A rational Krylov method based on Hermite interpolation for the nonlinear eigenvalue problem

R. Van Beeumen
joint work with K. Meerbergen, W. Michiels

Abstract

We present a new rational Krylov method for solving the nonlinear eigenvalue problem (NLEP)

\[A(\lambda)x = 0. \]

The method approximates \(A(\lambda) \) by Hermite interpolation where the degree of the interpolating polynomial and the interpolation points are not fixed in advance. It uses a companion-type reformulation to obtain a linear generalized eigenvalue problem (GEP). This GEP is solved by a rational Krylov method that preserves the structure. As a result, the companion form grows in each iteration and the interpolation points can be dynamically chosen. Each iteration requires a linear system solve with \(A(\sigma) \) where \(\sigma \) is the last interpolation point. We illustrate by numerical examples that the method is fully dynamic and can be used as a global search method as well as a local refinement method. We also compare the method to Newton’s method.

Key words. Numerical linear algebra, Rational Krylov, Newton polynomials, Hermite interpolation, nonlinear eigenvalue problem