
DESIGN SPACE EXPLORATION FOR AUTOMATICALLY GENERATED
CRYPTOGRAPHIC HARDWARE USING FUNCTIONAL LANGUAGES

Davy Wolfs ∗, Kris Aerts, Nele Mentens

KU Leuven, ESAT-SCD/COSIC, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
KHLim, FIIW, ACRO-ES&S, Agoralaan Gebouw B bus 3, 3590 Diepenbeek, Belgium

email: {davy.wolfs,kris.aerts,nele.mentens}@khlim.be

ABSTRACT

This paper presents an EDA (Electronic Design Automa-
tion) tool that generates basic building blocks for crypto-
graphic hardware in VHDL. The purpose of the tool is to
decrease the design time of cryptographic hardware and to
allow designers to make abstraction of both the arithmetic
and design complexity. The tool generates multiple imple-
mentations for one arithmetic description and then bench-
marks the implementations to find the most optimal, based
upon design space parameters. These parameters consist of
area and speed requirements. We present datapath and con-
trol logic results for a Xilinx Virtex-5 FPGA.

The novelty in our approach lies in the fact that we ex-
ploit the higher-order features of functional languages to fa-
cilitate the design space exploration and that we take benefit
from the strength of the third-party synthesis tool by gener-
ating VHDL code at an abstraction level that is higher than
the gate level. Nevertheless, in this stage of the develop-
ment of the tool, the different cryptographic architectures
are hand-made and the selection of the most optimal solu-
tion, based upon user requirements, is done by exhaustive
search. This means that the tool leaves room for improve-
ment, but forms a solid base for further development.

1. MOTIVATION AND CONTRIBUTION

In storage and communication of digital data, security is an
important issue. To provide confidentiality, authentication,
secure key exchange, privacy, . . . cryptographic algorithms
are needed. When requirements such as high speed, low
area, low power consumption and/or high security level are
an issue, these cryptographic algorithms are implemented
in hardware coprocessors. Most of the times cryptographic
hardware needs to be designed with as little overhead as pos-
sible because it does not contribute to the core functionality
of the application. However, to achieve a sufficient level of
security, cryptographic algorithms and in particular public

∗Davy Wolfs was funded by BOF project CREA/09/016 of the
Katholieke Universiteit Leuven.

key algorithms consist of rather complicated mathematical
operations on large numbers. Consequently, the challenge
for the design of cryptographic hardware is to find a suitable
architecture for a rather complicated mathematical operation
on large numbers that results in a restricted overhead in time,
area and/or power consumption.

Like almost all digital designs, a cryptographic hard-
ware architecture consists of a datapath and control logic.
In this paper, we explore the design space of both. We are
specifically interested in the area and speed of the actual
hardware after synthesis by both FPGA and ASIC (com-
mercial) third-party tools. Therefore we make sure that the
VHDL code generated by our Lava programs is platform-
independent. We also shift from basic logic gates to formal
FSMs for the description of the control path, as is common
in VHDL programming. These state machines can be sim-
ulated in Haskell, and exported to native VHDL FSM code
on the behavioral level, which gives more optimization pos-
sibilities to the synthesis tool. We apply a similar approach
for the datapath, as far as it allows a behavioral description
in VHDL.

The paper is organized as follows. An overview of the
state-of-the-art is described in Sect. 2. The tool flow is pre-
sented in Sect. 3. A more detailed view on two parts of the
tool flow, namely the VHDL generation phase and the syn-
thesis phase, is given in Sects. 4 and 5, respectively. Finally,
Sect. 6 concludes this paper and looks ahead at future work.

2. RELATED WORK

In the field of cryptography, many hardware implementa-
tions have been developed for high speed or low area [1, 2, 3,
4], but the solutions are either too specific to be interchange-
able in different systems or too generic to be sufficiently ef-
ficient. This implies that for most applications custom cryp-
tographic hardware must be designed. Our tool reduces the
design time by using functional languages to automatically
generate cryptographic hardware. The idea to use functional
programming for hardware design is not widespread in the
field of cryptography.



However, the idea to use functional programming for
hardware design exists since the 80s: Sheeran gives an au-
thoritative overview in [5]. Since 1998 a renewed interest
has given birth to functional hardware description languages
such as Lava [6] (with variants from Chalmers, Xilinx, York
and in 2009 Kansas Lava [7, 8]) and ForSyDe [9]. These ex-
amples are usually capable of generating hardware for many
application domains. Our work only focusses on the gener-
ation of cryptographic hardware, which allows us to make
domain-specific optimizations. These optimizations are ac-
quired by the integration of design space exploration in our
tool. This is in contrast to older publications, that typically
aim at generating ‘a’ solution, with little attention for non-
functional requirements. However, current research starts
focussing explicitly on low power consumption and/or high
speed [10, 11, 12].

The programming approach in this paper has some sim-
ilarities with Cryptol [13], ”the language of cryptology”.
Both are based on Haskell and focus on stream program-
ming for cryptographic hardware, but there are some differ-
ences. Whereas Cryptol is suitable for the description of
almost any existing and new cryptographic function, we fo-
cus on a pre-defined subset of cryptographic functions. This
allows us to do operation-specific optimizations for this sub-
set. Users of our final tool do not need to program: based on
the hardware requirements, the tool itself will explore the
design space and will deliver the most suitable hardware.
This paper discusses the programming model being used in
the tool, not the actual usage of the tool.

3. TOOL FLOW

Fig. 1 shows the interaction of our tool with inputs from
the user and third-party synthesis tools. Based upon the
algorithmic description of the desired cryptographic func-
tionality in a functional language, VHDL code is generated
by our tool and the design space is explored by the gen-
eration of a set of different architectures in VHDL. Next,
these architectures are synthesized by a third-party synthe-
sis tool for FPGA or ASIC and the design space is explored
by calling the third-party synthesis tool under different opti-
mization options. Based upon the synthesis reports and user
requirements, our tool selects the optimal architecture. For
the design space exploration in both the generation and the
synthesis phase, we use the higher-order listing features of
Haskell.

4. DESIGN SPACE EXPLORATION IN THE
GENERATION PHASE

We use a differentiated approach for the datapath and the
control logic in order to allow a coverage of the design space
that is as large as possible. This will be illustrated with use

 

 

 

Fig. 1. Interaction of our tool with user inputs and third-party synthesis
tools

case examples in the following paragraphs.

4.1. Datapath

In our tool, we focus on public key datapaths, for which the
first phase of design space exploration is done by generating
different architectures in VHDL. The possibilities strongly
depend on the type of mathematical unit that needs to be im-
plemented. The second phase of design space exploration is
done by calling the third-party synthesis tool for both speed
and area optimized synthesis. As a design example, we gen-
erate a 192-bit adder, which is a common building block
in elliptic curve cryptography. This is done by exporting a
set of 192-bit adder architectures to VHDL with an internal
datapath width of 8, 16, 32 and 64 bits and with different
hardware architectures, namely a ripple carry adder, a carry
select adder, a Sklansky adder and an adder for which the
synthesis tool chooses the architecture. The three former ar-
chitectures are described in York Lava and generate VHDL
code that consists of basic logic gates. The latter architecture
generates VHDL code at the behavioral level, which allows
the third-party synthesis tool to employ its full optimization
capabilities. This results in the following functional code:

buildCircDSE3 (writeSeqAdder "seqAdder")
[8, 16, 32, 64]
[192]
[RippleCarry, CarrySelect, Sklansky, VhdlAdd]

This function results in 16 different architectures in VHDL
for a 192-bit adder. The synthesis results of these architec-
tures will be presented in Sect. 5.

4.2. Control Logic

The control logic is implemented as a Moore FSM. In our
design space exploration, we consider two versions. The
first one consists of a traditional architecture in which the
transition function computes the next state based on the in-
puts and the current state. The state value is stored in the
state register on each rising or falling edge of the incoming
clock. The outputs are computed from the state by means
of the output function. The transition function as well as
the output function consist of combinatorial logic, while the
state register consists of flip-flops. An alternative version



of a Moore FSM contains extra output flip-flops that result
in glitch-free output signals and create a buffer between the
output of the FSM and the logic driven by the FSM. In or-
der not to introduce an extra clock delay, a so-called look-
ahead output function is used that calculates the outputs of
the FSM based on the inputs of the state register instead of
the outputs of the state register.

In our tool, the first phase of design space exploration
for control logic is done by translating a high-level FSM de-
scription into both aforementioned architectures of a Moore
FSM. Our tool also facilitates the second phase of design
space exploration, done by the third-party synthesis tool, by
using a different approach than the one used in York and
Chalmers Lava [14]. When exporting the FSM to VHDL,
both Lavas generate a netlist of basic logic gates (and, or
and delay). This is functionally correct, but VHDL synthe-
sis tools are more efficient in optimizing an FSM described
in VHDL without explicit state encoding than optimizing a
gate level netlist in VHDL. Therefore we expand the Lava
framework such that it can export a behavioral VHDL de-
scription of an FSM instead of a gate level description, giv-
ing more freedom to the third-party synthesis tool for the
optimization of the FSM, consisting of a suitable state en-
coding style as well as the logic optimization of the transi-
tion and output functions. Our tool calls the third-party syn-
thesis tool for one-hot, Gray and automatic encoding. For
each of these options both area and speed optimized syn-
thesis are done. This results in circuits that have a better
area/speed tradeoffs than their York or Chalmers equivalent.
As an example, we generate an FSM consisting of 17 states
controlling an AES datapath. The type of a generic Moore
FSM in our tool is as follows:

data MooreStateMachine state inp outp
= MooreStateMachine

{ moStates :: [state]
, moInitial :: [state]
, moInputs :: [inp]
, moOutputs :: [outp]
, moTransition :: state -> inp -> [state]
, moOutputFunction:: state -> [outp]
}

5. DESIGN SPACE EXPLORATION IN THE
SYNTHESIS PHASE

5.1. Interaction with Our Tool
The following code example illustrates the function in our
tool that calls the synthesis tool:

synthXstCircDSE4 (synthAdder "seqAdder")
[8, 16, 32, 64]
[192]
[RippleCarry, CarrySelect, Sklansky, VhdlAdd]
[Area, Speed]

The example runs FPGA synthesis for the 192-bit adder for
all parameter options in the generation phase, i.e. the first

three dimensions in the function. The last dimension refers
to the design space exploration in the synthesis phase, namely
optimizations for low area and high speed.

5.2. FPGA Synthesis Results

Table 1 shows the FPGA synthesis results for the 192-bit
adder and the AES FSM. The FPGA synthesis tool called by
our tool is Xilinx XST Release 12.1 - M.53d (linux). The de-
signs have been synthesized for a Virtex-5 5vlx20-2 FPGA.

For the 192-bit adders in Table 1, the general trend is
that the maximal clock frequency decreases with an increas-
ing internal datapath width. Since the number of clock cy-
cles for one addition is equal to 192 divided by the datapath
width, the adder with the widest datapath has the smallest
latency. The maximal clock frequency also depends on the
architecture. Further, the area of the adder increases with
an increasing datapath width. However, because the adder
consists of two 192-bit input shift registers and one 192-bit
output shift register together with a counter that keeps track
of the number of clock cycles, the internal datapath width
has a relatively low influence on the total area. The adder
described at the behavioral level in VHDL, using the oper-
ator ‘+’, shows the best timing and area results. Here, we
clearly see the advantage of our approach in including an ar-
chitecture described at the behavioral level in VHDL. Note
that the adders with a datapath of 16 bits described in behav-
ioral VHDL code result in a faster maximal clock frequency
than the 8-bit adders because the FPGA contains 16-bit long
optimized carry chains.

For FPGA synthesis of the AES FSMs at the behav-
ioral level, i.e. the Moore FSM (Comb) and the Moore
FSM with synchronized outputs (Sync), both the encoding
style and the optimization goal (speed or area) have an ef-
fect on the synthesis results. When the encoding style is
chosen automatically by the synthesis tool, this leads to the
best results in area and speed. FPGA synthesis of the AES
FSM described in gate-level VHDL (Gate), as generated
by Lava, does not allow any optimization in the synthesis
phase, which makes its area larger and its maximal clock
frequency lower. Again, the advantage of generating behav-
ioral VHDL code is clear. Note that the second version of
the Moore FSM (Sync) does not lead to any advantage in
speed or area. The registers at the output will become im-
portant in a larger system when the propagation delay of the
output function and the propagation delay of the logic driven
by the FSM add up to a delay that is larger than the critical
delay.

6. CONCLUSION AND FUTURE WORK

In this paper, we describe a tool for the automatic generation
of cryptographic hardware based on functional languages.
We do not only take algorithmic requirements into account,



Table 1. Xilinx XST pre-layout synthesis results for a 192-bit adder (left) and an AES FSM (right) on a Virtex-5 5vlx20-2 FPGA. In the vertical and
horizontal direction, the different options for the design space exploration (DSE) in the generation phase and in the synthesis phase are given, respectively.
Ripple-Carry Adder and Carry-Select Adder are denoted by RCA and CSA, respectively.

Area Speed
Slices Max.clk Slices Max.clk

[MHz] [MHz]

R
C

A

8-bit 594 300 598 341
16-bit 600 194 626 314
32-bit 613 103 687 265
64-bit 646 56 805 220

C
SA

8-bit 597 276 602 309
16-bit 607 234 628 271
32-bit 628 157 678 240
64-bit 677 95 634 229

Sk
la

ns
ky 8-bit 594 284 602 334

16-bit 605 191 630 314
32-bit 627 130 677 267
64-bit 702 92 780 191

B
eh

av
io

ra
l 8-bit 594 321 595 350

16-bit 600 333 600 355
32-bit 613 352 613 352
64-bit 645 286 645 286

Area Speed
Slices Max.clk Slices Max.clk

[MHz] [MHz]

G
at

e auto 37 857 37 857
one-hot 37 857 37 857

gray 37 857 37 857

C
om

b auto 30 615 31 905
one-hot 30 615 31 905

gray 26 582 26 583

Sy
nc

auto 30 453 34 507
one-hot 30 453 34 507

gray 27 362 42 332

but also speed and area requirements. To achieve this, our
tool performs an exploration of the design space in order
to produce a solution that fulfills the these requirements in
an optimal way. We generate VHDL code at the behavioral
level in order to allow third-party synthesis tools to use their
full optimization capabilities. Results for FPGA synthesis
show that this leads to better area and timing results com-
pared to gate-level descriptions generated by Lava.

At the moment, our conclusions are only based on ex-
emplary datapaths and control logic. In order to draw con-
clusions for cryptographic hardware in general, a more rep-
resentative subset of cryptographic functions is necessary.
Further, there is a lot of room for improvement by adding
more intelligence to the generation process of the architec-
tures and the selection of the optimal solution.

7. REFERENCES

[1] L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede,
“Public-Key Cryptography on the Top of a Needle,” in IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS). IEEE, 2007,
pp. 1831–1834.

[2] T. Güneysu and C. Paar, “Ultra high performance ecc over nist primes
on commercial fpgas,” in Cryptographic Hardware and Embedded
Systems (CHES), ser. LNCS, E. Oswald and P. Rohatgi, Eds., no.
5154. Springer-Verlag, 2008, pp. 62–78.

[3] N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede, “Efficient
Pipelining for Modular Multiplication Architectures in Prime Fields,”
in Proceedings of the 17th ACM Great Lakes symposium on VLSI
(GLSVLSI). ACM, 2007, pp. 534–539.

[4] E. Wenger, M. Feldhofer, and N. Felber, “Low-resource hardware de-
sign of an elliptic curve processor for contactless devices,” in Pro-
ceedings of the 11th Workshop on Information Security Applica-
tions (WISA), ser. LNCS, Y. Chung and M. Yung, Eds., no. 6513.
Springer-Verlag, 2010, pp. 92 – 106.

[5] M. Sheeran, “Hardware design and functional programming: a per-

fect match,” Journal of Universal Computer Science, vol. 11, no. 7,
pp. 1135–1158, 2005.

[6] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh, “Lava: hardware
design in haskell,” in Proceedings of the third ACM SIGPLAN inter-
national conference on Functional programming, ser. ICFP. ACM,
1998, pp. 174–184.

[7] A. Gill, “Declarative fpga circuit synthesis using kansas lava,” in Pro-
ceedings of the International Conference on Engineering of Recon-
figurable Systems and Algorithms (ERSA), T. P. Plaks, Ed. CSREA
Press, 2011, pp. 55–64.

[8] A. Gill, T. Bull, G. Kimmell, E. Perrins, E. Komp, and B. Werling,
“Introducing kansas lava,” in Proceedings of the 21st International
Symposium on Implementation and Application of Functional Lan-
guages (IFL), ser. LNCS, M. T. Morazán and S.-B. Scholz, Eds., no.
6041. Springer-Verlag, 2009, pp. 18–35.

[9] Z. Lu, I. Sander, and A. Jantsch, “A case study of hardware and soft-
ware synthesis in forsyde,” in Proceedings of the 15th international
symposium on System Synthesis (ISSS), 2002, pp. 86–91.

[10] K. Claessen, C. Seger, M. Sheeran, E. Shriver, and W. Swierstra,
“High level architectural modelling for early estimation of power
and performance,” Talk at Workshop on Hardware Design and Func-
tional Languages (HFL), http://www.cs.ru.nl/∼wouters/Publications/
HFL09.pdf, 2009.

[11] A. Gill and A. Farmer, “Deriving an efficient fpga implementation of
a low density parity check forward error corrector,” in Proceedings
of the 16th ACM SIGPLAN International Conference on Functional
Programming (ICFP), O. D. M. M. T. Chakravarty, Z. Hu, Ed. ACM,
2011, pp. 209–220.

[12] G. Wright, “Functions ot junctions: Ultra low power chip design with
some help from haskell,” Talk at Workshop on Hardware Design and
Functional Languages (HFL), http://antiope.com/documents/cufp08
wright.pdf, 2009.

[13] J. Lewis, “Cryptol: specification, implementation and verification
of high-grade cryptographic applications,” in Proceedings of the
ACM workshop on Formal methods in security engineering (FMSE).
ACM, 2007, pp. 41–41.

[14] K. Claessen, “A slightly revised tutorial on lava: A hardware de-
scription and verification system,” www.cse.chalmers.se/edu/course/
TDA956/Papers/lava-tutorial.ps, 2007.


