMS models often relied on simple test cases such as channel flows with two
homogeneous directions parallel to the walls, and filtering was only performed
along wall-parallel directions [33, 89, 37, 60, 79]. For general applicability, the
SGS model and associated high-pass filter should be fully three-dimensional
in space. Stolz [79] was among the first to try a VMS Smagorinsky model in
a channel flow simulation using three-dimensional high-pass filtering, hence
including filtering in the wall normal direction. He constructed a high-pass filter
by using a low-pass top-hat filter, subtracting it from the identity operator, but
found errors of more than 30% on the flow predictions. At the time, Stolz [79]
argued that higher-order filters are needed to guarantee accurate results.

1.2 LES for high-Reynolds-number wall flows

In recent years, with ever increasing computing power, LES becomes a more
and more popular approach for turbulence modeling. In LES, the large
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energy-containing motions are resolved while the smaller eddies are modeled,
thus provides a better representation of turbulent flow field compared with
the Reynolds-averaged Navier–Stokes (RANS) method, for which the whole
turbulent field is modeled. Compared with DNS in which the turbulent flow
field is fully resolved, down to the so-called Kolmogorov scale where the viscous
dissipation happens, the LES is less computationally demanding. In reality,
large Reynolds number wall-bounded flow tends to be the rule in most situations.
For instance, the Reynolds number for the flow of air around a car is typically
a few millions, while in atmospheric boundary layers, the Reynolds number is
even several orders higher than this. For these situations, the boundary layer
accounts for merely a tiny part of the flow domain, however, to properly resolve
the boundary layer, adequate grid points should be placed in the boundary
layer, typically 10-20 [28]. This not only results in a dramatic increase of the
overall number of grid point, but also severely constrains the size of time step,
leading to prohibitive computational costs. The excessive computational cost to
resolve the boundary layer has been, and will continue to be a major challenge
for LES of very high-Reynolds-number wall-bounded flows.

Cost estimation for wall-resolved LES can be found in various studies [11, 67].
They are based on the consideration that the integral length scales must be
properly resolved in the LES. In the outer layer, the integral length scale is
proportional to the size of the large eddies which is only weakly dependent on
the Reynolds number. It was estimated that the resolution required for the
outer layer for a boundary layer is proportional to Re0.4, while for the wall layer
(which in high-Reynolds-number applications accounts for only a tiny portion
of the boundary layer) the Re-dependence of the resolution is much stronger.
As the Reynolds number increases, the physical dimensions of near wall eddies
decrease much more rapidly then the boundary layer thickness, resulting in
more stringent resolution requirements. Chapman estimated the number of
grid points needed to resolve the inner layer scales as Re1.8 [11]. This makes
application of LES to high-Reynolds-number flows impractical.

Moreover, the characteristics and objectives of CAA problems are significantly
different from those commonly encountered in CFD [15]. One of most notable
differences between aerodynamic and aeroacoustic phenomena is the disparity
of the magnitudes of acoustic and aerodynamic perturbations. Acoustic motion
generally occurs at a much smaller order of magnitude than the aerodynamic or
turbulent motion. This disparity is more pronounced for lower Mach numbers
and presents a severe challenge to direct CAA techniques. As a result, special
care is needed to make sure that the numerical error is much smaller than the
magnitude of the acoustic waves to avoid that the acoustic solution may be
totally corrupted by computational noise and error. CAA methodologies should
thus have a high-order of accuracy, which leads to higher computational cost.
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1.2.1 Wall-modeled large eddy simulation

As previously mentioned, in high-Reynolds-number turbulent boundary layers,
the ratio of turbulent length scales in the outer layer to length scales in the
inner layer is very large, requiring excessively fine grids if inner-layer dynamics
are to be correctly represented in wall-resolved LES. For smooth walls, the ratio
of the boundary layer thickness δ to the viscous length scale δν corresponds
with Reτ ≡ uτδ/ν (with uτ the friction velocity, and ν the kinematic velocity),
illustrating the unfavorable scaling with Reynolds number.

This limitation was recognized from the earliest applications of LES, and various
attempts have been made to bypass the inner layer and model its effects in a
global sense. This spurs the development of models for the wall layer, also known
as approximate boundary-conditions or wall-layer models. In the following, a
review of the various approaches is carried out. This is followed by a more
detailed review of the previous studies on the WSM and the challenges in WSM
as well as the problem of log-layer mismatch.

The commonly used wall layer models can be summarized into three categories,
which from easy to hard in terms of implementation, are, respectively: WSM,
Zonal approaches and the hybrid RANS/LES methods.

• Wall-stress model (WSM)
To avoid the use of fine grids near the wall in high-Reynolds number
LES, the near wall flow behavior is often represented with a wall-stress
model (sometimes referred to as equilibrium-stress models as well), which
relies on inner-layer similarity theory. In that case, the no-slip boundary
condition used in a wall-resolved LES, is replaced by a wall-stress model
in the first grid cell near the wall. This approach allows the first grid
point to be located in the logarithmic layer (y+ > 40) thus avoids the
stringent resolution requirement of wall-resolved LES (y+ < 1). Moreover,
since the vortical structures in the viscous and buffer regions don’t have
to be resolved, it permits to use coarser meshes in other directions as well:
∆x ∼= 100 ∼ 600, ∆z ∼= 100 ∼ 300.

• Zonal approaches
Zonal approaches are based on the explicit solution of a different set of
equations in the inner layer. The two-layer model (TLM) which was
firstly proposed by Balaras and Benocci is the most representative one
[1]. TLM solved the two-dimensional turbulent boundary-layer equations
on an embedded grid between the first grid point and the wall. This
approach is applied to rotating channel flow and flow in a square duct,
and obtained improved agreement with the experimental data, compared
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with the basic WSM. Cabot [8, 9] studied the performance of the WSM
and TLM in plane channel flow and a backward-facing step, found that
the basic WSM is sufficient for the plane channel flow, however fails for
the backward-facing step where mass separation occurs.

• Hybrid RANS/LES methods
Recent development of wall layer models has centered on the hybrid
methods, in which the RANS equations are solved in the inner layer, while
the LES are employed away from the wall. The detached eddy simulation
(DES) is most widely used hybrid approach. It was introduced by Spalart
et al. [78] as a method to compute massively separated flows, which
combines the solution of the RANS equations in the attached boundary
layers with LES in the separated regions. A more comprehensive review
on the hybrid RANS/LES methods can be found in [63].

1.2.2 The challenge for WSM and the log-layer mismatch

The problem of ‘log-layer mismatch’, characterized by an over-prediction of
the normalized mean-velocity gradient in the inner layer which reaches levels
of over 100%, has been a long-persistent problem for wall-modeled large eddy
simulation. The problem is present for all the aforementioned approaches and
was reported in numerous studies, for instance [68, 62, 64, 70, 6, 26]. In this
study, the focus is on addressing the ‘log-layer mismatch’ in the wall-stress model.
The combination of a wall-stress model in LES with conventional subgrid-scale
models leads to the problem of ‘log-layer mismatch’, and this is particularly
the case when a Smagorinsky model is used. Near the wall, in the inner layer,
and up to roughly 20% of the boundary layer thickness, a logarithmic velocity
profile is expected when the distance to the wall expressed in inner layer units
exceeds y+ = 30. In that case, the normalized mean-velocity gradient

φ(y) ≡ yκ

uτ

d〈u〉
dy = 1, (1.1)

with κ the von Kármán constant, y the wall-normal direction, and 〈u〉 the mean
stream-wise velocity. However, when ‘log-layer mismatch’ happens, the value of
φ(y) is higher than unity.

To solve this issue for rough-wall simulations, Mason and Thomson [54] proposed
to use a simple algebraic damping of the Smagorinsky coefficient close to the
wall, blending it to the expected near-wall RANS behavior of the eddy viscosity.
This greatly improves the LES prediction when the blending parameters are
properly tuned [56], but it does not fully resolve the issue of the overshoot of the
normalized mean-velocity gradient. For smooth walls, similar damping functions
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for the Smagorinsky coefficient are based on a Van-Driest-like damping (cf, e.g.
Cabot [10] and Piomelli [65] for details).

Also when a dynamic Smagorinsky model is used, adaptations near the wall are
required. Porte-Agel et al. [68] improved the standard dynamic Smagorinsky
model by using a second test-filter level, such that the dependence of the
Smagorinsky coefficient on the ratio of filter width to integral length scale close
to the wall is better accounted for. Later this approach was reformulated into
a Lagrangian framework by Bou-Zeid et al. [4]. Nevertheless, even in this
double-filter dynamic procedure, overshoots of the normalized mean-velocity
gradient in the order of 10% are observed [68]. Many other attempts have
focussed on high-Reynolds-number near-wall modeling, often also aiming at
more complex flow simulations. Templeton et al. [84] used tabulated eddy
viscosity values of precursor wall-resolved LES to deduct the required eddy
viscosity in wall-modeled simulations. Also in other approaches, such as DES,
the issue of the log-layer mismatch in the simplest case of a high-Reynolds
number boundary layer on a flat plate remains unresolved [77].

A challenge in the modeling of near-wall features on LES grids (which are
only coarsely resolved with respect to inner-layer dynamics), is that numerical
discretization errors often interfere with physical modeling attempts [10]. In
a very involved approach, Templeton et al. [85] solved this by using optimal
feed-back control for the near-wall closure, using a cost functional that measures
the deviation from the mean-velocity profile from the target logarithmic profile.
In recent work, Brasseur and Wei [5] tried to gain more insights into the complex
interaction of errors near the wall for the standard Smagorinsky model, by
systematically mapping the influence of the grid-stretching ratio, grid density,
and the Smagorinsky coefficient on the overshoot of the velocity gradient. They
defined a ‘high-accuracy’ zone in which the combination of the aforementioned
elements effectively decrease the overshoot of the mean shear at the first grid
point, but this improved gradient was at the cost of large errors on the predicted
von Kármán constant.

1.3 Aims and objectives

As mentioned early in this chapter, it is impractical to conduct a wall-resolved
LES of the square muffler. In this study, a pragmatic methodology was envisaged
for the confined muffler flows: in the inlet and tail square ducts where the flow
are almost attached, the WSM will be employed to circumvent the excessive
computational cost of the wall-resolved LES; the expansion chamber, on the
other hand, will be fully resolved, considering the mass separation and the fact
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that the local Reynolds number is likely to be much lower than that in the
ducts. However, the conventional WSM suffers from the ‘log-layer mismatch
problem’ and are unable to capture the correct mean velocity profile near the
wall. Therefore, the current study will firstly aim to improve the prediction
of mean velocity for the WSM and validate the improved model over channel
flows. The improved wall-modeled LES will be then applied to square duct
flows and the results will be compared with existing experimental results. In
this setup, the simulation of the flows in the ducts has considerable influence
on the overall prediction of the turbulent flow field in the muffler and even the
acoustic results in the far field.

This thesis aims to develop a pragmatic methodology for the simulation of
high-Reynolds-number wall-bounded flows, more specifically, confined flows
such as square muffler flows. However, as shown in the following chapters, the
methodology is generic for wall-bounded flows and not limited to confined flows.

Based on these issues, the following objectives are formulated for the current
study:

1. Solve the odd-even decoupling problem via filtering without altering main
flow structures and validate it for different test cases.

2. First, implement the basic WSM; then improve the prediction of the
mean velocity near the wall via setting up a framework in which the
‘log-layer mismatch’ problem can be analyzed and solved, thus provide a
new methodology to improve the prediction of the mean velocity profile
in high and moderate Reynolds number attached flows.

3. Apply the wall-modeled LES to the square duct flows and compare the
results with experimental results.

1.4 Outline

In order to prepare for the large eddy simulation of turbulent flows, chapter 2,
entitled ‘numerical methods’, starts with a description of governing equations
of the compressible large-eddy simulation (section 2.1). In section 2.2, the
Smagorinsky model and the VMS models are introduced, with a focus on the
VMS model and its variants. Section 2.3 briefly discussed the WSM and its
solution procedure. The spatial discretization and time stepping schemes are
given in Section 2.4.

The issue of odd-even decoupling is addressed in chapter 3. First in section 3.1,
the theory related to conservative low-pass filters is briefly reviewed. Next, the
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construction of high-order conservative filters near hard boundaries is elaborated
in section 3.2. Subsequently, the relevance of conservative filtering is illustrated
in section 3.3 for a channel-flow test case, and a 2D cavity flow in section 3.4.

Chapter 4 starts with an analysis in which the relationship between mean shear
and its budgets is elaborated for direct numerical simulations based on the DNS
data of fully developed channel flow [30]. The analysis is extended to the case of
LES of channel flow at high-Reynolds number in section 4.2. A few wall-modeled
large eddy simulations are then conducted, using both the Smagorinsky model
and VMS model. The budgets of mean velocity gradients are analyzed within
the aforementioned framework. It is then shown that over-dissipation does
not necessarily mean over-prediction of the mean velocity gradients, unlike the
common perception.

Based on the analysis, in section 4.3, a self-adaptive Smagorinsky model for
LES of high-Reynolds-number wall-bounded flows is proposed, in which the
Smagorinsky coefficient is dynamically adjusted so that a logarithmic mean
velocity distribution is captured. The model is then implemented in a second-
order finite-volume code, taking into consideration of discretization errors, and
applied to a infinite-Reynolds-number channel flow. The desired logarithmic
mean velocity distribution is correctly predicted.

In section 4.4, the self-adaptive Smagorinsky model is extended to include the
viscous effects. A couple of channel flow cases at moderate Reynolds numbers
using the self-adaptive Smagorinsky model and conventional Smagorinsky model
are conducted and compared with DNS data. The self-adaptive Smagorinsky
model provides a better approximation of the mean velocity profiles compared
with the conventional Smagorinsky model and proves to a pragmatic way of
dealing with attached turbulent flows at moderate Reynolds numbers.

The turbulent flows in a square duct at high Reynolds number are studied in
chapter 5, using the conventional Smagorinsky model and the self-adaptive
Smagorinsky model. A literature review is given in section 5.1, followed by a
discussion of the validity of classic log law in high-Reynolds number duct flows.
A modified log law is then proposed in section 5.2, which provides a better
match with the experimental data than the classic log law. The numerical setup
is described in section 5.2 as well. The wall-modeled large eddy simulations are
then conducted for the duct flows at a Reynolds number of 250000 in section
5.3. The results are compared with the experimental results. The modified log
law results in a better prediction of the skin friction, while the self-adaptive
Smagorinsky model provides a overall better prediction of both skin friction and
the mean velocity profiles. The methodology developed in this chapter provides
a pragmatic wall-modeled LES methodology for the simulation of a square duct
at high Reynolds number. Finally, the conclusions are drawn in chapter 6.





Chapter 2

Numerical approach

This chapter provides a description of the basic numerical approach employed
in this work and the research code FLOWAVE which has been developed as a
collaborative effort for large eddy simulation and direct numerical simulation.
Section 2.1 introduces the filtered compressible Navier-Stokes equations. The
spatial discretization and time integration schemes are described in section 2.2.
The SGS models used in the current work are described in section 2.4, with
a focus on the VMS model. Finally in section 2.5, the boundary conditions
particularly the conventional wall-stress model and the sponge zone technique
which is used to damp out the spurious reflections is presented.

2.1 The filtered compressible Navier-Stokes equa-
tions

Any flow variable φ can be written as φ = φ̄ + φ
′ , where φ represents the

low-frequency (or large-scale) part of the variable and φ′ its high frequency (or
small-scale) part. φ̄ is obtained via applying the following low-pass filter G on
the computational domain Ω

φ̄(x, t) = Gφ(x, t) =
∫

Ω
KG(x− ξ)φ(ξ, t)d3ξ. (2.1)

where KG is the kernel filter function satisfying the normalization relation.

11
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For compressible flow, it is convenient to introduce the Favre filtering operator

φ̃ = ρφ

ρ̄
(2.2)

φ can be alternatively decomposed as φ = φ̃+ φ
′′ and now the double prime

represents a residual or sub-grid scale (SGS) component.

In compressible LES, following the Favre filtering, the velocity u(x, t) is
decomposed into a sum of a filtered (or resolved) component ũ and a SGS
component u′′(x, t). The filtered velocity field ũ(x, t) represents the three-
dimensional and time-dependent motions of the large eddies.

The mathematical model for the description of compressible flow is the set of
Navier–Stokes equations representing the conservation of mass, momentum and
energy. Written in conservative form for the conservative variables (density ρ,
momentum ρũi and total energy E) and applying the aforementioned Favre
filtering operator to the compressible Navier-Stokes equations, the filtered
compressible non-dimensional Navier-Stokes equations can be written as [91]

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj
= 0, (2.3)

∂ρ̄ũi
∂t

+ ∂ρ̄ũiũj
∂xj

+ ∂p̄

∂xi
− ∂σ̂ij
∂xj

= −
∂ρ̄τaij
∂xj

+ ∂ (σ̄ij − σ̂ij)
∂xj

, (2.4)

∂Ê

∂t
+ ∂

∂xj

(
Ê + p̄

)
ũj −

∂

∂xj
(σ̂ij ũi) + ∂q̂j

∂xj
= −α1 − α2 − α3

+ α4 + α5 − α6. (2.5)

The equations have been made dimensionless by introducing a reference
length (Lr), velocity (ur) and density (ρr). Non-dimensional parameters are
the Mach number,

M = ur
cr
, (2.6)

the Reynolds number Re,
Re = ρrurLr

µ
, (2.7)

and the Prandtl number Pr,

Pr = cpµ

k
, (2.8)
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where µ is the dynamic viscosity, k is the thermal conductivity. The Prandtl
number Pr and the ratio of the specific heat cp are set equal to 0.7 and 1.4
respectively (the admitted values for the air). t and xi are the independent
variables representing time and spatial coordinates respectively, while the density
ρ, the pressure p and the temperature are linked by the equation of state for
perfect gas,

p

ρ
= T

γM2 . (2.9)

τaij , σ̂ij and Ê are sub-grid scale stress tensor, viscous stress tensor, and total
energy, given respectively

τaij = −ρ̄ (ũiuj − ũiũj) , (2.10)

σ̂ij = 1
Re

(
∂ũj
∂xi

+ ∂ũi
∂xj
− 2

3δij
∂ũk
∂xk

)
, (2.11)

Ê = p̄

γ − 1 + 1
2ρũj ũj ; (2.12)

while the filtered heat flux is expressed as

q̂j = − 1
(γ − 1)RePrM2

∂T̃

∂xj
. (2.13)

The use of mass-weighted filtered variable ũ instead of the filtered velocity ū
prevents the appearance of sub-grid terms in Eq. 2.3.

The six subgrid terms in the energy equation are defined as [91]

α1 = −ũi
∂ρ̄τaij
∂xj

, α2 = 1
γ − 1

∂puj − p̄ũj
∂xj

,

α3 = p
∂uk
∂xk
− p̄ ∂ũk

∂xk
, α4 = σij

∂ui
∂xj
− σ̄ij

∂ũi
∂xj

,

α5 = ∂ (σ̄ij ũi − σ̂ij ũi)
∂xj

, α6 = ∂ (q̄j − q̂j)
∂xj

(2.14)

It is important to notice that no hypothesis has been made up to this point and
no term has been neglected. The nonlinear subgrid terms on the right hand side
of the filtered momentum and energy equations arise due to filtering operation.
These terms are not closed and can not be computed from the flow variables,
thus should be modeled. In the next section, it will be shown how these terms
are treated and modeled.
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2.2 Sub-grid scale (SGS) models

The terms on the right hand side of Eq. 2.4 and Eq. 2.5 reflect the effects of
unresolved scales of motion on large scales and need to be modeled. The SGS
models for the unclosed terms for both the momentum and energy equation are
detailed in subsections 2.2.1 and 2.2.2 respectively.

2.2.1 Momentum equation

A priori test by Vreman [91] showed the SGS term ∂ (σ̄ij − σ̂ij)/∂xj to be one
order smaller than the term ∂ρ̄τaij/∂xj so that it is typically neglected. Two
SGS models, i.e., the Smagorinsky model and the variational multi-scale (VMS)
model which are employed in current work are described.

The Smagorinsky model

The most common SGS model is the Smagorinsky model [91]. The Smagorinsky
model falls into the category of eddy viscosity models, which assume the subgrid
stress tensor to be proportional to the resolved strain rate. The deviatoric part
of the SGS stress tensor is modeled by the eddy viscosity model

τij = τaij −
1
3τkk = −νtS̃ij , (2.15)

where
S̃ij = 1

2

(
∂ũi
∂xj

+ ∂ũj
∂xi
− 2

3δij
∂ũk
∂xk

)
(2.16)

is the resolved strain rate and νt is the eddy viscosity of the residual motions.
By analogy to the mixing-length hypothesis, the eddy viscosity is modeled as

νt = l2s

∣∣∣S̃∣∣∣ = (Cs∆)2
∣∣∣S̃∣∣∣ , (2.17)

where |̃S| is the short for
(

2S̃ijS̃ij
)1/2

. Thus, the Smagorinsky model reads

τij = −2C2
s∆2

∣∣∣S̃∣∣∣ S̃ij , (2.18)

with Cs the Smagorinsky coefficient and ∆ the filter width, a length scale which
is assumed to be related to the grid cutoff, and it is common practice to take

∆ = (hxhyhz)1/3 (2.19)
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with hx, hy, and hz the local grid spacing in x, y, and z directions. In principle,
Cs is assumed to be a universal constant. In the literature, different values
of this constant are reported for different flow regimes. As is shown later on,
the value of Cs is not a constant, but influenced by many factors such as
numerical errors introduced by discretization, viscous effects, the existence of
scale separation (which is a precondition for the LES, though is not satisfied
near the wall for wall-bounded flows), whether the grid cut-off scale is in the
inertial sub-range and finally the shape of the filtering operator. As a result,
the optimal value of Cs is not only different from case to case, but also varies in
different regions of the same flow regime. Thus in this thesis, the Cs is referred
to as the Smagorinsky coefficient instead of the Smagorinsky constant.

Assuming infinite Reynolds number and neglecting turbulent dissipation, the
production of turbulent subgrid kinetic energy balances the dissipation of subgrid
energy εt. The production of subgrid energy is given by

P = −τijS̃ij = 2νtS̃ijS̃ij = νt|S̃|2, (2.20)

which represents the transfer of energy from resolved motions to the residual
motions. Thus one obtains [59]

εt ≈ 2 〈νt〉
∫ ∞

0
k2E(k)dk (2.21)

and

νt ≈ (Cs∆)2
(∫ ∞

0
k2E(k)dk

)1/2
, (2.22)

where k is the wavenumber. Lilly [50] assumed a sharp cut-off filter with cut
off kc = π/∆ and further an inertial range spectrum to obtain the result

Cs = ls
∆ = 1

π

(
2

3C

)3/4
≈ 0.17, (2.23)

where C = 1.6 is the Kolmogorov constant.

However, one must note, several assumptions have been made during the
derivation of the value of Cs. First, the viscous effect has been neglected,
i.e., infinite Reynolds number is assumed. Second, the filter cut-off should
situate in the inertial subrange so that the −5/3 law is valid, this in turn
requires the Reynolds number should be high enough to ensure that the scale
separation happens and the inertial subrange exists. In low Reynolds number
applications, an inertial sub-range does not or almost not exist, the validity
of the aforementioned coefficient is questionable. Even in some high-Reynolds-
number applications, such as wall-bounded flows, the scale separation does not
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exist near the wall. The investigation of the Reynolds number dependency of
the Smagorinsky coefficient is thus relevant. Third, the filter is assumed to be
a sharp cut-off filter. However, explicit filtering might be involved in some SGS
models, such as the dynamic Smagorinsky model [19] and VMS model [33]. In
those cases the influence of the shape of the explicit filters on the Smagorinsky
coefficient should be taken into account. Finally, discretization errors will result
in an energy spectrum E(k) which is different from the desired −5/3 law.

More systematic and detailed discussions on how to determine the value of Cs
and error assessment of LES can be found in [59, 57, 60, 58, 56, 13]. In [59],
the dependency of Cs on two important parameters is addressed, i.e. the ratio
of the LES-filter width ∆ and the Kolmogorov scale η on the one hand, and
the ratio of the integral length scale L and the LES-filter width ∆ on the other
hand. The viscous effect is incorporated into the total dissipation, and a new
parameter γ0 is introduced to account for the shape of the low-pass filter [59]

γ0 =

(
4
3
∫∞

0 k1/3 (G(k))2
dk
)3/4

π/∆ , (2.24)

where G(k) is the transfer function of the filter, for sharp cut-off filter G(k) = 1.
A modified eddy viscosity is finally proposed, corresponds to

ν∗t =
√

(Cs,∞∆/γ0)4
〈

2S̃ijS̃ij
〉

+ ν2 − ν, (2.25)

to account for low-Reynolds-number effects and the shape of the low-pass filter.

The VMS model

Hughes et al. [31], in the context of a VMS framework for LES, presented the
hypothesis that the Smagorinsky model applied to a small-scale extraction of the
turbulent field, delivers superior results compared to a standard Smagorinsky
model. Furthermore, the VMS method separates the scales a priori. And most
importantly, it assumes the interaction happens mainly between the smallest
resolved scales and sub-grid scales. The effect of the unresolved scales is modeled
through relating the SGS stress to the smaller resolved scales instead of the
larger scales. Consequently, in the VMS model, energy is extracted from the
fine resolved-scales via an explicit high-pass filtering operation, and no energy
is directly extracted from the large structures in the flow. For this reason, the
VMS model is less dissipative near walls and in the presence of large coherent
structures. Hence, for wall-bounded flows, the VMS model does not need any
damping function near the wall to reduce the SGS dissipation.
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In later studies, this was further validated by a series of studies, for instance,
Hughes et al. [32] for homogeneous isotropic turbulence and Hughes et al. [33]
for a channel flow.

In their various articles, Hughes et al. present several different versions of
the VMS Smagorinsky model, i.e. the large–small, the all–small, and the
small–small formulations. A variant of small-small formulation [60] is employed
in the current work.

First, the small-scale extraction of a property f(x) is defined as

f
′
(x) = H

′
f =

∫
Ω
KH′ (x− ξ)φ(ξ, t)d3ξ, (2.26)

where H′ is a high-pass filter, introduced to restrict the interaction of the
subgrid-model with the LES solution to the small resolved scales only. In
contrast to the low-pass filter G, the application of H′ to a constant function
yields H′c = 0. The original small–small formulation is then formulated as

τij = −[2C2
s∆2|S̃

′
|S̃
′

ij ]
′
, (2.27)

where |S̃′ | =
(

2S̃′ijS̃
′

ij

)1/2
. Meyers and Sagaut [59, 60] calibrated the

Smagorinsky coefficient in the small–small VMS model via taking into account
the influence of finite Reynolds number and shape of the explicit filters.
This variant of the small–small VMS model together with the conventional
Smagorinsky model and the newly developed self-adaptive Smagorinsky model
(see chapter 4) are employed as SGS models in this work. More details on this
variant of the small–small VMS model will be given in following paragraphs.

The aforementioned analysis on Smagorinsky coefficient is extended to the VMS
model in [59]. Three variants of the small-small VMS model are proposed and
validated over a couple of channel flow test cases [60], among which the so-called
‘Model C’ is theoretically most complete and yields superior results over the
other two, and is thus chosen in the current work. The formulation of this
model reads [60]

τ = −2

 (γ0/γβ)4/3

1− β4/3 ×

√(Cs,∞∆
γ0

)4 (γ0/γβ)4/3|S̃′|2
1− β4/3 + ν2 − ν

 S̃′
′ ,
(2.28)

the coefficients β, γ0 and γβ , and are related to the shape of the filters. β = ∆/∆′
is the ratio of the G-filter width to the H′-filter width. The factor (1−β4/3)−3/4

accounts for the difference between the standard Smagorinsky formulation,
which employs all resolved LES scales, and the small-small model, which uses
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a small-scale part of the resolved field in its formulation. γβ is defined as
follows [60]

γβ =

 1
3π

∫ π/hx

−π/hx

∫ π/hy

−π/hy

∫ π/hz

−π/hz
k−5/3[H ′((k))G((k))]2dkxdkydkz

(π/∆)4/3 (1− β4/3
)

3/4

,

(2.29)
and used to account for the shape of G and H. Finally molecular viscosity ν
appears in Eq. 2.28, accounting for finite-Reynolds-number effects. The high-
pass filter used here is constructed by using a top-hat filter, discretized using a
trapezoidal integration rule. The six components of the velocity strain rates
and turbulent stress are filtered consecutively on six faces in three directions.
More information concerning the explicit high-pass filters employed in the VMS
formulation can be found in chapter 3.

Error analysis of LES

An assessment of LES errors was made for a variety of central finite-volume
discretizations in [57], and the author concluded that it is advisable to use the
same order of accuracy of discretization for convective and dissipative terms.
Winckelmans and his coworkers provided a convenient fit for the Cs/C∞ in
homogeneous isotropic turbulence as a function of ∆/η [13], where C∞ is the
asymptotic coefficient.

The error-landscape approach is used for the evaluation of the Smagorinsky
model in [58, 56], and an optimal combination of model parameter and resolution
is decided based on the numerical results. The authors clarified that using a
pseudo-spectral discretization, the asymptotic Smagorinsky coefficient converges
at fine mesh resolutions to the high-Re theoretical Lilly prediction for the
Smagorinsky coefficient. Using modified wavenumbers in the same spectral
code, the asymptotic value based on LES with “second-order” discretization
errors is also presented. Though the wavenumber is modified, the main difference
from an actual second-order scheme is that the analysis is based on a ‘known’
k−5/3 spectrum, while in reality not only the effective wavenumber deviates
from the actual one, but also the spectrum is no longer the k−5/3 spectrum.
Hence, in this analysis the only discretization effect entering into the analysis is
the discrete representation of |S| and Sij . Nevertheless, the analysis sheds some
light on the relationship of the spatial discretization errors and the Smagorinsky
coefficient. The previously introduced correction factor γ0 is then replaced with

γD =

(
4
3
∫∞

0 k1/3 (G(k))2
GD(k)dk

)3/4

π/∆ , (2.30)
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with GD(k) being the filter induced by the discretization of |S|. Using the
modified wavenumbers for a second-order discretization, GD(k) corresponds
to [58]

GD(k) = 2
∑3
i=1 [1− cos(ki∆)]

(k∆)2 . (2.31)

Integration of Eq. (2.30) using this filter leads to γD = 1.005, while for a pseudo-
spectral discretization, γ = 1.21. For the isotropic turbulence at high Reynolds
numbers, assuming a cubical sharp cut-off filter, the Smagorinsky coefficient
for the pseudo-spectral discretization and ‘second-order’ discretization are then
given as

Cs = Cs,∞
γ0
≈ 0.165, (2.32)

Cs,D = Cs,∞
γD

≈ 0.135. (2.33)

Thus the ‘second-order’ discretization leads to higher value of the Smagorinsky
coefficient.

2.2.2 Energy equation

In section 2.2.1, the unclosed SGS term in the momentum equation is addressed.
However, as shown in Eq. (2.5) and Eq. (2.14), six SGS terms arise due to
Favre average. Not much attention has been paid to this topic, especially for
compressible LES. Vreman conducted numerical experiments in a compressible
mixing layer [91], and confirmed the relative importance of α1 and α2 compared
with other SGS terms. He also found the SGS terms in the energy equation
have a very small impact on the velocity components. The cases studied in this
thesis are all low-Mach-number cases without large temperature gradients and
Vreman’s practice is followed here, with all the other terms neglected except for
α1 and α2.

The model for α1 is straightforward: the aforementioned models for SGS stress
τij are directly applied here. α2 is modeled in the same spirit as the SGS term
in the momentum equation and is given by

α2 = νtcp
Prt
∇T, (2.34)

where Prt is the turbulent Prandtl number, prescribed as a constant value 0.7
in this thesis.
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2.3 Spatial and time discretization schemes

In this section, a description of the spatial discretization and time integration
technique is given. In section 2.3.1, the flux reconstruction and face integration
for convective fluxes are firstly described, followed by the 4th-order Runge-
Kutta time integration scheme. The governing equations are discretized using a
finite-volume method on a collocated grid. The Navier-Stokes equations in the
integral from read [92]∫

Ωi,j,k

∂Q
∂t

dx dy dz +
∫

Ωi,j,k

I · nds = 0 (2.35)

where

Q =


ρ
ρũ
ρṽ
ρw̃

ρÊ

 (2.36)

are the conservative variables, Ωi,j,k is the volume of the control volume (CV)
and

I · n = Ic · n− Id · n + It · n. (2.37)

Ic, Id and It represent the convective, viscous and SGS terms respectively and
given by

Ic · n =


ρ̄ũ · n

ρũũ · n + pn1
ρṽũ · n + pn2
ρw̃ũ · n + pn3
ρÊũ · n + pu · n

 , Id · n =


0

ρ(iσ̂11 + jσ̂12 + kσ̂13) · n
ρ(iσ̂12 + jσ̂22 + kσ̂23) · n
ρ(iσ̂13 + jσ̂23 + kσ̂33) · n
ρ(iα1 + jα2 + kα3) · n

 , (2.38)

and

It · n =


0

ρ(iτ11 + jτ12 + kτ13) · n
ρ(iτ12 + jτ22 + kτ23) · n
ρ(iτ13 + jτ23 + kτ33) · n
ρ(iβ1 + jβ2 + kβ3) · n

 , (2.39)

where αi and βi are defined as ũj σ̂ij − qi and ũjτij respectively, i, j and k are
the unit vectors co-directional with the x, y, and z axes in the three dimensional
Cartesian coordinate system, n is the surface normal vector. The surface
integrals in Eq. (2.35) may be splitted into six face integrals for a 3-D CV.
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2.3.1 Face integration

The face integrals can be approximated by either assuming that the value of a
quantity at CV face center represents the mean value over the face (mid-point
rule approximation) or more accurately, evaluating the fluxes at more locations.

Second order

The simplest approximation to the integral is the midpoint rule, where the
integral is approximated as a product of the flux vectors and the area of
the surface. For instance, for the face i + 1/2, j, k, the face integral can be
approximated as

Fi+ 1
2 ,j,k

=
∫
S

i+ 1
2 ,j,k

Ids ≈ Ii+ 1
2 ,j,k

Si+ 1
2 ,j,k

, (2.40)

which has a second-order accuracy.

Fourth order

Higher-order approximations of the integrals have to be evaluated at more
locations. For the case of 2D, the surfaces become lines, as shown in Fig. 2.1.
For the line i+ 1/2, j, following Simpson’s rule, a fourth-order approximation
estimates the integral over a surface as

Fi+ 1
2 ,j

=
∫
S

i+ 1
2 ,j

Ids ≈
Si+ 1

2 ,j

6 (Ii+ 1
2 ,j+

1
2

+ 4Ii+ 1
2 ,j

+ Ii+ 1
2 ,j−

1
2
), (2.41)

whereas for 3D, the fourth-order approximation of the integral over the faces
reads

Fi+ 1
2 ,j,k

=
∫
S

i+ 1
2 ,j,k

Ids ≈
Si+ 1

2 ,j,k

36 (16Ii+ 1
2 ,j,k

4(Ii+ 1
2 ,j−

1
2 ,k

+ Ii+ 1
2 ,j+

1
2 ,k

+ Ii− 1
2 ,j,k−

1
2

+ Ii− 1
2 ,j,k+ 1

2
)+

Ii+ 1
2 ,j−

1
2 ,k−

1
2

+ Ii+ 1
2 ,j+

1
2 ,k−

1
2

+ Ii− 1
2 ,j−

1
2 ,k+ 1

2
+ Ii− 1

2 ,j+
1
2 ,k+ 1

2
) (2.42)

Fourth-order face integration is only available for the convective fluxes while
second-order face integration is available for both the convective and viscous
fluxes.
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Figure 2.1: Interpolation arrangement for 2D finite volume method. The
primitive variables are interpolated to the cell interface i + 1/2 where the
gradient tensor of the variables is calculated over a staggered control volume,
and the fluxes are reconstructed.

In previous section, one notices that the flux vectors which are used to compute
the face integrals are defined on the faces of the CV. Since the variables are
collocated and cell-centered, the convective flux vectors defined on the faces
have to be calculated from the primitive variables which are interpolated from
cell centers. In FLOWAVE, central interpolation schemes are employed to avoid
artificial dissipation. To reconstruct the convective flux, the primitive variables
are interpolated to the faces of the CV using Lagrangian interpolation

φ(x) =
i+ n

2∑
k=i−n

2

φ(xk+ 1
2
)

i+ n
2∏

l=i−n
2 ,l 6=k

(
x− xk+ 1

2

)
(
xl+ 1

2
− xk+ 1

2

) , (2.43)

where φ can be any of the primitive variables (ρ, u, v, w, p).

For the computation of viscous fluxes and SGS fluxes, the velocity gradient
tensor has to be calculated at the faces using a staggered control volume.
Fig. 2.1 shows the 2D equidistant grid topology, where the gradient on line A-B
(corresponding to i− 1/2, j) is computed as

∇φAB = 1
V1234

∫
1234
∇φdV = 1

V1234
(φi+ 1

2 ,j+
1
2
Si+ 1

2 ,j+
1
2
+

φi,jSi,j + φi+1,jSi+1,j + φi+ 1
2 ,j−

1
2
Si+ 1

2 ,j−
1
2
), (2.44)

where φi+ 1
2 ,j+

1
2
and φi+ 1

2 ,j−
1
2
are interpolated from neighboring grid points.
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2.3.2 Time integration

After the spatial derivatives of the filtered Navier-Stokes equations have been
discretized using the finite volume method, the integral of the temporal term in
Eq. (2.35) also has to be evaluated over the control volume. For a second order
approximation of the volume integral, it reads:∫

Ωi,j,k

∂Q
∂t

dx dy dz = d

dt

∫
Ωi,j,k

Qdx dy dz ≈ dQ
dt

Ωi,j,k. (2.45)

In a more compact form, Eq. (2.35) can be written in a compact form as

dQ
dt

Ωi,j,k = R, (2.46)

where R represents the residual, i.e. discretized spatial terms, defined as

R = −
6∑

f=1
IcSf +

6∑
f=1

IdSf −
6∑

f=1
ItSf . (2.47)

Eq. (2.46) then becomes a set of ordinary differential equations (ODEs)
representing an initial value problem where starting from an initial condition,
the solution can be advanced by integrating in time. In this work, the 4th-order
Runge-Kutta scheme has been chosen as the time integration scheme, due to its
high accuracy and bigger stability region compared with conventional 2nd-order
Euler method. The scheme is given by [28].

Q(1) = Qn

Q(2) = Qn + 1
2∆t∗R(1)

Q(3) = Qn + 1
2∆t∗R(2)

Q(4) = Qn + ∆t∗R(3)

Qn+1 = Qn + ∆t∗
6 (R(1) + 2R(2) + 2R(3) +R(4)). (2.48)

Runge-Kutta scheme is an explicit time-stepping scheme, where the time step
is determined at every CV to satisfy the stability requirement and the smallest
one is taken as the global time step for the whole computational domain. The
CFL number is normally set as a low value such as 1 during the transient period
to avoid numerical instability, and then slowly increased to a value up to 3 after
the flow gets stabilized.
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2.4 Boundary conditions

Three types of boundary conditions are used in this work, the classical CFD
boundary conditions, the wall-stress model and the sponge zone technique,
which is used to damp out the spurious reflection at the boundaries for CAA
calculations.

2.4.1 Classical boundary conditions

• Inlet. Three velocity components and static temperature are imposed.

• Outlet. Static temperature is imposed.

• Isothermal wall. Static temperature is imposed. Either slip wall or non-
slip wall boundary condition is employed, depending on whether the wall
is modeled or not. If the WSM is used, the slip wall is chosen, otherwise,
the non-slip wall boundary condition is imposed.

• Periodic boundaries.

• Free boundary condition. Values of primitive variables are prescribed at
the boundary.

These boundary conditions are well known and can be found in any classical
CFD textbooks such as [17] or [28].

2.4.2 The wall stress model

As mentioned in chapter 1, the wall-stress model is used in combination with
SGS models to prescribe the wall stress at the wall without resolving the wall.
The premise is that the mean velocity, normalized by inner-layer scale, follows
a logarithmic distribution against the normalized wall distance:

UR
uτ

= 1
κ

log(ywuτ
ν

) +B (2.49)

where yw is the distance from the nearest wall, uτ is the friction velocity and
related to the shear stress at the wall via

〈τw〉 = u2
τρ, (2.50)

and UR is the mean velocity at the first grid point from the wall

UR = (〈ũ1〉2 + 〈ũ2〉2)0.5. (2.51)
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Eq. (2.49) yields an implicit relation for uτ , depending on the von Kármán
constant κ = 0.41, the constant B = 5.2 (details on κ, and B, and a discussion
on their universality may be found in Marusic [53]). u1 and u2 correspond
to the wall-parallel velocity components. The eventual stress components in
x1 and x3 directions are then obtained using τw,i = τwũi (i = 1, 2). The ‘〈〉’
represents ensemble average, which is replaced by a local formulation in present
work. As pointed out in [4], imposing the wall stress in a local formulation
leads to increased average stresses for a given near-wall velocity. They found
a time-filtered formulation gives better results. Thus first order time filtering
for the wall-parallel velocity components which are used to prescribe the wall
stress is introduced and takes the following form

¯̃ui,n+1 = (1− r)¯̃ui,n + rũi,n+1, i = 1, 2. (2.52)

where
r = ∆T

∆T + τ
(2.53)

with ∆T size of time step and τ width of the time filter.

Eq. (2.49) is an implicit equation for uτ and will be solved using an iterative
Newton method at every point and at every Runge-Kutta stage. We write the
following equation

f(x) = −a
x

+ b log(cx) + d = 0 (2.54)

where x represents the friction velocity uτ , a, b, c and d are either known as a
prior or calculated from the flow field and given as (in the case of dimensionless
calculation):

a = UR, b = 1
κ
, c = yw

γ
= ywRe, d = B (2.55)

The algorithm will take this form:

xn+1 = xn −
f(xn)
f ′(xn) = xn −

dx2 − ax+ bx2 log(cx)
a+ b

ln cx
(2.56)

The convergence criteria will be

|xn+1 − xn|
|xn|

≤ 10−5 (2.57)

During the transient period, the number of the Newton iterations is high, as the
flow gets developed, normally only one or two Newton iterations are needed.
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Also for rough walls, where δν � y0 (� δ), with y0 the surface roughness,
prescribed as the inner-layer scale, stress-boundary conditions are often used.
Resolving the geometrical roughness details of the wall is impractical, and
instead, a stress-model based on Monin–Obhukov similarity theory for rough
walls yields [61]

τw,i =
[

κ

log(y/y0)

]2
(¯̃u2

1 + ¯̃u2
2)1/2 ¯̃ui (i = 1, 2), (2.58)

which is an explicit equation and y0 is known as a priori.

2.4.3 The Sponge zone technique

To minimize the spurious reflection generated by acoustic waves at the
boundaries and to avoid vortical structures hitting the outlet, a sponge zone
technique [14] is used and a buffer layer is added to the computational domain.
In this zone, acoustic waves and vortical structures are damped by an additional
term appearing on the right hand side of the momentum equations:

∂Q
∂t

+ · · · = − c

∆xi
σmax

(
xi − x0

xi,max − xi,0

)2
(Q−Q∗), (2.59)

where c is the local speed of sound, σmax is a buffer parameter, normally set
to a value of 0.25, xi,0 and xi,max are coordinates, indicating the beginning
and end of the buffer zone, and Q∗ is the target state, equal to the free-stream
conditions.



Chapter 3

Conservative filtering

In this chapter, the globally conservative high-order accurate filters are described,
which combine traditional selective filters at the internal points with one-sided
conservative filters near the wall boundary. Firstly, theory related to conservative
low-pass filters is briefly reviewed, followed by the construction of high-order
conservative filters near hard boundaries. In Section 3.4, the importance of
using conservative filters for the formulation of the VMS Smagorinsky model is
illustrated for the channel flow test case. The globally conservative filters filters
are then applied to remove odd-even decoupling both in a channel flow case and
in a 2D cavity flow. It is shown that the use of a non-conservative filter leads
to erroneous predictions of the skin friction in channel flows up to 30%. In the
cavity flow simulations, the use of non-conservative filters to remove odd-even
decoupling leads to important shifts in the Strouhal number of the dominant
mode, and a change of the flow pattern inside the cavity. In all cases, the use
of conservative high-order filter formulations to remove odd-even decoupling
leads to very satisfactory results. Finally, a tentative analysis of the effect of
the incoming boundary layer on the flow patterns is briefly discussed. The work
discussed in this chapter is published in [93] and [94].

3.1 Conservation properties

It is well documented that the LES equations (2.3–2.5) follow from basic con-
servation of mass, momentum, and energy. Also in numerical implementations,
these properties are best retained in the formulations. As discussed in previous
section, this is not always the case when, e.g., high-order selective filters are

27
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used to remove odd-even decoupling. To further clarify this point, we focus
here on the conservation of momentum (Eq. 2.4). Integrating this equation over
the whole computational domain Ω, and presuming for sake of argument that
the system is in statistical equilibrium, we obtain∫

Ω

∂ρv

∂t
dx ≈ 0 ≈ −

∫
δΩ

(ρv⊗v) · n dx−
∫
δΩ
pn dx

+
∫
δΩ
σ̂ · n dx−

∫
δΩ
τ · n dx, (3.1)

where we used Gauss’ theorem to reformulate some of the volume integrals
into integrals over the boundaries δΩ of the computational domain, and n
is the normal on that boundary. We further elaborate this by means of a
practical example, which will also be one of the test cases in the current work.
Consider a channel flow between two flat parallel plates with a distance of H.
The computational domain is a box with fully developed inflow and outflow
conditions in x, walls in y, and periodic boundary conditions in z directions.
The length of the domain is L. For this case, Eq. (3.1) further simplifies to

H∆p = −2(τw + τM,w)L, (3.2)

yielding the classical relation between pressure drop and friction losses at the
wall (with τw, and τM,w, respectively the mean wall stress, and the mean
subgrid-scale stress at the wall).

In compressible-flow simulations at low Mach number using higher-order
discretization schemes, simulations can be susceptible to odd-even decoupling
(or so-called π-modes), which are not physical, and may lead to unrealistic
solutions or divergence of the simulations. In order to control this in aero-
acoustics simulations, high-order filters which remove odd-even decoupling,
can be employed. For instance, to remove π-modes, the velocity field v may
be filtered every n time steps (with, e.g., n = 5 or n = 1 depending on the
computational grid and the case [52]). In case such a filter is conservative, we
have for any function f(x) in the domain Ω, and using f to denote the filtered
function, that ∫

Ω
f(x) dx =

∫
Ω
f(x) dx. (3.3)

In Section 3.2, it is demonstrated that the construction of a conservative high-
order filter is non-trivial, and requires special treatment of the filter coefficients
near the boundaries of the computational domain. In case the filter is non-
conservative, the filtering of the velocity field v every n time steps will lead to∫

Ω

∂ρv

∂t

∣∣∣∣
t=n∆t

dx 6= 0, (3.4)
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which results in the introduction of an artificial force into the momentum
balance expressed in Eq. (3.1) and Eq. (3.2). In Section 3.4, it is further
illustrated that this can lead to large simulation errors both in classical LES
and in aero-acoustics simulations.

Finally, in Eq. (3.2) the subgrid-scale stresses at the wall τM,w play a role in
the overall force balance of the channel-flow example. In wall-resolved LES, it
is well documented that τM,w = 0 is required (cf. e.g., Refs. [67, 74]). However,
the use of non-conservative filters for the formulation of the VMS Smagorinsky
model (cf. Eq. 2.28) can lead to τM,w 6= 0, which also introduces parasite forces
in the global momentum balance. In Section 3.4, we will illustrate this for the
VMS model, using either a conservative or a non-conservative top-hat filter for
the construction of the VMS high-pass filter used in the model.

3.2 Self-adjoint filters

An important theoretical background on conservation properties of filters for
use in large-eddy simulations, was elaborated by Vreman [90], who showed that
a normalized filter is conservative if it is self-adjoint. In the current subsection,
we briefly review the main elements of Vreman’s work.

In continuous form, a spatial filter operator may be defined as [90]

Gf(x) =
∫

Ω
KG(x, ξ)f(ξ)dξ, (3.5)

where KG(x, ξ) is the filter kernel. For practical purposes, we focus on low-pass
filters G which are normalized, such that Gc = c for any constant field c on
Ω. Vreman [90] showed that any normalized filter is conservative if the filter
is self-adjoint, requiring the filter kernel to be symmetric in its arguments, i.e.
requiring KG(x, ξ) = KG(ξ, x) (in this case, the filter operator is a self-adjoint
operator in the Hilbert space of square integrable functions on the domain Ω
[90]).

In numerical implementations, filters occur in a discrete form: either from a
discretization of Eq. ((3.5)), or directly from a discrete formulation. Discrete
filters are linear operators acting on vectors f ∈ Rn with elements the values of
f(x) at all nodes in the computational domain. The filter is then expressed as
a matrix multiplication

f = Gf , (3.6)



30 CONSERVATIVE FILTERING

with G ∈ Rn×n. Normalization, and conservation are now respectively defined
as [90]

G1 = 1, (normalization) (3.7)

1TG = 1T , (conservation) (3.8)

and 1 ∈ Rn a vector with all elements equal to 1. It is now readily seen that
for discrete filters, a normalized filter is conservative if

G = GT , (3.9)

i.e., if the filter matrix G is symmetric (in this case G is a self-adjoint operator
in the vector space Rn [90]).

In his work on self-adjoint filters, Vreman constructed a discrete conservative
top-hat filter for one-dimensional non-uniform grids, both for internal points,
and for points near a wall boundary. At internal points the filter coefficients
correspond to

gi,j = 0, for |i− j| ≥ 2, and (3.10)

gi,i−1 = ∆i−1 + ∆i

8∆i−1∆i
, gi,i = 1

4∆i
, gi,i+1 = ∆i+1 + ∆i

8∆i∆i+1
, (3.11)

with gi,j elements of the filter matrix G. It is appreciated that both
normalization and conservation properties (Eqs. 3.7,3.8) are fulfilled. Near
the boundary, the filter stencil becomes one-sided, and the coefficients need
to be adapted. For a top-hat filter, only the first point (with index i = 1) is
affected, and the coefficients are [90]

b1,1 = 1− g1,2∆2

∆1
, g1,2 = ∆2 + ∆1

8∆1∆2
, (3.12)

where we use bi,j to denote the coefficients of G which are adapted to account
for the boundary, and do not correspond to coefficients used for internal points.
As is appreciated, using this construction, the filter is conservative, and remains
symmetric.

3.3 Construction of high-order conservative bound-
ary filters

For the construction of the conservative boundary filters, we restrict ourselves
in the current work to orthogonal grids, where the filter is constructed by
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successively applying 1D filters in three directions. Equation (3.6) is then
formulated as a 1D filter. Written out for an internal node i this corresponds
to

(Gf)i =
i+M∑
j=i−N

gi,jfj , (3.13)

with M + N the width of the stencil. The transfer function of this filter in
spectral space is

Gi(k∆xi) =
i+M∑
j=i−N

gi,j exp(ıβijk∆xi), (3.14)

where βij = (xj − xi)/∆xi, and ∆xi the mesh size at location xi, and ı =
√
−1

the imaginary unit. As in Refs. [48, 83, 3, 2] we consider uniform grids, such
that ∆xi = ∆x, and βij = j − i. Moreover, for internal points, filters are
symmetric, and M = N . In that case gi,j becomes independent of the position
i of the internal point. For simplicity of notation we will drop the index i in
this case, i.e. for internal points and symmetric stencils, we use the notation
gk = gi,i+k = gi,i−k.

For the construction of filters at the internal points, the filter coefficients are
determined by imposing a number of constraints on the filter transfer function
[48, 83, 3]. Firstly, normalization (3.7) leads to G(0) = 1. Secondly, the filters
are constructed to remove π-modes, which corresponds to G(π) = 0. Hence,
using Eq. ((3.14)), and for equidistant meshes, these two constraints lead to

i+M∑
j=i−N

gi,j = 1, (3.15)

i+M∑
j=i−N

(−1)j−igi,j = 0. (3.16)

Depending on the width of the filter stencil, a number of additional constraints
is imposed. These may include the desired order of the filter, or the selectivity
of the filter in only removing high-wavenumber content of the signal [48, 83, 3].
In particular, to impose the filter to be of order m, a total of m− 1 additional
constraints need to be satisfied, corresponding to [48, 83, 3]

i+M∑
j=i−N

(j − i)pgi,j = 0; p = 1, · · · ,m− 1. (3.17)

For boundary filters, Berland et al. [2] used similar constraints to construct
one-sided filters. Their focus was also on local accuracy of the filters, but



32 CONSERVATIVE FILTERING

symmetry of the overall filter matrix G was not imposed, such that these filters
are not formally conservative. In Section 3.4, we show that this may lead to
inaccurate LES predictions when these filters are used to remove π-modes in
channel-flow and cavity simulations. In current work we come up with a set of
conservative filters by remaking the boundary filters, while keeping the centered
selective filters proposed by Bogey and Bailly [3] at the internal points. To
illustrate the filter’s construction, we first focus on an 11-point filter stencil at
the internal points, and propose following form for the filter matrix:

G =



b1,1 b2,1 b3,1 b4,1 b5,1 g5
b2,1 b2,2 b3,2 b4,2 b5,2 g4 g5
b3,1 b3,2 b3,3 b4,3 b5,3 g3 g4 g5
b4,1 b4,2 b4,3 b4,4 b5,4 g2 g3 g4 g5
b5,1 b5,2 b5,3 b5,4 b5,5 g1 g2 g3 g4 g5
g5 g4 g3 g2 g1 g0 g1 g2 g3 g4 g5

g5 g4 g3 g2 g1 g0 g1 g2 g3 g4 g5
g5 g4 g3 g2 g1 g0 g1 g2 g3 g4 · · ·

g5 g4 g3 g2 g1 g0 g1 g2 g3 · · ·
g5 g4 g3 g2 g1 g0 g1 g2 · · ·

...
...

...
...

...
...

...
. . .


, (3.18)

where g0, g1, g2, g3, g4, g5 are the coefficients of the traditional selective filter
at the internal points, which can be found in Ref. [3] (these are derived for a
uniform grid, and thus are symmetric, and do not vary with position). The
boundary coefficients bi,j are introduced in the first five rows and columns only,
and are defined such that the symmetry of the filter matrix G is guaranteed a
priori (i.e. imposing bi,j = bj,i).

In order to determine the coefficients bi,j , we consider the three types
of constraints introduced above (Eqs. 3.15,3.16,3.17), corresponding to
normalization, removing π-modes, and imposing the order of the filter truncation
error. For a row i, these constraints are in full

5∑
j=1

bi,j +
5∑

j=6−i
gj = 1 (normalization), (3.19)

5∑
j=1

(−1)j−ibi,j +
5∑

j=6−i
(−1)jgj = 0 (π-mode), (3.20)

5∑
j=1

(j − i)pbi,j +
5∑

j=6−i
jpgj = 0; p = 1, · · · ,m− 1, (3.21)

further explicitly imposing the symmetry bi,j = bj,i, and taking the coefficients
gj from Ref. [3].
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Table 3.1: The constraints imposed in each boundary point of the 11-point
matching conservative boundary filter

Type of constraint: π-mode Normalization Accuracy
1st point ( from the wall) no yes 2nd order

2nd point no yes 2nd order
3rd point yes yes 2nd order
4th point yes yes 3rd order
5th point yes yes 4th order

In case of an 11-point stencil as in Eq. (3.18), 15 coefficients bi,j = bj,i need to be
determined, requiring 15 linearly independent constraints on these coefficients.
We found that imposing as a minimum, normalization and second-order accuracy
in all points (i.e. for all rows in the matrix G) does not allow for the π-mode
constraint in the first two points (first two rows) of the filter scheme. In
particular, imposing the normalization constraints, and second-order constraints
in addition to π-mode constraints in the first two points leads to a system
which is inconsistent (i.e. the rank of the augmented matrix is larger than that
of the system matrix). When the π-mode requirement is lifted for the first
two points nearest to the boundary, solutions exist. Similar problems with the
π-mode constraint were found for 7-point, 9-point, and 13-point stencils. For
the 11-point stencil, an overview of the constraints which lead to a satisfactory
solution are shown in Table 3.1. The attentive reader will note that the table
lists 16 constraints (for 15 unknowns). As a result of the symmetry of the
coefficients, we found that the constraints imposing 2nd order accuracy in the
boundary points are linearly dependent, such that one second-order constraint
comes for free.

We now turn to an evaluation of the spectral properties of the 11-point
conservative boundary filter in Fig. 3.1. To this end, the dissipative properties of
the filter are investigated, by displaying ‖1−Gi(k∆x)‖ in the five points closest
to the boundary. As a point of reference, the boundary filters of Berland et
al. [2] are also plotted. It is appreciated that the dissipation of the filters in
the low wavenumber range is kept at a very low level, which is required to
allow for accurate CAA simulations while using the filter to remove π-modes.
As discussed above, for the conservative filters, the π-mode constraint is not
imposed in the first two grid points, and this is clearly visible in Fig. 3.1(b)
and (c), where the dissipation level of the conservative filter does not reach
one for k∆x = π. When comparing the selectivity of the new conservative
filter with Berland et al. original boundary filter, it is appreciated that the
conservative filter performs remarkably well. Only in the second and third
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point, the conservative filters are less selective in the low-wavenumber range.

Nine-point and 13-point matching conservative boundary filters are derived in
a similar way. The dissipation level of these filters are shown in Fig. 3.2 and
the coefficients of the 9-point, 11-point, and 13-point matching conservative
boundary filters are shown respectively in Table A.2, A.3, and A.4, provided in
the Appendix A.

3.4 Numerical results

We now turn the the evaluation of conservative boundary filters in simulations.
Large-eddy simulations are performed using a VMS Smagorinsky subgrid-scale
model formulated as Eq. (2.28). The coefficients β, γ0 and γβ , are calculated
at every grid point. In the case of channel flow, these coefficients are constant
across the wall-parallel planes and only varies in the wall-normal direction;
nevertheless, they are different from point to point for the case of 2D cavity. In
this work, the coefficients are firstly calculated at every grid point in the cavity,
and a mean value for each coefficient is then taken via simple average for all
the cells across the computational domain.

This section is structured as follows. First, in §3.4.1, channel-flow simulations
are presented, and the effect of conservative filtering on VMS subgrid-scale
modeling, and on removing π-modes is elaborated. Next, in §3.4.2, 2D cavity
simulations are presented, and the importance of conservative filtering for
removal of π-modes is illustrated for the correct prediction of the flow pattern,
and the corresponding cavity Strouhal number.

3.4.1 Channel flow

The Reynolds number based on friction velocity, Reτ=300. The corresponding
Reynolds number based on the mean stream-wise velocity is approximately
104. As a point of reference LES results are compared with the DNS data
which are obtained from Ref. [35]. Simulations are conducted using the in-house
compressible code FLOWAVE; the Mach number has been set to 0.2, such that
the effect of compressibility is negligible.

In first instance, the effect of conservative filter formulations on the VMS
Smagorinsky model is investigated (cf. also the discussion in §3.1). To construct
the high-pass filter required for the VMS model, we either use the conservative
low-pass top-hat filter of Vreman (cf. Eq. 3.12), or a standard non-conservative
version discretized with the trapezoidal integration rule. An overview of the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Dissipation of the 11-point matching conservative filters and Berland
et al.’s [2] 11-point boundary filters. (a) The dissipation of the conservative
boundary filters, and (b)-(f) the comparison of the dissipation of the conservative
filters and Berland et al.’s filters at the first five points from the wall. Solid line:
Berland et al.’s boundary filters; dashed line: conservative boundary filters.
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Figure 3.2: The dissipation of the 9-point (left) and 13-point (right) matching
conservative boundary filters

Table 3.2: Overview of channel flow test cases used to test the filtering of the
VMS model
Case Grid SGS model Filtering in the SGS model
1 Coarse mesh, 64 × 64 × 64 No model /
2 Coarse mesh, 64 × 64 × 64 VMS 2D filtering
3 Coarse mesh, 64 × 64 × 64 VMS 3D conservative formulation
4 Coarse mesh, 64 × 64 × 64 VMS 3D non-conservative formulation
5 Fine mesh, 96 × 128 × 96 No model /
6 Fine mesh, 96 × 128 × 96 VMS 3D conservative formulation

different simulations carried out to test the VMS filtering is given in Table 3.2.
Two different grids are included (denoted as ‘coarse’ and ‘fine’). For the coarse
mesh, four different cases are considered: (1) a no-model case, (2) a case with 2D
wall-parallel filtering (as often used for channel-flow LES in the past), (3) a case
with a 3D conservative formulation of the filtering, and (4) a non-conservative
formulation (similar to the case discussed in Ref. [79]). For the coarse mesh,
only a no-model simulation, and VMS using a conservative formulation of the
filtering are performed.

In Fig. 3.3(a), the mean stream-wise velocity profiles are shown for the different
cases listed in Table 3.2. The velocity is normalized using the friction velocity
predicted by the LES simulations. It can be seen that the result obtained from
the 3D non-conservative formulation deviates strongly from the DNS data. The
velocity and friction velocity near the wall are not correctly predicted due to the
failure of this formulation in satisfying τM,w = 0 (cf. discussion in §3.1), leading
to an deviation which is even bigger than that of the no-model simulations.
The result with the 3D conservative formulation of the VMS filters matches the
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Figure 3.3: Mean stream-wise velocities of the channel-flow testing. (a) Obtained
by applying various conservative or non-conservative top-hat filters in the VMS
model. (—): DNS reference data [35]; (—©): no-model simulation on the coarse
mesh; (—3): no-model simulation on the fine mesh; (−− 2): LES simulation
on the coarse mesh with filtering applied in wall-parallel directions; (− · 4):
LES simulation on the coarse mesh with conservative filtering applied in three
directions; (—5): LES simulation on the coarse mesh with non-conservative
filtering applied in three directions; (−−): LES simulation on the fine mesh
with conservative filtering applied in three directions. (b) Obtained by applying
various high-order filters to remove odd-even decoupling. (—): DNS reference
data; (· · · ): LES simulation on the coarse mesh without spatial filtering; (−−):
LES simulation on the coarse mesh with Berland et al.’s filters [2]; (− ·3): LES
simulation on the coarse mesh with conservative filters; (· · ·2): LES simulation
on the fine mesh without spatial filtering; (−−4): LES simulation on the fine
mesh with Berland et al.’s filters; (−·): LES simulation on the fine mesh with
conservative filters.

DNS data very well, and also corresponds closely with results obtained using
2D filtering. It is appreciated that also on the coarse mesh, the 3D conservative
formulation yields satisfactory results.

Second-order turbulent statistics are shown in Fig. 3.4. The results are not
significantly different from each other, except that conservative filtering applied
in three directions produces the best match with the DNS results, especially for
the 〈u′v′〉+ and 〈v′v′〉+.

We now turn to the use of filters to remove odd-even decoupling or so-called
π-modes. The use of top-hat filters is not appropriate for this, since they are
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Figure 3.4: Second-order turbulent statistics obtained by applying various
conservative or non-conservative top-hat filters in the VMS model: (a) 〈u′u′〉+,
(b) 〈u′v′〉+, (c) 〈v′v′〉+ and (d) 〈w′w′〉+. (—): DNS reference data [35]; (—©):
no-model simulation on the coarse mesh; (−− 2): LES simulation on the coarse
mesh with filtering applied in wall-parallel directions; (− · 4): LES simulation
on the coarse mesh with conservative filtering applied in three directions; (—5):
LES simulation on the coarse mesh with non-conservative filtering applied in
three directions; (−−): LES simulation on the fine mesh with conservative
filtering applied in three directions.
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Figure 3.5: Second-order turbulent statistics obtained by applying various
high-order filters to remove odd-even decoupling: (a) 〈u′u′〉+, (b) 〈u′v′〉+, (c)
〈v′v′〉+ and (d) 〈w′w′〉+. (—): DNS reference data; (· · · ): LES simulation on
the coarse mesh without spatial filtering; (−−): LES simulation on the coarse
mesh with Berland et al.’s filters [2]; (− · 3): LES simulation on the coarse
mesh with conservative filters; (· · ·2): LES simulation on the fine mesh without
spatial filtering; (− −4): LES simulation on the fine mesh with Berland et
al.’s filters; (−·): LES simulation on the fine mesh with conservative filters.
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Table 3.3: Channel-flow cases used to test the use of spatial filters for removal
of odd-even decoupling

Case Grid Spatial 11-point filtering
1 Coarse mesh, 64 × 64 × 64 /
2 Coarse mesh, 64 × 64 × 64 non-conservative filter [2]
3 Coarse mesh, 64 × 64 × 64 conservative filter
4 Coarse mesh, 64 × 64 × 64 /
5 Fine mesh, 96 × 128 × 96 non-conservative filter [2]
6 Fine mesh, 96 × 128 × 96 conservative filters

Table 3.4: Errors induced by use of conservative, and Berland et al.’s filters on
stretched grids

Error on: mass-flow rate friction velocity
Coarse mesh + non-conservative filter 4% 27%
Coarse mesh + conservative filters 2% 0.5%
Fine mesh + non-conservative filter 5% 30%
Fine mesh + conservative filters 1% 0.2%

not sufficiently selective in only removing the π-modes, and not the large scales
in the simulations. Hence, instead, we focus on the high-order conservative
filters developed in §3.3, and use an 11-point filter to remove π-modes in the
simulations at every time step. For the subgrid-scale model, a VMS model with
conservative formulation is used. Table 3.3 summarizes the test cases involved.

Looking at velocity fields for all test cases, we find that both Berland et al.’s
filters and conservative filters are effective in removing odd-even decoupling
(results not shown here). However, by evaluating the mean stream-wise velocity
of the different cases in Fig. 3.3(b), we observe a large disparity between the
conservative filters and non-conservative filters. It is appreciated that the use of
non-conservative filter formulation seriously under-predicts the mean velocity;
on the contrary, the results of conservative filtering differ little from the DNS
data.

In the current channel-flow simulations, the computational grid is stretched in
the wall normal direction. with maximum stretching ratios of 10.5% and 3.2%
for the coarse mesh and the fine mesh respectively. For the implementation
of the conservative filter, we did not take this stretching into account, but
straightforwardly use the filters derived in §3.3. Hence, on these stretched grids,
these filters are formally not conservative, but we found the errors to be small,
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as listed in Table 3.4. It is appreciated that even for a rather high stretching
ratio of 10% on the coarse grid, the error induced by using the conservative
filters on stretched grids remains small (< 2%).

Finally, the predicted second-order turbulent statistics are then shown in Fig. 3.5.
It is difficult to reach a conclusion based on the plots: both the non-conservative
filters on the coarse mesh and the conservative filters on the fine mesh produce
the largest errors, while the results from the non-conservative filters on the fine
mesh and the conservative filters on the coarse mesh show smaller deviations
from both the DNS results and the results without any filtering. Overall,
the non-conservative and conservative filters yield comparable second-order
statistics. This is not unexpected since the conservative filtering technique is
designed to remove the odd-even decoupling and keep the main flow structure
unchanged, while the second-order statistics is not on the goal list.

3.4.2 2D cavity flow

We now turn to a 2D cavity flow, and investigate the possible influence of
the filter formulation for removing π-modes, on noise predictions. The noise
radiated by flow passing over cavities has been studied extensively in the past
and is connected to a broad range of aerospace and automotive applications,
and a variety of theoretical questions on noise production. Extensive amount of
data found in literature for 2D cavity flows [24, 72, 80]. The numerical studies
of 3D cavity flows came relatively late compared with the studies of the 2D
cavity flows, can be found in [76, 45, 44, 43].

The spectrum of cavity noise contains both broadband components introduced
by the turbulence in the shear layer, and tonal components. In 2D cavities, the
mechanisms for the intense tonal components in cavities have been identified
and can be either [72]

1. a shear-layer mode mechanism in which the shear-layer generated at the
upstream edge of the cavity impinges on the rear edge of the cavity,
scattering acoustic waves that propagate upstream and further excite the
shear layer, or

2. a wake-mode mechanism, induced by periodical vortex shedding at the
cavity leading edge and characterized by the shedding of a single vortex
which occupies all the cavity and overshadows the role of the smaller-scale
vortices of the separated shear layer.

However, the presence of a wake mode is not seen in experiments of compressible
cavity flows, nor in the studies of 3D cavities. To investigate higher Reynolds
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Figure 3.6: Cavity configuration

numbers, Shieh and Morris studies 2D cavities using hybrid URANS/LES [75]
and observed a transition to a wake mode; however, a subsequent 3-D study [76]
did not show a wake mode transition for the same configurations, indicating
that it could be related to the 2-D behaviour.

The dynamics of the incoming boundary layer has an very important effect
for the downstream flow pattern. The thickness of the boundary layer was
recognized as a determinant factor for the mode selection. As shown by [23], the
ratio L/θ participates to the mode selection. Moreover, the simulations of 2D
cavities showed a transition toward the wake mode when the ratio of the cavity
length over the momentum thickness L/θ became large. Rowley [72] suggested
three-dimensional effects may reduce the overall amplitude of oscillations, which
would inhibit transition to wake mode.

The 2D cavity is chosen as a validation case of the conservative filtering and
to illustrate of the importance of the conservative filtering, not only because
it is cheaper and simpler, but also because the unique wake mode exists and
the mode selection is sensitive to the incoming boundary layer thickness. In
reality, the filtering is not applied at every time step. In this study the extreme
case of the non-conservative filter being applied at every time step is explored
just to show the potential consequence on noise generation caused by the non-
conservative filtering. As will be shown later, the mean velocity profiles at the
inner layer upstream of the 2D cavity is changed, which in turn changes the
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mode selection in the 2D cavity, leading to a quasi-wake mode.

However, though this study is not intended to discover new physics in cavity
flows, one should be aware that in 3D cavities the flow physics are different
and the thickness of the incoming boundary layer will not leads to a mode
transition as dramatic as the change in 2D cavities. Hence the potential effect
of non-conservative filtering in 3D cavity simulations may be significantly lower.

In the current simulations, we focus on the shear-layer mode in a 2D cavity.
Frequency of tonal noise in the shear-layer mode can be estimated by an
empirical expression, originally introduced by Rossiter [71]:

St = fL

U∞
= n− α
M + 1/κ (3.22)

where St (Strouhal number) is the dimensionless frequency, f is the frequency,
L is the length of the cavity, U∞ is free stream velocity, n is the mode number,
M is undisturbed Mach number, κ and α are empirical constants. The values
for κ and α are obtained experimentally and equal to 0.57 and 0.25 respectively
for the cavity studied in present research.

We consider a 2D cavity corresponding to the DNS cavity case of Gloerfelt [24].
The configuration of the cavity is shown in Fig. 3.6. Its length-to-depth ratio is
L/D = 4, and the free-stream Mach number is M = 0.5. The Reynolds number
based on the depth of the cavity corresponds to 4800 and the ratio L/θ = 63,
where θ is the initial boundary layer momentum thickness at the leading edge
of the cavity. The sound field in this flow is dominated by the shear-layer mode
which generates the dominant modes in the noise spectrum.

In current work, simulations with two different grids are included. A coarse
mesh uses 101× 51 points inside the cavity and 379× 121 outside; a finer mesh
uses 201× 51 points inside the cavity and 679× 221 outside. The computational
domain extends over 13D vertically and 28D horizontally to include a portion
of the radiated field. At the inlet, three velocity components and temperature
are specified; at the outlet, the pressure is imposed. A free boundary condition
is applied at the top boundary. In order to reduce spurious wave reflection at
the outer boundaries, sponge zones are included at all boundaries, by using
progressive damping terms towards the hard boundary of the mesh. To remove
π-modes in the simulations, either an 11-point conservative filter, or Berland et
al.’s filter is used at the final Runge–Kutta stage of every iteration. Simulations
start from a Blasius laminar boundary layer along the wall and spanning the
cavity. Computations are first run for a few hundred dimensionless time units
until the oscillations in the shear layer are established. Subsequently, averaging
in time is used over a sufficiently long time window for averaged quantities to
statistically converge.
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Figure 3.7: Vorticity fields during one cycle of oscillation (first Rossiter mode)
obtained by the 11-point conservative filters (left) and non-conservative filters
(right) on the fine mesh.
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Figure 3.8: Pressure contours during one cycle of oscillation (first Rossiter
mode) obtained by the 11-point conservative filters (left) and non-conservative
filters (right) on the fine mesh.
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Figure 3.9: Time avaraged streamlines on the fine mesh by the conservative
filters (left) and Berland et al.’s filters (right).

Fig. 3.7 and 3.8 respectively show two instantaneous vorticity fields and
pressure fields in one cycle of the dominant Rositer mode, obtained using an
11-point conservative filter (left), and Berland et al.’s original non-conservative
formulation (right), both obtained on the fine mesh. It is appreciated that large
differences exist between solutions obtained with both filter formulations. The
structure of the conservative solution very much resemble the flow patterns
found in the work of Gloerfelt [24, 25] associated to the shear-layer mode
of the cavity. To further investigate the difference between solutions using
either conservative or non-conservative filtering, streamlines associated with the
time-averaged solution of both cases are presented in Fig. 3.9. It is appreciate
that large differences exits; in particular the non-conservative case displays
a big stationary vortex occupying the rear part of the cavity, which is more
reminiscent of a wake-like cavity mode than of a shear-layer mode.

In Fig. 3.10 we investigate grid dependency of the solutions for both filter types,
by looking at the pressure coefficient along the bottom cavity wall for the coarse
and fine mesh. We find that the pressure coefficients for the conservative filters
coincide for both grids (the respective lines are not distinguishable on the plot),
and trends correspond well with pressure coefficients reported in the literature
[24, 25]. The results of the non-conservative filter show a large variation when the
grid is refined. For the finer grid, it is observed that the results using Berland’s
filters start approaching the solution found with conservative filters. This trend
is to be expected, since even though Berland’s filters are non-conservative, they
still provide a consistent discretization of the governing equations, such that
continued grid-refinement should eventually lead to an exact solution. However,
it is appreciated for the current case, that much finer grid levels will be needed
for this.
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Figure 3.10: Mean pressure coefficient along the cavity bottom wall obtained
by (—–): the fine mesh and conservative filters, (—– �): the fine mesh and
Berland et al.’s filters, (– – ©): the coarse mesh and conservative filters, (– –
�): the coarse mesh and Berland et al.’s filters.

In order to identify the dominant tonal frequencies of the noise, time signals are
recorded at a point above the cavity with co-ordinate (0.2D, 10D) (with respect
to the leading edge of the cavity. See also Fig. 3.6). Fig. 3.11 shows the power
spectral density of the fluctuating pressure recorded at the monitoring point for
the different cases. The results obtained with the conservative filters display
consistent features for both the coarse mesh and fine mesh, with dominant
frequencies at St = 0.185, which is very close to the first Rossiter mode St = 0.19.
This is also in line with the results reported in [24, 25] based on DNS. When
looking at the results obtained with non-conservative filters, it is appreciated
that the dominant frequencies depend strongly on the grid, and corresponds to
St = 0.15 and St = 0.23 for the coarse and fine grid.

Up to this point, one might wonder why the flow patterns obtained from two
different filtering techniques show such a big disparity. Here a tentative analysis
is made, with a focus on the characteristic of the incoming boundary layer. The
mean velocity profiles of the incoming boundary layer, rightly upstream of the
cavity, are shown in Fig. 3.12. A notable difference can be observed between
the mean velocity profiles obtained by the conservative filterings and those from
the non-conservative filterings. The profiles obtained by the non-conservative
filtering again show a dependency on the mesh resolution, while the results of
the conservative filtering does not show such dependency. As already elaborated
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Figure 3.11: Power spectral density of fluctuating pressure versus the Strouhal
number St = fL/U∞ at the position (0.2D, 10D) by: fine mesh with
conservative filters (a); fine mesh with Berland et al.’s filters (b); coarse mesh
with conservative filters (c); coarse mesh with Berland et al.’s filters (d).

in previous paragraphs, the characteristic of the incoming boundary layer plays
a decisive role in the mode selection. The quasi-wake modes resulting from
the non-conservative filtering are probably due to the unphysical behavior of
incoming boundary layer near the wall. The difference of PSDs for the non-
conservative filtering on different mesh resolutions is possibly related to the
disparity between their incoming mean velocities, as shown in Fig. 3.12. In
addition to this, the effects of the filterings inside the cavity will also play an
important role in the altering flow patterns and the PSDs.
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Figure 3.12: Mean velocity profile of the incoming boundary layer in a semi-
logarithmic scale plot against the distance from the wall, obtained by the fine
mesh and conservative filters (4), the fine mesh and Berland et al.’s filters (5),
the coarse mesh and conservative filters (—–), the coarse mesh and Berland et
al.’s filters (– –).

3.5 Conclusion

Globally conservative high-order filters were elaborated and used for LES
simulations. Focus is on selective filters for removing odd-even decoupling in
simulations. Nine-, eleven-, and thirteen-point stencils, and associated one-
sided boundary schemes, were elaborated. Next to that, the importance of a
conservative filter formulation for use in the VMS Smagorinsky subgrid-scale
model was also highlighted. The conservative filtering technique developed in
this chapter is mainly intended for structured mesh with a mild stretching ratio.
It may be interesting for other numerical methods where explicit filtering is
involved, such as the immersed boundary technique. For unstructured mesh, it
is a lot more complicated and may not be practical.

In a first step, conservative filters were tested in channel-flow LES, and
comparisons with simulations using Berland et al.’s non-conservative filters were
presented. When using these filters to remove π-modes, it was demonstrated



50 CONSERVATIVE FILTERING

that a conservative 11-point stencils leads to accurate results both on coarse
and finer grids. When using a non-conservative formulation, large errors on the
prediction of the skin friction were detected. We used the channel-flow test case
also to test the effect of a conservative filter formulation in the formulation of the
Smagorinsky model. Here, the use of a conservative top-hat filter, as proposed
by Vreman [90], was compared to a traditional top-hat implementation. Again,
we found that non-conservative formulations can lead to large errors; in this
case errors up to 10% on the prediction of the friction velocity.

In order to investigate the effect of filter formulations (conservative or non-
conservative), used for removing π-modes, on noise predictions in aeroacoustics
applications, simulations of a 2D cavity flow were conducted. It was observed
that simulations with the conservative boundary filters captured the flow pattern
of shear-layer mode and the dominant frequencies correctly, while the simulations
with non-conservative filter formulation failed to do so. It was observed for the
non-conservative filters, that the flow structures at the incoming boundary layers
are significantly changed, leading to entirely different recirculation patterns
inside the cavity.



Chapter 4

A new self-adaptive
Smagorinsky model: a
solution to the log-layer
mismatch

This chapter addresses one of most persisting problems in wall-modeled large
eddy simulation (LES): the overshoot of the mean velocity gradient near the
wall, which is referred to as ‘log-layer mismatch’ in some circumstances. An
analysis of the relationship between turbulent kinetic energy budgets and mean
velocity gradient is elaborated for both direct numerical simulations (DNS)
and large eddy simulation (LES) of fully developed channel flows at high-
Reynolds number. Based on the analysis, a self-adaptive Smagorinsky model
for LES of high-Reynolds-number boundary layer flows is proposed, in which
the Smagorinsky coefficient is dynamically adjusted so that a logarithmic mean
velocity distribution is captured. The model is then implemented in a second-
order finite-volume code, taking into consideration of discretization errors, and
applied to a infinite-Reynolds-number channel flow. The desired logarithmic
mean velocity distribution is correctly predicted. Finally in Section 4.5, the
model is extended to account for viscous effects. The work discussed in this
chapter is partially published in [96] and [95].

51
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4.1 Introduction

In the current study we aim at clarifying the factors which influence the
normalized mean-velocity gradient φ(y), and solving the issue of the overshoot of
the mean velocity gradient. By reformulating the balance equation for turbulent
kinetic energy, and combining with the mean momentum balance, we manage to
find an explicit relation between φ(y) and turbulent dissipation and transport.
In a first step, we illustrate this relation by evaluating the high-Reynolds-number
DNS data base by Hoyas and Jiménez [30]. In a next step, a similar relation is
derived for wall-modeled LES, in which effects of the subgrid-scale closure are
included, and we show that this equation determines the velocity gradient in
LES. Therefore, this relation can serve as a constraint to the subgrid-scale model
in the logarithmic layer, and can, e.g., be used to ‘dynamically’ determine the
Smagorinsky length scale near the wall. Moreover, issues related to numerical
discretization are readily accounted for by considering the structure of the
discrete kinetic energy equation implicated by the discretization. The model is
then extended to include viscous effect. For practical elaboration, we concentrate
on the case of a rough channel flow at infinite Reynolds number, and a set of
smooth wall channel flow test cases, with DNS results [30] as reference. We
illustrate the approach using second-order Smagorinsky LES in combination
with the new near-wall closure model, and present simulation results in which
the error on the normalized mean-velocity gradient largely remains below 5%,
except very close to the wall, where errors are influenced by discretization.

4.2 Analysis of turbulent kinetic energy budgets
and relation to mean shear

We focus in the current work on the high-Reynolds-number boundary-layer in a
fully developed turbulent channel flow. This simplifies some of the equations,
e.g., allowing for a simple force balance. However, a generalization to any type
of high-Reynolds number boundary layer should be relatively straightforward.
In a first step, in §4.2.1 the standard Navier–Stokes equations are used to derive
a relation between normalized mean-velocity gradient, and dissipation and
transport of turbulent kinetic energy. Results are verified using a DNS database.
Next, in §4.2.2, we derive similar relations for large-eddy simulations, and
show that subgrid-scale dissipation and transport are related to the normalized
mean-velocity gradient. An evaluation of these different terms in Smagorinsky
LES is discussed in §4.2.3.
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4.2.1 Relation between energy budgets and mean velocity
gradients in direct numerical simulation

Consider an incompressible turbulent channel flow with turbulent velocity
u = 〈u〉+u′, decomposed in its mean, and fluctuating part (〈u〉, and u′, resp.).
Cartesian coordinate directions x, y, z (also denoted as x1, x2, x3) correspond
to the stream-wise, normal, and span-wise directions. Velocity components in
these directions are respectively u, v, and w, or also denoted as u1, u2, and u3.

In a first step, we briefly review the momentum balance, as it is used later
on. For fully developed turbulent channel flow, the axial momentum equation
reduces to

0 = d
dy

[
−〈u′v′〉+ ν

d〈u〉
dy

]
+ f, (4.1)

where f = −(1/ρ)d〈p〉/dx is the driving mean pressure gradient, and ν the
kinematic viscosity. This relation is integrated from the wall to a height y, and
using the boundary condition τw/ρ ≡ u2

τ =
∫ δ

0 f dy = fδ for the total stress, to
obtain

−〈u′v′〉+ ν
d〈u〉
dy = u2

τ − fy = f(δ − y) (4.2)

where δ is the boundary layer thickness (corresponding to the half-width of
the channel in the fully developed case). Eq. (4.2) reflects the force balance
in a fully developed channel flow. The sum of the viscous and turbulent shear
stresses follows a linear distribution. Outside of the viscous sublayer and buffer
layer, the viscous term is negligible, and the turbulent shear stress will follow a
simple linear distribution.

To arrive at an expression for φ(y), we start from the turbulent kinetic energy
equation. For fully developed channel flow, the turbulent kinetic energy equation
corresponds to [67] (defining q = u′iu

′
i/2, and k = 〈u′iu′i〉/2)

0 = −〈u′v′〉 d 〈u〉
dy − ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
+ ν

d2k

dy2 −
d
dy 〈qv

′〉 − 1
ρ

d
dy 〈v

′p′〉 . (4.3)

The first term on the right-hand side is the production term, the second term is
the pseudo-dissipation, the third term is the viscous diffusion, and the fourth and
fifth terms represent turbulent convection and pressure transport respectively.

If we add and subtract the mean-flow viscous dissipation ν(∂〈u〉/∂y)2 to
Eq. (4.3), and reorganize some of the terms, we end up with following equation:

0 = P̃ − ε̃− T, (4.4)
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where
P̃ = −〈u′v′〉d〈u〉dy + ν

d〈u〉
dy

d〈u〉
dy = (u2

τ − fy)d〈u〉
dy , (4.5)

is a modified production term (further elaborated here using Eq. 4.2), and where

ε̃ = 2ν〈s′ijs′ij〉+ ν
d〈u〉
dy

d〈u〉
dy (4.6)

with s′ij = (∂u′i/∂xj+∂u′j/∂xi)/2, combines the dissipation terms, i.e. turbulent
dissipation, and mean-flow viscous dissipation. The last term on the right-hand
side

T = d
dy 〈qv

′〉+ 1
ρ

d
dy 〈v

′p′〉 − ν d2k

dy2 − ν
d2〈v′v′〉

dy2 (4.7)

is a transport term, representing turbulent diffusion, pressure transport, and
viscous diffusion.

By multiplying Eq. (4.4) with yκ[fuτ (δ − y)]−1, and further using Eq. (4.5),
we finally obtain

φ(y) ≡ yκ

uτ

d〈u〉
dy = yκ

uτ (u2
τ − fy) (ε̃+ T ), (4.8)

which relates the normalized mean-velocity gradient φ(y) to dissipation and
transport terms in the kinetic energy equation.

We now evaluate the terms contributing to φ(y) based on the DNS database of
Hoyas and Jiménez [30] with Reτ =550, 950 and 2000. Results are shown in
Fig. 4.1 both in inner and outer scaling. It is appreciated from the figure that
contributions of the mean-flow dissipation, the turbulent dissipation, and the
transport terms add up to the normalized mean-velocity gradient. Moreover,
between y+ = 50 and y/δ = 0.2, the normalized mean-velocity gradient is
approximately one, indicating the logarithmic region. In this region the dominant
term is the turbulent dissipation term, while effects of the transport remain
below 10%, and mean-flow dissipation is negligible (only close to the wall,
y+ < 30, the latter plays an important role).

4.2.2 Relation between energy budgets and mean velocity
gradients in large-eddy simulation

Inspired by the analysis of the DNS data and the terms contributing to φ,
we now conduct a similar analysis for φ in large-eddy simulations based on
the resolved turbulent kinetic energy equation. The resolved LES velocity

0cf. also http://torroja.dmt.upm.es/ftp/channels/data/
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Figure 4.1: The contributions to φ(y) according to Eq. (4.8) in DNS of full
developed turbulent channel (database by Hoyas and Jiménez [30]), in inner
scaling (left) and outer scaling (right). Symbols, (◦): Reτ = 2003, (�): Reτ =
950, (4): Reτ = 550. Lines, (—, black): φ(y). Further, all multiplied with
yκ/[uτ (u2

τ − fy)], (− · −, blue): mean-flow viscous dissipation; (− · ·−, green):
total dissipation (mean-flow + turbulent); (−−, red): transport terms.

ū = 〈ū〉 + ū′, decomposed in its mean 〈ū〉, and (resolved) fluctuating part
ū′. Further the subgrid-scale stresses are modeled with a subgrid-scale model
τM,ij = 〈τM,ij〉+ τ ′M,ij , similarly decomposed into a mean and fluctuating part
(note that, depending on the formulation of model, the mean part may be zero).

We consider a turbulent channel flow at infinite Reynolds number, and hence
neglect resolved effects of viscosity. As for the DNS case, we first express the
integrated momentum balance for the LES case, which corresponds to

−〈ū′v̄′〉 − 〈τM,12〉 = u2
τ − fy = f(δ − y). (4.9)

Next, the resolved turbulent kinetic energy equation (defining q̄ = ū′iū
′
i/2, and

k̄ = 〈ū′iū′i〉/2) for the LES case yields

0 = −〈ū′v̄′〉d〈ū〉dy +
〈
τ ′M,ij

∂ū′i
∂xj

〉
− d

dy 〈τ
′
M,j2ū

′
j〉−

d
dy 〈q̄v̄

′〉− 1
ρ

d
dy 〈v̄

′p̄′〉. (4.10)

The first term on the right-hand side corresponds to the production of resolved
turbulent kinetic energy, the second term is the SGS dissipation, the third
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term is the SGS diffusion, and the fourth and fifth terms represent turbulent
convection, and pressure transport.

We now add and subtract the mean-flow SGS dissipation 〈τM,12〉d〈u〉/dy to
Eq. (4.10), and reorganize the balance equation into

0 = P̃LES − ε̃LES − TSGS − TRES, (4.11)

where
P̃LES = −〈ū′v̄′〉 d〈ū〉

dy − 〈τM,12〉
d〈ū〉
dy = (u2

τ − fy)d〈ū〉
dy , (4.12)

is the modified production term (further elaborated using Eq. 4.9), and where

ε̃LES = −
〈
τ ′M,ij

∂ū′i
∂xj

〉
− 〈τM,12〉

d〈ū〉
dy (4.13)

include the dissipation terms, i.e., the turbulent SGS dissipation, and the mean-
flow SGS dissipation. Finally, the subgrid-scale transport term, and the resolved
turbulent transport terms respectively correspond to

TSGS = d
dy 〈τ

′
M,j2ū

′
j〉, TRES = d

dy 〈qv̄
′〉+ 1

ρ

d
dy 〈v̄

′p̄′〉. (4.14)

Further reorganizing the terms, we obtain

φ̄(y) ≡ yκ

uτ

d〈ū〉
dy = yκ

uτ (u2
τ − fy) (ε̃LES + TRES + TSGS), (4.15)

which identifies the contributions to the normalized mean-velocity gradient φ̄(y)
in large-eddy simulations.

4.2.3 Evaluation of terms contributing to the normalized
mean-velocity gradient in conventional wall-modeled
Smagorinsky LES

The different terms in Eq. (4.15) are now evaluated based on a set of large-eddy
simulations of a turbulent channel flow using conventional Smagorinsky LES.
A rough wall with roughness y0/δ = 10−4 is considered, and the Reynolds
number is selected to be infinite (hence all turbulent dissipation is modeled by
the subgrid-scale model). Simulations are performed using the second-order
compressible Navier–Stokes solver FLOWAVE,[73, 94] operated at a Mach
number of 0.2, such that effects of compressibility are negligible. Discretization
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relies on a second-order finite-volume method combined with fourth-order Runge–
Kutta time integration. The computational box size corresponds to 2π × 1× π
in stream-wise, wall-normal and span-wise directions respectively, and periodic
boundary conditions are used in stream and span-wise directions. For discussion
in the current subsection, all simulations are performed on a 64× 48× 64 mesh.

At the wall, we use the conventional wall-stress model of Moeng, [61] but slightly
adapted following Bou-Zeid et al.,[4] i.e., in Eq. (2.58), additionally filtered
velocities ˜̄ui are used instead of ūi, such that the size of the mean stress is not
overestimated. We use a running time average with a filter length of around
3.3δ/Uc, where Uc is the mean center-line velocity.

The subgrid-scale model corresponds to the conventional Smagorinsky model,
i.e.

τM,ij = −2l2s |S̄|S̄ij , (4.16)
with S̄ij = (∂ūi/∂xj + ∂ūj/∂xi)/2 the filtered rate-of-strain tensor, and |S̄| =
(2S̄ijS̄ij)1/2 its magnitude. Far away from the wall, in the center of the channel,
the Smagorinksy length ls = Cs∆, with ∆ = (∆1∆2∆3)1/3 the grid spacing,
and Cs the Smagorinsky coefficient. To reduce the Smagorinsky length scale
close to the wall, we employ Mason and Thomson’s wall damping, [54] i.e.,

1
ls

= 1
Cs∆

+ 1
κy
, (4.17)

such that close to the wall, Prandtl’s mixing length ls = κy is recovered.

In Fig. 4.2 simulation results are shown for two different values of the
Smagorinsky coefficient, i.e. Cs = 0.10, and Cs = 0.17. The first is often
used in wall-modeled LES (empirically tuned), while the second corresponds to
Lilly’s classical estimate for the coefficient, [50] i.e., Cs = (3CK/2)−3/4/π ≈ 0.17
(taking a Kolmogorov constant CK = 1.6). It is appreciated from the figure that
the main contributions to the normalized mean-velocity gradient come from the
subgrid-model contributions, while effects of resolved turbulent transport remain
relatively small in most of the domain (except near the center of the channel).
Further the large difference between results at Cs = 0.10 and Cs = 0.17 appears
to be largely related to the considerable difference in mean-flow subgrid-model
dissipation, which roughly doubles for the Cs = 0.17 case. This can be directly
related to the fact that (Cs∆)2 is more than twice higher for the 0.17 case than
for the 0.1 case.

However, over-dissipation is not the only possible cause for an overshoot of
the velocity gradient, as also the effect of transport may play an active role.
To demonstrate this, we investigate the small–small VMS Smagorinsky model,
which applies a high-pass filter to the resolved scales before extracting the
subgrid stresses. As a result of this, the VMS subgrid stresses drop to zero
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Figure 4.2: Mean velocity (left), and terms contributing to φ̄(y) (right) for the
standard Smagorinsky model with Mason & Thomson’s damping[54] near the
wall. Symbols, (◦): Cs = 0.10; (�): Cs = 0.166. Lines in right figure, (—,
black): φ̄(y). Further, all multiplied with yκ/[uτ (u2

τ − fy)], (−·−, blue): mean-
flow subgrid-model dissipation; (− · ·−, green) sum of all subgrid contributions
(dissipation + transport), (−−, red): resolved turbulent transport.

at the wall, where the solution is under resolved, roughly corresponding to a
RANS-like region. The mean streamwise velocities and the budgets for φ(y)
are shown in Fig. 4.3 for the standard Smagorinsky model (Cs = 0.11) and the
small-small version of the VMS model, respectively.

It can be seen that the φ(y) predicted by the VMS model experience firstly an
overshoot and then an undershoot. We can see that the SGS terms ε̃ for the
standard Smagorinsky model is actually higher then that of the VMS model,
however, mean-flow SGS dissipation which is part of the SGS terms is zero for
the VMS model since 〈τij〉 is zero, which has been high-pass filtered. If we
subtract the mean-flow SGS dissipation from the ε̃ and define the remaining
terms as ε̃′ , we then find that ε̃′ and T of the VMS model are actually much
higher then those of the Smagorinsky model. These terms mainly account for
the interactions between the smallest resolved scales and the unresolved sub-grid
scales. It must be noted that the VMS model is calibrated and yields better
results then the standard Smagorinsky model only when the scale separation
happens and the interaction between the integral length scales and sub-grid
scales can be neglected. However, near the wall where the grid cut-off is



A SELF-ADAPTIVE SMAGORINSKY MODEL FOR LES OF HIGH-RE BOUNDARY LAYER FLOWS 59

y/H

u
+

0.2 0.4 0.6 0.8

12

14

16

18

20

22

Smagorinsky model, Cs=0.11
VMS model
Logarithmic profile

y/H
0.2 0.4 0.6 0.8

0

0.5

1

1.5

2

Φ, VMS model
Mean-flow SGS dissipation, VMS model
SGS terms, VMS model
Transport terms, VMS model
Φ, Smagorinsky model Cs=0.11
Mean-flow SGS dissipation, Smagorinsky model Cs=0.11
SGS terms, Smagorinsky model Cs=0.11
Transport terms, Smagorinsky model Cs=0.11

Figure 4.3: The mean velocity (left) and budgets for φ(y) (right) using the VMS
model and the standard Smagorinsky model with Cs = 0.11 respectively.

comparable with the integral length scales, the fore mentioned requisites are no
longer valid. Hence, the mean-flow SGS dissipation can be neglected far away
from the wall, but not near the wall, where the simulation does not resolve any
fluctuations.

Hence, although the VMS is under-dissipated compared with the standard
Smagorinsky model (the total SGS dissipation is lower), the φ(y) is still over
predicted, clarifying that over-dissipation is not the sole possible cause for
over-prediction of the mean velocity gradient.

4.3 A self-adaptive Smagorinsky model for LES of
high-Re boundary layer flows

In the current section, a model is derived that can be, e.g. used to determine
the correct Smagorinsky length scale in the logarithmic region of a boundary
layer. First, in §4.3.1, we discuss the derivation of this self-adaptive model.
Subsequently, we briefly explain the practical implementation of the new self-
adaptive model in the second-order FV-based in-house code FLOWAVE . Since
the turbulent kinetic energy equation used to derive an expression for φ is
a derived property in incompressible flow, obtained from momentum and
continuity, it is important to implement a discrete version of the model (and
underlying energy equation), which corresponds to the discrete momentum
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balance. First, in §4.3.2 the discrete implementation of the model is discussed
for internal grid points. Next, in §4.3.3 additional issues related to the boundary
points near the wall are addressed.

4.3.1 Derivation of the self-adaptive model

By reorganizing the terms which involve the subgrid-scale model in (4.15), we
have

φ̄(y) = κy

uτ

dū

dy
≈ yκ

uτ (u2
τ − fy)

[〈
ū′i
∂τ ′M,ij

∂xj

〉
− 〈τM,12〉

∂〈ū〉
∂y

+ TRES

]
. (4.18)

We now express the Smagorinsky SGS stress as

τM,ij = −2l2s |S̄|S̄ij ≡ l2sψij , (4.19)

introducing an auxiliary tensor ψij = −2|S̄|S̄ij . Then Eq. (4.18) is reformulated
into

φ̄(y) ≈ κy

uτ (u2
τ − fy)

[
l2s

(〈
ū′i
∂ψ′ij
∂xj

〉
− 〈ψ12〉

∂〈ū〉
∂y

)
+ dl2s

dy 〈ū
′
iψ
′
i2〉+ TRES

]
.

(4.20)
Hence, we obtain a simple ordinary differential equation (ODE) which determines
ls, i.e.,

A(y)dl2s
dy +B(y)l2s + C(y) = 0, (4.21)

with

A(y) = 〈ū′iψ′i2〉, B(y) =
〈
ū′i
∂ψ′ij
∂xj

〉
− 〈ψ12〉

∂〈ū〉
∂y

,

and C(y) = TRES −
uτ (u2

τ − fy)φ̄
κy

. (4.22)

Given any type of known velocity gradient φ̄(y), and using the boundary
condition ls〈ψ12〉 = uτ at y = y0, this ODE may be solved. In the current work,
we focus on the situation where φ̄(y) = 1, i.e., related to a logarithmic velocity
profile.

Taking φ̄(y) = 1, an exact solution can be expressed for Eq. (4.21). However,
the resulting expression is rather cumbersome, involving multiple nestings
of exponentials and integrals. Similarly, an approach based on numerical
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integration of the ODE may also introduce significant computational complexity.
Instead, in the current work, we strongly simplify the equation based on an
order-of-magnitude analysis, which requires ls ∼ ∆ (i.e. more particularly
ls 6� ∆).

As a starting point, let us presume above the logarithmic layer, which we select
conveniently to be y ≥ 0.2δ, that ls = Cs∆ ≈ 0.2∆ (with ∆ the LES filter
width or grid spacing), then dl2s/dy = O(ls∆/δ). Hence,

As a starting point, let us presume above the logarithmic layer, which we select
conveniently to be y ≥ 0.2δ, that ls = Cs∆ ≈ 0.2∆ (with ∆ the LES filter
width or grid spacing), then dl2s/dy = O(ls∆/δ). Hence,

dl2s
dy 〈ū

′
iψ
′
i2〉 ∼ ls∆

〈
ū′i
ψ′i2
δ

〉
� ls∆

〈
ū′i
∂ψ′ij
∂xj

〉
. (4.23)

The inequality above is based on the fact that the fluctuating filtered shear in
LES is a (resolved) small-scale property, such that ∂ψ′ij/∂xj ∼ ψ′ijej/∆ ∼ ψ′i2/∆.
When ls sufficiently large, we then obtain

dl2s
dy 〈ū

′
iψ
′
i2〉 � ls∆

〈
ū′i
∂ψ′ij
∂xj

〉
∼ l2s

〈
ū′i
∂ψ′ij
∂xj

〉
. (4.24)

We will illustrate that this order-of-magnitude analysis is reasonably well satisfied
resulting in good velocity gradients in §4.4).

Thus, neglecting A(y)dl2s/dy in (4.21), we obtain

l2s = uτ (u2
τ − fy)/(κy)− TRES〈

ū′i
∂ψ′ij
∂xj

〉
− 〈ψ12〉

∂〈ū〉
∂y

. (4.25)

This formula may now be directly used in the logarithmic region of wall-modeled
large-eddy simulations for a ‘dynamic’ determination of the Smagorinsky length
scale.

Finally, we turn to an asymptotic analysis of the model for ū′i → 0, in which case
the LES turns into a Reynolds-averaged Navier–Stokes simulation. Following
limits can then be used for the analysis of Eq. (4.21):

ū = 〈ū〉, d〈ū〉
dy = uτ

κy
, and v̄ = w̄ = 0. (4.26)

It is now easily verified that A(y) = 0 in this case. Further, also ψ′ij = 0, and
the only non-zero component of 〈ψij〉 corresponds to

ψ12 = −2|S̄|S̄12 = −
(

d〈ū〉
dy

)2
. (4.27)
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Hence, for ū′i → 0, Eq. (4.21) becomes

l2s = uτ (u2
τ − fy)

κy
[
−〈ψ12〉d〈ū〉dy

] = uτ (u2
τ − fy)

κy
[

d〈ū〉
dy

]3 = (κy)2 (1− fy/u2
τ ). (4.28)

For fy/u2
τ � 1, we obtain to first order that ls = κy, which corresponds to

Prandtl’s classical expression for the mixing length in a boundary layer close to
the wall.

4.3.2 Discretization of energy balance and self-adaptive model
in internal points

Discretizing (4.18), and using δ/δxi as a short-hand notation for the discretized
derivatives, we obtain

φ̄(y) ≡ yκ

uτ

d〈ū〉
dy ≈

yκ

uτ (u2
τ − fy)


〈
ū′i
δτ ′M,ij

δxj

〉
︸ ︷︷ ︸

term I

−〈τM,12〉
δ〈ū〉
δy︸ ︷︷ ︸

term II

+TRES

 . (4.29)

In (4.18), we already chose a continuous form of the model which is consistent
with the way the equation is constructed form the momentum equation. Term
I in (4.29) is obtained by multiplying the divergence of the subgrid-scale stress
in the discrete momentum equations with the velocity vector, subsequently
followed by ensemble averaging, and removing the effects of the mean velocity,
and mean subgrid-scale stress. Term II is obtained by multiplying the divergence
of the mean subgrid-scale stress (in the mean momentum balance, i.e. Eq. 4.9)
by the mean velocity gradient δ〈ū〉/δy. In continuous form, these terms may
be conveniently reformulated (e.g. separating sub-grid dissipation and sub-grid
dispersion), or contracted, but in discrete this is not generally possible, i.e.

〈
ū′i
δτ ′M,ij

δxj

〉
6= −

〈
τ ′M,ij

δū′i
δxj

〉
+ δ

δy
〈τ ′M,j2ū

′
j〉,

〈τM,12〉
δ〈ū〉
δy
6= δ〈τM,12〉〈ū〉

δy
− 〈ū〉δ〈τM,12〉

δy
, (4.30)

and it important to use the left-hand sides of above inequalities and not the right-
hand sides (though they are valid for the continuous case) in the formulation of
the discretized model.
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In the current work, we employ a collocated second-order finite-volume method
for spatial discretization on a Cartesian mesh. The discretization of Eq. (4.25)
is relatively straightforward, and values for ls are calculated at the cell centers.
We obtain (using index c for cell center, and f for cell face)〈

ū′i
∂ψ′ij
∂xj

〉
c

Ωc ≈
〈
ū′i,c

∑
f

[ψ′ij,fnj,fΓf ]
〉
, (4.31)

with Ωc = ∆1∆2∆3 the cell volume, Γf the face surfaces, and nj,f the face
normals. Further, using t and b indices to denote the top and bottom face of a
cell (resp. at yc + ∆y/2 and yc −∆y/2),[

〈ψ12〉
∂〈ū〉
∂y

]
c

Ωc ≈
1
2 〈ψ12,t + ψ12,b〉[〈ūt〉Γt − 〈ūb〉Γb]. (4.32)

Further, face values of u and ψ′ij are obtained using linear interpolation and
second-order central differences using cell-centered values of the velocities.

Finally, also the resolved turbulent diffusion term TRES needs to be discretized.
Starting from the momentum equation in discretized form multiplied with ū′
we arrive at

TRES =
〈
ū′i
δū′iū

′
j

δxj

〉
+
〈
ū′i
δp̄′

δxi

〉
6= δ

δy
〈qv̄′〉+ 1

ρ

δ

δy
〈v̄′p̄′〉, (4.33)

where above inequality becomes an equality for the continuous case.

4.3.3 Discretization issues at boundary points

At points close to the wall (i.e. in our simulations, this applies to the first
three cells closest to the wall), additional issues arise, which should be carefully
treated to achieve an accurate discretization of the self-adaptive length-scale
model. Even then, a peak in the error is observed around the second and third
point from the wall (cf. results in Section 4.4). In our opinion, the reasons for
that are related to inherent discretization errors on the mean shear, as discussed
first in §4.3.3. A second point of importance is ensuring that the total shear is
linearly interpolated (instead of ψ′ij), further discussed in 4.3.3.

Accurate discretization of mean shear

An essential problem which occurs at points close to the wall is related to
the accuracy of the discretization of the shear, and in particular the accurate
representation of its mean component.
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The average shear corresponds to d〈ū〉/dy, and its discretization may be
expressed based on a Taylor series expansion as

δ〈ū〉
δy

= d〈ū〉
dy + c1∆y

d2〈ū〉
dy2 + c2∆2

y

d3〈ū〉
dy3 + · · ·+ cn∆n

y

dn+1〈ū〉
dyn+1 + · · · , (4.34)

where ∆y is the wall-normal grid-spacing, and where c1, c2, · · · are coefficients
which depend on the selected discretization scheme (in the current work, we
use a central second-order scheme, for which c1 = 0 and c2 = 1/6).

In the particular case of a logarithmic mean-velocity profile, we obtain that

dn〈ū〉
dyn = (−1)n−1uτ

κ

(n− 1)!
yn

(n = 1, 2, · · · ). (4.35)

For cells close to the wall, and defining the normalized distance d = y/∆y (e.g.,
d =1/2, 1, 3/2, and 2 at the cell centers, and top faces of the first two cells),
the relative error on the mean shear is expressed as

δ〈ū〉/δy
d〈ū〉/dy − 1 = −c1

1
d

+ c2
2
d2 + · · ·+ (−1)ncn

n!
dn

+ · · · (4.36)

Consequently, for d < 1 the relative error on the derivative becomes high,
irrespective of the order of the discretization scheme. For cells far away from the
wall, this is not an issue, since in that case d� 1. Hence, given a logarithmic
mean-velocity profile, the discretized representation of φ(y) close to the wall in
Eq. (4.29) is not equal to unity due to the aforementioned discretization error.

To circumvent this problem in the first cells closest to the wall, instead of using
unity, we use a corrected value of φ(y) in Eq. (4.29). To this end, we presume
a logarithmic mean profile, and obtain the discretized value φd(y) of φ(y) by
plugging that profile in the discretization for the wall-normal velocity derivative,
i.e.,

φd(y) = y
δ log(y/y0)

δy
. (4.37)

For d � 1, we find that φd(y) ≈ φ(y). For instance, at the fourth grid point
(with d = 7/2), φd(7∆y/2) ≈ 1.03.

Note that this approach yields very satisfactory results for the RANS-like
simulations (cf. §4.4.1). For the LES some errors remain, related to the fact
that discretization errors close to the wall also affect the resolved fluctuating
part of the shear. These errors are much more difficult to quantify.
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Interpolation of 〈ψ12〉

A final problem which need to be addressed is the interpolation of 〈ψ12〉 close to
the wall. At internal grid-points we straightforwardly employ linear interpolation
to obtain 〈ψ12〉 at cell centers from values at faces (cf. Eq. 4.32). Formally, by
virtue of the integrated momentum balance, the total shear stress is known to
behave linearly, such that

〈τM,12〉c + 〈ū′cv̄′c〉 = 1
2 [〈τM,12〉t + 〈τM,12〉b + 〈ū′tv̄′t〉+ 〈ū′bv̄′b〉] . (4.38)

At cells close to the wall, both 〈ū′v̄′〉 and τM,12 change non-linearly, and only
their sum is accurately approximated by linear interpolation. Therefore, close
to the wall (i.e. in the first three points), we approximate (cf. Eq. 4.32)

ls

[
〈ψ12〉

∂〈ū〉
∂y

]
c

Ωc ≈

1
2 [ls〈ψ12,t + ψ12,b〉+ 〈ū′tv̄′t〉+ 〈ū′bv̄′b〉 − 2〈ū′cv̄′c〉] [〈ūt〉Γt − 〈ūb〉Γb]. (4.39)

Note that in this discrete approximation, ls is presumed constant over the cell.
However, this is fully consistent with neglecting the effect of A(y)dl2s/dy in
Eq. (4.21).

4.4 Wall-modeled LES using self-adaptive Smagorin-
sky length scales

We now investigate the self-adaptive Smagorinsky model for a number of wall-
modeled large-eddy simulations. In §4.4.1 a first test is presented, in which the
self-adaptive model is used up to the center of the channel. Next, in §4.4.2 a
more physically relevant approach is elaborated, in which a set of simulations
are presented for which the self-adaptive model is only used in the logarithmic
region up to y/δ = 0.12. Above the log region, it is merged with a constant-
coefficient Smagorinsky model in the center of the channel. Finally, in §4.4.3,
we continue discussion on the use of the self-adaptive model, and demonstrate
some issues that may arise when it is used outside its region of validity.

The computational setup is the same as described in §4.2.3. The brackets in
Eq. (4.25), representing ensemble averaging, are approximated by a combination
of wall-parallel averaging and averaging in time, with a filter length of around
3.3δ/Uc, where Uc is the mean center-line velocity. Since our time integration
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is based on an explicit Runge–Kutta method, the evaluation of ls in Eq. (4.25)
for determination of the LES solution in the next time step, is based on
flow quantities in the current time step. Further details on the numerical
implementation of the self-adaptive model are already discussed in §4.3.

4.4.1 Experiment with self-adaptive model for full channel
height

In the current section, the self-adaptive model is first used for the full height
of the channel, enforcing a logarithmic profile everywhere. Two cases are
considered, both on a grid of 64 × 36 × 64 cells. The first corresponds to a
large-eddy simulation in which the Smagorinsky length ls is determined using
Eq. (4.25). The second case, is a RANS-like case (for which ū′i = 0) which is
run on the same mesh with the Smagorinsky model, using the asymptotic ls
expression obtained in Eq. (4.28). Results are shown in Figure 4.4.

In Figure 4.4(a), mean velocity profiles are shown for both cases. We observe a
nearly perfect logarithmic profile up to the center of the channel for the RANS
case. For the LES case, the match with the log profile is also very good except
for the most central part of the channel (y/δ > 0.85), and for the second point
near the wall, which displays a small undershoot of the velocity. This is further
appreciated in Figure 4.4(b), in which φ is displayed for both cases. The RANS
result matches the normalized logarithmic derivative very well; errors on the
LES remain below 5% for y/δ < 0.85, except for a peak in the third point from
the wall with an error of 10%. This is directly related to the small undershoot
in the velocity at the second point. This is probably related to second-order
discretization errors. Finally in Figure 4.4(c), values for Cs = ls/∆ are shown.
It is observed that the effective Smagorinsky coefficient of the LES case is
considerably lower than the RANS case. This is related to the fact that in LES
part of the Reynolds stresses are resolved in the simulation.

Near the center of the channel, the LES results do not follow the logarithmic
layer (cf. Fig. 4.4). In this part of the flow, the resolved stresses TRES, involving
triple correlations of the resolved fluctuating velocity, play a dominant role in
the determination of ls. Probably related to this, we found it is difficult to
get a converged flow solution, i.e., we had to extend the temporal averaging
for the brackets in Eq. (4.25) up to 6 through-flow times. In case TRES is not
dominant in the determination of ls (further discussed in next section), we find
an averaging time of a few eddy turn-over times sufficient.
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Figure 4.4: Mean velocity (a), normalized velocity gradient (b), and Smagorinsky
coefficient Cs (c) obtained from a RANS-like simulation (�), and a large-eddy
simulation (M), using ls determined with a log profile up to the center. Both
simulations use a 64× 36× 64 mesh.

4.4.2 Use of self-adaptive model in the logarithmic region
(y < 0.12δ)

In real flow regimes, the log-layer is limited to the region near the wall. It is
commonly accepted that the log-layer exists up to the upper limit of the inner
region, i.e. roughly estimated as [67] y/δ ≈ 0.1 – 0.15. Therefore, the use of
the self-adaptive model with φ = 1, should be limited to this near wall region.
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Table 4.1: Different cases for the testing of the self-adaptive model up to
y/δ = 0.12. All cases use equidistant meshes on a domain of 2π × 1× π, with
wall roughness y0 = 10−4δ.

Nx×Ny×Nz ∆/δ ∆x/∆ ∆x/∆y ∆x/∆z

Case 1 96×54×96 0.034 1.92 2.0 3.53

Case 2 96×72×96 0.031 2.11 2.0 4.71

Case 3 128×96×128 0.0232 2.11 2.0 4.71

Case 4 192×108×192 0.0171 1.92 2.0 3.53

Here we use the self-adaptive model up to 12% of the height of the channel in
combination with a constant-coefficient Smagorinsky model in the center. To
this end, a trigonometric blending function is employed, i.e.,

B(y) = cos
(

min
(
π

2 ,max
(

0., y − 0.3δ
4∆2

π

)))
, (4.40)

with ∆2 the grid spacing in the y-direction. Thus near the wall up to 12%
of the channel height the self-adaptive model is employed and the mixing
length is dynamically determined from the flow field, given that mean velocity
displays a logarithmic profile. Beyond 12% of the channel height, the standard
Smagorinsky model is employed using Cs = 0.17. Remark that the blending
between both regions is localized to four cells around y/δ = 0.12, so that the
width of the blending region decreases with grid refinement.

Four simulations are performed with four different resolutions. Two ratios
∆x/∆ = 1.92, and ∆x/∆ = 2.11 are included, next to two different cell aspect
ratios; details are provided in Table 4.1. The resulting velocity profiles and
normalized mean-velocity gradients are shown in Fig. 4.5. It is appreciated
that the performance of the new self-adaptive model is very good and the
results are greatly improved compared to conventional approaches relying on
a Smagorinsky model (cf., e.g., Fig. 4.2). For y/δ < 0.12, the mean stream-
wise velocity exhibits the desired logarithmic distribution, with an error on
normalized mean-velocity gradient that is below 5%, except for the third point.
In fact, in Fig. 4.5(a) we find a slight undershoot of the mean stream-wise
velocity at the second point, which leads to a peak in the error of about 10% in
the normalized mean-velocity gradients φ at the third point (in Fig. 4.5(b)). We
believe this is mainly related to inevitable discretization errors, which impact
on the self-adaptive determination of ls in the points closest to the wall.
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Figure 4.5: Stream-wise velocity profile in a semi-logarithmic scale (a), and
normalized mean-velocity gradient φ(y) = (yκ/uτ )(d〈u〉/dy) (b) for simulations
with a self-adaptive model applied up to 12% of the channel height. Four cases
are compared: 96 × 54 × 96 (2, and solid line), 96 × 72 × 64 (∆, and dotted
line), 128× 96× 128 (∇, and dash-dot-dot line) and 192× 108× 192 (3, and
dashed line).

It is important to note that the outer-layer results for the different grid
resolutions show considerable disparity, and the predicted value of φ(y) beyond
the blending position increases as the grid resolution increases. The results
from the finer grid tend to yield higher velocities near the center, compared to
that of the coarse grid. However, the coarsest grids used in the current study
may be too coarse for a reliable prediction of the nearly isotropic turbulence
which is expected in the channel center. Moreover, as various studies have
shown,[59, 58, 55] the optimal Smagorinsky coefficient for very high Reynolds
number isotropic flows depends on many factors, such as spatial discretization,
the shape of grid cell and grid resolution, such that the value Cs = 0.17 may not
be suitable. A comprehensive study on the effect of the Smagorinsky coefficient
Cs in the center of the channel is not in the scope of the current study.

In Fig. 4.6 the average value of the Smagorinsky coefficients, and ls is shown as
function of the channel height. Averages over 100 through-flow times are shown.
The effective values during the simulation fluctuate a lot more, partially due to
the highly fluctuating nature of the triple correlations in TRES. Nevertheless,
we did not experience difficulties related to stability; the effect of TRES is not
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Figure 4.6: Averaged Smagorinsky coefficient (a) and length scale ls (b) from
the simulations with the self-adaptive model applied up to 12% of the channel
height. Four cases are compared: 96× 54× 96 (solid line), 96× 72× 92 (dotted
line), 128× 96× 128 (dash-dot-dot line) and 192× 108× 192 (dashed line).

dominant in the determination of ls, i.e., in the order of 10% to 15%. We
observe in Fig. 4.6 that above y = 0.12, all the curves converge to Cs = 0.17
as imposed by our blending. In the logarithmic region, the dependence of Cs
on y and resolution is less trivial. Near the blending region, we find that the
Smagorinsky coefficient increases up to a value of Cs = 0.23 for the finest mesh,
while close to the wall, the coefficient drops to a value of Cs ≈ 0.08.

Finally, in Fig. 4.7 the normal Reynolds stresses are displayed for the different
cases. For comparison, a result using the standard Smagorinsky model with
Mason and Thomson’s wall damping, [54] is also shown. It is appreciated that
the blending of the self-adaptive model with the constant Smagorinsky model
in the outer layer of the boundary layer does not lead to abrupt changes in
Reynolds stresses near the blending region.

4.4.3 Further discussion on the use of the self-adaptive model

During initial testing of the self-adaptive model, we focussed on cases with a
blending at y/δ = 0.3, as the the logarithmic layer is often reported to exist up
to 30% of the channel height for channel flows. As for the cases presented above,
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Figure 4.7: Normal Reynolds stresses 〈u′u′〉/u2
τ (a), 〈v′v′〉 /u2

τ (b), and
〈w′w′〉 /u2

τ (c), from simulations with self-adaptive model applied up to 12% of
the channel height, and comparison to conventional Smagorinsky result. Self-
adaptive cases: 96×54×96 (solid line), 96×72×92 (dotted line), 128×96×128
(dash-dot-dot line) and 192×108×192 (dashed line). Conventional Smagorinsky
model using Cs = 0.17, cf. Section 4.2.3 (2—).

we find that the velocity profiles match the logarithmic law well in the region
where we enforce it. However, we observed some issues related to convergence
of the Smagorinsky coefficient, and the second-order statistics (discussed below)
that we believe are worthwhile to report. Four different grid resolutions were
considered, cf. Table 4.2.

In Fig. 4.8, the velocity profiles and normalized mean-velocity gradients φ are
shown. It is appreciated that the new self-adaptive model performs as expected
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Figure 4.8: Stream-wise velocity profile in a semi-logarithmic scale (a), and
normalized mean-velocity gradient φ(y) = (yκ/uτ )(d〈u〉/dy) (b), for simulations
with a self-adaptive model up to 30% of the channel height. Five cases are
compared: 64× 48× 64 (2, and solid line), 128× 72× 128 (∆, and dotted line),
128× 96× 128 (∇, and dash-dot-dot line) and 192× 108× 192 (3, and dashed
line).

Table 4.2: Different cases for the testing of the self-adaptive model up to
y/δ = 0.3. All cases use equidistant meshes on a domain of 2π × 1× π, with
wall roughness y0 = 10−4δ.

Nx×Ny×Nz ∆/δ ∆x/∆ ∆x/∆y ∆x/∆z

Case 2 64×48×64 0.0465 2.11 2.0 4.71

Case 3 128×72×128 0.0256 1.92 2.0 3.53

Case 4 128×96×128 0.0232 2.11 2.0 4.71

Case 5 192×108×192 0.0171 1.92 2.0 3.53

when looking at the velocity profiles. However when further looking at the
Smagorinsky coefficient, and higher order statistical moments in Fig. 4.9, we
observe that results behave rather unexpectedly when the grid is refined. First
of all, the Smagorinsky coefficient does not converge with grid refinement. For
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Figure 4.9: The averaged Smagorinsky coefficient (a) and normal Reynolds stress
component 〈u′u′〉 /u2

τ (b) from the simulations with the self-adaptive model
applied up to 30% of the channel height. Four cases are compared: 64× 48× 64
(solid line), 128× 72× 128 (dotted line), 128× 96× 128 (dash-dot-dot line) and
192× 108× 192 (dash line).

the finest mesh, Cs is very low left of the blending region, leading to a sharp
increase of the Smagorinsky coefficient in the blending region. Also looking at
the 〈u′u′〉 Reynolds stress in Fig. 4.9, we find that this jump in Smagorinsky
coefficient for the finest mesh, leads to a jump in the energy content of the
resolved velocity fluctuations (〈v′v′〉, and 〈w′w′〉, not shown here, display similar
behavior).

We believe that the lack of grid-convergence and the unrealistic second-order
statistics are related to the fact that the log-layer is forced to far into the outer
layer of the flow, where φ = 1 is not valid anymore. For instance, looking at the
DNS data of Hoyas and Jiménez [30] (cf. Fig. 4.1), we observe φ ≈ 1.2 around
y/δ = 0.3. Hence, even though we may force the mean flow into a desired
logarithmic profile, the associated distribution of dissipation and turbulent
transport (cf. Eq. (4.15)) can lead to unrealistic distributions of turbulent
statistics. As demonstrated in §4.4.2 this poses no problem when the self-
adaptive model is used in the inner layer of a high-Reynolds number channel
flow, where a log-law correctly reflects the expected mean-velocity distribution.
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4.5 Extension of the self-adaptive model to include
viscous effect

In previous section, the new self-adaptive model is shown to be able to produce
desired logarithmic velocity profile for a channel flow with rough walls. Assuming
infinite Reynolds number, the viscous effect was neglected. In this section, the
flow regimes where the Reynolds number is neither too high (the viscous effect
can not be neglected) nor too low (so that wall-modeled LES is justified) are
considered. Eq. (4.41) is expanded to include the viscous terms

φ̄(y) = κy

uτ

dū

dy
≈ yκ

uτ (u2
τ − fy)

[〈
ū′i
∂τ ′ij
∂xj

〉
− 〈τ12〉

∂〈ū〉
∂y

+ TRES + TVIS

]
,

(4.41)
where Tvis accounts for the viscous contribution to the mean shear and defined
as

TVIS = −
〈
ũ
′

i

∂σ̂
′

ij

∂xj

〉
= 〈ũ〉 ∂ 〈σ̂ij〉

∂xj
−
〈
ũ
∂σ̂ij
∂xj

〉
(4.42)

Following the similiar procedures as is described by Eq. (4.20-4.25), we obtain

l2s = uτ (u2
τ − fy)/(κy)− TRES − TVIS〈
ū′i
∂ψ′ij
∂xj

〉
− 〈ψ12〉

∂〈ū〉
∂y

. (4.43)

A channel flow is considered here as the test case with the DNS results [29, 30]
as reference. The dimensions of the channel in streamwise, wall-normal and
spanwise directions are 2π, 1 and π respectively. The grid is 64× 72× 64. The
Reynolds numbers based on friction velocity Reτ are 2000 and 950 respectively.
Firstly, a preliminary study is conducted, and then four cases are computed, in
combination with the conventional Smagorinsky model and the new self-adaptive
model.

4.5.1 A Preliminary study of the channel flow with Reτ = 2000

Given the new self-adaptive model, many factors may influence the results
for the case of finite Reynolds number. This preliminary study is intended
to study the influence of these factors on the predicted mean velocities. The
first factor is the viscous terms TVIS, as defined by Eq. (4.42). The influence
of the viscous effect at Reτ = 2000, which is commonly regarded as ‘high’
Reynolds number, is to be investigated. Secondly, as mentioned in previous
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section, the transport terms TRES, which contains triple correlations, caused a
highly fluctuating dynamic mixing length, and sometimes even divergence of
the simulations. This not only leads to more stringent time step restrictions
(to avoid possible divergence) but also exceptionally long average time to take
time statistics. As shown in Fig. 4.2, the magnitude of the transport terms
accounts for a much smaller portion of the budgets for the mean shear compared
with other terms. Thus it is worthwhile to investigate whether these terms can
be neglected without sacrificing the quality of results. Thirdly, as shown in
Fig. 4.1, the normalized mean shear, φy, is actually not unity, as far as the
three DNS cases are concerned. The φy will increase up to 1.2 at around 40%
of the channel height. This is not in line with the presumption considered in
previous section that the φy is strictly unity below 30% of the channel height.
Therefore, the influence of the value of φy, either a constant (unity) or spatially
varying, needs further attention.

The next factor which may influence the prediction of mean shear is the position
where the velocity is used to prescribe the shear stress at the wall. This
study is based on the reasoning by Kawai and Larsson [40], who argued that
the conventional WSM receives inevitably under-resolved input (the velocity
components at the first grid point from the wall) from the LES. A simple and
effective remedy was proposed: to simply increase the modeled wall-layer and
taking input to the wall model from the inner grid point off the wall. The
results have been notably improved and a much better prediction of the friction
coefficient is achieved. They found it is sufficient to use the 4th point off the
wall. In this work, jτ , j-th grid point away from the wall, is used to denote the
position where the velocity components are taken to fed the WSM. Finally the
Smagorinsky coefficient Cs at the outer layer may also influence the prediction
of the mean shear at the outer layer and in the blending region.

An overview of the test cases which have been carried out is given in Table 4.3.
The first two cases are conducted to study the influence of the viscous terms
on the prediction of the mean velocity profile. The third case is introduced to
study the effect of jτ , the position where the velocities are used to prescribe
the wall stress. The fourth case excluded the transport terms, which often
cause computational instability. The fifth case takes into account the spatially
varying nature of the φy. In the sixth case, the Smagorinsky coefficient is
calibrated according to Eq. (2.30). Three additional cases are conducted using
conventional Smagorinsky model.

Fig. 4.10(a) shows the velocities predicted with mixing length calculated
according to Eq. (4.25) and Eq. (4.43). The difference between the two velocities
is notable, therefore the influence of the viscous effect can not be neglected
even at Reτ = 2000, which is normally considered as a high Reynolds number.
The mean velocity profile considering the viscous effect matches the desired
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Figure 4.10: The predicted normalized mean velocities (Reτ = 2000) in
comparison with DNS results [30] and logarithmic profile (classic log law) with
logarithmic x-axis representing y+. The factors which influence the prediction
of normalized mean velocities are investigated and can be found respectively in:
(a) the viscous terms, (b) the transport terms, (c) jτ , the positions where the
velocities are taken to computed wall stress and (d) the value of φ(y).
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Table 4.3: Overview of channel flow test cases used to test the factors which
influence the prediction of log velocity profile

Case TVIS TRES φy Cs jτ SGS Blending
model position

1 no yes 1 0.17 2 self-adaptive model 30%
2 yes yes 1 0.17 2 self-adaptive model 30%
3 yes yes 1 0.17 4 self-adaptive model 30%
4 yes no 1 0.17 4 self-adaptive model 30%
5 yes no varying 0.17 4 self-adaptive model 40%
6 yes no varying 0.25 4 self-adaptive model 40%
7 / / / 0.17 2 Smagorinsky model /
8 / / / 0.17 4 Smagorinsky model /
9 / / / 0.25 4 Smagorinsky model /

logarithmic profile well. One should note, however, the actual velocity profile
is not an exact logarithmic profile, as will be shown later; the purpose of this
study is just to show the ability of the revised model to produce the desired
velocity profile and the importance of the viscous term TV IS .

The influence of jτ is then investigated. Four cases are setup, corresponds to
case 2, 3, 7 and 8 in Table 4.3. The y+ at the first grid point off the wall is
around 28 for Reτ = 2000, thus jτ = 2 and jτ = 4 are chosen for both the
conventional Smagorinsky model and the self-adaptive model, which are safely
situated in the logarithmic region. It is noticed that the result for the inner layer
(up to y+ = 450) has been improved for the conventional Smagorinsky model
with jτ = 4 compared with jτ = 2, confirming the aforementioned findings
in [40]; whereas for the self-adaptive model, the difference is small and the
results are less dependent on the value of jτ .

The influence of the transport term TTRES as defined by Eq. (4.14) is then
studied and the predicted mean velocities with and without TTRES are shown
in Fig. 4.10(c). This term contains a three-order moment term, and is highly
fluctuating, often causes numerical instability and divergence. The difference
between the two velocities is very small, both velocities match the desired
velocity quite well. Thus for the sake of numerical instability, this term will be
neglected in following calculations.

Another important observation is that the real velocity profile (DNS data) does
not follow a logarithmic distribution from around y+ = 200, where the mean
velocity gradient notably increases, which is evidenced in Fig. 4.11. Thus the
value of φ(y) should be revised to take into account the deviation from the
standard logarithmic profile. A empirical fit of φ(y) is then proposed and takes
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Figure 4.11: Normalized mean velocity gradient φ(y), calculated from the DNS
data [30]. The read line indicates the empirical fit of φ(y), see Eq. (4.44).

the following form

φ(y) = 2(y − 0.1)
3 + 1, 0.1 6 y 6 0.4

φ(y) = 1, y < 0.1 (4.44)

The results using φ(y) = 1 and φ(y) as a empirical fit are shown in Fig. 4.10(d).
The later obviously provides a better fit then the constant φ(y).

Finally, the influence of the Smagorinsky coefficient are investigated. The
Smagorinsky coefficient is calibrated according to Eq. (2.30), taking into
account second-order discretization error and shape of filter. The calibrated
Smagorinsky coefficient on current mesh is 0.25. However, one must note, as
already mentioned in chapter 2, the second-order scheme which is used to derive
Eq. (2.30) is not a real second-order scheme since only the effective wavenumber
is modified, the spectrum is still assumed to be a perfect −5/3 spectrum, which
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Figure 4.12: The predicted normalized mean velocities (Reτ = 2000 and
Reτ = 950) using conventional Smagorinsky model and self-adaptive model
with Smagorinsky coefficient 0.17 and 0.25 respectively, in comparison with
DNS results [30] and logarithmic profile (classic log law) with (a) Reτ = 2000
plotted against a logarithmic x-axis representing y+, (b) Reτ = 2000 plotted
against a non-logarithmic x-axis, (c) Reτ = 950 plotted against a logarithmic
x-axis representing y+ and (d) Reτ = 950 plotted against a non-logarithmic
x-axis.
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Table 4.4: Overview of channel flow test cases with Reτ = 950
Case TVIS TRES the value of φy Cs jτ SGS model
10 yes no empirical fit 0.25 4 self-adaptive model
11 / / / 0.25 4 Smagorinsky model

is not the case if a real second-order scheme is employed. However, current
analysis still sheds light on the trend of the Smagorinsky coefficient: the Lilly
Smagorinsky coefficient 0.17 has led to a underprediction of the mean velocities
near the center of the channel, thus a higher Smagorinsky coefficient should be
expected.

Fig. 4.12(a) and 4.12(b) show the results obtained by both the conventional
Smagorinsky model and the self-adaptive model with the Smagorinsky
coefficients 0.17 and 0.25 respectively. The new self-adaptive model produces
overall much more superior results than the Smagorinsky model. The self-
adaptive model with the Smagorinsky coefficient 0.25 yields a better mean
velocity near the center of the channel compared with 0.17. It is noticed that
the Smagorinsky model with a Smagorinsky coefficient 0.25 is even inferior than
the results of 0.17, showing that the aforementioned analysis of the Smagorinsky
coefficient is not applicable for the inner layer, and the Smagorinsky coefficient
can not be a constant, as evidenced in Fig. 4.9. In contrast, the self-adaptive
model produces consistently good results for the inner layer, irrespective of the
Smagorinsky coefficient which is used for the out layer.

4.5.2 The channel flow with Reτ = 950

The model is then applied to the channel flow with a Reτ = 950 and the results
are shown in Fig. 4.12(c) and 4.12(d). The numerical setup can be found in
Table 4.4. The self-adaptive model provides a much better prediction compared
with the Smagorinsky model, except for the first grid point where the velocity
is overpredicted for the self-adaptive model. This is expected since the first
point corresponds to y+ ≈ 13, which no longer falls into the logarithmic region
(approximately starting from y+ ≈ 30).

4.6 Conclusion

This study addressed one of the most persistent problems in wall-modeled LES,
i.e., the overshoot of the mean velocity gradient in the log layer. The factors
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influencing the mean velocity gradient in high-Reynolds number wall-modeled
DNS and LES were analyzed, and a relationship between mean velocity gradient
and turbulent kinetic energy budgets was elaborated. By analyzing the LES
data from simulations of a rough-wall channel flow at infinite Reynolds number,
we highlighted the different terms that contribute to the mean velocity gradient.

Based on the analysis, a self-adaptive model was proposed in which the
Smagorinsky coefficient is dynamically adjusted to yield a logarithmic mean
velocity distribution. The model was implemented in a second-order FVM code,
and tested for various simulation cases. It was found that the mean-velocity
gradient was well predicted, with errors on the normalized gradient which
remain below 5%, except for the third point from the wall, with an error of
10%. The latter error was attributed to unavoidable discretization errors of the
shear stresses close to the wall. Finding different discrete formulations of the
self-adaptive model which cancel these errors, is subject of further research.

The model is then extended to include the viscous effect and applied to channel
flows with Reτ = 950 and Reτ = 2000 respectively. The different factors which
influence the prediction of the mean velocities are analyzed: the viscous effect is
important and should be included, the transport terms can be safely neglected
to ensure numerical stability; the position where the velocities are fed to the
wall-stress model does not have a big influence on the results of the self-adaptive
model, however, this is not the case for the Smagorinsky model; a empirical fit
of φ(y) is proposed based on the DNS data and leads to an improved prediction;
the Smagorinsky coefficient is calibrated and the new coefficient 0.25 proves
to provide better results than the Lilly Smagorinsky coefficient 0.17. The
self-adaptive model produces overall much better results than the conventional
Smagorinsky model. Finally, the case of Reτ = 950 is computed, the result of
the self-adaptive model matches the DNS data quite wall except for the first
grid point.

The current self-adaptive model was developed and demonstrated for the
Smagorinsky model in high-Reynolds-number rough-wall channel flow. Hence,
an interesting application area where it can be used in its present form would
be, e.g., neutral atmospheric boundary-layer flows over flat terrain. Other
applications may need additional research. In a more general formulation, the
self-adaptive model may also be used to approximate any type of relevant
mean-velocity gradient φ. This may be, e.g., interesting for the matching of
velocity profiles in LES inlet flow zones to experimental data, or established
analytical relations for the velocity profile. It is however important to emphasize
that the self-adaptive model is not predictive, i.e. it requires a prescription for
φ. Therefore, extensions to cases in which φ is not know a priori, such as e.g.,
boundary-layer separation, are not so straightforward.



Chapter 5

The application of
wall-modeled LES: square
duct flows

In this chapter, turbulent flows in a square duct at high Reynolds number are
studied, using a conventional Smagorinsky model in the center of the duct and a
self-adaptive Smagorinsky model near the walls which allows to recover correct
velocity profiles close to the wall. At the wall, a wall-stress model is used as
a boundary condition.This provides a better match than the classic log law
with the experimental data. In section 5.1, a review of past experimental and
numerical studies on duct flows are made. In section 5.2, the methodology
and numerical setup is presented. The validity of the classical log law in duct
flows is discussed. A modified log law, which describes the distribution of
the normalized mean velocity along the wall bisector, is then proposed. The
numerical results are shown in section 5.3. The methodology developed in this
study provides a pragmatic wall-modeled LES methodology for the simulation
of a square duct at high Reynolds numbers. The work discussed in this chapter
is published in [97].

5.1 Introduction

Turbulent flows in rectangular ducts are commonly encountered in engineering
practice, such as in air-conditioning systems, nuclear reactors, turbomachinery
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and heat exchangers. These flows are characterized by Prandtl’s secondary flows
in the cross-sectional plane, which are driven by the turbulent motion and have
a significant effect on the transport of momentum [16]. Although the magnitude
of the secondary flows is relatively weak (1-3% of the mean streamwise velocity),
its impact on the transport of heat and momentum is quite significant. As a
result, the mean streamwise velocity and local wall shear stress are distorted
considerably towards the corners.

A considerable number of experimental investigations, dated back to 1960s and
1970s, have been carried out on turbulent flow in straight non-circular ducts
to understand underlying physics of secondary flows. Brundrett and Baines
are among the first to provide a fairly complete description of these secondary
motions in a square duct, with the the Reynolds number based on bulk velocity
Reb at 83000 [7]. Gessner examined the mechanism of initiated secondary flow
in developing turbulent flow along a corner in his early experiments [20, 22, 21].
Both the square ducts and rectangular ducts are measured, with the Reynolds
number up to 250000. Other experimental studies can be found in [47, 42].
Demuren and Rodi made a review of early experimental studies [16]; by analyzing
the experimental data at various Reynolds numbers, they found the ratio of
maximum (centerline) velocity to bulk velocity U as well as the mean friction
velocity, decrease with increasing Reynolds number. Another review on both
experimental and numerical studies can be found in [66].

Numerical studies in this area started a lot later than the experimental studies.
Gavrilakis presented the DNS results for the turbulent flow in a straight duct of
Reτ = 300 (based on mean friction velocity) and Reb = 4410 [18]. He found the
turbulent statistics along the wall bisectors show good agreement with plane
channel data despite the influence of the sidewalls in the former flow. He also
found the mean velocity along the wall bisector exhibit a logarithmic distribution
u+ = 3.2 ln y+ + 3.9, which is different from a standard log law. Almost
concurrently, Huser and Biringen investigated the fully developed turbulent flow
in a square duct at a Reynolds number at Reb = 10320 [34]. They showed the
distribution of the normalized mean velocity along the wall bisector depends on
how the mean velocity is normalized, using either local friction velocity or mean
friction velocity. The streamwise mean velocity using local friction velocity is
found to exceed the standard logarithmic law, which is interpreted as the result
of slightly stronger turbulence production near the duct corners compared to
a channel or a boundary-layer flow. However, they found the mean velocity
computed by Gavrilakis, normalized by local friction velocity, shows a closer
fit with the classic log law. This is due to the higher local friction velocity
compared with the mean friction velocity for that specific case. Other numerical
studies can be found in [39, 101] as well as [87, 69, 27, 100], with a focus on
heat transfer in square ducts; [99, 98] on square annular ducts and [46, 12] on
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Table 5.1: Overview of some of previous studies on duct flows

Researcher ReB Reτ Method UCL
Ub

uτ
Ub

τw
τ̄w

Gavrilakis (1992) 4410 300 DNS 1.33 0.068 1.17

Huser & Biringen (1993) 10320 600 DNS / 0.058 1.13

Lund (1977) 25000 / Exp. 1.24 0.055 /

Leutheusser (1963) 34000 / Exp. / / 1.0

Lund (1977) 50000 / Exp. 1.20 0.050 1.015

Knight (1984) 65000 / Exp. / / 1.0

Fujita (1986) 65000 / Exp. / / 1.03

Brundrett & Baines (1964) 83000 3860 Exp. 1.2 0.047 /

Lund (1977) 125000 / Exp. 1.17 0.046 1.02

Launder & Ying (1972) 210000 / Exp. 1.19 0.043 /

Lund (1977) 250000 / Exp. 1.18 0.043 1.02

Gessner (1979) 250000 10550 Exp. 1.15 0.04 /

square-sectioned U-bends. A list of some of past studies on duct flows, both
experimental and numerical, are listed in Table 1. The UCL, Ub and uτ are
main centerline velocity, bulk velocity and friction velocity; while uτ , τw and
τ̄w represent mean friction velocity, local wall shear stress and mean wall shear
stress respectively.

As previously mentioned, mean friction velocity will decrease as Reynolds
number increases. Jones [38] proposed the following empirical relationship for
square duct flows which relates the Reynolds number based on bulk velocity
and the friction factor

1√
f

= 2 log
(

1.125Reb
√
f
)
− 0.8, (5.1)

where the friction factor f is defined as f = 8u2
τ/U

2
b .

The ratio of local wall shear stress at the wall bisector to the mean wall shear
stress τw/τ̄w in square duct flows depends on Reynolds number as well, as
evidenced by both experimental and numerical studies. The ratio for low and
moderate Reynolds number tends to be higher. As shown in Table 1, the ratio
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is around 1.1, for Reb = 4410 and Reb = 10320. As the Reynolds number
increases, the ratio is closer to unity [49, 41, 51]. Therefore, the aforementioned
discrepancy which appears due to the way how the mean velocity at the wall
bisector is normalized (local friction velocity versus mean friction velocity) will
disappear, since as the Reynolds number increases, the two friction velocities
will match.

However, most of the numerical studies for square duct flows are limited to low
Reynolds numbers, in contrast with the very few studies on duct flows at high
Reynolds numbers. This study aims to identify a pragmatic wall-modeled LES
approach for duct flows at high Reynolds numbers, to obtain improved time
statistics. More specific physical details such as mechanism of second motions
are not the within the scope of this study.

5.2 Methodology and numerical setup

In this section, the wall-modeled LES is conducted using both the classic wall-
stress model and the new self-adaptive model. Gessner’s experimental data [22]
will be used as a primary reference. This section is structured as follows.
First, the experimental data is analyzed and a modified log law is proposed
for square duct flows at high Reynolds numbers. Next, five cases are set up in
combination with the classic wall-stress model, using either the conventional
Smagorinsky model or the self-adaptive model. Finally, the implementation of
the self-adaptive model in the context of square ducts are presented.

Here the validity of classical log law is examined in square duct flows. In Fig. 5.1,
the normalized experimental mean velocities along the wall bisector at Reynolds
numbers 83000 [7] and 250000 [22] are shown together with the theoretical
velocity profiles calculated from classical log law and the modified log law which
is proposed to replace the classical log law as a better representation of the
mean velocity field in square ducts. It takes the following form

U = ūτ
(
2.8 ln y+ + 4.35

)
, (5.2)

where ūτ is the mean friction velocity, which is virtually the same as the local
friction velocity uτ for square duct flows at high Reynolds numbers, as has been
already pointed out in the previous section. The modified log law obviously
provide a better fit compared with the classical log law for both Reynolds
numbers. Therefore, the current wall-stress model in combination with the
classical log law is impractical and will cause considerable inaccuracies. The
influence of the constants in the log law will be investigated later.
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Figure 5.1: The experimental mean velocities along wall bisector, normalized
using bulk velocity, at Reynolds numbers respectively (a) 83000 [7] and (b)
250000 [22]. The theoretical velocity profiles calculated from classical log law
and modified log law are plotted as references.

The square duct flow of Reb = 250000 is then investigated. The size of the
computational domain is 4π× 1× 1, and an equidistant mesh of 128× 96× 96 is
employed. A total of 5 cases are setup and the details can be found in Table 2,
where jτ is the j-th point away from the wall, and corresponds to the position
where the velocity components are taken as input for the wall-stress model, as
defined in chapter 4. The case of jτ = 4 is only conducted for the conventional
Smagorinsky model, since as have already shown in chapter 4, the value of jτ
does not have a noticeable impact on the results for the self-adaptive model.

Eq. (4.25) is employed to calculated the dynamic mixing length for the self-
adaptive model. However, only one homogeneous direction (the streamwise
direction) exists for the square duct flows, in contrast with two homogeneous
directions for the channel flows. If the ensemble average which is represented by
the brackets in Eq. (4.25) were to be replaced by the time filtering combined with
spatial average along the streamwise direction, the simulation will suffer from
numerical instabilities from the author’s practice. Therefore, to overcome the
numerical instabilities, additional local spatial average in the non-homogeneous
and wall-parallel directions (parallel to the closet wall) is employed. The
quantities in the brackets are average over the 13 neighboring points (centered
around the point where the filtered/averaged quantities are calculated). More
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Figure 5.2: The numerical setup for the calculation of square duct flows using
the self-adaptive model.

Table 5.2: Overview of square duct flow test cases of Reb = 250000
Case log law jτ SGS model Error of friction velocity ūτ
1 classical 1 Smagorinsky model 10.2%
2 classical 1 self-adaptive model 9.1%
3 modified 1 Smagorinsky model 7.9%
4 modified 4 Smagorinsky model 6.25%
5 modified 1 self-adaptive model 2.2%

details can be found in Fig. 5.2. The self-adaptive model is used up to 30%
of the half duct height away from the wall. The central grey area is where
the conventional Smagorinsky model is applied. Near the corners, in the green
area indicated in Fig. 5.2, the local average won’t be justified due to the strong
anisotropy. The dynamic mixing length is copied from the points just outside
of the green area.
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Figure 5.3: The predicted mean velocities based on the classical log law and
normalized using bulk velocities, in comparison with experimental results [22]
(a) along the wall bisector, and (b) along the corner bisector.

5.3 Results

The prediction errors of the friction velocity can be found in Table 2. The
modified log law yields considerably better results than the classical log law,
while the results of the self-adaptive model are better than those of the
Smagorinsky model. The result of case 1 is inferior than that of case 4, where
the value of jτ is taken as 4 instead of 1; this is also in line with the results of
the channel flow which are presented in section 4.5.

The predicted mean velocities along the wall bisector and corner bisector are
shown in Fig. 5.3. The self-adaptive model yields better results than the
conventional Smagorinsky model along the wall bisector, while the results along
the corner bisector are not improved. The mean velocity contours, which are
average over the four quadrants can be found be Fig. 5.4, with the red lines
representing experimental mean velocity contours. The experimental velocity
contours are distorted towards the corner, which means that the mean velocities
are accelerated near the corner. This phenomenon is believed to caused by the
secondary flow [22]. The velocity contours predicted by the self-adaptive model
matches the experimental results better than the Smagorinsky model where the
distortion of the velocity contours are not captured at all.
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Figure 5.4: The predicted mean velocity contours based on the classical log law
and normalized using bulk velocities, in comparison with experimental results
(dash-dot lines) [22], using (a) Smagorinsky model, and (b) self-adaptive model.

The results obtained using the modified law, as shown in Eq. (5.2), can be
found in Fig. 5.5 and Fig. 5.6. The self-adaptive model produced considerably
better results along the wall bisector than those of the Smagorinsky model;
however, the results along the corner bisector do not differ very much from each
other. The value of jτ , the position where the velocity components are taken as
input for the wall-stress model, dose not yield improved velocity profiles, except
for the friction velocity, as already summarized in Table. 5.2. The velocity
contours predicted using the self-adaptive model is once again superior than
those of the Smagorinsky model. The velocity contours predicted using the
conventional Smagorinsky model in combination with a jτ = 4 similar to those
of the Smagorinsky model with a jτ = 1, and are not shown here.

The mean secondary velocity vectors predicted using the self-adaptive model
in combination with the modified log-law are shown in Fig. 5.7(a), with the
DNS results by Gavrilakis [18] as a reference. Two counter-rotating vortices are
well captured and match the DNS results qualitatively. Though the secondary
flows are very weak compared with the mean flow, they are responsible for
momentum transfer towards that corner. The other models produce similar
flow patterns to Fig. 5.7(a), thus are not presented here.

Finally the second-order turbulent statistics are shown in Fig. 5.8. The predicted
statistics are in fair agreement with the experimental results, except near the wall,
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Figure 5.5: The predicted mean velocities based on the modified log law and
normalized using bulk velocities, in comparison with experimental results [22]
(a) along the wall bisector, and (b) along the corner bisector.

where large disparities are observed between predicted results and experiments.
This is probably due to the coarse mesh resolution near the wall. On the other
hand, the experimental resolution is very coarse near the wall as well, which
makes it difficult to know the trends of the second-order statistics near the
wall. It is also worthwhile to point out that the combination of the modified
log law and the self-adaptive model, which yields improved friction velocities
and mean flow profiles, tends to under-predicts the turbulent statistics. The
other methodologies do not yields better results neither, as shown in Fig. 5.8(a),
where under-predictions of 〈v′v′〉 and -〈u′v′〉 can be observed. Another factor
which may have great influence over the prediction of the turbulent statistics is
the blending position, as is discussed in chapter 4 for the case of channel flow.
This still remains an open question and further studies are needed to clarify
this issue in the future.

5.4 Conclusion

Square duct flows at a Reynolds number of 250000 based on bulk velocity are
simulated using wall-modeled LES in combination with the Smagorinsky model
and the self-adaptive Smagorinsky model. A modified log law is proposed for
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Figure 5.6: The predicted mean velocity contours based on the modified log law
and normalized using bulk velocities, in comparison with experimental results
(dash-dot lines) [22], using (a) Smagorinsky model, and (b) self-adaptive model.

square duct flows at high Reynolds numbers which provides a better fit with
experimental results. The self-adaptive model leads to a smaller error on the
prediction of friction velocity compared with the conventional Smagorinsky
model; the modified law yields a more accurate prediction of the friction velocity
for both the self-adaptive model and Smagorinsky model, in contrast with the
classical log law.

The self-adaptive Smagorinsky model captured the acceleration of the mean
velocity near the corners, while the conventional Smagorinsky model fails to
capture this acceleration. The self-adaptive Smagorinsky model combined with
the modified log law provides a more pragmatic and better means for the
simulation of square duct flows at high Reynolds numbers compared with the
conventional WSM.
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Figure 5.7: Mean secondary velocity vectors (a) obtained using the self-adaptive
model in combination with the modified log law (b) the DNS results from
Gavrilakis [18].
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Figure 5.8: Reynolds stresses (a) 〈u′u′〉, (b) 〈v′v′〉, and (c) −〈u′v′〉, from
simulations obtained by: log law combined with Smagorinsky model (—�),
modified log law combined with self-adaptive model (—3), log law combined
with Smagorinsky model (—©) and modified log law combined with self-
adaptive model (—4). The experimental results are taken from reference [22],
indicated by bold lines.





Chapter 6

Conclusion and suggestions
for future research

6.1 Conclusion

Wall-modeled large eddy simulations for high Reynolds number wall-bounded
flows is the major focus of this work.

To suppress the commonly encountered phenomenon of odd-even decoupling,
explicit filtering is normally employed. However, the conventional filtering
technique does not conserve the global momentum and mass flow rate, and in the
worst scenario, alters the flow structure, as shown in [94]. This work builds on the
principle of ‘conservative filtering’, which was firstly elaborated by Vreman [90];
and the high-order selective filters [3]. The boundary filters are constructed
to match the selective filters at the internal points. Following Vreman’s work,
the filter matrix is required to be symmetric to be conservative. In addition
to that, a couple of constraints such as normalization, accuracy and the π-
mode are imposed. Nine-, eleven-, and thirteen-point stencils, and associated
one-sided boundary schemes, are then elaborated. The set of conservative
filters are validated firstly over a channel flow test case, and then over a 2D
cavity, to investigate the effect of filter formulations on noise prediction. The
non-conservative boundary filters leads to large errors on the prediction of
friction velocity; in contrast, the conservative filters has very little impact of the
prediction of the friction velocity, irrespective of mesh resolution and filtering
frequency. The non-conservative boundary filters fail to capture the dominant
frequencies of the shear-layer mode and significantly change the flow structure
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inside the cavity, while the conservative filters captures the dominant frequencies
correctly without changing the flow structure.

The effect of the conservative filtering formulations in the formulation of the VMS
model is studied and tested over a channel flow as well. The use of a conservative
top-hat filter, was compared to a traditional top-hat implementation. The non-
conservative formulations are found to lead to large errors, while the conservative
filters again yield much small errors. This explicit filtering technique is applied
after each physical time step and is independent of numerical schemes. The
conservative filters developed in this study are mainly intended for structured
grid with a mild grid stretching ratio, and not so straightforward for unstructured
mesh.

The wall-stress model is employed in this study in combination with the
Smagorinsky model to circumvent the excessive computational cost of wall-
resolved LES. To solve the problem of log-layer mismatch which exists in
conventional Smagorinsky model, starting from the equation for turbulent
kinetic energy, a framework is setup in which the normalized mean shear and
its budgets are explicitly linked. As a result of that, the contribution of each
single term on the mean shear can be quantified. The analysis is extended
to the case of wall-modeled LES. The budgets of the mean shear are studied
over a rough-wall channel flow using the Smagorinsky model and the VMS
model respectively. It is shown that over-dissipation does not necessarily leads
over-prediction of the mean shear, which is the common perception before.

Based on this framework, a self-adaptive Smagorinsky model is proposed
(neglecting viscous effect), in which the mixing length ls is dynamically adjusted
so that the desired logarithmic velocity distribution can be produced. In the case
of RANS (the fluctuating variables will disappear), Prandtl’s classical expression
for the mixing length ls = κy is recovered. The formulation of the self-adaptive
model is then implemented in a second order in-house code FLOWAVE, taking
into account the discretization errors. The model is validated and tested over the
rough-wall channel flow at infinite Reynolds number. The desired logarithmic
velocity distributions are obtained, and are independent of grid resolution and
grid aspect ratio.

The self-adaptive model is then extended to include the viscous effect and
applied to smooth-wall channel flows at Reτ = 950 and Reτ = 2000 respectively.
Different factors which may influence the prediction such as the viscous effect,
transport terms, the value of φ(y), jτ and the Smagorinsky coefficient for the
outer layer are investigated. The results of the self-adaptive model are found to
be independent of the jτ , the position where the velocity components are fed
to the wall-stress model; the calibrated Smagorinsky coefficient according to
Eq. (2.30) proves to produce better results than the Lilly Smagorinsky coefficient
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0.17. The self-adaptive model yields overall better results than the conventional
Smagorinsky model.

It should be noted, however, the self-adaptive model is mainly designed for high-
Reynold-number attached wall flows. The extension to other types of attached
flows is possible, for instance, attached wall flows with pressure gradients. In
this case the pressure term should be included. The extension of the model to
flow regimes with mass separation is impractical, since the log-law and local
equilibrium, which are the preconditions for current model, will not be justified
in this case.

In the last part of this work, the wall-modeled large eddy simulations are
conducted for a square duct. A modified log law is proposed, which provides a
better fit with the experimental results compared with the classic log law. The
modified log law leads to smaller errors on the prediction of skin friction for both
the conventional Smagorinsky model and the self-adaptive Smagorinsky model,
while the self-adaptive Smagorinsky model yields more accurate friction velocity.
In addition, the self-adaptive Smagorinsky model captures the acceleration of the
mean streamwise velocity near the corners, which the conventional Smagorinsky
model fails to predict.

6.2 Suggestions for future research

The conservative filtering could be extended to numerical method where both
explicit filtering and hard boundary are involved such as the immersed boundary
technique.

A major part of this thesis is dedicated to improving the wall-modeled LES for
high Reynolds number wall bounded flows. Focus has been centered around the
development and validation of a framework in which the ‘log-layer mismatch’
problem can be analyzed and a self-adaptive Smagorinsky model.

First, the influence of the blending position over the prediction of the mean flow
and turbulent statistics in the square duct need to be investigated, following
the same way as indicated in chapter 4 for the case of channel.

Secondly as a successful breakthrough, the self-adaptive model opens up new
possibilities for further studies and improvements as well. Thus it is highly
valuable to conduct further extensions to this approach and handle more practical
problems.

The model can be extended to allow for more general combination of the wall
model and internal model. This combination may provide two constraints for
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kinetic energy, allowing for not only more general combination of the wall model
and internal model (SGS model), but also better control of the discretization
error at the first point. A hybrid methodology can be proposed, based on the
balance for mean-flow kinetic energy in addition to the balance for turbulent
kinetic energy, allowing for a more general combination of the wall model and
internal model.

Further development of the methodology for different types of flow gradient
different parallel flows could be carried out. Instead of presuming log layer, other
profiles can be presumed and for instance applied to inlet BC or high-Reynolds
number developing boundary layers. The model may be used to simulate the
turbulent boundary layers, adaption of the model is necessitated considering the
spatially evolving nature of turbulent boundary layers. At the same time, the
model will be alternatively used to prescribe desired inlet BC. The turbulent
boundary layer flow can be used as a test case.

Finally, as an application of the wall LES to CAA, it would be interesting
to conduct wall-model large-eddy simulation of a square muffler at high
Reynolds number, employing the expertise gained in this thesis, in terms
of the conservative filters, the new self-adaptive model and proper use of the
WSM in a square duct. The Reynolds number based on the height of the inlet
duct and mean center-line velocity in the duct is approximately 168400. The
computational cost for wall-resolved large-eddy simulation in this case will be
prohibitive; therefore, a pragmatic way can be adopted: the walls of inlet duct
and tail duct are modeled, given the fact that the flows in the ducts are attached;
on the other hand, the expansion chamber could be fully resolved, considering
the strong secondary flows and the fact that the local Reynolds number is likely
to be much lower than that in the ducts.

The VMS model is superior to the Smagorinsky model and does not need the
explicit damping to reduce the dissipation near the wall. It can be employed in
the expansion chamber. In the duct, either the conventional Smagorinsky model
or the self-adaptive model will be used. The practice established in chapter 5
can be used a guideline when setting up the wall-modeled LES in the inlet and
tail duct: the modified log law will replace the classical log law, and value of jτ
will be set as a value of 4 to minimize the error on the prediction of the skin
friction.

To conclude, there could be many interesting research tracks starting from this
work, and I sincerely hope this work is sound basis for continued research on
the wall-modeled LES for high-Reynolds number wall flows.



Appendix A

Coefficients of conservative
boundary filters

j 1 2 3
g0 0.24352749312000 0.23481047976170 0.19089951150600
g1 -0.20478888064000 -0.19925013128581 -0.17150383223600
g2 0.12000759168000 0.12019831024519 0.12363289179700
g3 -0.04521111936000 -0.04930377563602 -0.06997542910500
g4 0.00822866176000 0.01239644987396 0.02966275473600
g5 -0.00144609307817 -0.00852073865900
g6 0.00125459771400

Table A.1: The 9-point [3], 11-point [2] and 13-point [3] spatial filters for internal
points, g−j = gj

j 1 2 3 4
b1,j 0.04197486592000 -0.09624620416000 0.07479647232000 -0.02875379584000
b2,j -0.09624620416000 0.24676374656000 -0.23354267648000 0.12000759168000
b3,j 0.07479647232000 -0.23354267648000 0.29696727424000 -0.22124620416000
b4,j -0.02875379584000 0.12000759168000 -0.22124620416000 0.25175615488000
g5−j 0.00822866176000 -0.04521111936000 0.12000759168000 -0.20478888064000
g6−j 0.00822866176000 -0.04521111936000 0.12000759168000
g7−j 0.00822866176000 -0.04521111936000
g8−j 0.00822866176000

Table A.2: The coefficients of the 9-point matching conservative boundary filters
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j 1 2 3
b1,j 0.04170901551687 -0.09759693795557 0.07523281384367
b2,j -0.09759693795557 0.24818961219352 -0.22954537948657
b3,j 0.07523281384367 -0.22954537948657 0.28928023988085
b4,j -0.02595696896626 0.11441393793252 -0.21970475179924
b5,j 0.00805817063946 -0.04641158947969 0.12309049640152
g6−j -0.00144609307817 0.01239644987396 -0.04930377563602
g7−j -0.00144609307817 0.01239644987396
g8−j -0.00144609307817
g9−j

g10−j

j 4 5
b1,j -0.02595696896626 0.00805817063946
b2,j 0.11441393793252 -0.04641158947969
b3,j -0.21970475179924 0.12309049640152
b4,j 0.25299130194833 -0.20358841052031
b5,j -0.20358841052031 0.23625657283987
g6−j 0.12019831024519 -0.19925013128581
g7−j -0.04930377563602 0.12019831024519
g8−j 0.01239644987396 -0.04930377563602
g9−j -0.00144609307817 0.01239644987396
g10−j -0.00144609307817

Table A.3: The coefficients of the 11-point matching conservative boundary
filters
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j 1 2 3
b1,j 0.04031416306317 -0.09321174458200 0.07147004890233
b2,j -0.09321174458200 0.23345995106884 -0.21306138057267
b3,j 0.07147004890233 -0.21306138057267 0.26254508756000
b4,j -0.02692028815167 0.11279882665300 -0.20571121271533
b5,j 0.01196119032050 -0.06020613618633 0.13506751108767
b6,j -0.00486796726633 0.02748662456417 -0.07270666805300
g7−j 0.00125459771400 -0.00852073865900 0.02966275473600
g8−j 0.00125459771400 -0.00852073865900
g9−j 0.00125459771400
g10−j

g11−j

g12−j

j 4 5 6
b1,j -0.02692028815167 0.01196119032050 -0.00486796726633
b2,j 0.11279882665300 -0.06020613618633 0.02748662456417
b3,j -0.20571121271533 0.13506751108767 -0.07270666805300
b4,j 0.22910917945267 -0.18887233136900 0.12717464144433
b5,j -0.18887233136900 0.19842105434483 -0.17242536468067
b6,j 0.12717464144433 -0.17242536468067 0.19078848974450
g7−j -0.06997542910500 0.12363289179700 -0.17150383223600
g8−j 0.02966275473600 -0.06997542910500 0.12363289179700
g9−j -0.00852073865900 0.02966275473600 -0.06997542910500
g10−j 0.00125459771400 -0.00852073865900 0.02966275473600
g11−j 0.00125459771400 -0.00852073865900
g12−j 0.00125459771400

Table A.4: The coefficients of the 13-point matching conservative boundary
filters
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