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Abstract

This paper proposes a new rational Krylov method for solving
the nonlinear eigenvalue problem (NLEP): A(λ)x = 0. The method
approximates A(λ) by Hermite interpolation where the degree of the
interpolating polynomial and the interpolation points are not fixed
in advance. It uses a companion-type reformulation to obtain a lin-
ear generalized eigenvalue problem (GEP). To this GEP we apply
a rational Krylov method that preserves the structure. The com-
panion form grows in each iteration and the interpolation points are
dynamically chosen. Each iteration requires a linear system solve
with A(σ) where σ is the last interpolation point. The method is il-
lustrated by small and large scale numerical examples. In particular,
we illustrate that the method is fully dynamic and can be used as a
global search method as well as a local refinement method. In the
last case, we compare the method to Newton’s method and illustrate
that we can achieve an even faster convergence rate.
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Abstract. This paper proposes a new rational Krylov method for solving the nonlinear eigen-
value problem (NLEP): A(λ)x = 0. The method approximates A(λ) by Hermite interpolation where
the degree of the interpolating polynomial and the interpolation points are not fixed in advance. It
uses a companion-type reformulation to obtain a linear generalized eigenvalue problem (GEP). To
this GEP we apply a rational Krylov method that preserves the structure. The companion form
grows in each iteration and the interpolation points are dynamically chosen. Each iteration requires
a linear system solve with A(σ) where σ is the last interpolation point. The method is illustrated
by small and large scale numerical examples. In particular, we illustrate that the method is fully
dynamic and can be used as a global search method as well as a local refinement method. In the last
case, we compare the method to Newton’s method and illustrate that we can achieve an even faster
convergence rate.
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1. Introduction. Consider the nonlinear eigenvalue problem (NLEP):

A(λ)x = 0,(1.1)

where λ ∈ Ω ⊆ C, A : Ω → Cn×n and x ∈ Cn\{0}. We assume that A is analytic in
Ω. This eigenvalue problem has been extensively studied in the literature. See, e.g.,
[7, 13]. There are specialized methods for different types of structures of A(λ) [12, 19],
but the goal of this paper is to address the solution of the more general NLEP (1.1).
We present a general algorithmic framework, applicable to a large class of NLEPs
allowing us to find eigenvalues and eigenvectors of (1.1) close to given targets. The
proposed method is applicable as a global search method, in order to find eigenvalues
in a region, as well as a local refinement method, in order to improve the accuracy of
a few eigenpairs.

A first possible approach is to use a Newton type method. In the literature,
we find examples as the residual inverse iteration method [14], the Jacobi–Davidson
type projection method [4] and the block Newton method [9]. Another approach is
to derive first a polynomial or rational approximation of A(λ) and then solve the
approximate eigenvalue problem by some standard techniques, e.g., [6].

The method proposed in the current paper differs in several aspects from the
infinite Arnoldi method for the NLEP [8]. First, the infinite Arnoldi method builds
a Krylov space on an equivalent linear infinite dimensional eigenvalue problem. Sec-
ond, implementing this method requires the coefficients of the Taylor series of A(λ)
developed around a given fixed shift σ. In this paper, we use a (Hermite) interpo-
lating polynomial of low degree to approximate A(λ). The expectations are that a
better approximation of (1.1) can be obtained than a truncated Taylor expansion of
the same degree.

∗This work has been supported by the Programme of Interuniversity Attraction Poles of the
Belgian Federal Science Policy Office (IAP P6-DYSCO), by OPTEC, the Optimization in Engineering
Center of the KU Leuven, by the projects STRT1-09/33 and OT/10/038 of the KU Leuven Research
Council and the project G.0712.11N of the Research Foudation-Flanders (FWO).
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Polynomial interpolation of A(λ) in the interpolation points σ0 ≤ σ1 ≤ · · · ≤ σN ,
results in a linearization of (1.1) which can be reformulated as a GEP

Ay = λBy,(1.2)

where A,B ∈ C(N+1)n×(N+1)n and y ∈ C(N+1)n. For solving (1.2) we use the rational
Krylov method [16]. One of the advantages of the rational Krylov method, compared
to the Arnoldi method, is that the shift can be changed at every iteration.

We use Newton polynomial bases. The advantage is that adding a new interpola-
tion point just adds a new polynomial to the basis. This allows for iteratively adding
new points in a flexible way, which implies that the linearization grows in every iter-
ation. When, in addition, we choose the shifts of the rational Krylov method equal
to the interpolation points, the rational Krylov expansion on the linearized problem
takes advantage of specific structure, so that the rational Krylov method can be in-
terpreted as a rational Krylov method applied to a fixed size matrix (that does not
grow during the iterations). This property makes the process dynamic and has the
important consequence that the interpolation points need not to be fixed in advance.
In each iteration we can choose a new interpolation point based on the results of the
previous ones.

Matrices A and B have special sparse structure which can efficiently be exploited.
Our method only involves linear algebra operations with matrices of dimension n×n,
which makes it suitable for large and sparse matrix operations A(λ). More precisely,
in each iteration we only need to solve one matrix-vector equation of dimension n and
therefore one LU-decomposition should be computed. This is the LU-decomposition
of A(σj), which is the nonlinear matrix function evaluated in the last interpolation
point. In the case when σj = σj−1 = · · · = σj−l+1 (Hermite interpolation) we can
reuse the LU-decomposition for l successive iterations, which significantly reduces the
computational cost. Also the possible low rank structure of the coefficient matrices
of the interpolating polynomial can be exploited to reduce the storage significantly.

This paper is organized as follows. Section 2 discusses the linearization of A(λ)
which results in a companion-type reformulation of the NLEP. Section 3 reviews the
standard rational Krylov method for the GEP. Section 4 introduces the new rational
Krylov method for solving the NLEP. Section 5 illustrates the proposed algorithm
with some numerical examples and compares it to other methods. Finally, the main
conclusions are summarized in Section 6.

Throughout the paper, we denote by A∗ the conjugate transpose of the matrix A.
Vj denotes a matrix with j columns and Aj,k is a matrix of dimensions j×k. We omit
subscripts when the dimensions of the matrices are clear from the context. Column
j of the matrix V is denoted by vj and row k by v∗k. A superscript such as λ(j) is
used to distinguish the value at step j of a quantity that changes from iteration to
iteration. A superscript as in v[j] denotes the jth block of the block vector v. With
‖ · ‖ we denote the 2-norm.

2. Linearization and companion-type formulation. In order to solve the
NLEP (1.1), we first approximate A(λ) by a matrix polynomial. Therefore, we use
Newton polynomials in the current paper. This results in a linearization which can
be expressed in a companion-type matrix form. Next, these matrices are further used
in the rational Krylov method.
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We can always write a matrix function A(λ) ∈ Cn×n as follows

A(λ) =

m∑

i=1

Bifi(λ),(2.1)

where Bi ∈ Cn×n are constant matrices, fi(λ) are scalar functions of λ and m ≤ n2.
However, in many applications, such as e.g. time-delay eigenvalue problems, m� n2.
Other applications are mathematical models that are linear in λ but adopt nonlinear
boundary conditions, which leads to low rank Bi and m� n, see §5.2 for an example.

In this case, we can greatly reduce the storage and computational cost because
we only have to compute m scalar functions and store m constant matrices instead
of a n× n matrix function. We now review polynomial interpolation in Newton and
Hermite form for the scalar case in §2.1 and §2.2, respectively.

2.1. Newton polynomial basis. The interpolating polynomial in Newton form
of the function f(λ) is a linear combination of the Newton polynomials

pN (λ) :=
N∑

i=0

αini(λ),(2.2)

where the Newton polynomials are defined as follows

n0(λ) := 1

(2.3)
ni(λ) :=

i−1∏

j=0

(λ− σj), i = 1, 2, . . .

and the coefficients αi are the divided differences

α0 := f [σ0] = f(σ0)
(2.4)

αi := f [σ0, . . . , σi] =
f [σ1, . . . , σi]− f [σ0, . . . , σi−1]

σi − σ0
where σ0, σ1, . . . are distinct interpolation points. These divided differences can be
computed efficiently from a divided differences table.

2.2. Hermite interpolation. The interpolating polynomial in Hermite form is
again a linear combination of the Newton polynomials (2.2), but it also interpolates
higher order derivatives. For computing the divided differences (2.4), a small modi-
fication has to be made to avoid division by zero. More precisely, assuming that the
same interpolation points can only be used in a successive way, we can compute

f [σi, . . . , σi︸ ︷︷ ︸
j+1 times

] =
f (j)(σi)

(j!)
.

In this way, we can again use a divided differences table to calculate the αi in (2.2).

2.3. A companion-type reformulation. Let the scalar functions fi(λ) of (2.1)
be approximated by interpolating Newton polynomials (2.3). Then,

PN (λ) :=
m∑

j=1

Bj

N∑

i=0

αijni(λ) =
N∑

i=0




m∑

j=1

αijBj


ni(λ) =:

N∑

i=0

Aini(λ),(2.5)



4 R. VAN BEEUMEN, K. MEERBERGEN, AND W. MICHIELS

where αij are scalars and Ai ∈ Cn×n, is the matrix polynomial which (Hermite)
interpolates A(λ) in the interpolation points σ0, σ1, . . . , σN . Using (2.5), the PEP

PN (λ)x = 0(2.6)

can now be linearized. By linearization, we mean here the transformation of (2.6) into
a generalized eigenvalue problem Ax = λBx by a suitable choise of the matrices A
and B such that there is a one-to-one correspondence between the eigenpairs of (2.6)
and the eigenpairs of the A − λB pencil [1, 12]. The results of this linearization are
now summarised in the following theorem.

Theorem 2.1. The pair (λ, x 6= 0) is an eigenpair of the PEP (2.6) if and only
if

ANyN = λBNyN ,(2.7)

where

AN =




A0 A1 A2 . . . AN
σ0I I

σ1I I
. . .

. . .

σN−1I I



, BN =




0
I 0

I 0
. . .

. . .

I 0



,(2.8)

and

yN = vec(x, n1(λ)x, n2(λ)x, · · · , nN (λ)x).

Corollary 2.2. If we want to include an additional interpolation point, AN+1

and BN+1 are obtained by adding one block column to the right and one block row at
the bottom of the matrices AN and BN , respectively.

This property will be very useful in iterative methods, as we will see in Section 4.

3. Rational Krylov method. The rational Krylov method [15, 16] is a gener-
alization of the shifted and inverted Arnoldi method. There are two main differences
between the two methods. First, instead of a fixed shift for the Arnoldi method, the
rational Krylov method allows to change the shift (or pole) at every iteration. Second,
the rational Krylov method collects the information about the eigenvalues in a pair
of two Hessenberg matrices (K,H).

3.1. Algorithm. We now review the rational Krylov method and derive its
recurrence relation. The standard rational Krylov algorithm [16] is outlined in Algo-
rithm 1.

By eliminating w at the jth iteration we get the relation

Vj+1hj = (A− σjB)−1BVjtj ,

where hj is a vector of length j + 1. This is equivalent to

AVj+1hj = BVj+1(hjσj + tj),

where at the bottom of the vector tj a zero is added to give it length j+1. Combining
now all the previous iterations, we arrive at the basic recurrence relation of the rational
Krylov method

AVj+1Hj+1,j = BVj+1Kj+1,j ,(3.1)
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Algorithm 1: Rational Krylov method

Choose vector v1, where ‖v1‖ = 1.1

for j = 1, 2, . . . do

Choose shift: σj .2

3 Set continuation combination following (3.3): tj .
Set continuation vector: w = Vjtj .4

Compute: w := (A− σjB)−1Bw.5

6 Orthogonalize: w := w − Vjhj , where hj = V ∗j w.

Get new vector: vj+1 = w/hj+1,j , where hj+1,j = ‖w‖.7

8 Compute eigenpairs:
(
λ
(j)
i , s

(j)
i

)
and test for convergence.

end
Compute eigenvectors: xi = Vj+1Hj+1,jsi.9

where Hj+1,j and Kj+1,j are two (j + 1) × j upper Hessenberg matrices. Hj+1,j

contains the coefficients of the Gram–Schmidt orthogonalization process and

Kj+1,j = Hj+1,j diag(σ1, . . . , σj) + Tj+1,j ,(3.2)

where the upper triangular matrix Tj+1,j is built up from the continuation combina-
tions t1, . . . , tj . Note that from the definition of Kj+1,j in (3.2), we can easily find
that

σj =
kj+1,j

hj+1,j
.

Definition 3.1 (rational Krylov subspace). A rational Krylov subspace is a
subspace built by the rational Krylov method and is spanned by

v1, (A− σ1B)−1Bw1, (A− σ2B)−1Bw2, · · ·

where wj = Vjtj.
We select the continuation combination tj (step 3 of Algorithm 1) as suggested

in [16]

tj =

{
ej σj = σj−1,
qj = Qjej σj 6= σj−1,

(3.3)

where t1 := e1 and Qj is obtained from the QR factorization of

QjRj,j−1 = (Kj,j−1 − σjHj,j−1).

3.2. Orthogonalization. For the orthogonalization in step 6 of Algorithm 1,
classical iterative Gram–Schmidt with reorthogonalization is used. In each iteration
step j, we assume that hj+1,j 6= 0. Then, we call Hj+1,j unreduced. If hj+1,j = 0, the
Range(Vj) is an invariant subspace and

AVjHj,j = BVjKj,j ,

where Hj,j and Kj,j are the j × j upper parts of Hj+1,j and Kj+1,j , respectively. At
this point, the Gram–Schmidt orthogonalization process fails.
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3.3. Computing approximate eigenpairs. Approximations for the eigenval-
ues and corresponding eigenvectors of the matrix pencil (A,B) can, in each iteration j
of Algorithm 1, be obtained from the j×j upper parts of the two Hessenberg matrices
Hj+1,j and Kj+1,j .

Definition 3.2. Let
(
λ
(j)
i , s

(j)
i

)
satisfy

Kj,js
(j)
i = λ

(j)
i Hj,js

(j)
i , s

(j)
i 6= 0.(3.4)

Then we call
(
λ
(j)
i , x

(j)
i

)
, where

x
(j)
i := Vj+1Hj+1,js

(j)
i ,(3.5)

a Ritz pair of (A,B).
For the rational Krylov method there are various ways to extract eigenvalues, but

this is not the main purpose of this paper. Therefore, we consider here the standard
Ritz values, although the theory can easily be extended to harmonic Ritz values [16].

3.4. Stopping criterion. The accuracy of a Ritz pair (λ, x) is typically esti-
mated by the residual norm ‖Ax− λBx‖. Let

r
(j)
i := Ax

(j)
i − λ

(j)
i Bx

(j)
i .

Using the substitution (3.5), the recurrence relation (3.1) and (3.4), respectively, yields

r
(j)
i = AVj+1Hj+1,js

(j)
i − λ

(j)
i BVj+1Hj+1,js

(j)
i ,

= BVj+1

(
Kj+1,js

(j)
i − λ

(j)
i Hj+1,js

(j)
i

)
,

= B
[
Vj vj+1

]

 Kj,js

(j)
i − λ

(j)
j Hj,js

(j)
i

kj+1,je
∗
js

(j)
i − λ

(j)
j hj+1,je

∗
js

(j)
i


 ,

= Bvj+1g
(j)
i ,

where g
(j)
i :=

(
kj+1,j − λ(j)j hj+1,j

)
e∗js

(j)
i . Thus, a simple check for convergence of a

Ritz pair in step 8 of Algorithm 1 results in
∣∣∣∣∣
g
(j)
i

λ
(j)
i

∣∣∣∣∣ ≤ εtol,

where εtol is defined by the user.

4. A rational Krylov method for the NLEP. In this section, we introduce
a new rational Krylov method for the NLEP (1.1). This method uses the companion-
type matrix formulation (2.7) which was obtained from the linearization by Hermite
interpolation of the NLEP.

In order to maximally exploit the structure of the matrices of the GEP (2.7), we
choose the shifts in the rational Krylov algorithm equal to the interpolation points
of the interpolating polynomial PN (λ) (2.5) and use a specific set of starting vectors.
Hence, we end up with an algorithm whose interpolation points can be chosen in a
dynamical way.

Before we give the algorithm (§4.2) and discuss its implementation (§4.3), we
introduce some definitions and properties for building the rational Krylov subspace
(§4.1) in order to support the elaboration in the remaining sections.
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4.1. Building the rational Krylov subspace. Let us start with the following
lemma.

Lemma 4.1. Let AN and BN be defined by (2.8) and

yj = vec
(
y
[1]
j , y

[2]
j , · · · , y

[j+1]
j , 0, · · · , 0

)
,

where yj ∈ C(N+1)n and y
[i]
j ∈ Cn for i = 1, . . . , j + 1. Then for all j, 0 ≤ j < N , the

solution xj of the system

(AN − σjBN )xj = yj ,(4.1)

has the following structure

xj = vec
(
x
[1]
j , x

[2]
j , · · · , x

[j+1]
j , 0, · · · , 0

)
,

where again xj ∈ C(N+1)n and x
[i]
j ∈ Cn for i = 1, . . . , j + 1.

Proof. We can expand (4.1) in the following block form




A0 A1 . . . Aj Aj+1 Aj+2 . . . AN

−µ(j)
0 I I

. . .
. . .

−µ(j)
j−1I I

0 I

−µ(j)
j+1I I

. . .
. . .

−µ(j)
N−1I I




xj =




y
[1]
j

y
[2]
j
...

y
[j+1]
j

0
0
...
0




,

where

µ
(j)
i = σj − σi, i = 0, 1, . . . , N − 1.

The zero block at the (j+1)st subdiagonal position yields a decoupling of the system
(4.1). Because the right-bottom part of the matrix AN − σjBN and the bottom part
of yj results in a zero solution, only the top part of xj is nonzero. This proves the
lemma.

The main difference with the standard definition of the rational Krylov method
is that the shifts are not free parameters, but they are already implicitly defined by
the matrices AN and BN in (2.8). We now introduce the following definition.

Definition 4.2. Let AN and BN be defined by (2.8). Then we define by

RKk := span
{
v1, (AN − σ1BN )−1BNw1, (AN − σ2BN )−1BNw2,

· · · , (AN − σk−1BN )−1BNwk−1
}

(4.2)

:= span {v1, v2, v3, · · · , vk}

the rational Krylov subspace of dimension k ≤ N + 1 constructed by the matrices AN ,
BN and the starting vector v1 ∈ C(N+1)n, where wj = Vjtj with Vj = [v1, v2, · · · , vj ]
and tj the continuation combination.
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This definition holds for all starting vectors v1, but the special structure of the
matrices AN and BN can be exploited by choosing a particular starting vector of the
following form

v1 := vec
(
v
[1]
1 , 0, 0, · · · , 0

)
,(4.3)

where v1 ∈ C(N+1)n and v
[1]
1 ∈ Cn. The results for choosing (4.3) as starting vector

for (4.2) are now summarized in the following lemmas.
Lemma 4.3. Suppose that a starting vector, v1, of the form (4.3), is used for the

rational Krylov method. Then for all j, 0 < j ≤ N

vj+1 = (AN − σjBN )−1BNwj ,(4.4)

where wj = Vjtj, has the structure

vj+1 = vec
(
v
[1]
j+1, v

[2]
j+1, · · · , v

[j+1]
j+1 , 0, · · · , 0

)
,

where v
[i]
j+1 ∈ Cn for i = 1, . . . , j + 1.

Proof. We prove this lemma by induction and start with j = 1. Since w1 = v1,

applying BN to w1 results in a down-shift of the block v
[1]
1 . The result of (AN −

σ1BN )−1BNw1 is the solution of the system




A0 A1 A2 A3 . . . AN
(σ0 − σ1)I I

0 I
(σ2 − σ1)I I

. . .
. . .

(σN−1 − σ1)I I



v2 =




0

v
[1]
1

0
0
...
0



,

and, based on Lemma 4.1, it has the form

v2 = vec
(
v
[1]
2 , v

[2]
2 , 0, 0, · · · , 0

)
.

Thus, only the first two blocks of v2 are nonzero.
Now suppose that the lemma holds for j− 1, then only the first j blocks of vj are

nonzero and thus so do the first j blocks of the continuation vector wj . Applying BN
to wj results again in a down-shift of the first j nonzero blocks of wj . The result of
(AN − σjBN )−1BNwj is the solution of the system




A0 A1 . . . Aj Aj+1 Aj+2 . . . AN

−µ(j)
0 I I

. . .
. . .

−µ(j)
j−1I I

0 I

−µ(j)
j+1I I

. . .
. . .

−µ(j)
N−1I I




vj+1 =




0

w
[1]
j
...

w
[j]
j

0
0
...
0




,
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where µ
(j)
i = σj −σi, i = 0, 1, . . . , N − 1 and, based on Lemma 4.1, vj+1 has the form

vj+1 = vec
(
v
[1]
j+1, · · · , v

[j+1]
j+1 , 0, 0, · · · , 0

)
.

Thus, only the first j + 1 blocks of vj+1 are nonzero which proves the lemma.

Lemma 4.4. Let the rational Krylov subspace RKk be constructed as in Defini-
tion 4.2 and Lemma 4.3. Then, at each iteration j of the rational Krylov method,
only the top-left parts of the matrices AN − σjBN are used to compute the nonzero
top parts of the vectors vj+1, i.e.

(Aj − σjBj)ṽj+1 = Bjw̃j ,(4.5)

where

ṽj+1 = vec
(
v
[1]
j+1, v

[2]
j+1, · · · , v

[j+1]
j+1

)
,

and

w̃j = vec
(
w

[1]
j , w

[2]
j , · · · , w

[j]
j , 0

)
.

Proof. The proof of this Lemma follows as a direct consequence of Lemma 4.1
and Lemma 4.3.

In each iteration j of the rational Krylov method, following Lemma 4.4, we only
have to solve system (4.5) of dimension (j + 1)n× (j + 1)n, instead of (4.4) which is
of dimension (N + 1)n× (N + 1)n. This results already in a significant reduction of
the computation time. Also the companion-type form of the matrix Aj − σjBj can
be exploited to solve (4.5) efficiently with only operations on n × n sparse matrices.
This results in the following lemma.

Lemma 4.5. The linear system (4.5) can be efficiently solved using the following
equations

A(σj)v
[1]
j+1 = y

(j)
0 ,(4.6)

where

y
(j)
0 = −

j∑

i=1

Ai

(
w

[i]
j +

i−1∑

k=1

(
i−1∏

l=k

µ
(j)
l

)
w

[k]
j

)
,(4.7)

and

v
[2]
j+1 = w

[1]
j + µ

(j)
0 v

[1]
j+1,

v
[3]
j+1 = w

[2]
j + µ

(j)
1 v

[2]
j+1,

(4.8)
...

v
[j+1]
j+1 = w

[j]
j + µ

(j)
j−1v

[j]
j+1.
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Proof. We start from (4.5)




A0 A1 A2 . . . Aj

−µ(j)
0 I I

−µ(j)
1 I I

. . .
. . .

−µ(j)
j−1I I







v
[1]
j+1

v
[2]
j+1

v
[3]
j+1
...

v
[j+1]
j+1




=




0

w
[1]
j

w
[2]
j
...

w
[j]
j



.

From the second block row we find

v
[2]
j+1 = w

[1]
j + µ

(j)
0 v

[1]
j+1.(4.9)

Substituting (4.9) in (4.5) and removing the second equation results in




A0 + µ
(j)
0 A1 A2 A3 . . . Aj

−µ(j)
0 µ

(j)
1 I I

−µ(j)
2 I I

. . .
. . .

−µ(j)
j−1I I







v
[1]
j+1

v
[3]
j+1

v
[4]
j+1
...

v
[j+1]
j+1




=




−A1w
[1]
j

w
[2]
j + µ

(j)
1 w

[1]
j

w
[3]
j
...

w
[j]
j



.

By repeating this procedure j times we obtain

(A0 + µ
(j)
0 A1 + µ

(j)
0 µ

(j)
1 A2 + µ

(j)
0 µ

(j)
1 µ

(j)
2 A3 + · · · + µ

(j)
0 µ

(j)
1 . . . µ

(j)
j−1Aj) v

[1]
j+1

= −A1w
[1]
j −A2

(
w

[2]
j + µ

(j)
1 w

[1]
j

)
−A3

(
w

[3]
j + µ

(j)
2 w

[2]
j + µ

(j)
1 µ

(j)
2 w

[1]
j

)
− · · ·(4.10)

−Aj
(
w

[j]
j + µ

(j)
j−1w

[j−1]
j + µ

(j)
j−2µ

(j)
j−1w

[j−2]
j + · · · + µ

(j)
1 µ

(j)
2 . . . µ

(j)
j−1w

[1]
j

)
.

Note that the left hand side of (4.10) is just the evaluation of (2.5) in the interpolation
point σj and hence equal to A(σj). The right hand side of (4.10) is equal to (4.7).
Thus (4.6) is proved.

For the remainder of the proof, we substitute v
[1]
j+1 into (4.5). Then, from the

second block row of (4.5) we now obtain v
[2]
j+1. Next, v

[2]
j+1 is substituted in the third

block row of (4.5), and so on. These subsequent substitutions are continued until we

obtain v
[j+1]
j+1 .

Corollary 4.6. In each iteration j of the rational Krylov method where we
construct the rational Krylov subspace RKk, as defined in Definition 4.2, we only have
to perform the LU-factorization of A(σj) ∈ Cn×n, instead of an LU-factorization of
AN − σjBN ∈ C(N+1)n×(N+1)n. For Hermite interpolation, we can reuse the same
LU-decomposition for successive iterations.

Proposition 4.7. The Ritz values λ
(j)
i computed in iteration j of the rational

Krylov method, are independent of N as long as j < N . These Ritz values are also
independent of σj+1, . . . , σN .

Proof. In iteration j, the Ritz values are computed from the j × j upper parts of
the two matrices Hj+1,j and Kj+1,j . These Hessenberg matrices are obtained form the
orthogonalization process of only v1, v2, . . . , vj+1. Following Lemmas 4.3–4.5, only the
first j+1 interpolation points, σ0, . . . , σj , are used for the construction of the rational
Krylov vectors Vj+1. Therefore, the approximated eigenvalues are independent of the
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interpolation points σj+1, . . . , σN . Hence they are also independent of N which proves
the proposition.

Corollary 4.8. It is neither necessary to choose the interpolation points in
advance, nor the degree of the interpolating polynomial. Instead, in each iteration we
can choose the next interpolation point based on the results of the previous iterations.
Therefore, the rational Krylov method can be implemented in an adaptive and an
incremental way. The rational Krylov method is started with two interpolation points
and can go on until convergence, by adding an additional interpolation point in each
iteration.

Remark 4.9. Performing j steps of our method, with an appropriated starting
vector, produces the same Krylov vectors as j steps of the standard rational Krylov
method with the matrices AN and BN for any N > j. Taking a limit argument,
N →∞, our method can be interpreted as a rational Krylov method directly applied
to an infinite dimensional linear problem equivalent to the original nonlinear problem.
See [8], where this connection is fully worked out for the Arnoldi method (σj ≡ σ).
However, only finite arithmetic is used, i.e., standard linear algebra operations applied
to matrices of finite size.

Remark 4.10. Another consequence of the independence of N is that we can
restart the rational Krylov algorithm without any adaptation. Since at any iteration
j, the method is independent of σj+1, σj+2, . . ., we can return back to iteration k < j
and continue from this iteration with other interpolation points σk+1, σk+2, . . ..

4.2. Algorithm. Based on Lemmas 4.3 – 4.5 and the important Corollary 4.8,
the algorithm for solving the NLEP (1.1) can be implemented efficiently. Algorithm 2
gives the outline.

Algorithm 2: A rational Krylov method for the NLEP

Choose shift σ0 and starting vector v1.1

for j = 1, 2, . . . do

Expansion phase:
Choose shift: σj .2

3 Compute next divided difference: Aj .
Expand Aj , Bj and Vj .4

Rational Krylov step:
Set continuation combination following (3.3): tj .5

Set continuation vector: w = Vjtj .6

7 Apply: w := (Aj − σjBj)−1Bjw.
Orthogonalize: w := w − Vjhj , where hj = V ∗j w.8

Get new vector: vj+1 = w/hj+1,j , where hj+1,j = ‖w‖.9

10 Compute eigenpairs:
(
λ
(j)
i , s

(j)
i

)
and test for convergence.

end
11 Compute eigenvectors: ui = Vj+1Hj+1,jsi.

Each iteration step j of the algorithm can be subdivided into two main parts.
First, the rational Krylov matrices Aj−1 and Bj−1 are extended with the next divided
difference Aj to obtain Aj and Bj , respectively. Also the matrix Vj is extended with a
zero block at the bottom. Second, a rational Krylov step with the extended matrices
Aj and Bj is performed. This is graphically illustrated by Figure 4.1. Finally in
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Expansion phase:

Aj Vj Hj,j−1

=

Bj Vj Kj,j−1

Rational Krylov step:

Vj = w = w = w =

continuation vector apply Bj apply (Aj − σjBj)−1

vj+1 = Hj+1,j =

Kj+1,j =

subspace
expansion

orthogonalization

Fig. 4.1. Visualization of Algorithm 2.
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step 11 of Algorithm 2, the Ritz vectors si are multiplied on the left by Vj+1Hj+1,j

to obtain the approximate eigenvectors ui.

4.3. Implementation details. We now discuss how to efficiently and reliably
implement the operations in Algorithm 2 at lines 3, 7 and 11.

As already mentioned in §2.1 and §2.2, the coefficients of the Newton and Hermite
interpolating polynomials can be cheaply computed by using a divided differences
table. However, this way of computing the coefficients can be numerically unstable.
An alternative computation relies on a semi-analytical operation.

Let mi be the multiplicities of respectively the interpolation points σi, i = 0, 1, . . .
and f(λ) the nonlinear function we want to interpolate. Then, we can expand f(λ)
as

f(λ) = a0 + a1(λ− σ0) + · · ·+ am0
(λ− σ0)m0

+ am0+1(λ− σ0)m0(λ− σ1) + · · ·+ am0+m1
(λ− σ0)m0(λ− σ1)m1(4.11)

+ am0+m1+1(λ− σ0)m0(λ− σ1)m1(λ− σ2) + · · · .

For computing the coefficients ai of (4.11) in a semi-analytical way, we start from the
Taylor series of f(λ) of order m0 − 1 around σ0

t0(λ) = f(σ0) + f ′(σ0)(λ− σ0) + · · · +
f (m0−1)(σ0)

(m0 − 1)!
(λ− σ0)m0−1.(4.12)

We now obtain from (4.12) the first m0 coefficients of (4.11):

ai =
f (i)(σ0)

i!
, i = 0, . . . ,m0 − 1.

Next, we subtract t0(λ) from the original function f(λ) and divide by (λ − σ0)m0 .
This results in the new function

f0(λ) =
f(λ)− t0(λ)

(λ− σ0)m0
,

which is used to obtain the next m1 coefficients of (4.11). Therefore, we compute the
truncated Taylor series of f0(λ) of degree m1 − 1 around σ1

t1(λ) = f0(σ1) + f ′0(σ1)(λ− σ1) + · · · +
f
(m1−1)
0 (σ1)

(m1 − 1)!
(λ− σ1)m1−1.

We now have

am0+i =
f
(i)
0 (σ1)

i!
, i = 0, . . . ,m1 − 1.

Next, t1(λ) is subtracted from f0(λ) and divided by (λ−σ1)m1 , which yields the new
function

f1(λ) =
f0(λ)− t1(λ)

(λ− σ1)m1
=

f(λ)−t0(λ)
(λ−σ0)m0

− t1(λ)

(λ− σ1)m1
.

This process is repeated for all the interpolation points in order to obtain the re-
maining coefficients ai of (4.11). The functions f0(λ), f1(λ), . . . and respective Taylor
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polynomials t0(λ), t1(λ), . . . can be computed by symbolic software tools, which we
illustrate in the next example.

Example 4.11. In this example we consider the nonlinear function f(λ) = exp(−λ),
which we want to interpolate in the interpolation points σi = 0.1, 0.2, . . . , 0.5 with
multiplicities mi = 4. Figure 4.2 illustrates the evolution of the absolute values of
the coefficients ai obtained by the divided differences table and obtained in the semi-
analytical way by using the symbolic toolbox of Matlab. This figure shows that for
an interpolating polynomial of small degree, the two methods yield the same coeffi-
cients. However, at a certain point, the divided difference method start to suffer from
numerical instabilities and the calculated coefficients diverge to infinity.

0 5 10 15 20
10−20

10−15

10−10

10−5

100

105

iteration

|a
i
|

Fig. 4.2. Graphical illustration of the evolution of the absolute values of the coefficients ai of
the Hermite interpolating polynomial of f(λ) = exp(−λ) in σi = 0.1, 0.2, . . . , 0.5 all of multiplicity
mi = 4. The coefficients calculated by using divided differences are indicated by “ ∗”, while those
obtained in the semi-analytical way are indicated by “ ◦”.

Step 7 of Algorithm 2 can be efficiently implemented. Based on Corollary 4.6,
we first calculate the LU-decomposition of A(σj). Next, (Aj − σjBj)−1Bj is applied
as explained in Lemma 4.5. Note that in this case only one matrix vector solve
of dimension n is needed in each iteration of Algorithm 2. Furthermore, since the
matrices Aj and Bj are only used in step 7 and this step is efficiently performed, it is
not necessary to build these matrices explicitly. We only have to store the coefficient
matrices Ai. In the case the nonlinear matrix function A(λ) is expressed in the form
of (2.1), we only need to store the scalar coefficients αij of (2.5).

Breakdown of the rational Krylov method leads to an invariant subspace. How-
ever, possible breakdown of Algorithm 2 needs some attention and differs from break-
down in Algorithm 1.

Proposition 4.12. If v1 6= 0, then the shifts in Algorithm 2 can always be chosen
such that the Gram–Schmidt orthogonalization process never causes a breakdown.

Proof. A breakdown of the orthogonalization process in iteration j of Algorithm 2
occurs when the Range(Vj) is an invariant subspace. In other words, this can only be

the case when v
[j+1]
j+1 = 0. From (4.8) and w

(j)
j 6= 0, it follows that using σj = σj−1

always results in v
[j+1]
j+1 6= 0, which proves the proposition.

However, when we choose the continuation vector as defined in (3.3) breakdown
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does not happen in practice. During all the numerical experiments we performed, no
breakdown occurred.

4.4. Exploiting low rank structure of coefficient matrices. In several ap-
plications many of the matrices Bi in (2.1) are of low rank. Therefore, we now discuss
how to exploit this low rank structure by using a different type of linearization.

Suppose that we can write A(λ) ∈ Cn×n as follows

A(λ) =

p∑

i=0

Biλ
i +

m∑

i=1

Cifi(λ),(4.13)

where Bi, Ci ∈ Cn×n are constant matrices, fi(λ) are scalar functions of λ, p � n2

and m � n2. Furthermore, we assume that the matrices Ci have the rank-revealing
decompositions

Ci = LiU
∗
i ,

where Li, Ui ∈ Cn×ri are of full column rank ri � n.
Approximating the scalar functions fi(λ) of (4.13) by interpolating Newton poly-

nomials results in the following matrix polynomial which interpolates A(λ) in the
interpolation points σ0, σ1, . . . , σN

P̃N (λ) =
N∑

i=0

Ãini(λ) =

p∑

i=0

(
B̃i + C̃i

)
ni(λ) +

N∑

i=p+1

C̃ini(λ),(4.14)

where

B̃i =

p∑

j=0

βijBj ,

C̃i =
m∑

j=1

γijCj =
m∑

j=1

γijLjU
∗
j ,

with βij and γij scalars. Define

L̃i =
[
γi1L1 γi2L2 · · · γimLm

]
,

Ũ =
[
U1 U2 · · · Um

]
,

where the size of L̃i and Ũ is n× r and r = r1 + r2 + · · ·+ rm.
Similarly as in Theorem 2.1, we obtain a companion-type reformulation where

the pair (λ, x 6= 0) is an eigenpair of the PEP (4.14) if and only if

ÃN ỹN = λB̃N ỹN ,
where

ÃN =




B̃0 + C̃0 B̃1 + C̃1 . . . B̃p + C̃p L̃p+1 L̃p+2 . . . L̃N
σ0I I

. . .
. . .

σp−1I I

σpŨ
∗ I

σp+1I I
. . .

. . .

σN−1I I




,
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and

B̃N =




0
I 0

. . .
. . .

I 0

Ũ∗ 0
I 0

. . .
. . .

I 0




, ỹN =




x
n1(λ)x

...
np(λ)x

np+1(λ)Ũ∗x
np+2(λ)Ũ∗x

...

nN (λ)Ũ∗x




.

For this type of linearization we can also prove Lemmas 4.1–4.5.

4.5. Connection with Newton’s method. We are now ready to discuss a
connection of Algorithm 2 with Newton’s method. In each iteration of Newton’s
method, the NLEP (1.1) can be written as follows

A(λj+1)xj+1 = A(λj + ∆λj)(xj + ∆xj) ≈ 0,

where ∆λj = λj+1 − λj and ∆xj = xj+1 − xj . Using a first order approximation of
A(λj + ∆λj) results in

[A(λj) +A′(λj)∆λj ](xj + ∆xj) ≈ 0,(4.15)

and by omitting the higher order term, O(∆λj∆xj), we deduce

A(λj)(xj + ∆xj) +A′(λj)xj∆λj ≈ 0.(4.16)

Using (4.16) we define

xj+1 := −A(λj)
−1A′(λj)xj ,

where we have omitted the factor ∆λj , since we normalise xj+1 in each iteration.
By multiplying (4.15) on the left with x∗j+1, we find the Newton update for the
approximate eigenvalue

λj+1 := λj −
x∗j+1A(λj)xj+1

x∗j+1A
′(λj)xj+1

.

The connection between the linear rational Krylov algorithm and the Jacobi–
Davidson algorithm [17] is illustrated in [16]. From [18], we also know that each step
of the Jacobi–Davidson iteration method can be interpreted as a Newton update.
Since the rational Krylov method is a subspace method, it is generally accepted that
using Ritz values as shifts reaches asymptotically (super) quadratic convergence.

As already mentioned in Remark 4.9, Algorithm 2 can also be interpreted as a
standard linear rational Krylov method applied to the matrices AN and BN , which
are obtained from a linearization with the shifts as interpolation points. Using Ritz
values as shifts, A′(λj) is approximated better and better in each iteration. In the
real case, using the mean value theorem for divided differences, the approximation
error vanishes exponentially, since

A′(λj)− P ′j(λj) = O
(
nj(λj)

)
= O

(
(λj − λ0)(λj − λ1) · · · (λj − λj−1)

)
.

Therefore, we also expect an asymptotically (super) quadratic convergence for Algo-
rithm 2. This is illustrated in §5.3.
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5. Numerical examples. The numerical examples in this section illustrate the
properties of the proposed method. First, we show with a scalar NLEP the difference
between interpolation in Leja points [10] and Hermite interpolation. Next, the rational
Krylov method is used as an algorithm for global eigenvalue search and compared to
the single-shift variant. In the last example, the rational Krylov method is used as
an algorithm for local correction and compared to Newton’s method. All numerical
experiments are performed in Matlab version 7.11.0 (R2010b) on a Dell Latitude
with an Intel(R) Core(TM) i5-2540M CPU @ 2.60GHz quad core processor with 4
GB RAM memory.

5.1. Interpolation in Leja points versus Hermite interpolation. We start
with the following scalar NLEP

F (λ) = 3 + e− 3λ+ λ2 − eλ−1 − e2−λ = 0,

and suppose we are interested in the real roots in the interval [0, 3], which are λ1 = 1
and λ2 = 2.

A first possible technique for selecting the shifts is choosing the shifts in Leja
fashion [5, 10, 2] in the interval of interest. Leja points have the property that their
limit distribution on an interval is the same as the limit distribution of the zeros of
shifted and scaled Chebyshev polynomials for the same interval. The convergence
history of λ1 and λ2, computed by Algorithm 2 with Leja points in the interval
[0, 3] is shown in Figure 5.1(a). This figure illustrates that after some iterations
the eigenvalues start to converge. This happens when the approximation by the
interpolating polynomials is improving in the neighbourhood of the eigenvalues.

0 5 10 15
10−16

10−12

10−8

10−4

100

iteration

‖F
(λ
)‖
/
|λ
|

(a) Newton interpolation in Leja points

0 5 10 15
10−16

10−12

10−8

10−4

100

iteration

‖F
(λ
)‖
/
|λ
|

(b) Hermite interpolation

Fig. 5.1. Convergence history for λ1 (solid line) and λ2 (dashed line) of the scalar NLEP with
(a) Newton interpolation in Leja points in the interval [0, 3] and with (b) Hermite interpolation in
the points 0.5, 1.5 and 2.5, all with multiplicity 5.

Another possibility is using Hermite interpolation in a few points chosen in the
interval of interest. Here, we chose the interpolation points 0.5, 1.5 and 2.5, all with
multiplicity 5. The corresponding convergence history for λ1 and λ2, computed by
Algorithm 2 is shown in Figure 5.1(b). This figure shows that the eigenvalue λ1 = 1
almost immediately starts to converge, since this eigenvalue is closest to the first
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interpolation points. When the algorithm proceeds and the interpolation points move
towards the right, also the eigenvalue λ2 = 2 starts converging.

Remark 5.1. All the eigenvectors are equal to 1 in the scalar case. Since n = 1, the
matrix V , which is constructed in Algorithm 2, is the identity matrix. Therefore, it is
only necessary to store the Hessenberg matrices H and K from which the approximate
eigenvalues are computed.

Remark 5.2. If Algorithm 2 is used to find the roots of a polynomial of degree k,
then after k iterations the k roots are found exactly (in exact arithmetic). Moreover,
since breakdown can always be avoided, see Proposition 4.12, additional iterations
produce additional roots, which are all infinite.

5.2. The rational Krylov method as an algorithm for global eigenvalue
search. We consider the ‘gun’ problem of the Manchester collection of NLEPs [3].
This is a large-scale NLEP that models a radio-frequency gun cavity and is of the
form

F (λ)x =

(
K − λM + i

√
λ− σ2

1W1 + i
√
λ− σ2

2W2

)
x = 0,(5.1)

where M , K, W1 and W2 are real symmetric matrices of size 9956×9956, K is positive
semidefinite and M is positive definite. As in [3], we take σ1 = 0 and σ2 = 108.8774.
The notation of the complex square root,

√ · , denotes the principal branch. The
domain of interest is such that Im(λ) ≥ 0 and Re(λ) is bounded away from the
branch points λ = 0 and λ = σ2

2 [11].

As in [8], we first shifted and scaled the original problem (5.1) by λ = γλ̂ + µ,
such that the region of interest was transformed to be roughly within the unit circle.
Therefore, we chose γ = 3002 − 2002 and µ = 2502. We obtained the following
transformed NLEP

F̂ (λ̂)x =

(
K − (γλ̂+ µ)M + i

√
γλ̂+ µ− σ2

1W1 + i

√
γλ̂+ µ− σ2

2W2

)
x = 0,(5.2)

which was solved by Algorithm 2.
For measuring the convergence of an approximate eigenpair (λ, x), we used, as

defined in [11], the relative residual norm

E(λ, x) =
‖F (λ)x‖2

(‖K‖1 + |λ|‖M‖1 +
√
|λ− σ2

1 |‖W1‖1 +
√
|λ− σ2

2 |‖W2‖1)‖x‖2
.

Since the domain of interest of the transformed NLEP (5.2) is roughly the top half
part of the unit circle, we took 5 interpolation points, each of them with multiplicity
12, almost uniformly distributed in this half circle. The interpolation points are shown
by “◦” in Figure 5.3. The convergence history of Algorithm 2 is given in Figure 5.2.
From this figure, we see that 24 eigenvalues show decreasing residual curves. The
square roots of the corresponding 21 approximate eigenvalues, which are lying in the
domain of interest, are shown in Figure 5.3.

The 60 iterations of Algorithm 2 required 40.7 seconds all together. From this
time, 73 % was used for the Gram–Schmidt orthogonalization process with reorthog-
onalization, 13 % for the LU decompositions and 6 % for the system solves described
in Lemma 4.5.

We repeated this experiment with the low rank exploiting version of Algorithm 2,
discussed in §4.4. The corresponding convergence history is shown in Figure 5.4 and is
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Fig. 5.2. Convergence history for the ‘gun’ problem solved with Algorithm 2 with the shifts as
indicated in Figure 5.3.
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Fig. 5.3. Visualization of the results of the simulation of the ‘gun’ problem. The approximate
eigenvalues “ ∗” and the interpolation points “ ◦”, are shown for the original NLEP.

very similar to the convergence history of the standard implementation of Algorithm 2.
However, the total computation time is now only 8.9 seconds, which is remarkably
less than without low rank exploiting.

A comparison of Algorithm 2 and the low rank exploiting version of Algorithm 2
is given in Table 5.1. From this table, it follows that the significant reduction in
computation time is due to the orthogonalization process. Indeed, in each iteration
j > p of the low rank exploiting version, the vectors are of dimension (p+1)n+(j−p)r.
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Fig. 5.4. Convergence history for the ‘gun’ problem solved with the low rank exploiting version
of Algorithm 2 with the shifts as indicated in Figure 5.3.

On the other hand, in the version without low rank exploiting, the vectors are of
dimension (j + 1)n. In this problem n = 9956, p = 1 and r = 84 which explains the
low computational cost of the orthogonalization process in the low rank exploiting
version of Algorithm 2.

Table 5.1
Computation times for the ‘gun’ problem solved with Algorithm 2 and with the low rank ex-

ploiting version of Algorithm 2.

Algorithm 2 Algorithm 2 + low rank

LU decompositions 5.3 s 5.3 s
Linear system solves 2.4 s 2.4 s

Gram–Schmidt orth. + reorth. 29.7 s 1.2 s
Total 40.7 s 8.9 s

To illustrate the importance of using multiple interpolation points in the global
eigenvalue search strategy, we solved the transformed NLEP (5.2) with Algorithm 2
with the same constant shift, i.e. we used the shift and inverted Arnoldi method.
Table 5.2 shows the number of eigenvalues with relative residual norm E(λ, x) ≤ 10−4.
This table indicates that the number of accurately computed eigenvalues strongly
depends on the choice of shift σ and is always smaller than the number of eigenvalues
computed by Algorithm 2 with multiple shifts (see Figure 5.3).

Thus, we can conclude that the proposed rational Krylov method with multiple
interpolation points is really suitable for finding eigenvalues in a specified region of
interest. Furthermore, since the rational Krylov method uses an approximation of the
nonlinear matrix function A(λ) based on multiple interpolation points, this method
is even more suitable for global eigenvalue search than the Taylor–Arnoldi method,
introduced in [8], which uses only one interpolation point.
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Table 5.2
The number of accurate eigenvalues for the ‘gun’ problem for 5 runs of Algorithm 2 with

different single constant shift σ. The number of iterations is fixed at 60 and #λ denotes the number
of eigenvalues with relative residual norm E(λ, x) < 10−4. The number between parentheses is the
number of accurate eigenvalues with |λ| > 1. The last line shows the results obtained with Hermite
interpolation in the points indicated in Figure 5.3.

σ #λ : E(λ, x) ≤ 10−4

−2/3 6
−1/3 + i3/5 9(+1)

0 18
1/3 + i3/5 15(+3)

2/3 16(+8)

Hermite 21(+2)

5.3. The rational Krylov method as an algorithm for local correction.
The numerical experiments of the previous section have shown that the proposed
algorithm performs well as a global method. In this section, we now illustrate that
the method can also be used as a local method and we compare the proposed method
to Newton’s method.

Therefore, we return to the square root ‘gun’ problem (5.1). As suggested in [3],
we consider the eigenvalue λ for which

√
λ is nearest to 146.71. We first performed

Newton’s method, outlined in §4.5, with λ0 = 146.712 and x0 a random vector. During
the first iteration we took λ1 = λ0, since otherwise the algorithm would converge to
an eigenvalue outside the region of interest. This could be explained by the fact that
the random starting vector x0 was not yet a good approximation of the eigenvector
corresponding to the eigenvalue nearest to 146.712. The resulting convergence history
towards the eigenvalue nearest to λ0 is shown in Table 5.3(a).

Table 5.3
Convergence history of the approximate eigenvalue of the ‘gun’ problem nearest to 146.712 with

(a) Newton’s method and with (b) the rational Krylov method.

(a) Newton’s method

i
√
λ E(λ, x)

0 146.71 4.8544e-02
1 146.71 5.7677e-04
2 149.10 + 0.012i 3.5515e-05
3 149.48 + 0.002i 1.8332e-07
4 149.48 + 0.002i 6.0417e-14
5 149.48 + 0.002i 1.3171e-17

(b) Rational Krylov method

i
√
σ

√
λ E(λ, x)

0 146.71 4.8544e-02
1 146.71 153.13 + 0.007i 2.7855e-05
2 153.13 + 0.007i 149.48 + 0.002i 1.5795e-07
3 149.48 + 0.002i 149.48 + 0.002i 2.6212e-12
4 149.48 + 0.002i 149.48 + 0.002i 5.0740e-16

Now, we compare the rational Krylov method to Newton’s method. To this end,
we started Algorithm 2 with σ0 = σ1 = 146.712. For the other shifts, we chose, in
each iteration, the Ritz value of the previous iteration which resulted in the smallest
relative residual norm. The corresponding convergence history of the rational Krylov
method is shown in Table 5.3(b). From this table, we can conclude that the rational
Krylov method converges in less iterations than Newton’s method. This is expected
because the rational Krylov method is a subspace method which builds an expanding
subspace.

Recall a second difference between the proposed method and Newton’s method.
The rational Krylov method can converge at the same time to more than one eigen-
value.
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6. Conclusions. In this paper, we have presented a new rational Krylov method
for solving the nonlinear eigenvalue problem. This method is fully dynamic and does
not rely on a discrete-first approach. Instead, A(λ) is approximated by a low degree
Hermite interpolating polynomial whose interpolation points are not fixed in advance.

The linearization of A(λ) resulted in a GEP which is expressed in a companion-
type matrix reformulation. Consequently by exploiting the specific structure, this
GEP is efficiently solved by a rational Krylov method where we choose the shifts or
poles equal to the interpolation points. As a consequence, the interpolation points
need not to be fixed in advance and we can choose in each iteration a new interpolation
point based on the results of the previous ones.

The algorithm can be efficiently implemented, such that it involves only matrix
operations of the size of the original NLEP. Although applicable to NLEPs, the pro-
posed methods inherits properties of the rational Krylov method for linear eigenvalue
problems, such as simultaneous convergence to several eigenvalues.

The numerical experiments have shown that the proposed method can be used
as well as global and as local method. The former can compute eigenvalues and
corresponding eigenvectors in a large range of interest, while the latter computes
local corrections of approximate eigenpairs as in Newton’s method. We also have
illustrated that the proposed method converges faster than Newton’s method.
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