
An Efficiently Computable Support Measure

for Frequent Subgraph Pattern Mining

Yuyi Wang and Jan Ramon

Department of Computer Science
Katholieke Universiteit Leuven, Heverlee 3001, Belgium

{yuyi.wang,jan.ramon}@cs.kuleuven.be

Abstract. Graph support measures are functions measuring how fre-
quently a given subgraph pattern occurs in a given database graph. An
important class of support measures relies on overlap graphs. A major
advantage of the overlap graph based approaches is that they combine
anti-monotonicity with counting occurrences of a pattern which are in-
dependent according to certain criteria. However, existing overlap graph
based support measures are expensive to compute.

In this paper, we propose a new support measure which is based on a
new notion of independence. We show that our measure is the solution to
a linear program which is usually sparse, and using interior point meth-
ods can be computed efficiently. We show experimentally that for large
networks, in contrast to earlier overlap graph based proposals, pattern
mining based on our support measure is feasible.

Keywords: Graph mining, frequent subgraph pattern mining, support
measure, frequency counting, overlap graph, linear program.

1 Introduction

Graph mining is a subfield of structured data mining. An important task is
frequent subgraph pattern mining, which concerns the problem of finding sub-
graph patterns that occur frequently in a collection of graphs or in a single large
graph. In this paper, we consider the single-graph setting, and we will call the
large graph containing all data the database graph. Referring to many applica-
tions, such as social networks, the Internet, chemical and biological interaction
networks, traffic networks and citation networks, the database graph is also often
called the network.

In order to define a frequent pattern mining problem precisely, a support
measure (also called frequency measure) is needed. In the problem setting where
patterns are mined in a set of transactions (e.g., itemset mining [1]), a simple
support measure is to count the number of transactions in which the pattern
occurs. However, in the context of a single large graph, the issue is less straight-
forward and several articles have considered this issue [2,4,5,6].

An important drawback of the strategy to just use the number of occurrences
of a pattern (either embeddings or images) as its support is that it is not anti-
monotonic, i.e., the support of a pattern may be larger than the support of

P. Flach et al. (Eds.): ECML PKDD 2012, Part I, LNCS 7523, pp. 362–377, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Efficiently Computable Support Measure 363

one of its subpatterns. The anti-monotonicity of the support measure (or more
generally interestingness measure) plays a very important role in the design
of a pattern miner, as it allows for pruning the search space [7]. Nevertheless,
anti-monotonicity alone is not enough. For example, a support measure just
returning a constant is anti-monotonic, but not informative. From a statistical
point of view, the value of a set of examples increases if these examples are more
independent. Calders et al. [6] proposed to use the situation where occurrences
of a subgraph pattern are independent (i.e., they do not overlap according to
some notion of overlap) as a reference. In particular, the notion of a normalized
graph support measure was defined: a support measure is normalized if for every
pattern which has only non-overlapping occurrences in a database graph, its
support in that database graph equals the number of occurrences.

An important class of support measures relies on overlap graphs. The vertices
in an overlap graph represent occurrences of a given pattern, and two vertices
are adjacent iff the corresponding occurrences overlap in the database graph
(according to some notion of overlap, such as sharing a vertex or an edge).
An overlap graph therefore summarizes how many times a pattern occurs in
the database graph, and how independent these occurrences are. An overlap
graph based support measure (OGSM) takes an overlap graph of a pattern in
a database graph as its input, and outputs the support of that pattern in that
database graph. Vanetik et al. [2] proposed the MIS measure, the size of the
maximum independent set of the overlap graph. This is intuitively appealing
since it measures how often we observed a pattern occurring independently. Un-
fortunately, computing the MIS of an overlap graph is NP-hard [8], and remains
so even for bounded degree graphs. Moreover, it has been shown that MIS can-
not be approximated even within a factor of n1−o(1) in polynomial time unless
P=NP [9], where n is the order of the overlap graph. Calders et al. [6] proposed
the Lovász theta function ϑ (see e.g., [10,11]), which is computable in time poly-
nomial in the order of the overlap graph using semidefinite programming (SDP).
A straightforward application of a general purpose SDP solver yields a running
time of O(n6.5) [17]. An SDP primal-dual algorithm for approximating ϑ with a
multiplicative error of (1+ ε) was proposed [12], and the running time of this al-
gorithm is O(ε−2n5 logn). Iyrngar et al. [15] considered subgradient methods for
approximating ϑ, which run in time O(ε−2 log3(ε−1)n4 logn) in the worst case.
Unfortunately, even these approximative methods are still computationally too
expensive for our purposes.

In this paper, we propose a new support measure s that is based on bound-
ing the value of all occurrences of a pattern that share a particular part of
the database graph, and s can be computed efficiently using a linear program
(LP). The measure s is not a traditional OGSM, because its output does not
depend only on the overlap graph considered in earlier papers. We introduce
the notion overlap hypergraph, and s is an overlap hypergraph based support
measure (OHSM). We prove that s is anti-monotonic and normalized. Further-
more, we show that all normalized anti-monotonic OHSMs are bounded. Our
empirical analysis shows that this idea yields the first support measure which is

364 Y. Wang and J. Ramon

both overlap based (and hence appealing from a statistical point of view) and
computationally feasible.

The remainder of this paper is structured as follows. In the next section,
we briefly review some basic notation from graph theory and formalize support
measures, overlap graphs and overlap hypergraphs. In Section 3, we introduce
the new measure s and model it as an LP. We prove that s is normalized and
anti-monotonic in Section 4. The property that all normalized anti-monotonic
OHSMs are bounded is shown in Section 5. Section 6 points out a phase transi-
tion phenomenon between frequent and infrequent patterns. Section 7 presents
experimental results. Section 8 concludes the paper with an overview of our
contributions.

2 Preliminaries

2.1 Graph Theory

We recall basic graph theoretic notions used in this paper. For more background
in this area, see also [13].

Graphs. A graph G is an ordered pair (V,E), where V is a set of vertices
and E is either a set of edges E ⊆ {{u, v} | u, v ∈ V, u �= v} or a set of arcs
E ⊆ {(u, v) | u, v ∈ V, u �= v}. In the former (latter) case, we call the graph
undirected (directed). Vertices are adjacent if there is an edge (arc) between
them. For an edge e = {u, v} (arc e = (u, v)), u and v are incident with e.

A labeled graph is a quadruple G = (V,E,Σ, λ), with (V,E) a graph, Σ a
non-empty finite set of labels, and λ a function assigning labels in Σ to the
vertices or edges (or arcs), or both. For simplicity, by labeled graph, we will
mean vertex-labeled graph unless explicitly pointed out.

We will use the notation V (G), E(G) and λG to refer to the set of vertices,
the set of edges (or arcs) and the labeling function of a graph G, respectively. g
is said to be a subgraph of G if V (g) ⊆ V (G), E(g) ⊆ E(G) and for all v ∈ V (g)
that λg(v) = λG(v), and write g ⊆ G.

We denote G the class of all graphs, and G↔ (G→), the restriction to undirected
(directed) graphs, while Gλ (G•) denotes the restriction to labeled (unlabeled)
graphs. One can combine notations, e.g., G→• for the class of directed, unlabeled
graphs.

An independent set I of G ∈ G is a subset of V (G) such that no pair of distinct
vertices of I is adjacent in G. A clique Q of G ∈ G is a subset of V (G) such that
for all distinct vertices v, w ∈ Q, u and v are adjacent in G. A clique partition
Π = {s1, s2, · · · , sk} of G ∈ G is a partition of V (G) such that every set s in Π
is a clique.

Morphisms. The following concepts defined in terms of G→
λ are also valid

for undirected and/or unlabeled graphs by dropping the direction of the edges
and/or the labels of the vertices.

An Efficiently Computable Support Measure 365

a

b a

P

b

a a

c b

D1

b

a c

a b

D2

Fig. 1. Homomorphism and isomorphism. A homo-image (but not iso-image) of P is
highlighted in D1, and an iso-image of P is highlighted in D2.

A homomorphism ψ from G ∈ G→
λ to G′ ∈ G→

λ is a mapping from V (G) to
V (G′) such that for all v ∈ V (G) : λG(v) = λG′(ψ(v)) and for all (u, v) ∈ E(G) :
(ψ(u), ψ(v)) ∈ E(G′). We call ψ vertex-surjective if ∀v′ ∈ V (G′) : ∃v ∈ V (G) :
ψ(v) = v′, and call it edge-surjective if ∀(u′, v′) ∈ E(G′) : ∃(u, v) ∈ E(G) :
ψ(u) = u′ and ψ(v) = v′. A homomorphism is surjective if it is both vertex- and
edge-surjective.

An isomorphism from G ∈ G→
λ to G′ ∈ G→

λ is a bijective homomorphism ψ
from G to G′. In this case, we say that G is isomorphic to G′ and write G ∼= G′.
We use G ⊆ G′ to denote that G ∼= g, for some subgraph g of G′. This is
equivalent to saying that there exists a subgraph isomorphism from G to G′.

An iso-image (homo-image) g of P ∈ G→
λ in D ∈ G→

λ is a subgraph g ⊆ D
for which there exists an isomorphism (surjective homomorphism) ψ from P to
g. We call g the iso-image (homo-image) through ψ. An individual isomorphism
(homomorphism) ψ from P to g is called an iso-embedding (homo-embedding)
of P in D. See Fig. 1 for an example.

In this paper, we only consider iso-images, although the measure s can be
generalized for other matching operators such as homomorphism. We use the
term image instead of iso-image afterwards, and denote with Img(D,P) the set
of all images of P in D. Suppose g ∈ Img(D, p) and g′ ∈ Img(D,P), if g is a
subgraph of g′, we call g a subimage of g′ and g′ a superimage of g.

Hypergraphs. A hypergraph is an ordered pair (V,E), where V is a set of
vertices and E is a set of hyperedges E ⊆ 2V . We denote H the class of all
hypergraphs. As in the case of graphs, for H ∈ H, V (H) denotes the set of
vertices and E(H) denotes the set of hyperedges. To every hypergraph H which
has n vertices and m hyperedges, we associate an n×m incidence matrix MH =
(mij) where mij = 1 if vi ∈ ej and mij = 0 otherwise.

2.2 Support Measures

We review the concepts and properties of support measures and overlap graphs,
and introduce the new concept of overlap hypergraphs.

366 Y. Wang and J. Ramon

Definition 1. A support measure is a function f : G×G �→ R that maps (D,P)
to a non-negative number f(D,P), where P is called the pattern, D the database
graph and f(D,P) the support of P in D.

For efficiency reasons, most graph miners generate patterns from smaller patterns
to larger ones [14]. Such a method requires the support measure to be anti-
monotonic.

Definition 2. A support measure f is anti-monotonic if for all p, P,D in G :
p ⊆ P ⇒ f(D,P) ≤ f(D, p).

As explained in the introduction, anti-monotonicity alone is not enough. It is
also desirable that the support measure accounts for the independence of the
occurrences of the patterns. We can define overlap in different ways [6]. Popular
definitions are vertex-overlap, i.e., two images g1 and g2 overlap if V (g1)∩V (g2) �=
∅, and edge-overlap, i.e., two images g1 and g2 overlap if E(g1) ∩ E(g2) �= ∅.
Edge-overlap implies vertex-overlap. In this paper, by overlap, we will mean
vertex-overlap, although our results are also valid in the edge-overlap setting.

Definition 3. A support measure f is normalized if for all P,D in G : f(D,P)
= |Img(D,P)| when there do not exist two distinct images g1 and g2 in Img(D,P)
satisfying V (g1) ∩ V (g2) �= ∅.

Overlap Graphs. The notion of overlap graph plays an important role in the
design and computation of anti-monotonic measures. Given a pattern P and a
database graph D, the overlap graph of P in D is a graph GD

P ∈ G↔
• . Every

vertex of GD
P is an image of P in D, that is, V (GD

P) = Img(D,P). Two vertices
u and v are adjacent in GD

P if they overlap.
Vanetik et al. [3] define the induced support measure f(GD

P) = f(D,P), which
we call an overlap graph based support measure (OGSM). They proposed the
first normalized anti-monotonic OGSM, the size of the maximum independent
set (MIS) [2]. Later, Calders et al. [6] proposed two normalized anti-monotonic
OGSMs, the size of a minimum clique partition (MCP) and the Lovász theta
value (ϑ). As mentioned in the introduction, these existing OGSMs are very
expensive to compute.

Overlap Hypergraphs. As we are using vertex-overlap, each vertex v in a
database graph D determines a clique in the overlap graph GD

P in which P is a
pattern. That is, suppose v is a vertex inD, then Imgv(D,P) = {g ∈ Img(D,P) |
v ∈ V (g)} build a clique in GD

P since the images overlap at the vertex v.
We define the overlap hypergraph of P in D, denoted HD

P as the hypergraph
whose vertices are the images Img(D,P), and for each vertex v ∈ V (D) a hy-
peredge ev ∈ E(HD

P) such that ev = {g ∈ V (HD
P) | v ∈ V (g)}. The hyperedges

represent cliques in GD
P .

In an overlap hypergraph HD
P , we say that a hyperedge e is dominated by

another hyperedge e′ if e ⊂ e′, and a hyperedge e is dominating if it is not

An Efficiently Computable Support Measure 367

a

b

c

P

a

b

c

b

a a

c

D

GD
P

HD
P

Fig. 2. Overlap graph and overlap hypergraph. Given a pattern P , a database graph D,
the overlap graph GD

P and the overlap hypergraph HD
P are shown on the right. In the

overlap hypergraph, the (dominating) hyperedges are determined by the highlighted
vertices in the database graph, and a dominated hyperedge is given in a dashed ellipse.

dominated by any other hyperedge. For any D and P , we define the reduced
overlap hypergraph H̃D

P to be the hypergraph for which V (H̃D
P) = V (HD

P) and
E(H̃D

P) is the set of all dominating hyperedges of HD
P . In the sequel we only refer

to H̃D
P . We will abuse terminology and simply call H̃D

P the overlap hypergraph.
See Fig. 2 for an example.

We henceforth refer to the induced support measure, which we denote by
f(H̃D

P), instead of referring to f(D,P). Such induced support measures are
called overlap hypergraph based support measures (OHSM). We call OHSMs
and OGSMs overlap based support measures.

3 A New Normalized Anti-monotonic Measure

We introduce a new normalized anti-monotonic OHSM, which we denote s. It
satisfies the desirable properties of being anti-monotic and normalized, and can
be computed efficiently.

The MIS measure is a normalized anti-monotonic OGSM. Note that given an
overlap hypergraph H̃D

P , we are able to derive the corresponding overlap graph
GD

P by replacing every hyperedge with a clique. Therefore, we can rephrase the
definition of the MIS measure using overlap hypergraphs. Suppose H̃D

P is an
overlap hypergraph:

MIS(H̃D
P) = max |{I ⊆ V (H̃D

P) | ∀e ∈ E(H̃D
P) : |e ∩ I| ≤ 1}| (1)

The MIS measure requires that a vertex of an overlap (hyper)graph is either
in the independent set I or not. Our new measure s is a relaxation of the MIS
measure by allowing counting vertices of an overlap hypergraph partially.

Let H̃D
P be an overlap hypergraph. We start by assigning to each vertex v of

H̃D
P a variable xv. We then consider vectors x ∈ R

V (H̃D
P) of variables where for

every v ∈ V (H̃D
P), xv denotes the variable (component of x) corresponding to v.

x is feasible iff it satisfies

(i) ∀v ∈ V (H̃D
P) : 0 ≤ xv

(ii) ∀e ∈ E(H̃D
P) :

∑
v∈e xv ≤ 1.

368 Y. Wang and J. Ramon

We denote the feasible region (the set of all feasible x ∈ R
V (H̃D

P)) with R(H̃D
P).

It is a convex polytope. The measure s is defined by

s(H̃D
P) = max

x∈R(H̃D
P)

∑

v∈V (H̃D
P)

xv (2)

Clearly, s is the solution to a linear program.
We will call an element x ∈ R(H̃D

P) which makes
∑

v∈V (H̃D
P) xv maximal a

solution to the LP of s.
There are very effective methods for solving LPs, including the simplex method

which is efficient in practice though its complexity is exponential, and the more
recent interior-point methods [16]. The interior-point method solves an LP in
O(n2m) time, where n (here min{|V (H̃D

P)|, |E(H̃D
P)|}) is the number of vari-

ables, and m (here |V (H̃D
P)| + |E(H̃D

P)|) is the number of constraints. Usually,
patterns are not large, so the LPs for computing s are sparse. Almost all LP
solvers perform significantly better for sparse LPs.

4 Conditions for Anti-monotonicity

Vanetik et al. [3] gave necessary and sufficient conditions for anti-monotonicity of
for OGSMs on labeled graph using edge-overlap. This result was generalized in [6]
to any OGSM on labeled or unlabeled, directed or undirected graphs using edge
overlap or vertex overlap and isomorphism, homomorphism or homeomorphism.
Our conditions for anti-monotonicity are based on the overlap hypergraphs. Our
main result is that an OHSM is anti-monotonic if and only if it is non-decreasing
under certain operations on the overlap hypergraph.

We begin by defining three operations on any overlap hypergraph, which we
will then use in our conditions for anti-monotonicity. These operations are differ-
ent from those used in [3,6], but play a similar role. As mentioned in these earlier
papers, the motivation for these operations is that it is often easier to show that
an OHSM satisfies the conditions of the theorem (being non-decreasing under
the three operation), than to show anti-monotonicity of a measure directly.

For H ∈ H, we define:

– Vertex Addition: A new vertex v is added to every existing hyperedge:
V A(H, v) = (V (H) ∪ {v}, {e ∪ {v} | e ∈ E(H)}).

– Subset Contraction: Let K ⊆ V (H) be a set of vertices of the hypergraph
such that ∃e ∈ E(H) : K ⊆ e. Then, the subset contraction operation
contracts K into a single vertex k, which remains in only those hyperedges
that are supersets of K. Formally, SC(H,K, k) = (V (H)−K∪{k}, E1∪E2)
where E1 = {e −K ∪ {k} | e ∈ E(H) and K ⊆ e} and E2 = {e −K | e ∈
E(H) and K � e}).

– Hyperedge Split: This operation splits a size k hyperedge into k hyperedges
of size (k − 1) each: HS(H, e) = (V (H), E(H) − {e} ∪ {e − {v} | v ∈ e}),
where e ∈ E(H).

An Efficiently Computable Support Measure 369

For example, suppose H0 is a hypergraph, V (H0) = {v1, v2, v3, v4}, and E(H0)
contains two hyperedges {v1, v2, v3} and {v1, v4}. Let H1 = V A(H0, v5), then
V (H1) = {v1, v2, v3, v4, v5} and E(H1) contains hyperedges {v1, v2, v3, v5} and
{v1, v4, v5}. Let H2 = SC(H1, {v1, v3}, v6), then V (H2) = {v2, v4, v5, v6} and
E(H2) contains hyperedges {v2, v5, v6} and {v4, v5}. Let H3 = HS(H2, {v2,
v5, v6}), then V (H3) = V (H2) and E(H2) contains four hyperedges {v2, v5},{v2,
v6}, {v5, v6} and {v4, v5}.
4.1 Sufficient Condition

We give a sufficient condition for support measure anti-monotonicity in terms of
the three operations on the overlap hypergraph that we have defined.

Theorem 1. Let f ′ : G × G → R be a support measure, and f : H → R with
f ′(D,P) = f(H̃D

P)) be the induced OHSM. If f is non-decreasing under VA, SC
and HS, then f ′ is an anti-monotonic support measure.

Proof. Suppose D is a database graph, and p and P are two patterns such that
p is a subgraph of P . We prove that H̃D

p can be obtained from H̃D
P by applying

only the operations VA, SC and HS. It follows then that f ′(D,P) = f(H̃D
P) ≤

f(H̃D
p) = f ′(D, p) for any D, P and p, proving the theorem.

Let < be an arbitrary order defined on V (H̃D
p). We define for v ∈ V (H̃D

p) the

set Πv = {u ∈ V (H̃D
P) | v � u and ∀w < v : w �� u}. Here, remember that the

vertices of H̃D
p are images of p and hence v � u refers to a subgraph isomorphism

relationship between v and u.
The Πv are pairwise disjoint and ∪v∈V (H̃D

p)Πv = V (H̃D
P). We point out that

there may exist vertices v for which Πv = ∅. We divide V (H̃D
p) into two sets

V0 = {v | Πv = ∅} and V1 = {v | Πv �= ∅}.
Let H be a hypergraph initially equal to H̃D

P . We will perform operations VA,
SC and HS on H , until finally it is equal to H̃D

p .
First, H is modified by a sequence of VA operations. For each v ∈ V0, we do

H := V A(H, v). Now, ∀e ∈ E : V0 ⊆ e.
Then, for each v ∈ V1, we perform H := SC(H,Πv, v). The operations are

valid because for v ∈ V1 each vertex u ∈ Πv stands for a superimage of the
same v, i.e., v � u and hence ∃e ∈ E(H) : Πv ⊆ e. It is easy to verify that now
V (H̃D

p) = V (H) holds.

Consider a hyperedge e′x ∈ E(H̃D
p) which is determined by x ∈ V (D), i.e.,

e′x = {v ∈ V (H̃D
p) | x ∈ V (v)}. We know that e′x ∩ V0 is a subset of any

e ∈ E(H). E(H̃D
P) has a dominating hyperedge e′′x determined by x, i.e., e′′x =

{v ∈ V (H̃D
P) | x ∈ V (v)} (or has another hyperedge e′′y which is a superset of

the dominated hyperedge e′′x). We have e′x ⊆ e′′x (or e′′y). Thus, ∀v ∈ e′x∩V1 :
Πv ⊆ e′′x (or e′′y). Therefore, there must be a hyperedge e ∈ E(H) such that

e′x ⊆ e. This property shows that every hyperedge in E(H̃D
p) either exists in

E(H) or can be obtained later on by performing a sequence of HS on H . ��
Theorem 2. s(D,P) = s(H̃D

P) is a normalized anti-monotonic support mea-
sure.

370 Y. Wang and J. Ramon

Proof. First, we prove s is normalized. If the pattern P only has non-overlapping
images in the database graph D, every hyperedge in E(H̃D

P) contains only one
vertex, then setting xv = 1 for every v ∈ V (H̃D

P) is a feasible assignment and
is clearly maximal. That is, s equals the number of non-overlapping images.
Therefore, s is normalized.

Then, we prove s is anti-monotonic using Theorem 4.1. Suppose H is an
overlap hypergraph and x∗ is a solution to the LP of s(H). Let H1 be the
overlap hypergraph V A(H, v), and let xu = x∗u for all vertices u �= v and xv = 0.
x is a feasible solution for the LP of s(H1), so s(H1) ≥

∑
v xv = s(H). Let H2 be

the overlap hypergraph SC(H,K, k), and let xu = x∗u for all vertices u �= k and
xk =

∑
v∈K x∗v. x is a feasible for the LP of s(H2), so s(H2) ≥

∑
v xv = s(H).

Let H3 be the overlap hypergraph HS(H, e). x∗ is also a feasible for the LP of
s(H3), so s(H3) ≥ s(H). ��

4.2 Necessary Condition

We show that the above sufficient condition for anti-monotonicity is also neces-
sary.

Theorem 3. Let f ′ : G × G → R be a support measure, and f : H → R with
f ′(D,P) = f(H̃D

P)) be the induced OHSM. If f ′ is anti-monotonic, then f is
non-decreasing under VA, SC and HS.

Proof (sketch). Let HP be any hypergraph and Hp a hypergraph obtained by
performing VA, SC or HS on HP . We show that there exists a database graph
D and patterns P and p such that H̃D

P = HP and H̃D
p = Hp. Then, there

follows f(HP) = f ′(D,P) ≤ f ′(D, p) = f(Hp) which proves the theorem. For
convenience, we show the theorem only for D,P, p ∈ G↔

λ , but the proof can be
generalized.

In Figure 3, we give the patterns P and p (p ⊆ P), and list different types of
overlap. The numbers of vertices with label a or b in P and p are not fixed, and
we can assume that P and p have enough such vertices. We construct database
graphs by combining the patterns using these different types of overlap. We name
the different types O1, O2, O3 and O4. In Figure 3, only two patterns overlap
for each type, but during the construction of database graphs, it is allowed that
more than two patterns overlap at the same vertex.

If H̃D
p = V A(H̃D

P , v), then we can construct the database graph using O1 and

O2. O1 is used to determine all the hyperedges in E(H̃D
P). O2 is used to introduce

a new vertex and make the new vertex exist in every hyperedge in E(H̃D
p).

If H̃D
p = SC(H̃D

P ,K, k), then we can construct the database graph using O1,
O3 and O4. O3 is used to build the subset K. O4 is used to determine the
hyperedges e ∈ E(H̃D

P) which satisfy e∩K �= ∅ and K � e. For any hyperedge e

determined by O4, there is a hyperedge e′ ∈ E(H̃D
p) determined by O1 such that

e′ = e − K. Besides, O1 also determines all hyperedges e ∈ H̃D
P which satisfy

K ⊆ e or e ∩K = ∅.

An Efficiently Computable Support Measure 371

c

aa · · ·

P

c

b b
· · ·

c

b b
· · ·
p

c

aa · · ·

c

b b

O1

· · ·

c

aa · · ·

c

b
· · ·

c

aa · · ·

c

b b

O2

· · ·

c

b
· · ·

c

aa · · ·

c

b b

O3

· · ·

c

aa · · ·

c

aa · · ·

c

b b

O4

· · ·

c

a· · ·

c

b b
· · ·

Fig. 3. Patterns and different types of overlap. The highlighted parts show the ways
two patterns overlap.

If H̃D
p = HS(H̃D

P , e), then we can construct the database graph using O1

and O4. O4 is used to build the hyperedge e. O1 determines the hyperedges
{e− {v} | vn ∈ e} ∈ E(H̃D

p) and all other hyperedges. ��

5 Bounding Theorem

In [6], the authors showed an interesting result that all normalized anti-monoto-
nic OGSMs are bounded (between the maximum independent set size (MIS)
and the minimum clique partition size (MCP)). Similarly, we prove that all
normalized anti-monotonic OHSMs are also bounded. We first introduce another
OHSM on H ∈ H, the size of a minimum set cover of H :

MSC(H) = min |{S ⊆ E(H) |
⋃

e∈S

e = V (H)}| (3)

It is not difficult to verify that MSC is normalized and anti-monotonic. To com-
pute MSC is an NP-hard problem. The maximum independent set size (Eq. (1))
and minimum vertex cover (Eq. (3)) are the minimal and the maximal possible
normalized anti-monotonic OHSMs.

Theorem 4. For every normalized anti-monotonic OHSM f , and every H ∈ H,
it holds that: MIS(H) ≤ f(H) ≤MSC(H).

372 Y. Wang and J. Ramon

Proof. We use Theorem 3 to show the minimality of MIS and the maximality of
MCP, respectively.

Let H be a hypergraph, and let I = {v1, v2, · · · , vk} be a maximum indepen-
dent set of H . Starting from the hypergraph HI = ({v1, v2, · · · , vk}, {{v1}, {v2},
· · · , {vk}}), we can get H by adding vertices V (H) − I using VA first and
then spliting hyperedges by a sequence of HS. Since f is normalized, it is anti-
monotonic and therefore f cannot decrease after each step, and f(HI) = k. As
such, f(H) is larger than or equal to k =MIS(H).

On the other hand, let {e1, e2, · · · , ek} be a minimum set cover for H and let
Hsc = SC(. . . SC(SC(H, e1, ve1), e2, ve2) · · · , ek, vek). Hsc only has the hyper-
edges with exact one vertex in each of them. Because f is anti-monotonic, f is
not decreasing under SC and thus f(H) ≤ f(SC(H, e1)) ≤ · · · ≤ f(Hsc) = k.

��

6 The Phase Transition from Frequent to Infrequent

Large real-world networks are known to satisfy properties similar to random
graphs. A well-known property is that properties which can be expressed in first
order logic are satisfied by either almost all graphs or almost no graphs (0-1 law,
see [21]). For random graphs, one can observe (see also our experiments below)
that for a given pattern P , it is either very easy to embed the pattern in the
network, or very difficult. This leads to another 0-1 property: the frequency of
many patterns is either very low or very high (for our s measure, nearly equal to
the network size). Consider e.g. a social network and the pattern “X is a friend
of Y and Y is a friend of Z”. Since most people have at least two friends, such
pattern will match about everywhere. This holds more generally for many tree
and path patterns. In fact, most such patterns are overly general and not very
interesting.

In the context of overlap-graph based support measures, these overly general
patterns also pose a computational problem: since they match about everywhere,
the corresponding overlap graph is very large. Therefore, for these less interesting
overly general patterns, our prototype implementation just records that they
are very frequent but doesn’t attempt to compute their frequency exactly by
constructing the overlap graph explicitely. We hence distinct three categories
of patterns: the infrequent patterns, the moderately frequent patterns, and the
very frequent patterns (for which the frequency will not be computed exactly).

7 Experiments

This section provides experimental results, illustrating the practical potential of
our new measure s.

7.1 Experimental Setup

For our experiments, we are interested in answering the following experimental
questions:

An Efficiently Computable Support Measure 373

Q1 How does the computational cost of the s measure compare to other existing
overlap based support measures, e.g., Lovász ϑ value?

Q2 How does the cost of computing the s measure compare to the cost of listing
the embeddings?

Q3 Is it feasible to mine all s-frequent patterns of size up to 6 in moderately
sized networks?

Q4 What can we learn about the phase transition between frequent and infre-
quent and the randomness of the DBLP dataset?

7.2 Results

All experiments are run on an Intel Core i7-2600 CPU (3.4Gz) with 8Gb RAM.
We use the algorithm VF2 (implemented in C++) to find embeddings of

patterns in networks [19]. We use Matlab 2012a and SeduMi 1.21 to solve the
LPs for the s measure and the SDPs for the Lovász ϑ value. The desired accuracy
of all LPs and SDPs is 10−4.

Lovász ϑ Function. In the first experiment, we generate hypergraphs ran-
domly, and convert them into graphs by replacing the hyperedges with cliques.
The hypergraphs are used to compute s measures, while the graphs are used to
compute the Lovász ϑ measure. The hypergraphs have 20, 40, . . . , 200 vertices
and 20, 40, . . . , 100 hyperedges. With probability 0.05, a vertex of the hyper-
graphs appears in a hyperedge.

Fig. 4 shows the time cost to compute the smeasure and the Lovász ϑ measure
for these graphs. θm and sm means there are m hyperedges.

Fig. 4. Time consumed to compute θ and s

374 Y. Wang and J. Ramon

Real-WorldData. Weuse twoDBLPco-authorship networks (DBLP0305 show-
ing co-authorships from 2003 to 2005 andDBLP0507 showing co-authorships from
2005 to 2007) [18]. If an author i co-authored a paper with author j, the networks
contain an undirected edge {i, j}.The vertices are unlabeled, whereas the edges are
labeled with an integer indicating the year the edge first appeared in. The network
dblp0305 has 109944 vertices, 228461 edges and 3 different labels. The network
dblp0507 has 135516 vertices, 290363 edges and 3 different labels. In this experi-
ment, we choose 1.5% as the frequency threshold.

For each network, we start from patterns of level 1, the single vertices. A
pattern which has i − 1 edges is a candidate in level i (i ≥ 2) if none of its
subpatterns is infrequent and at least one of its subpatterns in level i − 1 is
frequent (others may have too many embeddings). If a pattern has more than
5.106 embeddings, we don’t compute s but can easily show that the pattern is
frequent. We call such a pattern very frequent.

Table 1 gives the results of the experiments that mine frequent patterns up
to level 6 in the DBLP networks. Tmap is the average time per pattern to find
embeddings using VF2, and Ts is the average time to compute s. Both are in
seconds.

Synthetic Data. We generate scale-free networks of different sizes [20]. They
have 102, 103, . . . , 106 vertices which are labeled by 4 different labels, and all
of them have the same average degree 10. We will call them 10X networks,
where X = 2, 3, 4, 5, 6. In this experiment, all tree patterns are very frequent.
Therefore, we only report statistics for the non-tree patterns. We choose the
frequency threshold 0.1%.

Tables (2)-(4) give the results of the experiments that mining frequent non-
tree patterns up to level 6 (except the network which has 106 vertices) in the

Table 1. Frequent pattern mining in DBLP0305 and DBLP0507. Lev. = level (pattern
size), Cand. = # candidate patterns, Comp. = # patterns for which s was computed,
Freq. = # frequent patterns

Lev. Cand. Comp. Freq. Tmap Ts Cand. Comp. Freq. Tmap Ts

1 1 1 1 0.452 0.000251 1 1 1 0.711 0.000303

2 3 3 3 10.783 2.041 3 3 3 11.225 2.743

3 6 6 6 24.166 8.022 6 6 6 37.152 22.245

4 34 28 19 92.035 41.557 34 28 22 73.531 77.161

5 95 25 8 634.099 42.234 118 54 25 814.156 138.145

6 56 13 7 817.789 91.018 179 35 12 1530.608 430.637

Table 2. Frequent non-tree pattern mining in the 102 network

Level Candidates Computed Frequent Tmap Ts

4 20 20 16 0.014 0.383

5 191 191 182 0.015 0.388

6 2083 2083 2033 0.018 0.394

An Efficiently Computable Support Measure 375

Table 3. Frequent non-tree pattern mining in the 103 and 104 network

Lev. Cand. Comp. Freq. Tmap Ts Cand. Comp. Freq. Tmap Ts

4 20 20 20 0.018 0.383 20 20 20 0.085 0.393

5 215 215 215 0.031 0.431 215 215 215 0.277 0.406

6 2430 2430 2422 0.128 0.481 2430 2430 2349 3.141 1.877

Table 4. Frequent non-tree pattern mining in the 105 and 106 networks

Lev. Cand. Comp. Freq. Tmap Ts Cand. Comp. Freq. Tmap Ts

4 20 20 5 2.906 0.301 20 20 0 216.196 0.428

5 99 99 9 12.435 0.673 55 55 12 1565.134 0.996

6 758 742 648 354.194 24.408 - - - - -

scale-free networks. Levels 1 to 3 only contain tree patterns, so we do not list
them in the tables.

7.3 Discussion

Based on the results presented above, we can answer the experimental questions
as follows:

Q1 One can see from Table 4 that, for all the randomly generated (hyper)graphs,
s can be computed in a very short period of time (< 0.01 seconds), while
the time consumed to compute ϑ grows fast when the number of vertices
increases. Clearly, for larger (hyper)graphs on which s measure can be com-
puted efficientlly, it is extremely difficult to compute the ϑ value in a reason-
able time period by solving the corresponding SDP using existing methods.
Therefore, s outperforms ϑ value in terms of efficiency.

Q2 On the real-world data, the time needed to compute embeddings is signif-
icantly larger than the time needed to compute s. For the larger synthetic
datasets and the larger patterns the difference is even several orders of mag-
nitude.

Q3 We can see that using VF2 and the s measure, frequent patterns of level
up to 6 can be mined in a reasonable amount of time. In contrast to earlier
approaches using the MIS or ϑ measures, here the bottleneck is clearly the
pattern matching part of the algorithm. If this part can be improved, it can
be expected that larger patterns can be mined in larger networks.

Q4 For the synthetic data, we found that the frequency of cyclic (non-tree) pat-
terns was rather low, we needed a frequency threshold of 0.1% to mine them.
One can conclude that while in standard random graph models nodes choose
their neighbors randomly, in real-world data the connections of candidate
neighbors have an important influence.

8 Conclusions

In this paper, we studied the problem of measuring how frequently a given
pattern occurs in a given database graph. We have proposed a new overlap based

376 Y. Wang and J. Ramon

support measure s. In contrast to existing overlap based support measures, it can
be computed efficiently. We have shown that it is anti-monotonic and normalized.
The experimental results demonstrate that it is a practical overlap based measure
and it is effective to prune the search space.

Compared to non-overlap based measures, e.g., the min-image support mea-
sure [4], the s measure has statistical advantages. For example, consider the em-
beddings: 〈1, 11〉, 〈2, 11〉, 〈3, 11〉, 〈4, 11〉, 〈5, 11〉, 〈6, 12〉, 〈6, 13〉, 〈6, 14〉, 〈6, 15〉 and
〈6, 16〉. Then min-image returns 6 while s returns 2. The latter equals the number
of independent embeddings. Therefore, from a statistical point of view, for count-
ing the number of independent observations of some phenomenon s is preferable.

This aim to measure only independent occurrences is shared with the MIS
measure [3]. MIS is NP-hard while s is an efficiently computable relaxation. MIS
returns an integer and is more strict in the sense that it never accounts for
overlapping occurrences, while s also partially counts observations not explained
by vertices of already counted embeddings. E.g. consider the embeddings 〈a, b, c〉,
〈a, d, e〉 and 〈f, b, e〉. The MIS is 1. However, even though each of the vertices
a, b and e could have ’caused’ two embeddings, no vertex is involved in all
three embeddings. Therefore, s partially counts the third embedding, in this
case resulting in the value 1.5.

Our proposed measure is flexible, in the sense that it is possible for a user
to plug in his own definition of overlap. Investigating this in more detail is one
possible line of future research. Our proposal makes measuring the frequency of
a pattern in a more sound statistical way tractable. There are however other
challenges related to pattern mining in networks. The major one in our experi-
ments was the pattern matching. However, we anticipate that here too we can
get a long way in making things tractable. In particular we intend to integrate
our approach with recent results concerning efficient pattern matching operators
based on arithmetic circuits [22].

Acknowledgements. This work was supported by ERC Starting Grant 240186
“MiGraNT: Mining Graphs and Networks: a Theory-based appraoch”.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of SIGMOD 1993, pp. 207–216 (1993)

2. Vanetik, N., Gudes, E., Shimony, S.E.: Computing frequent graph patterns from
semistructured data. In: Proceeding of ICDM 2002, pp. 458–465 (2002)

3. Vanetik, N., Shimony, S.E., Gudes, E.: Support measures for graph data. Data
Min. Knowl. Discov. 13(2), 243–260 (2006)

4. Bringmann, B., Nijssen, S.: What Is Frequent in a Single Graph? In: Washio, T.,
Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012,
pp. 858–863. Springer, Heidelberg (2008)

5. Fiedler, M., Borgelt, C.: Support Computation for Mining Frequent Subgraphs in
a Single Graph. In: Proceedings of MLG 2007 (2007)

An Efficiently Computable Support Measure 377

6. Calders, T., Ramon, J., Dyck, D.V.: All normalized anti-monotonic overlap graph
measures are bounded. Data Min. Knowl. Discov. 23(3), 503–548 (2011)

7. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph.
Data Min. Knowl. Discov. 11(3), 243–271 (2005)

8. Garey, M.R., Johnson, D.S.: Computers and intractibility, a guide to the theory of
NP-Completeness. W. H. Freeman and Company (1979)

9. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique
is almost NP-Complete. In: FOCS, pp. 2–12. IEEE Computer Society (1991)

10. Lovász, L.: On the Shannon capacity of a graph. IEEE Transactions on Information
Theory 25(1), 1–7 (1979)

11. Knuth, D.E.: The sandwich theorem. Electr. J. Comb. 1, 1–48 (1994)
12. Chan, T., Chang, K.L., Raman, R.: An SDP primal-dual algorithm for approximat-

ing the Lovsz-theta function. In: Proceedings of the IEEE ISIT 2009, pp. 2808–2812
(2009)

13. Diestel, R.: Graph theory. Springer (2010)
14. Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms.

ACM Comput. Surv. 38(1), 1–69 (2006)
15. Iyengar, G., Phillips, D.J., Stein, C.: Approximating semidefinite packing pro-

grams. SIAM Journal on Optimization 21(1), 231–268 (2011)
16. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge Univ. Press (2004)
17. Klein, P.N., Lu, H.: Efficient approximation algorithms for semidefinite programs

arising from MAX CUT and COLORING. In: Proc. of ACM STOC 1996, pp.
338–347 (1996)

18. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining Graph Evolution
Rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
PKDD 2009, Part I. LNCS, vol. 5781, pp. 115–130. Springer, Heidelberg (2009)

19. Luigi, P., Pasquale, F., Carlo, S., Mario, V.: A subgraph isomorphism algorithm
for matching large graphs. IEEE Trans. Pat. Anal. Mach. Intell. 26(10), 1367–1372
(2004)

20. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

21. Fagin, R.: Probabilities on finite models. J. of Symbolic Logic 41(1), 50–58 (1976)
22. Kibriya, A., Ramon, J.: Nearly exact mining of frequent trees in large networks.

In: Proceedings of ECML-PKDD 2012 (in press)

	An Efficiently Computable Support Measure for Frequent Subgraph Pattern Mining
	Introduction
	Preliminaries
	Graph Theory
	Support Measures

	A New Normalized Anti-monotonic Measure
	Conditions for Anti-monotonicity
	Sufficient Condition
	Necessary Condition

	Bounding Theorem
	The Phase Transition from Frequent to Infrequent
	Experiments
	Experimental Setup
	Results
	Discussion

	Conclusions

