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Abstract

This paper evaluates the impact of co-movement in equity return correlations on the
equity risk-return trade-off. By applying a principal components analysis on conditional
correlations, conditional covariances between the return of a security and the market re-
turn are decomposed in a sum of three terms: pure volatility dynamics, the interaction of
volatility and market-wide (common) correlation dynamics, and the interaction of volatil-
ity and idiosyncratic correlation dynamics. The importance of each of these covariance
terms on the risk-return trade-off is analysed, in different cross-sections. For portfolios
sorted on industry, size and momentum, the risk-return trade-off is originated by the in-
teraction of volatility and common correlation dynamics, whereas in the book-to-market
cross-section, the trade-off comes from the interaction of volatility and idiosyncratic cor-
relation dynamics. This suggests that investors conditionally price book-to-market differ-
ently than industry, size and momentum.
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Introduction

The trade-off between risk and return is one of the most important relations of financial theory.
Since the capital asset pricing model of [32], the risk of a security can be considered as the
covariance of its return with the market return. In that setting, the correlation with the market
return is an important building block, since it measures the asset’s diversification benefit in
the market portfolio. Correlations are however not constant through time and even exhibit
comovement. The present paper assesses whether this dynamic structure of conditional corre-
lations is informative about how expected risk is reflected in returns.

Empirical evidence of the time-varying and comoving nature of correlations is very large.
[27, 28], [21] and [18] observe that correlations are time-varying. In an international study, [8]
find significant changes in correlations over time in Europe. All these studies also exhibit that
correlations tend to go up in bear markets, which can be considered as a sort of correlations
co-movement. Existence of this asymmetric nature of conditional correlations is confirmed
by formal tests, as proposed in [4] and [22]. Co-movement in correlations is also intimately
linked to the growing body of literature on financial contagion, as indicated by [8]. Even
though the concept of contagion remains fairly elusive and there exists no formal definition of
it, measuring its existence generally goes through a study of common changes in correlations,
as suggested by [19]. From this perspective, [25] establish the existence of co-movement in
excess correlations, which is the amount of correlations beyond what one may expect given
fundamentals.

Examining the effect of time-varying correlations on asset returns is a rather recent re-
search topic. On one hand, some authors have considered the asset pricing implications of the
stochastic nature of correlations. [26] study the risk premium generated by stochastic correla-
tions from an ICAPM perspective and show that investors hedge against stocks that perform
badly when the aggregate level of correlations goes up. By looking at the option market, [14]
show that uncertainty about correlations is priced because ex ante option-implied correlations
are higher than their ex post realizations. [9] develop a theoretical model with portfolio impli-
cations in case of stochastic correlations.

On the other hand, two recent contributions have focused on the role of time-varying con-
ditional correlations in the traditional risk-return trade-off. First, [6, 7] estimate the risk-
return trade-off by modelling covariances with the Dynamic Conditional Correlations (DCC)
GARCH model of [15]. The authors obtain a positive risk premium for various return cross-
sections. They suggest that the explicit choice of modelling conditional covariances using a
DCC-GARCH is a major ingredient for obtaining this positive trade-off. Second, [30] theoret-
ically demonstrate that, because of the [31] critique, both the average level of asset volatilities
and of asset correlations should be priced in the market return. In a way, the authors suggest
that the price of correlations may have other components than the traditionally documented
price of diversification benefits. They suggest that this additional price should be generated
by the aggregate level of correlations, and hence that investors may be more risk averse to
common than to idiosyncratic changes in correlations.
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The goal of the present paper is to provide deeper empirical evidence of the effect of the
comoving structure of conditional correlations on the risk-return trade-off. For four different
return cross-sections—portfolios sorted on industry, size, book-to-market and momentum—
conditional correlations of portfolio returns with the market return are disentangled in the sum
of a static, a common dynamic and an idiosyncratic dynamic component. Conditional covari-
ances can therefore be decomposed likewise, in a first term capturing pure volatility dynamics,
a second accounting for the interaction of volatility and common correlation dynamics, and a
third term reflecting the interaction of volatility and idiosyncratic correlation dynamics. In a
standard asset pricing regression, the portfolio returns will be regressed on the three covari-
ance components, to identify which aspects of time-varying conditional correlations are at the
basis of the observed risk-return trade-off.

Given the bounded nature of correlations, it is impossible to come up with a correlation
decomposition such that components are orthogonal and bounded, and that their sum is also
bounded. At least one constraint has to be relaxed. Therefore, I consider four different pro-
cedures for decomposing conditional correlations, each of them working under different reg-
ularity constraints. As a basis for these different decompositions, I use the DCC-GARCH
estimated conditional correlations, and the static correlation component is always defined as
their time series average. In the first decomposition methodology, I apply a standard Principal
Components Analysis on the DCC-GARCH correlations. In the second, a PCA is applied
to Fisher transformed conditional correlations, and both common and idiosyncratic compo-
nents are transformed back onto the unit circle. In the third and fourth methodology, only one
of both components—common or idiosyncratic—of transformed correlations are transformed
back onto the unit circle; the other one is defined as the residual with respect to DCC-GARCH
correlations. For the four decomposition methodologies, the corresponding covariance de-
composition is obtained by multiplying each of the correlation components by the product of
GARCH conditional volatilities of the portfolio and market returns.

Conditional covariances (decomposed and non decomposed) are used as explanatory vari-
ables against the observed monthly returns, in a procedure very similar to [6]. For every
panel—industry, size, book-to-market and momentum—the system of regressions is estimated
in a Seemingly Unrelated Regression (SUR) framework. Intercepts are allowed to vary across
individuals, but the slopes of covariance components on returns are assumed to be constant
across individuals and time. Parameters are estimated using a stationary bootstrap two-step-
least squares approach, which allows to account for autoregressive heteroskedasticity of re-
turns and for the fact that explanatory variables are point estimates themselves.

When regressing returns on non decomposed covariances, results of [6, 7] are partially
retrieved. I find a significant trade-off for industry, size and book-to-market portfolios and do
not reject the null of zero intercepts for size and book-to-market. When looking at decomposed
covariances, I see that for industry, size and momentum sorted portfolios, the highest trade-off
coefficient is associated with the interaction of volatility and common correlation dynamics,
with a significant result for the size and momentum cross-sections. In the book-to-market
cross-section, on the other hand, the largest trade-off comes from the interaction between
volatility and idiosyncratic correlation dynamics, although non significant in the basic setting.
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Robustness of these results is assessed under various ICAPM control specifications. First,
I consider the inter-temporal pricing of six macroeconomic variables: default spread, term
spread, relative short term interest rate, inflation rate, output gap and aggregate dividend
yields. Default spread, term spread, relative interest rate and output gap are not priced inter-
temporally, aggregate dividend yields and inflation rates are priced in industry sorted port-
folios. None of the controls however affect the results. Second, I control for inter-temporal
pricing of the financial factors for size and book-to-market of [17] and the factor for momen-
tum of [12]. The size factor is not priced in any cross-section, the book-to-market factor is
in all and the momentum factor is priced for momentum portfolios. The significance of the
parameters of interest increases when controlling for these financial factors: common correla-
tion dynamics generate a significant positive trade-off for industry, size and momentum sorted
portfolios, and idiosyncratic correlation dynamics now significantly account for the trade-off
in the book-to-market panel. Third, I also look at the pricing of aggregate volatility, as sug-
gested by [3]; volatility is not priced and does not affect the results. Finally, I follow [26] and
verify whether the aggregate level of correlations is priced inter-temporally; I find that they do
not have a significant impact on returns and therefore they do not affect results.

The result obtained in the book-to-market panel is compelling, since it is a cross-sectional
counterargument for [30] or any conjecture on the effects of contagion (which would suggest
a dominant role to common correlation dynamics). To interpret this peculiar finding, I explore
what the idiosyncratic and common correlation dynamics precisely capture in the covariances
between the returns on the portfolios sorted on size, book-to-market and momentum, and the
market return. For all panels, I find that middle deciles are characterized by important cor-
relation commonness, whereas the highest and lowest deciles are dominated by correlation
idiosyncrasy. This suggests that correlation dynamics are differently rooted in the book-to-
market premium than they are in the premia related to industry, size or momentum. One could
indeed state that investors price time-varying expected diversification benefits only within the
equity portfolio from a book-to-market perspective, whereas from an industry, size or momen-
tum point of view, these dynamics in expected diversification benefits are only priced between
the equity portfolio and other asset classes.

The paper is structured as follows. Section 1 explains the role of correlations in the lit-
erature on risk-return trade-off. Section 2 describes the dataset used. Section 3 explains the
disentangling conditional correlations. The main results are shown and interpreted in Sec-
tion 4. Robustness for these results is provided in Section 5. Section 6 concludes.

1 Theoretical background

The conditional version of the capital asset pricing model1 (henceforth CAPM) states that the
expected return of a security conditional on all available information should be proportional
to the conditional covariance of the stock’s return with market return and with any random

1[32], [23]
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variable affecting the stochastic investment opportunity set,

Et [Ri,t+1] = γmσim|t + γxσix|t, (1)

where Et[·] denotes the expectation operator based on all available information at t, Ri,t+1 is
the excess return of security i at time t + 1, σim|t and σix|t are the expected covariances for
period t + 1 conditional on information available at t, between security i and respectively the
market return and a stochastic variable affecting the investment opportunity set xt (examples
of such variables are interest rate levels, aggregate volatility, the average spread between in-
vestment grade and high yield corporate bonds, etc.). Merton (1980) suggests that γm can
be interpreted as the risk aversion coefficient of an agent with constant relative risk aversion
(CRRA). By considering the market return on the left hand side of the equation, one obtains
the trade-off between expected market return and expected market variance,

Et [Rm,t+1] = γmσ2
m|t + γxσmx|t. (2)

The existence of the positive trade-off (γm > 0) expressed in (1) and (2) has been tested
by several authors with mixed success. Exhaustively reviewing all these contributions goes
beyond the scope of the present paper, but interesting overviews can be found, among others,
in [20] or [6]. In the present paper, only [6, 7] and [30] will be explored in more detail, since
the role of time-varying correlations in the positive risk-return trade-off relation plays a key
role in these papers.

[6] estimate (1) with daily data between 1963 and 2008 and model conditional covari-
ances using the DCC-GARCH method of [15]. They estimate conditional covariances σim|t =
ρim|tσi|tσm|t, where σi|t and σm|t are GARCH(1,1) standard deviations of the return on stock
i and on the market, and where ρim|t is a GARCH(1,1)-type estimate of the conditional cor-
relation between both returns, parametrized independently from the conditional volatilities.
The authors then plug the series of σim|t as explanatory variables in a standard system of asset
pricing regressions,

Ri,t+1 = αi + γm σim|t +
∑

x

γx σix|t + ei,t+1, (3)

which is estimated using using a two-step-least-squares in a SUR framework. The authors
consider several cross-sections (Dow Jones 30 constituents, industry, size, book-to-market,
momentum, investment-to-assets and return-on-assets). They are all characterized by a posi-
tive trade-off, and the null hypothesis of intercepts being jointly equal te zero is rejected only
for momentum, investment-to-assets and return-on-assets cross-sections.

[7] go a step further, by developing a multivariate DCC-GARCH-in-mean for estimating
conditional covariances and trade-off in one step. They use monthly data from 1927 until
2009. The authors identify a positive trade-off of market return on market variance, and sug-
gest that this comes from the joint action of (i) looking at the whole cross-section and (ii) using
DCC-GARCH covariances. The present paper will investigate more closely this issue of the
role of time-variation in conditional correlations for obtaining a positive risk-return trade-off.
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The other recent contribution highlighting the particular importance of correlations in eval-
uating the risk-return trade-off is [30]. Their starting point is the critique of Roll (1977), which
states the limitations of empirical tests on (1) and (2) due to the fact that the true return on ag-
gregate wealth is unobservable and incorrectly replaced by an observable part of it (the return
on the stock market). The authors demonstrate that, when stock returns have total market
and stock market beta’s, both the average level of return correlations and of return volatilities
should be positively priced across asset returns. This suggests that the price of correlations in
the cross-section of asset returns may be more than the price of diversification benefits only.
In this way, [30] point out that, if time-varying conditional correlations exhibit co-movement,
the common correlation factor should bear a higher price than the idiosyncratic.

The present paper will combine the conclusions of [6, 7], which highlight the importance
of parametrizing separately correlations and volatilities, and the main result of [30], which
states that a higher price may be attributed to common movements compared to idiosyn-
cratic. More specifically, I will decompose conditional correlations in the following way:
ρim|t = κi + χi|t + ξi|t, where κi accounts for the unconditional level of correlations, χi|t
is the common dynamic correlation (accounting for dynamics shared by all individuals) and
ξi|t the idiosyncratic dynamic correlation component. This correlation decomposition yields
a covariance decomposition σim|t = κiσi|tσm|t + χi|tσi|tσm|t + ξi|tσi|tσm|t, which can be used
to estimate the impact of common versus idiosyncratic correlation dynamics in asset pricing.
Indeed, each of these covariance terms could generate a different risk premium in the return
cross-section.

One may wonder why it is important to pass by a correlation decomposition to achieve
a decomposition in covariances. First of all, the idea of focusing specifically on correlations
is coherent with [6, 7], according to which it is better to separate correlation parametrization
from volatility parametrization. Second, theory suggests that it is comovement in correla-
tions, not in covariances, to which a larger asset pricing premium may be associated. This is
indeed the conclusion of [30]. Moreover, although no formal model exists for it, the literature
on contagion also intuitively suggests that investors may require a higher premium when the
aggregate level of correlations is higher: markets are more sensitive to contagion dynamics,
since a negative market shock will have a more uniform impact on investor portfolios, poten-
tially requiring more investors to simultaneously liquidate their positions. Third, the specific
nature of volatility time series, being always larger than zero, makes a multiplicative decom-
position more appropriate to volatility than an additive one. Therefore, it seems wise to apply
the additive decomposition only to the non-volatility part of covariances, i.e. the correlations.

2 Dataset

Monthly stock portfolio returns are downloaded from Kenneth French’s from July 1963 until
December 2010, accounting for T = 570 observation dates. Four different panels of returns
are considered: 30 portfolios sorted on industry (hereafter IND), 10 on market equity (SIZE),
10 on book-to-market (BTM) and 10 on past 12 months performance (MOM). The number of
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individuals in each panel (10 or 30) is denoted by n. The choice of these return panels has two
reasons: industry portfolios are included because they constitute an intuitive way of looking at
the stock market cross-section; size, book-to-market and momentum portfolios are considered
given their widely documented deviation with respect to the CAPM. The market return is the
market capital weighted return on all NYSE, AMEX and NASDAQ stocks (from CRSP), and
the one-month Treasury bill rate is used as risk-less rate. The particular choice of the starting
date is motivated by the fact that it allows performing all regressions and robustness checks
on the same sample. The use of monthly frequency, rather than daily, is to avoid problems of
multicollinearity in the regression, which will be explained in more detail in Section 3.

Six macroeconomic variables are considered for robustness, the same as in [7]: default
spread, term spread, relative short term interest rate, inflation rate, output gap and aggregate
dividend yield. Monthly yields of the Federal Fund effective rate, three-month Treasury bill
and the ten-year Treasury bond are downloaded from the H.15 database of the Federal Reserve
Board, as well as yields on AAA and BAA rated corporate bonds. Default spread (def )
is defined as the difference in yields between BAA and AAA rated corporate bonds. Term
spread (term) is the difference between ten-year and three-month Treasury yields. Short term
relative interest rate (rrel) is defined as the difference between the three-month Treasury bill
yield its 12 month moving average. Monthly aggregate dividend yields and the consumer
price index are downloaded from Robert Shiller’s website. The aggregate dividend yield (div)
is the ratio of monthly dividends on S&P 500 index to the current level of the index. The
inflation rate (inf ) is the monthly growth of the consumer price index. Finally, the Industrial
Production Index is downloaded from the G.17 database of the Federal Reserve Board. Output
gap (out) is defined as the growth rate on the latter index. Innovations on the macroeconomic
variables are computed by taking first differences and DCC-GARCH conditional covariances
of portfolio returns with these innovations will be used to assess their inter-temporal pricing.

Following [16], [17], [24] and [12], the financial factors of size (smb), book-to-market
(hml) and momentum (umd) are also introduced. All are downloaded from Kenneth French’s
website. I will assess whether DCC-GARCH estimated time-varying covariances of portfolio
returns with each of these factors help in the pricing across time and assets.

Finally, I control for investors hedging against changes market volatility and the aggregate
level of correlations. [10], [11, 13] suggest that investors hedge against time-varying market
volatility, since it affects the investment opportunity set. [3] and [1] confirm that covariances
with innovations in volatility are priced in the return cross-section. Therefore, I also control for
time-varying covariances with innovations in the log of monthly market volatility, estimated
as the first differences in the standard deviation of daily returns of the S&P 500 for each
month, and noted with σ̃t. Following [14] and [26], I also control for the investor’s hedging
against innovations in the aggregate level of correlations. I look at time-varying covariances
between asset returns and innovations in monthly aggregate correlations, which are computed
by taking the first differences in the monthly averages of correlations between daily returns on
30 industry sorted portfolios and the market return, and are noted by ρ̃t.
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3 Disentangling conditional correlations

Although an additive decomposition is more appropriate to correlations than to volatilities,
capturing correlation co-movement in an additive setting is not a straightforward problem.
Indeed, one should at the same time take into account the boundedness of correlations, and
the orthogonality of common versus idiosyncratic dynamics. More specifically, one wants
to model variations in expected correlations as the sum of two terms—a common and and
idiosyncratic—such that neither the one, nor the other, nor their sum, leads to conditional
correlations lying outside the unit circle. Developing such a model is conceptually contradic-
tory: one wants both common and idiosyncratic terms to be moving independently from one
another, but having a bounded sum, meaning that their domains should be non-independent.
This issue can be viewed as an optimization problem with a negative number of degrees of
freedom, since there are more constraints than unknowns. Intuitively, one therefore has to
relax at least one of the constraints. One possibility is to impose both terms to be orthogonal
and bounded, but to allow their sum lying outside the unit circle. As an alternative, the reverse
would be to impose the sum common and idiosyncratic terms lying within the unit circle, but
relaxing their orthogonality and hence the boundedness of at least one of the two terms (the
common, the idiosyncratic, or both).

Proposing a one-step model going from observed returns to decomposed conditional cor-
relations is a difficult task and goes beyond the scope of the present paper. Therefore, the
general procedure for reaching a decomposition of conditional correlations will go in two
steps. First, the series of non disentangled conditional correlations will be estimated, using a
DCC-GARCH of [15]. Second these series will serve as the basic input for a decomposition
in common and idiosyncratic conditional correlation terms, considering the different paths of
decomposing highlighted above. Once this conditional correlation decomposition is achieved,
the resulting decomposition of conditional covariances an easily be computed.

3.1 DCC-GARCH conditional correlations

The Dynamic Conditional Correlations Generalized Autoregressive Conditional Heteroskedas-
ticity (DCC-GARCH) model of [15] is applied to estimate the conditional second order mo-
ments of each bivariate series Ri,t+1 ≡ (Ri,t+1, Rm,t+1)

′, where i denotes a particular portfolio
and m is the market. In the DCC-GARCH(1,1), conditional correlations and volatilities are
parametrized according to

Ri,t+1 = μi + εi,t+1,

where μi = (μi, μm)′, εi,t+1 = (εi,t+1, εm,t+1)
′, and

Et[εi,t+1ε
′
i,t+1] = Di,tRi,tDi,t.

The diagonal matrix Di,t = diag
(
σi|t, σm|t

)
contains the univariate GARCH(1,1) volatilities,

σ2
i|t = ωi + αi(Ri,t − μi)

2 + βiσ
2
i|t−1, and each element ρdcc

jk|t (with j, k ∈ {i, m}) of the
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correlations matrix Rt is parametrized by

ρdcc
jk|t =

qjk|t√
qjj|tqkk|t

, (4)

with qjk|t = ρ̄jk + α(εj,tεk,t − ρ̄jk) + β(qjk|t−1 − ρ̄jk). The reason why correlations are
written as a ratio of GARCH elements is to make sure they always respect −1 < ρdcc

jk|t < 1.
The estimation of conditional second order moments for the n return couples per panel is done
using the UCSD-GARCH Matlab toolbox of Kevin Sheppard. This toolbox applies Maximum
Likelihood approach assuming innovations follow a Generalized Error Distribution.

Conditional correlations of portfolio returns with the market return for the different panels
are plotted in Figure 1. Looking at these charts, several observations can be made. First, one
sees that co-movement is an important feature in conditional correlation time series, especially
for portfolios sorted on size, book-to-market and momentum, where the correlation most often
stays above 0.8. Cross-sectional diversity in conditional correlations seems highest along the
industry dimension and lowest in the size panel. A closer study of the latter panel shows
that the nearly parallel lines exhibit monotonicity in terms of their average, where smaller
size is associated with the lower average correlations. Book-to-market and momentum sorted
portfolios also exhibit strong co-movement, but one can graphically detect that idiosyncratic
dynamics are higher than in the size panel. Moreover, there is not the same phenomenon of
monotonically increasing/decreasing average correlations as a function of deciles.

An important feature revealed by Figure 1 is that correlations exhibit a sharp decrease dur-
ing the Tech bubble. This is very clear in the book-to-market and momentum cross-sections,
and also from a sector perspective. Closer analysis2 of the data shows that this downward
spike is most important in sectors not affected by the bubble, like healthcare, construction,
utilities, transport, wholesale and retail, while the sector exhibiting the least change in cor-
relation during that period is Telecom. The book-to-market and momentum panels confirm
this observation, since the dip appears to be happening in the middle deciles, and not among
the very high or very low book-to-market or momentum portfolios. A plausible economic
explanation of the phenomenon may be that, as a result of sky-rocketing valuations for Tech
companies, their weight in investor’s portfolios increased likewise, and comovement of other
sectors with this “market” mechanically decreased. In a way, this correlation dip would then
be an interesting verification of the bubble, since it suggests that the market is not what it
should be.

3.2 Decomposition of conditional correlations

The goal of this section is, for every panel (IND, SIZE, BTM and MOM), to write conditional
correlations as a sum of static, common dynamic and idiosyncratic dynamic terms,

ρim|t = κi + χi|t + ξi|t, (5)

2Charts available upon request.

9



Figure 1: Conditional correlations estimated using DCC-GARCH(1,1)
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The conditional correlations are estimated with DCC-GARCH using the UCSD-GARCH Matlab toolbox of

Kevin Sheppard.
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where the static component κi captures the unconditional expectation of correlations and is
computed by taking the time-series average of these DCC-GARCH conditional correlations,

κi =
1

T

T∑
t=1

ρdcc
im|t.

Descriptive statistics of κi’s per panel are shown in Table 1. We see that, on average, correla-
tions are high and lie close to each other. As it is also reflected in Figure 1, Table 1 confirms
that cross-sectional variation is highest when looking at the industry sorted portfolios where
the minimum static correlation term is of 0.52 and the maximum of 0.89, whereas along the
size, book-to-market and momentum dimensions, correlations tend to stay on average between
0.8 and 1.

The common component χi|t will be a mean-zero process driven by panel-wide dynamics
and the idiosyncratic component ξi|t a mean-zero process driven by individual-specific dynam-
ics. The sum of the latter two terms will be called the dynamic component, δi|t = χi|t + ξi|t.
The DCC-GARCH conditional correlations ρdcc

im|t will serve as an input for the several decom-

position approaches; the latter will be distinguished in superscript of the components, χ (j)
i|t and

ξ
(j)
i|t , with j = 1, 2, 3, 4.

Table 1: Descriptive statistics of κi

κ̄ κ1/2 IQRκ minκ maxκ

IND 0.77 0.78 0.11 0.52 0.89
SIZE 0.91 0.93 0.08 0.79 0.97
BTM 0.90 0.91 0.06 0.84 0.95
MOM 0.89 0.90 0.05 0.82 0.93

Descriptive statistics of static components of
DCC-GARCH estimated conditional correlations.
From left to right, the arithmetic mean, the me-
dian, the interquartile range, the minimum and the
maximum are shown.

3.2.1 PCA on conditional correlations

The first methodology is to apply a standard Principal Component Analysis on the demeaned
conditional correlations, δ

(1)
i|t ≡ ρdcc

im|t −κi. The information criterion of [2], which generalizes
[5] for selecting the number of factors in approximate static factor models, suggests that the
industry panel (with n = 30) has a common space of dimension q = 4, while the SIZE,
BTM and MOM panels (with n = 10) have q = 1 common factor. We then easily get to the
representation

δ
(1)
i|t = χ

(1)
i|t + ξ

(1)
i|t , (6)
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where χ
(1)
i|t is the common and ξ

(1)
i|t the idiosyncratic component. The variance decomposition

is represented in Table 2. The table confirms that co-movement is lowest in the industry panel
(where R2 is of only 82%, even though there are 4 factors considered) and that co-movement
is highest in the size panel (with an R2 of 85%). The main problem with this methodology is
however that one does not impose any constraints on the domain of common and idiosyncratic
components. By construction, κi + χ

(1)
i|t + ξ

(1)
i|t will always lie within the unit circle, and χ

(1)
i|t

and ξ
(1)
i|t will be orthogonal, but the price to pay is that κi + χ

(1)
i|t and κi + ξ

(1)
i|t may not always

lie between -1 and 1. This can be observed in Figures 2 and 3. Figure 2 shows that the sum
of the static and common dynamic components sometimes exceeds the upper bound for the
IND, BTM and MOM panels, be it only rarely and to a very limited extent. In Figure 3, one
remarks that the sum of static and dynamic idiosyncratic components sometimes exceeds the
upper bound for SIZE, BTM and MOM panels. This happens only once for the size sorted
portfolios. For book-to-market portfolios the upper bound is crossed several times around the
burst of the Tech bubble. For momentum sorted portfolios, finally, the upper bound is crossed
at three different periods: in the early 80s, at the burst of the Tech bubble and during the
Lehman crisis.

Table 2: Variance decompositions
IND SIZE BTM MOM

n 30 10 10 10
q 4 1 1 1
s2

χ/s2
δ 0.82 0.85 0.83 0.72

Percentage of the total variance explained by
common components in the decomposition
(6). n is the number of individuals in the
panel, q the number of factors used, as sug-
gested by the criterion.

3.2.2 Transformed PCA on transformed conditional correlations

An alternative is to look for χ
(2)
i|t and ξ

(2)
i|t such that −1 < κi+χ

(2)
i|t < 1 and −1 < κi+ξ

(2)
i|t < 1,

but allowing for κi +χ
(2)
i|t + ξ

(2)
i|t to lie outside the unit circle. I do this by performing a PCA on

transformed correlations, and transforming back the obtained components. More specifically,
the DCC-GARCH conditional correlations ρdcc

im|t are first projected on the real line by the Fisher
transformation,

zi|t ≡ arctanh
(
ρdcc

im|t
)

=
1

2
ln

(
1 + ρdcc

im|t
1 − ρdcc

im|t

)
.

A PCA on the transformed dynamic component di|t ≡ zi|t − ki, where ki ≡ 1/T
∑T

t=1 zi|t,
allows then to write di|t = ci|t + xi|t3, with ci|t the common and xi|t the idiosyncratic com-

3The dimensions of common spaces are the same as above.
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Figure 2: PCA on DCC-GARCH conditional correlations: κi + χ1
i|t
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I represent the sum of the static and common dynamic component under the first decomposition procedure, i.e.

PCA on DCC-GARCH conditional correlations. No constraints are set on the boundedness of common nor id-

iosyncratic components, implying that they may sometimes fall outside the unit circle. For common components,

this is only rarely observed, and only for industry, book-to-market and momentum panels.
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Figure 3: PCA on DCC-GARCH conditional correlations: κi + ξ1
i|t
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I represent the sum of the static and common dynamic component under the first decomposition procedure, i.e.

PCA on DCC-GARCH conditional correlations. No constraints are set on the boundedness of common nor

idiosyncratic components, implying that they may sometimes fall outside the unit circle. For idiosyncratic com-

ponents, this is never observed for industry, rarely for size but several times for book-to-market and momentum.
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ponent. Common and idiosyncratic components are then projected back to the unit circle. In
order to keep the appropriate level of concavity in the transformation, I define

χ
(2)
i|t ≡ tanh

(
ki + ci|t

)− 1

T

T∑
t=1

tanh
(
ki + ci|t

)
,

and

ξ
(2)
i|t ≡ tanh

(
ki + xi|t

)− 1

T

T∑
t=1

tanh
(
ki + xi|t

)
.

We now have that the DCC-GARCH estimated ρdcc
im|t �= κi + χ

(2)
i|t + ξ

(2)
i|t . Define the dynamic

component as δ
(2)
i|t ≡ χ

(2)
i|t +ξ

(2)
i|t . By construction and by Jensen’s inequality, we have that−1 <

κi+χ
(2)
i|t < 1 and −1 < κi+ξ

(2)
i|t < 1, but one cannot make sure that −1 < κi+χ

(2)
i|t +ξ

(2)
i|t < 1.

Figure 4 illustrates that this problem is not encountered for IND, SIZE and MOM, but that a
small number of data points of the BTM panel have an estimated conditional correlation larger
than one, during the 2008 financial crisis.

3.2.3 Partially transformed PCA on transformed conditional correlations

A last alternative is to re-transform only one of the two components ci|t and xi|t obtained
above and define the other as the difference between DCC-GARCH estimated conditional
correlations and the other parameters. Indeed, define

χ
(3)
i|t ≡ χ

(2)
i|t ≡ tanh

(
ki + ci|t

)− 1

T

T∑
t=1

tanh
(
ki + ci|t

)
,

and
ξ

(3)
i|t ≡ ρdcc

im|t − κi − χ
(3)
i|t .

This fully takes away the orthogonality condition, ξ
(3)
i|t is now computed as a residual to the

other terms. Moreover, although χ
(3)
i|t satisfy the correct boundary condition of −1 < κi +

χ
(3)
i|t < 1, ξ

(3)
i|t will not. In a way, the cost of having the sum of all correlation terms lying

inside the unit circle is that one of the components is not correctly convexified. Figure 5
shows that for IND, BTM and MOM, the idiosyncratic correlation component falls outside
the required bounds during the burst of the 2001 Tech bubble.

Likewise, one could apply the same procedure to idiosyncratic components:

ξ
(4)
i|t ≡ ξ

(2)
i|t ≡ tanh

(
ki + xi|t

)− 1

T

T∑
t=1

tanh
(
ki + xi|t

)
,

and
χ

(4)
i|t ≡ ρdcc

im|t − κi − ξ
(4)
i|t .
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Figure 4: Transformed PCA on transformed DCC-GARCH conditional correlations: κi +
χ2

i|t + ξ2
i|t
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Under the second decomposition procedure, common and idiosyncratic components will always lie within the

unit circle, but their sum may not. We nevertheless see that this only happens a very limited number of times for

the book-to-market cross-section, and never for industry, size and momentum.
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Figure 5: Partially transformed PCA on transformed DCC-GARCH conditional correlations:
κi + ξ

(3)
i|t
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Under the third decomposition procedure, common components and the total conditional correlations are

bounded by construction, but the idiosyncratic components, computed as residuals, may sometimes lie out-

side their bounds. As we see, this never happens for size, happens for one industry portfolio and for several

book-to-market and momentum sorted portfolios around the burst of the Tech bubble early 2001.
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The same comments apply as for the previous; estimated common components are shown in
Figure 6 and exceed their upper bound in a limited number of data points for IND, BTM and
MOM. Curiously enough, the violations of correlation constraints do not happen during crisis
periods, but at the beginning and the end of the 90s.

Figure 6: Partially transformed PCA on transformed DCC-GARCH conditional correlations:
κi + χ

(4)
i|t
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Under the fourth decomposition procedure, idiosyncratic components and the total conditional correlations are

bounded by construction, but the common components, computed as residuals, may sometimes lie outside their

bounds. As we see, this never happens for size, happens for one industry and book-to-market portfolio, and still

very rarely for momentum sorted portfolios.

3.3 From decomposed correlations to decomposed covariances

Since conditional correlations and volatilities are parametrized separately, the conditional co-
variance between the return on a portfolio and the market can easily be written as

σim|t = ρim|tσi|tσm|t. (7)
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Given the correlation decomposition (5), one can therefore write

σim|t = κiσi|tσm|t + χi|tσi|tσm|t + ξi|tσi|tσm|t. (8)

Since κi accounts for the unconditional aspects of correlations, one could say that the first term
at the right hand side of the equation in (8) corresponds to the covariance under the assumption
of constant conditional correlations (CCC). We can thus say that

σccc
im|t = κiσi|tσm|t.

By writing conditional covariances according to (8), one states that they are the sum of a term
driven by pure volatility dynamics, one driven by the interaction of volatility and common cor-
relation dynamics, and one driven by the interaction of volatility and idiosyncratic correlation
dynamics.

The next section will examine how important each of these covariance terms is for asset
pricing in different cross-sections. Since all three regressors contain the conditional volatility
product σi|tσm|t, one should care about multicollinearity issues. Indeed, although correlation
components are by construction orthogonal, multiplying these orthogonal terms by the same
time series will make the covariates correlated. A descriptive analysis suggests that a good
time window is to take monthly data from 1963 until 2010. Given the high comovement
in daily volatility data, considering a daily frequency during the same period generates cor-
relations between covariance terms of over .95. The same comment holds when looking at
monthly data starting in 1929: volatility comovement has been so big during the 1929 crisis
that problems of multicollinearity may also arise. Table 3 reports, for each panel, the maxi-
mum and minimum correlations between each pair of components in the monthly 1963-2010
window, as used in this study. As one can see, correlations are between -0.51 and 0.68, which
is reasonable from a regression point of view; results in the next section will confirm that there
is no problem of multicollinearity.4

Table 3: Correlations across time of covariance components
min rκχ max rκχ min rκξ max rκξ min rχξ max rχξ

IND -0.39 0.64 -0.54 0.50 -0.32 0.28
SIZE 0.10 0.40 -0.51 0.34 -0.24 0.25
BTM -0.05 0.36 -0.42 0.68 -0.20 0.34
MOM -0.13 0.28 -0.35 0.57 -0.33 0.21

Minima and maxima of correlations between the conditional covariance com-
ponents for various panels. Correlations should not be too high, to avoid issues
of muliticolinear in the next step where each of the terms will be used as re-
gressors.

4Results for the other windows are available upon request.
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4 Main results

As a matter of introduction, I first look at the basic relation of [6],

Ri,t+1 = αi + γmσdcc
im|t + ei,t+1. (9)

The system of regressions in (9) is estimated using a stationary block bootstrap TSLS. Boot-
strap is appropriate to get reliable confidence intervals on the estimated parameters, given
that the explanatory variables are point estimates themselves. Block bootstrap is used to cope
with autoregressive heteroskedasticity of estimation errors. Blocks are overlapping and are
randomly drawn (with replacement) from the original dataset to form new panels of equal
length. To conserve stationarity of the overlapping blocks, their lengths are random and fol-
low a geometric distribution, as suggested by [29]. This procedure of bootstrapping is also
called stationary bootstrap. At every bootstrap iteration, the Newey-West corrected (uncondi-
tional) variance-covariance matrix of the first step OLS residuals is used as weighting matrix
for the second step GLS.5 This methodology lies in the same spirit as [6], who also estimate
their asset pricing equation using this TSLS procedure, but do not use bootstrap for taking into
account additional uncertainty. [7], on the other hand, use a one-step method by estimating
a multivariate DCC-GARCH-in-mean model. Developing a one-step model for disentangled
correlations would be preferable to the two-step procedure considered in the present paper, but,
as explained above, it is not straightforward to come up with such a model that disentangles
correlations, and it is therefore beyond the goal of the present paper.

The first line of Table 4 shows the estimated parameters and their p-values of the regres-
sion in equation (9). The trade-off for the industry cross-section is found to be significantly
positive, but the the null hypothesis of zero intercepts is rejected. Returns on size sorted
portfolios behave coherently with the conditional CAPM, since the trade-off is significantly
positive and it cannot be rejected that intercepts are different from zero. The same holds for
the book-to-market cross-section, even though the level of significance of the slope is slightly
larger (6%). The momentum portfolios have positive but non significant risk-return trade-off
and significant intercepts. These results are quite in line with [6]. The only difference is that
the latter find non significant intercepts for the industry cross-section and a significant slope
for momentum portfolios. Plausible reasons for these differences in outcomes can be the dif-
ference in used samples or the use of bootstrap in the present paper, increasing the standard
errors of estimated parameters.

I will now take the closer look at which aspects of time-varying covariances—pure volatil-
ity, the interaction of volatility and commonness in correlations, or the interaction of volatility
and idiosyncrasy in correlations—are responsible for the generated premia.

5I use the covnw.m Matlab function of Kevin Sheppard to compute this unconditional covariance matrix.
Consistent with the univariate Newey-West estimator, it computes the unconditional covariance matrix between

residuals as a weighted sum of covariance matrices between contemporaneous and lagged residuals: ̂E [ete′t] =
L∑

l=0

wl

(
1

T−l

T∑
t=l+1

ete′t−l

)
, where wl = 1 − l

L+1 and L is set to 9 months.
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First, I look at
Ri,t+1 = αi + γκ

(
κiσi|tσm|t

)
+ ei,t+1, (10)

which corresponds to (9) but assuming constant instead of dynamic conditional correlations
GARCH covariances. Estimation results are shown in line 2 of Table 4. The slope coefficients
are less significant for IND and SIZE. They do not loose their significance for BTM and
become significant for MOM. This result is a first illustration of the importance of considering
the dynamic structure of conditional correlations in the risk-return trade-off. Strictly speaking,
there is indeed no reason why conditional covariance changes that are driven by pure volatility
dynamics would have a more significant price than overall covariance changes. The data
however suggest that the dynamic aspect of correlations plays a major role in understanding
the significantly positive risk-return trade-off.

I now consider the importance of co-movement in correlations in the risk-return trade-off,
by estimating

Ri,t+1 = αi + γχ

(
χi|tσi|tσm|t

)
+ ei,t+1. (11)

The three alternatives for χi|t are considered: the common term of DCC-GARCH conditional

correlations (χ(1)
i|t ), the transformed common component of transformed DCC-GARCH condi-

tional correlations (χ(2)
i|t ), or the residual between conditional correlations and the transformed

idiosyncratic component of DCC-GARCH conditional correlations (χ(4)
i|t ). Estimation results

of the three cases are shown respectively in lines 3, 4 and 5 of Table 4. For IND, SIZE and
MOM, lines 3 and 5 indicate a significantly positive trade-off. Line 4, on the other hand,
where commonality is computed as a transformation of common components of transformed
correlations, exhibits a positive but non significant slope. For BTM, none of the common
correlation components are associated with a significantly positive risk premium.

Likewise, I also look at idiosyncratic correlation changes,

Ri,t+1 = αi + γξ

(
ξi|tσi|tσm|t

)
+ ei,t+1, (12)

again considering the three ways of modelling idiosyncrasy in conditional correlations (ξ (1)
i|t ,

ξ
(2)
i|t and ξ

(3)
i|t ). Columns 6 to 8 of Table 4 illustrate that idiosyncrasy does not generate a

significantly positive trade-off for any of the cross-sections.

Consistency of these results is now assessed by performing the estimation with the three
covariance components jointly,

Ri,t+1 = αi + γκ

(
κiσi|tσm|t

)
+ γχ

(
χi|tσi|tσm|t

)
+γξ

(
ξi|tσi|tσm|t

)
+ ei,t+1.

(13)

These results are shown in the last four lines, where the four different decomposition methods
are used. For IND, none of the terms is still significant at the 5% level, but smallest p-values are
associated with the common components. For SIZE, only common correlation terms generate
a significant trade-off in three cases of the four. For MOM, common correlation changes
always generate a positive trade-off. For BTM, no clear pattern can be observed.
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Table 4: Estimation of asset pricing regressions

γm γκ γχ γξ Wα

Industry cross-section
(1) 2.10** 1722.04***
(2) 1.49 586.13***
(3) 6.41** 111.13***
(4) 0.89 95.98***
(5) 5.83** 105.25***
(6) 2.33 108.57***
(7) 0.90 96.58***
(8) 3.94 108.45***
(9) 0.83 4.63* 1.63 98.73***
(10) 0.84 3.89 3.10 100.44***
(11) 0.89 3.95* 3.86 95.98***
(12) 0.90 3.99 3.20 96.58***

Size cross-section
(1) 1.87** 16.40*
(2) 5.18* 18.31**
(3) 18.42** 17.92*
(4) 3.95* 9.75
(5) 26.06*** 19.19**
(6) 4.32 18.89**
(7) 3.99 10.33
(8) 7.24 20.25**
(9) 1.57* 13.70* 3.81 8.90
(10) 1.59* 27.01** 2.26 9.29
(11) 1.67* 27.73** 2.48 9.75
(12) 1.45* 22.90** 3.11 10.33

Market-to-Book cross-section
(1) 1.72* 9.28
(2) 1.59* 7.67
(3) 4.02 27.35***
(4) 3.86 14.74
(5) -2.20 27.38***
(6) 11.88* 25.86***
(7) 3.20 17.33*
(8) 8.71 28.05***
(9) 1.18 3.28 8.52 16.07*
(10) 1.19 2.09 10.58 16.54*
(11) 1.35 1.55 6.43 14.74
(12) 1.21 -0.51 11.03 17.33*

Estimation results for regressions (9) to (13).
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Table 4: (continued)

γm γκ γχ γξ Wα

Momentum cross-section
(1) 1.48 90.51***
(2) 9.66** 84.37***
(3) 19.86** 63.71***
(4) 1.67* 51.63***
(5) 14.91** 62.93***
(6) -2.62 59.32***
(7) 1.45* 51.90***
(8) -2.47 57.92***
(9) 1.18 18.46** -4.13 56.66***
(10) 1.42 23.57** -5.75* 58.67***
(11) 1.50 23.02** -6.75* 51.63***
(12) 1.31 14.49** -5.73 51.90***

Estimation results for regressions (9) to (13). (1) [6]. (2) constant conditional

correlations. (3)-(5) interaction of volatility and common correlation dynamics:

PCA on conditional correlations (3), transformed PCA on transformed correla-

tions (4) and residuals of the partially transformed PCA on transformed correla-

tions (5). (6)-(8) interaction of volatility and idiosyncratic correlation dynamics:

PCA on conditional correlations (6), transformed PCA on transformed correla-

tions (7), and residuals of the partially transformed PCA on transformed corre-

lations (8). (9)-(12) full decomposition—each line uses a different correlation

decomposition, in the same order as presented in Section 3. Asterisks represent

the significance of parameters: at 10% (*), 5% (**) and 1% (***).

Even though the regression results suggest that some covariance components generate a
significant trade-off while others do not, they do not ascertain that regression coefficients are
significantly different from each other, in a statistical sense. Therefore, I perform a Wald
test on the three main parameters γκ, γχ and γξ, jointly testing the hypotheses γκ = γχ and
γκ = γξ. As Table 5 shows, the Wald test statistic is too small to suggest different coefficient
values in IND, SIZE and BTM, but is significantly different from zero in MOM. Unless for
momentum sorted portfolios, results do thus not entirely go against CAPM.
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Table 5: Wald test on equality of coefficients
IND SIZE BTM MOM

(1) 1.18 1.54 0.97 6.47**
(2) 1.04 3.12 1.13 6.37**
(3) 1.25 3.21 0.36 7.85**
(4) 0.98 3.42 1.26 8.25**

Wald test statistic. Columns indicate the con-
sidered panel. Lines indicate the method used
for decomposing conditional correlations: (1)
PCA, (2) transformed PCA on transformed data,
(3) partially transformed PCA, only on com-
mon components, (4) partially transformed PCA,
only on idiosyncratic components. Test statis-
tics are computed using the bootstrap variance-
covariance matrix of the coefficients. Asterisks
indicate significance of the statistic: 10% (*), 5%
(**) and 1% (***)

5 Robustness

Robustness tests are performed on the results obtained in the previous Section from an ICAPM
perspective under various specifications. The general regression is

Ri,t+1 = αi + γκ

(
κiσi|tσm|t

)
+γχ

(
χi|tσi|tσm|t

)
+ γξ

(
ξi|tσi|tσm|t

)
+
∑

x γxσix|t + ei,t+1

(14)

where x denote innovations in any variable potentially priced intertemporally, and σix|t is
the DCC-GARCH conditional covariance between returns on portfolio i and these innovations.
I use the same maximum likelihood procedure as above to estimate the DCC-GARCH. In
what follows, I will first control for inter-temporal pricing of six macroeconomic variables: 3
variables on fixed income (default spread, term spread, short term interest rate), 2 variables on
the general state of the economy (inflation rate and output gap) and aggregate dividend yield.
Second, I will check for robustness with inter-temporal pricing of the usual financial factors
(size, book-to-market and momentum). Third, I allow for the pricing of changes in aggregate
volatility. Finally, I also consider the aggregate level of correlations.

5.1 Macroeconomic variables

As in [6, 7], I introduce time-varying correlations with innovations in macroeconomic vari-
ables, to account for potential inter-temporal pricing of these variables. First, I first look at
default spread, term spread and relative short term interest rate, i.e. x = ddef, dterm, drrel.
Table 6 shows that, as in BE10b, none of these variables are priced inter-temporally. Hence,
their introduction does not affect previous results. Consistent with the results obtained above,
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one still obtains that none of the covariance terms seem to generate a trade-off for IND and
BTM, and that for SIZE and MOM the positive trade-off is generated by the interaction of
common correlation changes with volatility changes. The null hypothesis of zero intercepts
is not rejected for SIZE and BTM and only in MOM the test statistic suggests a significant
difference between all parameters.

Next, I look introduce innovations in dividend yield and output gap: x = dinf, dout.
Results are shown in Table 7. Inflation rate is priced inter-temporally for the industry cross-
section. SIZE and MOM remain the only two cross-sections that are characterized by a pos-
itive risk-return trade-off, generated by the interaction of volatility and common correlation
dynamics. Intercepts are not significantly different from zero for SIZE and BTM and signifi-
cantly different for MOM.

Finally, I consider aggregate dividend yields: x = ddiv. As Table 8 indicates, dividend
yields are very significantly priced inter-temporally in IND, but not in any other panel. Look-
ing at the other parameters of interest, one observes decreased significances. In SIZE, there is
no significant tradeoff at the 5% level and in MOM the p-values are also lower. Results on the
Wald test statistics are identical as before.

5.2 Financial factors

In the present subsection, I check for robustness when controlling for inter-temporal pricing
of financial factors for size (smb) and book-to-market (hml) of [17] and the factor for mo-
mentum (umd) of [12], i.e. I consider (14) with x = smb, hml, umd. Estimates are shown
in Table 9. Non of the panels significantly price smb, but all do so for hml; umd has a sig-
nificant impact on IND and MOM. Consistent with [6, 7], the introduction of time-varying
conditional covariances with these financial variables increases the significance of the param-
eters of interest. Indeed, one now observes a significantly positive risk-return trade-off for
all cross-sections. For IND, SIZE and MOM, this trade-off is driven by the interaction of
volatility changes and common correlation changes. For BTM, on the contrary, the trade-off
is generated by covariance dynamics coming from an interaction of volatility changes and id-
iosyncratic correlation changes. The decomposition procedure only marginally affects results
for IND and MOM, point towards a higher significance of using a transformation for SIZE,
and suggest for BTM that significance decreases when defining idiosyncratic correlation com-
ponents as the residual of the common. The same conclusions as before hold concerning the
difference of parameters.

5.3 Aggregate volatility

I now turn to the inter-temporal pricing of aggregate volatility, measured by introducing DCC-
GARCH conditional covariances between portfolio returns and first differences in the realized
daily volatility of the S&P 500 index for each month. Table 10 indicates that innovations in
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aggregate volatility are never priced and that parameter values are not affected compared to
Section 4.

5.4 Aggregate correlations

To finish, I look at innovations in the aggregate level of correlations, ρ̃. Regression results are
shown in Table 11 and indicate that innovations in aggregate correlations are not significantly
priced, although p-values are smaller than 10% for IND.

6 Concluding discussion

The results obtained in the book-to-market panel are rather surprising, given that they go
against [30] or against any intuitive conjecture on the effect of expected contagion risk on
returns. It is therefore interesting to assess how correlation commonness and idiosyncrasy
are reflected in the conditional covariances of returns on size, book-to-market and momentum
portfolios with the market return. I look at a partial variance decomposition on conditional
covariances: of the total variation in conditional covariances arising from the interaction of
volatility and correlation dynamics, which fraction is to be attributed to common and which
to idiosyncratic correlation dynamics? Table 12 represents these results, considering each of
the four correlation decompositions. Except for the first decomposition on the size panel,
for which the importance of correlation commonness in covariances seems to increase with
size, all other variance decompositions follow a U-shaped pattern: the highest degree of id-
iosyncrasy is observed for the smallest and largest deciles, whereas the covariances of middle
deciles are very much influenced by correlation commonness and behave hence very similarly
from the perspective of correlation dynamics. In other words, the idiosyncratic terms capture
the correlation dynamics of the first and last deciles, whereas the common terms capture the
correlation dynamics of the middle deciles.

This is important when looking at asset pricing, since the size, book-to-market and mo-
mentum premia are defined as the difference in returns between the high versus the low quan-
tiles in these spectra. The results hence suggest that the size and momentum premia cannot
be explained by the difference in conditional correlation dynamics of the extreme quantiles
in the size and momentum spectra. However, the premium on returns of stocks with high
versus low book-to-market ratios does significantly depend on the (temporary) differential of
conditional correlations between these returns and the market return. Differently stated, this
could mean that the dynamic nature of correlations nests two ways of pricing correlation dy-
namics: between and within portfolio pricing. Between portfolio pricing denotes the pricing
of assets as arising from the price of the total market equity portfolio, depending on market
equity variance, which on its turn is influenced by the aggregate level of correlations. Within
portfolio pricing is the pricing of securities depending on their relative diversification benefit
in the portfolio. It depends on the idiosyncratic dynamics of correlations. From a correla-
tion point of view, the results of this paper suggest that conditional pricing of the size and
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momentum cross-sections is based on a between portfolio pricing, whereas book-to-market is
conditionally priced within the equity portfolio.

The peculiar result on the book-to-market panel suggests an interesting way to exploit the
book-to-market premium, which could also be observed in the charts of Section 3. Low value
stocks have a decreased importance in the market, hence their correlation with the market
return will decrease, and this correlation will start behaving more idiosyncratically, compared
to other stocks. As a result, a significance idiosyncratic decrease in correlations, could be a
proxy for identifying value stocks, which we know outperform on average.

The results also show how complex the risk-return trade-off is in practice, as opposed to
the simple and intuitive theoretical expression of the CAPM. A large series of studies have pre-
ceded this one to empirically find a positive trade-off—the accurate measure of time-varying
risk has been a major ingredient in obtaining this result. By taking further steps in accu-
rately estimating risk, the present paper provides evidence that the risk-return trade-off is not
a uniform concept across stocks, but that for different cross-sections, different aspects of cor-
relations matter from a risk perspective.

27



References

[1] T. Adrian and J. Rosenberg. Stock returns and volatility: Pricing the short-run and long-
run components of market risk. Journal of Finance, 63:2997–3030, 2008.

[2] L. Alessi, M. Barigozzi, and M. Capasso. Improved penalization for determining the
number of factors in approximate static factor models. Statistics and Probability Letters,
80:1806–1813, 2010.

[3] A. Ang, R. J. Hodrick, Y. Xing, and X. Zhang. The cross-section of volatility and ex-
pected returns. Journal of Finance, 61:259–299, 2006.

[4] Andrew Ang and Joseph Chen. Asymmetric correlations of equity portfolios. Journal of
Financial Economics, 63:443–494, 2002.

[5] J. Bai and S. Ng. Determinig the number of factors in approximate factor models. Econo-
metrica, 79:191–221, 2002.

[6] T. G. Bali and R. F. Engle. The intertemporal capital asset pricing model with dynamic
conditional correlations. Journal of Monetary Economics, 57:377–390, 2010a.

[7] Turan G. Bali and Robert F. Engle. Resurrecting the conditional capm with dynamic
conditional correlations. Working Paper, 2010b.

[8] G. Bekaert, R. J. Hodrick, and X. Zhang. International stock return comovements. Jour-
nal of Finance, 64:2591–2626, 2009.

[9] A. Buraschi, P. Porchia, and F. Trojani. Correlation risk and optimal portfolio choice.
Journal of Finance, 65:393–420, 2010.

[10] J. Y. Campbell. Intertemporal asset pricing without consumption data. American Eco-
nomic Review, 83:487–512, 1993.

[11] J. Y. Campbell. Understanding risk and return. Journal of Political Economy, 104:298–
345, 1996.

[12] M. M. Carhart. On persistence in mutual fund performance. Journal of Finance, 52:57–
82, 1997.

[13] J. Chen. Intertemporal capm and the cross-section of stock returns. Working Paper,
2002.

[14] J. Driessen, P. J. Maenhout, and G. Vilkov. The price of correlation risk: Evidence from
equity options. Journal of Finance, 64:1377–1406, 2009.

[15] R. F. Engle. Dynamic conditional correlation: A simple class of multivariate generalized
autoregressive conditional heteroskedasticity models. Journal of Business & Economic
Statistics, 20:339–350, 2002.

28



[16] E. F. Fama and K. R. French. The cross-section of expected stock returns. Journal of
Finance, 47:427–465, 1992.

[17] E. F. Fama and K. R. French. Common risk factors in the returns on stocks and bonds.
Journal of Financial Economics, 33:3–56, 1993.

[18] M. A. Ferreira and P. M. Gama. Correlation dynamics of global industry portfolios.
Journal of Multinational Financial Management, 20:35–47, 2010.

[19] K. J. Forbes and R. Rigobon. No contagion, only interdependence: Measuring stock
market comovements. Journal of Finance, 57:2223–2261, 2002.

[20] E. Ghysels, P. Santa-Clara, and R. Valkanov. There is a risk-return trade-off after all.
Journal of Financial Economics, 76:509–548, 2005.

[21] W. N. Goetzman, L. Li, and G. Rouwenhorst. Long-term global market correlations.
NBER Working Paper, 2001.

[22] Y. Hong, J. Tu, and G. Zhou. Asymmetries in stock returns: Statistical tests and eco-
nomic valuation. Review of Financial Studies, 20:1547–1581, 2009.

[23] R. Jagannathan and Z. Wang. The conditional capm and the cross-section of expected
returns. Journal of Finance, 51:3–53, 1996.

[24] N. Jegadeesh and S. Titman. Returns to buying winners and selling losers: implications
for stock market eficiency. Journal of Finance, 48:65–92, 1993.

[25] J. Kallberg and P. Pasquariello. Time-series and cross-sectional excess comovement in
stock indexes. Journal of Empirical Finance, 15:481–502, 2008.

[26] C. N. V. Krishnan, R. Petkova, and P. Ritchken. Correlation risk. Journal of Empirical
Finance, 16:353–367, 2009.

[27] F. Longin and B. Solnik. Is the correlation in international equity returns constant: 1960-
1990. Journal of International Money and Finance, 14:3–26, 1995.

[28] F. Longin and B. Solnik. Extreme correlation of international equity markets. Journal of
Finance, 56:649–676, 2001.

[29] D. N. Politis and J. P. Romano. The stationaty bootstrap. Journal of the American
Statistical Society, 89:1303–1313, 1994.

[30] J. M. Pollet and M. Wilson. Average correlation and stock market returns. Journal of
Financial Economics, 96:364–380, 2010.

[31] R. Roll. A critique of the asset pricing theory’s tests part i: On past and potential testa-
bility of the theory. Journal of Financial Economics, 4:129–176, 1977.

[32] W. F. Sharpe. Capital asset prices: a theory of market equilibrium under conditions of
risk. Journal of Finance, 19:425–442, 1964.

29



Appendix

Table 6: Main regression estimation controlling for innova-
tions in default spread, term spread and short term interest
rates

γκ γχ γξ γddef γdterm γdrrel Wα Wγ

Industry cross-section
(1) 0.89 4.03* 1.67 -0.02 0.06 -0.06 98.07*** 1.24
(2) 0.91 3.32 3.06 -0.01 0.05 -0.06 94.64*** 0.98
(3) 0.94 3.21 3.91 -0.01 0.06 -0.05 104.43*** 1.03
(4) 0.94 3.52 3.23 -0.02 0.07 -0.05 95.68*** 0.89

Size cross-section
(1) 1.59* 13.94 5.33 -0.02 0.13 0.00 9.66 1.61
(2) 1.51* 29.22** 0.80 -0.02 0.17 0.02 9.22 3.34
(3) 1.49* 28.14** 1.12 -0.02 0.13 0.02 9.80 3.04
(4) 1.50 24.49** 1.53 -0.02 0.17 0.03 9.36 3.51

Book-to-Market cross-section
(1) 1.65 3.87 9.30 0.06 -0.07 0.05 14.75 0.73
(2) 1.63 2.59 11.50 0.07 -0.06 0.03 15.55 1.09
(3) 1.87 1.84 6.49 0.07 -0.09 0.05 16.29* 0.25
(4) 1.61 -0.18 12.00 0.05 -0.05 0.04 17.70* 1.34

Momentum cross-section
(1) 1.33 18.91** -4.73 0.02 0.30 0.16 44.82*** 6.38**
(2) 1.77 23.10** -6.37* 0.03 0.36 0.23 44.64*** 8.34**
(3) 1.87 24.19** -7.07** 0.03 0.34 0.25 49.92*** 8.44**
(4) 1.64 15.88** -5.84 0.04 0.31 0.22 49.34*** 7.83**

I add DCC-GARCH conditional covariances of returns with innovations
in default spread, term spread and relative interest rate. Each column ac-
counts for a different correlation decomposition procedure, in the order as
explained in Section 3. A block-bootstrap two-step-least-squares is applied
to estimate the parameters—1000 iterations are considered.
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Table 7: Main regression estimation controlling for innova-
tions in inflation rate and output gap

γκ γχ γξ γdinf γdout Wα Wγ

Industry cross-section
(1) 0.29 4.62* 1.65 0.91** 0.14 70.07*** 1.54
(2) 0.27 3.93 2.92 0.93** 0.14 80.03*** 1.38
(3) 0.30 4.01* 3.75 0.93** 0.14 72.86*** 1.62
(4) 0.33 4.08* 3.05 0.95** 0.13 78.71*** 1.31

Size cross-section
(1) 1.65 14.33* 4.05 -0.11 0.06 10.12 1.66
(2) 1.71 26.51** 2.82 -0.22 0.05 9.57 3.05
(3) 1.80 27.05** 3.08 -0.19 0.05 9.71 3.05
(4) 1.58 22.34** 3.64 -0.20 0.06 10.86 3.48

Book-to-Market cross-section
(1) 1.47 4.28 6.91 0.65 -0.24 16.19* 0.66
(2) 1.42 3.64 8.06 0.70 -0.21 16.65* 0.92
(3) 1.61 3.48 4.42 0.66 -0.24* 15.20 0.17
(4) 1.47 0.62 8.67 0.63 -0.21 17.92* 0.99

Momentum cross-section
(1) 1.37 17.66** -3.91 -0.56 -0.01 45.99*** 5.43*
(2) 1.52 23.26** -5.23 -0.48 0.00 57.28*** 5.84*
(3) 1.60 22.58** -6.34* -0.56 -0.01 50.77*** 7.27**
(4) 1.46 13.97* -5.16 -0.60 0.02 50.71*** 7.29**

I add DCC-GARCH conditional covariances of returns with in-
novations in inflation rate and output gap. Each column ac-
counts for a different correlation decomposition procedure, in
the order as explained in Section 3. A block-bootstrap two-
step-least-squares is applied to estimate the parameters — 1000
iterations are considered.
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Table 8: Main regression estimation controlling for innova-
tions in dividend yields

γκ γχ γξ γddiv Wα Wγ

Industry cross-section
(1) -3.70* 0.49 1.28 -2.12*** 111.31*** 2.85
(2) -3.77* -0.27 2.55 -2.22*** 111.20*** 3.45
(3) -3.86* -0.45 3.17 -2.21*** 118.24*** 3.85
(4) -3.77** -0.33 2.54 -2.16*** 114.85*** 3.26

Size cross-section
(1) 0.69 9.06 2.95 -0.33 9.69 0.76
(2) 0.88 22.71* 1.42 -0.23 11.22 2.37
(3) 1.07 21.99* 1.99 -0.17 9.87 2.13
(4) 0.81 18.17* 1.64 -0.23 10.64 2.07

Book-to-Market cross-section
(1) 0.16 1.44 8.90 -0.40 15.55 1.28
(2) 0.39 -0.38 11.12* -0.32 16.47* 1.66
(3) 0.39 -1.80 6.50 -0.38 15.97 0.70
(4) 0.12 -2.87 11.33* -0.43 17.84* 2.10

Momentum cross-section
(1) 1.10 16.45** -4.10 -0.04 50.21*** 5.01*
(2) 1.97 22.81** -5.75* 0.29 48.45*** 6.16**
(3) 1.89 23.99** -6.41* 0.21 45.34*** 6.13**
(4) 0.94 13.78* -5.22 -0.17 45.97*** 4.90*

I add DCC-GARCH conditional covariances of returns with
innovations in aggregate dividend yields. Each column ac-
counts for a different correlation decomposition procedure,
in the order as explained in Section 3. A block-bootstrap two-
step-least-squares is applied to estimate the parameters—
1000 iterations are considered.
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Table 9: Main regression estimation controlling for hedging
against financial factors

γκ γχ γξ γsmb γhml γumd Wα Wγ

Industry cross-section
(1) 0.97 6.06** 3.03 -0.86 4.70** -1.47* 91.52*** 2.24
(2) 1.00 5.43** 4.23 -0.89 4.58** -1.44* 86.68*** 2.02
(3) 1.01 5.38** 5.05 -0.92 4.64** -1.47* 85.79*** 1.97
(4) 1.02 5.59** 4.42 -0.91 4.66** -1.43* 88.41*** 1.98

Size cross-section
(1) 2.34* 10.84 7.86 -0.00 3.89** -1.14 10.37 1.36
(2) 2.21* 23.08** 3.74 -0.20 3.31* -1.03 10.45 2.49
(3) 2.17* 22.40** 3.53 -0.23 3.34* -1.13* 10.19 2.43
(4) 2.25* 19.04* 4.65 -0.12 3.45* -1.14* 9.66 1.93

Book-to-Market cross-section
(1) 2.16 3.93 11.91* -0.93 5.29*** 0.26 3.79 1.32
(2) 2.27 3.09 15.26** -1.03 5.80*** 0.24 4.01 2.19
(3) 2.50 1.92 9.55 -1.14 5.23** 0.27 3.98 0.75
(4) 2.24 -0.14 15.84** -0.76 5.87*** 0.37 3.77 2.58

Momentum cross-section
(1) 1.44 21.09** -1.96 -2.32 3.90 -1.25** 47.69*** 5.01*
(2) 1.63 25.19** -4.04 -2.03 3.70 -1.29** 46.03*** 5.32*
(3) 1.40 27.16* -3.80 -1.83 3.71 -1.27* 57.20*** 4.13
(4) 1.67 17.21** -3.28 -2.19 3.83* -1.24** 48.42*** 6.80**

I add DCC-GARCH conditional covariances of returns with the financial
factors of size, book-to-market and momentum. Each column accounts for
a different correlation decomposition procedure, in the order as explained in
Section 3. A block-bootstrap two-step-least-squares is applied to estimate
the parameters — 1000 iterations are considered.
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Table 10: Main regression estimation controlling for innova-
tions in market volatility

γκ γχ γξ γσ̃ Wα Wγ

Industry cross-section
(1) 1.27 4.45* 1.66 0.52 93.30*** 1.11
(2) 1.32 3.75 3.12 0.50 95.89*** 0.76
(3) 1.48 3.89* 4.11 0.58 93.92*** 0.86
(4) 1.33 3.88* 3.33 0.53 104.41*** 0.81

Size cross-section
(1) 1.26 14.19* 4.73 -0.05 8.18 1.59
(2) 1.35 28.60** 2.10 0.03 8.94 3.73
(3) 1.32 28.71** 2.14 -0.02 9.05 3.60
(4) 1.38 22.58** 3.44 0.00 7.94 3.07

Book-to-Market cross-section
(1) 3.02 4.52 9.03 1.11 15.07 0.54
(2) 3.20 3.98 11.00 1.16 16.50* 0.81
(3) 2.94 2.55 6.28 0.96 14.85 0.18
(4) 3.14 -0.68 11.61* 1.17 15.05 1.46

Momentum cross-section
(1) 2.22* 19.09** -3.73 0.62* 45.32*** 6.92**
(2) 2.47** 22.28** -5.28 0.57 47.43*** 8.13**
(3) 2.35* 23.58** -6.04* 0.57* 46.18*** 8.29**
(4) 2.37* 15.41** -4.52 0.57 44.43*** 7.41**

I add DCC-GARCH conditional covariances of returns
with innovations in market volatility. Each column ac-
counts for a different correlation decomposition proce-
dure, in the order as explained in Section 3. A block-
bootstrap two-step-least-squares is applied to estimate the
parameters — 1000 iterations are considered.
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Table 11: Main regression estimation controlling for innova-
tions in average correlations

γκ γχ γξ γρ̃ Wα Wγ

Industry cross-section
(1) 1.55 4.57* 2.09 1.83* 84.75*** 0.87
(2) 1.56 3.68 3.57 1.82* 89.91*** 0.54
(3) 1.55 3.91 4.31 1.89* 88.44*** 0.78
(4) 1.57 4.20* 3.70 1.79* 85.59*** 0.75

Size cross-section
(1) 1.79* 14.04 4.85 0.22 9.96 1.42
(2) 1.80* 28.74** 2.10 0.13 10.13 3.22
(3) 1.78* 27.90** 2.29 0.13 9.02 2.94
(4) 1.81* 23.80** 3.09 0.12 9.04 2.83

Book-to-Market cross-section
(1) 1.12 2.73 8.44 0.09 11.75 0.76
(2) 1.19 1.93 10.77* 0.25 13.81 1.21
(3) 1.36 1.24 5.54 0.24 12.06 0.26
(4) 1.16 -1.20 11.42* 0.25 12.21 1.62

Momentum cross-section
(1) 1.58 17.52** -4.23 1.05 45.62*** 5.69*
(2) 1.73 22.20** -5.62* 0.76 43.46*** 6.84**
(3) 1.69 23.39** -6.32* 0.87 52.86*** 6.58**
(4) 1.68 14.31** -5.44 0.98 46.34*** 7.76**

I add DCC-GARCH conditional covariances of returns
with innovations in the aggregate level of correlations.
Each column accounts for a different correlation decom-
position procedure, in the order as explained in Section
3. A block-bootstrap two-step-least-squares is applied
to estimate the parameters — 1000 iterations are consid-
ered.
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Table 12: Variance decomposition of conditional covariance

Decile 1 2 3 4 5 6 7 8 9 10

Common correlation components: size
(1) 0.91 0.91 1.03 0.94 0.91 0.84 0.71 0.68 0.33 0.36
(2) 0.50 0.59 0.81 0.94 0.97 1.00 1.05 1.00 0.69 0.33
(3) 0.50 0.56 0.77 0.88 0.93 1.01 1.01 1.04 0.72 0.28
(4) 0.53 0.61 0.83 0.95 0.97 0.98 1.07 1.00 0.69 0.31

Common correlation components: book-to-market
(1) 0.00 0.50 0.86 0.78 0.96 0.81 0.99 0.89 0.81 0.28
(2) 0.12 0.75 0.97 0.77 0.91 0.91 0.82 0.88 0.75 0.40
(3) 0.12 0.94 1.15 0.63 0.82 1.22 0.56 0.75 0.66 0.44
(4) 0.06 0.70 0.92 0.83 0.92 0.88 0.91 0.95 0.78 0.39

Common correlation components: momentum
(1) 0.76 0.79 0.92 0.93 0.85 0.86 0.84 0.44 0.24 0.16
(2) 0.67 0.69 0.68 0.84 0.96 0.96 0.90 0.70 0.60 0.66
(3) 0.78 0.69 0.54 0.62 0.81 0.94 0.73 0.71 0.75 0.86
(4) 0.64 0.71 0.71 0.87 0.97 0.99 0.90 0.68 0.50 0.49

Idiosyncratic correlation components: size
(1) 0.07 0.06 0.03 0.11 0.12 0.20 0.22 0.22 0.48 0.62
(2) 0.29 0.23 0.12 0.09 0.07 0.08 0.08 0.06 0.26 0.59
(3) 0.27 0.23 0.11 0.09 0.07 0.11 0.07 0.07 0.29 0.66
(4) 0.28 0.22 0.11 0.09 0.07 0.08 0.07 0.06 0.27 0.50

Idiosyncratic correlation components: book-to-market
(1) 1.00 0.47 0.29 0.15 0.07 0.16 0.05 0.13 0.12 0.47
(2) 0.90 0.26 0.09 0.15 0.05 0.11 0.14 0.21 0.14 0.34
(3) 0.97 0.38 0.25 0.15 0.05 0.20 0.12 0.18 0.15 0.33
(4) 0.93 0.33 0.11 0.12 0.04 0.14 0.10 0.18 0.13 0.37

Idiosyncratic correlation components: momentum
(1) 0.46 0.18 0.19 0.07 0.11 0.15 0.16 0.50 0.66 0.87
(2) 0.41 0.23 0.25 0.09 0.07 0.07 0.06 0.28 0.36 0.57
(3) 0.48 0.23 0.29 0.12 0.11 0.07 0.09 0.33 0.52 0.92
(4) 0.47 0.23 0.20 0.07 0.06 0.07 0.05 0.28 0.45 0.75

For each decile, I look at the ratio var(χi|tσi|tσm|t)/var((χi|t +
ξi|t)σi|tσm|t) in the first three panels, and the ratio
var(ξi|tσi|tσm|t)/var((χi|t + ξi|t)σi|tσm|t) in the last three panels.
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