
Boneshaker – A Generic Framework
for Building Physical Therapy Games

Abstract
We present the Boneshaker framework, a generic
framework developed to facilitate the design of physical
therapy games with the Unity 3D engine. The
Boneshaker framework lowers the threshold for
developing a variety of physical therapy games as it
allows both developer and therapist to quickly add
input devices and change specific game
dynamics/therapy exercises.

Keywords
Physical therapy games, Motion-sensing, 3D cameras

ACM Classification Keywords
H.5.2 [User Interfaces]: Input devices and strategies

General Terms
Design, Human Factors

Introduction
In the past decade, we have seen a surge in sensors
that can measure human movement. First the
Nintendo® Wii-mote™, then the PlayStation® Move™
and finally the Microsoft® Kinect™ camera were
released on the consumer market and rendered
advanced motion-sensing systems available at a low
cost. This also enabled academic research labs to tinker

Copyright is held by the author/owner(s).

CHI’12, May 5–10, 2012, Austin, Texas, USA.

ACM 978-1-4503-1016-1/12/05.

Lieven Van Audenaeren
e-Media Lab, Groep T Leuven
Andreas Vesaliusstraat 13,
3000 Leuven, Belgium
Lieven.VdA@groept.be

Vero Vanden Abeele
e-Media Lab, Groep T/CUO
Andreas Vesaliusstraat 13,
3000 Leuven, Belgium
Vero.Vanden.Abeele@groept.be

Luc Geurts
e-Media Lab, Group T Leuven
Andreas Vesaliusstraat 13,
3000 Leuven, Belgium
Luc.Geurts@groept.be

Jelle Husson
e-Media Lab, Group T Leuven
Andreas Vesaliusstraat 13,
3000 Leuven, Belgium
Jelle.Husson@groept.be

Jan-Henk Annema
IBBT/CUO, KULeuven
Parkstraat 45 bus 3605
3000, Leuven, Belgium
JanHenk.Annema@soc.kuleuven.be

Stef Desmet
e-Media Lab, Group T Leuven
Andreas Vesaliusstraat 13,
3000 Leuven, Belgium
Stef.Desmet@groept.be

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2447

with these technologies themselves [3,10,11]. At the
same time, we have seen a turn to ‘serious games’ or
those applications that aim to combine fun interaction
with a serious purpose. The combination of ‘gamifi-
cation’ and motion sensing has found a natural symbi-
osis in games for physical therapy. Commercially-of-
the-shelf (COTS) sensors, open source software
libraries, and development kits, have lowered the
threshold for designing motion-based play. Indeed,
during the past few years, several research projects
have taken a similar endeavor of designing exertion
games [8], addressing physical health and obesity [4],
stroke rehabilitation [1], spasticity [9], cerebral palsy
[6,9], etc.

Notwithstanding the mushrooming of academic
realizations of physical therapy games, few of these
have reached commercial success. Our own experience
in building and commercializing physical therapy games
[5] has unveiled two major obstacles that need to be
overcome:

1) The inherent limitations of every COTS device,
which affects the range of specific physical
exercises that can be executed and measured
with adequate quality and/or reliability. This
opposes the typical nature of physical therapy
where a therapist is looking for a variety of
exercises, even with one patient or in one
therapy session [2].

2) The short half-life of motion-sensing
technology, which often renders a therapeutic
game obsolete by the time it has reached the
market.

The Boneshaker framework
With the Boneshaker framework, we aim to build on the
lessons learned from a previous research project on
building physical therapy games [2,6,9] and to resolve
the problems concerning the short half-life of motion-
sensing technologies while increasing the variety of
physical therapy exercises. The framework is not just a
software development kit for one specific input device,
but rather a layer on top of that. This layer, situated
between the device drivers of motion-sensing
technology and the game itself (see figure 1), gives
both the game developer and the therapist advantages.

figure 1. The Boneshaker framework is a layer between input
device and the game.

Firstly, it simplifies creating support for multiple input
devices. The data coming from Microsoft® Kinect™, the
Nintendo® Wii-mote™, or any other input device is
mapped onto a skeleton schema (see figure 2). This
skeleton has been defined in the eXtensible Markup
Language (XML). Consequently, the game developer
can easily change the skeleton structure itself, without
having to create a new version of the game. For
example, in the likely situation of new input devices
that allow sensing at a higher resolution, the developer
can define an enhanced skeleton. This new skeleton,
containing more joints, is created by simply adapting
the XML schema. The actual game logic within the
game does not need to be adjusted.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2448

figure 2. Example of the skeleton interface, every joint
that is selected has a name and a device assigned to.

Then, a game is connected to this skeleton by defining
which type of input the game needs, e.g. the number
and type of joints, and whether those joints make use
of a relative or absolute position, an angle, a
translation, an acceleration or a weighted sum of
movements, etc. How the joints’ information is
translated to the type of input the game needs is
defined in the game dynamic [7]1

The game dynamics are also defined in XML, resulting
in a system that is very flexible. When a game dynamic
needs to be changed, e.g. when a therapist wants the

 schema.

1 Since this game dynamic schema truly describes how the
interaction of the player with the game is translated in in-game
action, we call this the game dynamic, inspired by the MDA
framework by Hunicke et al.[7].

movement in the sagittal plane only, instead of the
coronal plane, or when the upper limbs should be
captured rather than the lower limbs, this is simply
changed in the game dynamic schema.

Within the game itself, a visualization of this skeleton
schema and the associated game dynamics schema can
also be accessed by the therapist. He or she can specify
which body parts/ joints/angles will be required for a
specific exercise/game. Consequently, this allows the
therapist to use one game for multiple physical
exercises, by simply changing the chosen joints and
adapting the wanted moves. Every game can be
adjusted for every player and according to the specific
needs of the patient.

figure 3. A screenshot of the GUI for the therapist.

In sum, both the developer and the therapist can easily
change the input for a certain game, try out a new
control scheme or create a new therapeutic exercise to
play the game.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2449

Architecture of the Boneshaker framework
The architecture used for the Boneshaker framework is
shown in figure 4, which is a diagram that represents
the internal structure of the Boneshaker framework.
The five main building blocks of the Boneshaker
framework are:

1. Driver, a specific input device driver for the
Boneshaker framework.

2. Boneshaker device, for example the
acceleration sensors from the Nintendo® Wii-
mote™ or 3D coordinates from the Microsoft®
Kinect™ camera.

3. Joint, the building blocks of the skeleton.

4. Skeleton, a collection of joints that represent
the human body.

5. Game dynamic, a definition of which input is
needed for and how it is used in a game.

These five building blocks are the core of the
Boneshaker framework. Every block has its specific
purpose, in the next paragraphs we will explain in detail
why they were created and how they work.

Driver
A driver is necessary to get the needed input data from
the input device that is used. Every input device has its
own drivers, created by its developers. Unfortunately,
not every input device is standard; moreover a lot of
input devices provide data in different representations.
Therefore the Boneshaker driver is used to translate
the original device driver data to data that can be used

by the framework. This is the positional or rotational
data of a skeleton joint. The Boneshaker driver can be
used with multiple devices, as the user should be able
to use multiple identical input devices for different
joints. For example, the user can use two Wii-motes™,
one for the left and one for the right hand, however
both devices need the same translation from device-
data to Boneshaker-data.

figure 4. Internal structure of the Boneshaker framework

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2450

Device
A Boneshaker driver, a name and an output type define
a device. The output type specifies whether the device
is delivering positional or rotational data. This definition
is done in XML and can be changed on the fly.
During runtime the device will also poll the data from
the Boneshaker driver to update the input data
internally. This data is then used in the joints of the
skeleton.

Joint
The joints are the building blocks of the skeleton, which
represents the human body playing the game. Every
joint is defined by a name, possibly a device attached
to the specific joint and possibly a parent joint and/or
children joints, as is shown in figure 2. For example,
the right wrist joint has the right elbow joint as its
parent and the right hand as its child. While the right
hand joint has no children, its parent is the right elbow
joint.
All this data is also defined in XML, so the device
attached to a certain joint can be changed on the fly by
the developer. During runtime a joint gets the selected
device data from its assigned device and transforms it
to the wanted representation.

Skeleton
The skeleton is a collection of joints that represent the
player’s human body.

Game dynamic
The game dynamic is a schema that holds information
about how to translate the data from the collection of
joints a in a skeleton to the type of input the game
needs. The philosophy behind a Game dynamic is that
it embodies the logic necessary to assess the physical

gesture made by the player. The same Game dynamic
can then be assigned to multiple games. A Game
dynamic is also defined in XML and its definition
contains a name, a list of joints needed and the name
of the function that does the transformation from joint
data to data the game can read.

Discussion
While we have the aim to make the Boneshaker
framework as universal as possible, at this moment,
the framework has been tested with the Unity 3D game
engine only. The choice for Unity is a result of it being
the game engine for a previous research project on
building physical therapy games [2,6,9]. While this may
seem an opportunistic reason, we are convinced that
Unity 3D is a good choice as an affordable yet flexible
game engine that allows researchers and smaller
organizations to develop physical therapy games.

Currently, Boneshaker has been tested to work with a
3D camera. The 3D camera of our choice was the
Microsoft® Kinect™ because the device is well-known,
it was reasonably priced and we had Microsoft’s®
official SDK to work with. Obviously, in the future, we
aim to expand different input devices as well. A first
effort will be to connect the framework with the
Nintendo® Wii-mote™ and the Nintendo® Balance
board™, as these input devices are present in many
practices of physical therapists already, and provide
sensor data that can be complementary to data coming
from a 3D camera.

Conclusion
The Boneshaker framework is the result of previous
research project on developing physical therapy games.
We unveiled a need to overcome the short half-life of

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2451

motion-based input devices as well as the need for a
greater variety in game dynamics/physical exercises.
Therefore, we developed a layer between the input
device and the game to increase the flexibility of the
game. Firstly, it facilitates extending the game to
multiple input devices and/or adding the latest versions
of input-devices by using an easily adaptable skeleton
schema defined in XML. Secondly, it enables using
multiple game dynamics with one input device/game by
providing a “game dynamics” schema that holds
information about how to translate the data from the
collection of joints a in a skeleton to the type of input
the game needs. Hence, by using the Boneshaker
framework, both the developer and the therapist can
change the input for a game, try out a new control
scheme or create a new therapeutic exercise for a
game.

References
1. Alankus, G., Lazar, A., May, M., and Kelleher, C.

Towards customizable games for stroke
rehabilitation. Proceedings of the 28th international
conference on Human factors in computing systems,
ACM (2010), 2113-2122.

2. Annema, J.-H., Verstraete, M., Vanden Abeele, V.,
Desmet, S., and Geerts, D. Videogames in therapy:
a therapist’s perspective. Proceedings of the 3rd
International Conference on Fun and Games, ACM
(2010), 94–98.

3. Chung Lee, J. Projects - Wii. 2008.
http://johnnylee.net/projects/wii/.

4. Deangelis, G. Combating Child Obesity: Helping Kids
Feel Better by Doing What They Love. 2008.
http://www.gamasutra.com/view/feature/3692/com
bating_child_obesity_helping_.php.

5. Geurts, L., Vanden Abeele, V., Husson, J., et al.
Digital Games for Physical Therapy: Fulfilling the
Need for Calibration and Adaptation. Proceedings of
the fifth international conference on Tangible,
embedded, and embodied interaction, ACM (2011).

6. Geurts, L., Vanden Abeele, V., Husson, J., et al.
Digital Games for Physical Therapy: Fulfilling the
Need for Calibration and Adaptation. Proceedings of
the fifth international conference on Tangible,
embedded, and embodied interaction, ACM (2011).

7. Hunicke, R., LeBlanc, M., and Zubek, R. MDA: A
Formal Approach to Game Design and Game
Research. (2001).

8. Mueller, F., Agamanolis, S., and Picard, R. Exertion
interfaces: sports over a distance for social bonding
and fun. Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM (2003),
561-568.

9. Vanden Abeele, V., Geurts, L., Husson, J., et al.
Designing Slow Fun! Physical Therapy Games to
Remedy the Negative Consequences of Spasticity.
Proceedings of the 3rd International Conference on
Fun and Games, ACM Press (2010).

10. Wii homebrew. http://wiibrew.org.
11. OpenNI.

http://www.openni.org/images/stories/pdf/OpenNI_
UserGuide.pdf.

Work-in-Progress CHI 2012, May 5–10, 2012, Austin, Texas, USA

2452

	Copyright is held by the author/owner(s).
	Abstract
	Keywords
	ACM Classification Keywords
	General Terms
	Introduction
	Jelle Husson
	Jan-Henk Annema
	Stef Desmet
	Lieven Van Audenaeren
	Vero Vanden Abeele
	Luc Geurts
	Andreas Vesaliusstraat 13,
	3000 Leuven, Belgium
	Luc.Geurts@groept.be
	The Boneshaker framework
	Architecture of the Boneshaker framework
	Driver
	Device
	Joint
	Skeleton
	Game dynamic

	Discussion
	Conclusion
	References

