
A Domain Specific Aspect Language for Run-time Inspection

Wouter De Borger Bert Lagaisse Wouter Joosen
IBBT-DistriNet, Department of Computer Science, KU Leuven, Belgium

[wouter.deborger,bert.lagaisse,wouter.joosen]@cs.kuleuven.be

Abstract
When inspecting a running system, be it for debugging or
monitoring purposes, developers are often faced with an
abstraction gap: the run-time structure is not represented in
terms of high-level programming abstractions, but in terms
of low-level run-time constructs.

To present developers with an understandable view on
the system, a transformation can be performed to restore
the programming abstractions. In the current state of the art,
two types of transformations exist: state-based transforma-
tions (model transformation) and event-based transforma-
tion (complex event processing). These two types of trans-
formations can bridge the same abstraction gap, but deliver
a different quality of service.

There are domain specific languages for these two kinds
of transformations, but they can not be composed into a
single overarching transformation automatically. While such
unified transformations can deliver a superior quality of ser-
vice, there is no language to express them. Therefor we are
currently working on a unified model, that considers both
types of transformation as aspects contributing to a unified
transformation. This papers sketches our approach to unify-
ing these two types of declarative languages.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging

1. Introduction
Advances in composition technology allow more efficient
development of software systems, by enabling more power-
ful abstraction. At run-time, however, when all components
have been woven together, the full complexity of the system
is exposed.

To restore abstractions, a transformation is required, that
searches for patterns of synthetic code corresponding to high

c©ACM, (2012). This is the authors version of the work. It is posted here by per-
mission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the seventh workshop on Domain-Specific Aspect
Languages, http://doi.acm.org/10.1145/2162037.2162048

level abstractions [3, 4]. Currently two approaches exists to
specify such transformations: state-based and event-based.

Currently, these two aspects of the transformation can not
be unified. Both are specified in their own domain specific
language and they can not be composed. This severely lim-
its the ability of transformation systems to deliver the re-
quired quality of service. In our previous work [2], we fo-
cused on making state-based transformation applicable to
run-time inspection. In this paper, we outline our approach
to integrating complex event transformation as an aspect into
these transformations.

We are currently working on an approach that allows both
types of transformation to be composed as aspects. This al-
lows unified transformation to be expressed in an elegant
way, allowing reuse and simplifying development. Addition-
ally, mixed mode transformation, combining both state and
events, will have the advantage that they can dynamically
switch between both types of transformation, allowing a bet-
ter quality of service.

2. Context
State-based transformations define how concrete run-time
state relates to the abstract state we wish to represent. The
advantage of state-based transformation is that they can ac-
curately show the current state. The disadvantage is that they
can not perceive change. State-based transformations have
already been described in the context of model-to-model
transformations [1, 8].

However, the quality of service delivered by these trans-
formation engines is not sufficient for run-time inspection.
The existing approaches assume the entire model has to be
transformed at once. In other words, it is not possible to se-
lectively inspect a small part of the run-time state. The entire
state must be transformed at once. As the run-time state of
most programs is quite large, this would result in systems
which are too slow. We addressed this problem by providing
an alternate execution mechanism for the existing QVT lan-
guage. Our solution supports lazy and on-demand execution
of QVT transformations [2].

Event-based transformations have the opposite proper-
ties. Such transformations relate sequences of low-level
events to high level events. This approach supports to track
change, but makes it impossible to perceive parts of the sys-

tem that are not currently changing. Complex event process-
ing has already been exhaustively examined in the field of
run-time inspection [6, 7, 9].

For example, consider a stack trace of an aspect oriented
system using the meta-aspect protocol (MAP) [5]. (See Fig-
ure 1). The stack trace of such systems is quite complex.
Each joinpoint calls into the meta-aspect framework, where
appropriate advices are selected and executed. As such, each
call stack may contain a lot of MAP-framework code. Pro-
grammers using only base language facilities, would like to
have these stack frames represented in a more abstract way .

Aspect.advice
...
AspectManager.invokeAll
AspectManager.handle
AspectManager.fireJoinPoint
Test.main

Low level stack trace

Joinpoint: execute(*.println)
 Aspect.advice (executing)
Test.main

Abstract stack trace

$1.$2
...
AspectManager.invokeAll
AspectManager.handle
AspectManager.fireJoinPoint

Joinpoint: $3
 $1.$2 (executing)

Model to Model transformation, converting the stack trace

Complex event transformation, converting the stack trace

sequence(
 entry = MethodEntry(class="AspectManager", method="fireJoinPoint"),
 * MethodEntry(package="map"),
 advice = MethodEntry())
=>
HookFrame(entry,advice)

Figure 1. Overview of model transformation approaches

To do so, we may define a transformation that analyzes
the stack trace. It walks up the stack, frame by frame, until it
encounters the first framework call. It recognizes this frame
and knows it may now skip a part of the stack trace, up to
the first non-MAP frame.

Alternately, we may do the exact same thing using events
instead of state. In terms of events, the stack is the list of all
methods that have been entered, but not returned. By keep-
ing track of all method entries, we can start dropping events
when the ’map entry event’ is received and stop dropping
events if the ’enter non-map event’ is received. This pro-
duces the same result.

As such, it is clear that events and state can provide the
same information, but with a different QOS. The event-based
approach can not show the part of the stack that has been
built up before it started receiving events, while the state-
based approach can not signal the exact moment the MAP is
entered.

3. Vision
What we envisage in the future is to combine both type of
transformations, as if they are aspects of the same transfor-
mation component. From a high level view, our approach is
to consider the state transformation as the domain specific
base language and the event transformation as a set of as-
pects.

Both state and event transformations define a set of
relations between a low level an a high level model. An
event signals the change of a relation in the correspond-
ing state model. Each such change can be propagated
through the state transformation to produce a number
a high level events.

An important benefit of declarative transformations (both
event and state-based) is that if facts can be derived in mul-
tiple ways, it does not degrade performance to specify both.
When the transformation is compiled, this redundancy can
be detected. The compiler can then choose to either discard
the redundant derivation and produce faster code or main-
tain it and produce more robust code, that can detect model
inconsistencies.

As such mixed mode transformations can be used to
automatically synthesize a best of both worlds imple-
mentation, that switches between state and events at the
appropriate time. Alternately, in order to validate the cor-
rectness of the model, an implementation can be generated
that executes both models at the same time, allowing run-
time verification of model consistency. As such, mixed mode
transformation combine the strength of both individual tech-
niques.

However, there is one other important advantage: it is
possible to specify parts of the transformation in terms
of only events or state. When it is convenient, one can
switch notations. In the worst case, this will force the engine
to generate suboptimal code. In the best case, the engine will
be capable of converting one notation to the other.

For example, in our stack trace example, the event-based
notation is much more elegant. Should we have specified
the state-based pattern as code instead as graphical, it would
have taken up the better part of the page. However, collect-
ing events to build a stack trace is very inefficient. In a uni-
fied model, where the transformation engine knows that each
method entry event adds an element to the stack, it is possi-
ble to derive the state-based transformation from the event-
based transformation. This allows both an elegant specifica-
tion and efficient execution.

4. Challenges
Both complex event processing and model to model trans-
formation systems are fairly complex paradigms in their own
respect. This presents us with two challenges.

4.1 Fundamental limitations
In the current state if the art, there is not much formal work
on unifying cross cutting transformations. This makes it hard
to estimate what is theoretically possible. When only con-
sidering the core of both types of transformation, unification
seems to be quite feasible. By restricting both to a subset
of invertible transformations, the equivalence between them
can be exploited easily.

However, when considering the existing languages, it is
less obvious what are the limitations and abilities of mixed
mode transformations. As in all languages, there is an im-
portant trade-off between expressiveness and usability. Al-
lowing more expressive languages will make many auto-
matic analysis steps infeasible, placing more responsibility
with the programmer. At the other hands, less expressive lan-
guages will allow more automatic verification. Based on the
current theoretical understanding of the matter, it is hard to
determine what the sweet spot is between expressiveness and
usability.

4.2 Consistency
For efficiency reasons it is important to assume that both
parts of the transformation are correct and consistent. This
allows us to execute only one (or a part of one) transforma-
tion instead of both and still be confident about the quality
of the result. To practically enforce this assumptions, a min-
imal level of consistency checking is required, both at com-
pile time and at run-time. In this respect, it is comparable
with type checking. However, it may prove to be quite hard
to prove that two transformations are consistent. Not much
formal work exists in this field.

One important consistency guarantee we will enforce is
that each high-level event that can be derived by propagation
of a low level event through the state transformation must
be declared. It is easy for this property to derive an upper
and a lower bound: the upper bound is that all conditions
in the state transformation propagate the change, the lower
bound is that none of them propagates the change. The part
below the lower bound can be checked statically, for the part
between the bounds, dynamic checks can be generated.

5. Approach
We are currently working on the basic semantics of mixed
mode transformations. We are constructing a suited subset
of the whole problem, that is not overly complex, but suited
for practical validation. Currently, we envisage a three step
plan.

1. In the initial stage, we consider relations in both lan-
guages as black boxes. Both transformations specify the
whole system. The only mode of operation is to start with
a state transform. Once an initial model is constructed,
events keep it up-to-date. We require very strong consis-
tency between models, where events are drop-in replace-
ments for state transformations. The goal of this stage is
to make an initial measurement of the capabilities and
limitations of mixed mode transformations.

2. In the second stage we allow automatic analysis of the
state transformation. Events can now also replace sub-
parts of relations. Events may now refer to objects that
have not been created by the state transformation. The
goal of this state is to establish the importance of revert-
ible relations in practical scenarios. This is important to

assess how far automation can be pushed and at what
cost.

3. In the final stage, model analysis encompasses both mod-
els. The limitations present in this system strongly de-
pend on the lessons learned in the previous stage.

6. Conclusion
We briefly outlined our ongoing work on mixed-mode trans-
formations, that encompass both event and state-based com-
ponents. To achieve this we compose existing state and
event-based transformations as if they are aspects of the
same system.

From a perspective of domain specific aspect languages,
this is an interesting case: two paradigms are in the most
literal sense cross-cutting each other. They have the same
domain of discourse, but represent a different dimension of
it. Both base language and aspect language are executable
on their own, but may contribute to each other in non-trivial
ways.

While the approach is still immature, it may provide
significant benefits. Mixed mode transformations offer pro-
grammers a more expressive syntax, combining both type of
transformations and enable a better quality of service, by dy-
namically switching between both styles of transformation.

References
[1] K. Czarnecki and S. Helsen. Feature-based survey of model

transformation approaches. IBM Systems Journal, 45(3):621–
645, 2006.

[2] W. De Borger, B. Lagaisse, and W. Joosen. A generic solution
for agile run-time inspection middleware. In Middleware ’11.

[3] W. De Borger, B. Lagaisse, and W. Joosen. A generic and
reflective debugging architecture to support runtime visibility
and traceability of aspects. In In Proc of AOSD 8, pages 173–
184. ACM, 2009.

[4] W. De Borger, B. Lagaisse, and W. Joosen. Traceability be-
tween run-time and development time abstractions. In O. G.
Jane Cleland-Huang and A. Zisman, editors, Software and Sys-
tems Traceability. Springer, 2011.

[5] T. Dinkelaker, M. Mezini, and C. Bockisch. The art of the meta-
aspect protocol. In AOSD ’09, pages 51–62. ACM, 2009. ISBN
978-1-60558-442-3.

[6] D. C. Luckham and B. Frasca. Complex event processing
in distributed systems. Technical report, Stanford University,
1998.

[7] B. P. Miller and A. V. Mirgorodskiy. Diagnosing Distributed
Systems with Self-propelled Instrumentation. IFIP LNCS,
5346(5346):82–103, 2011.

[8] OMG. Meta Object Facility (MOF) 2.0 Query View Transfor-
mation. http://www.omg.org/spec/QVT/1.0/.

[9] G. Wilkin, K. Jayaram, P. Eugster, and A. Khetrapal.
FAIDECS: Fair Decentralized Event Correlation. In Middle-
ware 2011, volume 7049, pages 228–248. Springer, 2011.

