

Forest transition in mountain area's: topographic correction, large scale mapping and modeling of ecosystem services

Anton Van Rompaey¹, Veerle Vanacker², Vincent Balthazar², Eric Lambin², Jaclyn Hall², Patrick Hostert³, Patrick Griffiths³, Steven Vanonckelen¹, Armando Molina¹, Derek Bruggeman², Marie Guns²

1: Geography Research Group, Dep. Earth and Environmental Sciences, KULeuven 2: Department of Geography, Earth and Life Institute , UCLouvain 3: Geographisches Institut, Humbolt-Universität zu Berlin

> Belgian Earth Observation Day 2012 September 5 – 2012 - Bruges

WHAT IS THIS RESEARCH PROJECT ABOUT?

- Forest transition
- Mountain areas
- Topographic correction
- Large scale mapping
- Ecosystem service assessment

FOREST TRANSITION

- Transition from a phase of net deforestation to a phase of net afforestation?
- For a region: pathway through time driven by
 - Economic development -> off-farm jobs -> land abandonment (+ forest plantations)
 - Land degradation → lowering of yields -> land abandonment (+ forest plantations)

Regional patterns of FT

MOUNTAIN AREAS

• Forest transitions typically occur in mountain areas

DETECTION OF FOREST TRANSITIONS

- Remote sensing seems privileged tool but many difficulties
 - Transition are of subtle: gradual forest degradation in stead of clear cuts
 - Typically **patchy landscape** with various phases of degradation, natural regrowth, plantations, ...
 - Understanding of mechanisms only possible with large scale mapping
 - Mountain environment: atmospheric conditions, illumination effects
 - Impact on **ecosystem services** is important (= both cause and consequence of FT)

RESEARCH QUESTIONS

- To what extent is it possible to detect forest transitions and their effect on ecosystem services?
 - Atmospheric and topographic correction procedures exist but was is their **added value** for FT-mapping
 - Most complex procedure not always appropriate because of difficulty to automate
 - Development of **automated preprocessing chains** and large scale mapping procedures
 - Monitoring ecosystem services in FTlandscapes
- 3 study sites
 - Romanian Carpathians
 - Buthan Himalayas
 - Ecuadorian Andes

ADDED VALUE OF TOPOGRAPHIC AND ATMOSPHERIC CORRECTIONS?

	TOPOGRAPHIC CORRECTIONS					
		No Corr	Band ratioing	Cosine corr	C-corr	Minnaert corr
	No Corr					
ATMOS- PHERIC CORREC TIONS	Dark object subtraction					
	Physical transfer function					

SOME FORMULAS

- DN values to at-satellite radiances
- Calculation of corrected path radiance $L_{t,\lambda}$:

AC	Equation	Reference
DOS	$L_{t,\lambda} = L_{s,\lambda} - L_p$	Chavez, 1996
TF	$L_{t,\lambda} = \frac{L_{s,\lambda} - L_p}{0.5(1 + T_{r,\lambda})T_{r,\lambda}T_{w,\lambda}^2}$	Kobayashi and <u>Sanga-Ngoie.</u> 2008
	$T_{r,\lambda} = \exp\left[-\frac{P}{P_0}M\frac{1}{115.6406\lambda^4 - 1.335\lambda^2}\right]$	
	$M = \frac{1}{\cos\theta_s + 0.15(93.885 - \theta_s)^{-1.253}}$	
	$T_{w,\lambda} = \exp\left[-\frac{0.2385a_{w}WM}{(1+20.07a_{w}WM)^{0.45}}\right]$	

 $L_{s,\lambda}$ is the uncorrected radiance value of the image and L_p represents the minimum radiance value of the image, calculated as the 1th percentile. $T_{r,\lambda}$ is the Rayleigh scattering transmittance function, including the sea-level atmospheric pressure (P_0 ; in mbar), the ambient atmospheric pressure (P; in mbar) and the band wavelength (λ). M is the relative air mass and ϑ_s is the solar zenith angle (in degrees). $T_{w,\lambda}$ is the water-vapor transmittance function, calculated with the precipitable water vapor (W; in cm), relative air mass (M) and water-vapor absorption coefficients (a_w).

Some formulas

- Conversion to observed reflectance on an inclined terrain $\rho_{t,\lambda}$
- Conversion to normalized reflectance of a horizontal surface ρ_{H,λ}

TC	Equation	Reference
Band ratio	$\rho_{H,\lambda}^{(i)} = \frac{\rho_{T,\lambda}^{(i)}}{\frac{1}{N} \sum_{j=1}^{N} \rho_{T,\lambda}^{(j)}}$	Ono et al., 2007
Cosine	$\rho_{H,\lambda} = \rho_{T,\lambda} \frac{\cos \theta_s}{\cos \beta}$	Teillet et al., 1982
PBM	$\rho_{H,\lambda} = \rho_{T,\lambda} \frac{\cos \theta_n}{(\cos \theta_n \cos \beta)^{k\lambda}}$	Lu et al., 2008
PBC	$\rho_{H,\lambda} = \rho_{T,\lambda} \frac{\cos \theta_s + C_\lambda h_0^{-1}}{\cos \beta + C_\lambda h_0^{-1} h}$	Kobayashi and Sanga-Ngoie, 2008

 ϑ_s is the solar zenith angle and ϑ is the incident solar angle, $\cos \vartheta = \cos \vartheta_s \cos \vartheta_n + \sin \vartheta_s \sin \vartheta_n \cos (\phi_t - \phi_a), \vartheta_n$ is the slope angle of the terrain and k_{λ} is the slope of the regression between $x = \log(\cos \vartheta_n \cos \vartheta)$ and $y = \log(\rho_{\tau,\lambda} \cos \vartheta_n)$. Parameter C_{λ} is the quotient of intercept (b_{λ}) and slope (m_{λ}) of the regression line between x and y, the h-factor represents a topographic parameter derived from the SRTM ($h = 1 - \vartheta_n/\pi$) and the h_0 -factor an empirical parameter derived from the regression line between reflectance and $\cos \vartheta$ ($h_0 = (\pi + 2\vartheta_s)/2\pi$).

APPLICATION AND EVALUATION OF EFFICIENCY

STATISTICAL ANALYSIS

• Efficient methods reduce the reflectance values between shaded and illuminated slope segments?

(a) no AC or TC;
(b) DOS without TC;
(c) DOS with band ratio;
(d) TF with cosine;
(e) TF with PBM;
(f) TF with PBC.

STATISTICAL ANALYSIS

• Efficient preprocessing results in better land cover maps?

(a) no AC or TC;(b) TF with cosine;(c) TF with PBC

STATISTICAL ANALYSIS

• Efficient preprocessing results in better land cover maps?

 $\blacksquare 0.65 < \cos \beta < 0.85$ $\Box \cos \beta \ge 0.85$

AUTOMATION POTENTIAL OF PREPROCESSING TECHNIQUES

	No TC	Band ratio	Cosine	PBM	PBC
No AC	3	3	12	15	18
DOS	5	5	14	17	20
TF	11	11	20	23	26

LARGE SCALE MAPPING

Improved data policy, image products and IT makes image compositing an appealing option for moderate resolution data analysis

Key features:

- pixel based perspective!
- "increase" observation frequency

> Objectives:

- 1. Develop algorithm to produce regional, cloud free, radiometrically consistent image datasets
- 2. Use image composites for pan Carpathian forest change mapping

Image compositing principle

- ≻ All images..
- > Multiple years
- > Multiple seasons

- Create best observation composite image
- ➢ Make use of all unclouded observations of a pixel

Compositing algorithm workflow

Disturbance rate [%] **per country**

ECOSYSTEM SERVICES ASSESSMENT AT REGIONAL SCALE

The significance of forest transitions in creating more sustainable societies depends on the effects of these transitions on the environmental services that forests provide" (Rudel et al., 2005)

- > Natural hazard regulation (mass movements)
- Water and erosion regulation (agricultural production, water quality&quantity)
- > Carbon storage and biodiversity (REDD/REDD+)

STUDY SITE: RIO PANGOR (ECUADOR)

IMPACT OF LAND COVER CHANGE?

IMPACT ANALYSIS

- LINK WITH CHANGES IN LANDSLIDE FREQUENCY?
- LINK WITH CHANGES IN DISCHARGE REGIMES
- LINK WITH CHANGES IN CARBON SEQUESTRATION AND BIODIVERSITY?

- Objective of creating **landslide inventories** for different years based on HR imagery
- Selection and validation of the method for a recent time-period (covered by VHR data)
- Application of **shape and spectral** characteristics back in time with HR imagery
- Combination with morphometric characteristics and use of semi-extraction techniques
- Statistical relation between landslide occurrences and land-use changes

WP 4: ECOSYSTEM SERVICES ASSESSMENT

CARBON AND BIODIVERSITY

o a. Northern Costa Rica

- Tempisque watershed
- 5414 km²
- sea level 1964 m
- Sub-landscape 25 km²

b. Northern Vietnam

- 91,600 km²
- ~100 3100 m
- Sub-landscape 400 km²

• c. Valdivia Chile

- 11,775 km²
- Sea level 1222 m
- Sub-landscape 25 km²

o d. Highland Ecuador

- Pangor watershed
- 282 km²
- ranging from 1431 to 4333 m
- Sub-landscape 2.25 km²

POTENTIAL TO SUPPORT NATIVE FLORAL BIODIVERSITY

Vegetation type Category*		Distribution	Rationale	
	Very High (1.00)	Mature natural forest in the largest patch	Larger intact mature forest will retain more species	
Mature	High (0.75)	Other mature natural forest core ¹ , natural páramo	Natural forest remnants will help maintain native species	
	Medium (0.50)	Other natural forest edges	Edge effect will reduce native forest species richness	
Secondary	Medium (0.50)	If > 150 ha core forest within 1km	More forest means more seed source and dispersers	
	Low (0.25)	If between 150 -50 ha core forest within 1km	Less native forest in proximity, less seed source	
	Very Low (0.15)	If between 50 -0 ha core forest within 1km	Limited seed source and appropriate habitat ²	
	Plus ³	If < 5 km from largest mature forest patch	Large number within species pool in proximity	
Non-native Plantation	Negligible (0.05)	Monoculture of non-native species	Short-rotation managed plantations have low diversity	
Non-forest areas (0.00)		Pasture, cropland, young fallow	Very little AGB in trees, very few native forest species	

•Category values scaled between 0.00 and 1.00

•Plus - closest to the *largest* parch of mature forest – increase one step in value

IMPACT OF FOREST TRANSITION ON BIODIVERSITY

• a. Northern Costa Rica

- Natural forest regeneration
- b. Northern Vietnam
 - Natural forest regeneration
- c. Valdivia Chile
 - Natural forest to plantation
- d. Highland Ecuador
 - Ag. to plantation
 - Páramo to plantation

ONGOING RESEARCH

- Integration and automation of total process chain
- o Preprocessing → large scale mapping of LU and LUC
 → regional ecosystem service assessment
- Validation at different levels
- Evaluation of added value of procedures and mapping techniques

Thank you for your attention!