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  Abstract   We report a dataset of the partial pressure of CO 
2
  (pCO 

2
 ) and methane 

concentrations (CH 
4
 ) in the surface waters of Lake Kivu obtained during four cruises 

covering the two main seasons (rainy and dry). Spatial gradients of surface pCO 
2
  

and CH 
4
  concentrations were modest in the main basin. In Kabuno Bay, pCO 

2
  and 

CH 
4
  concentrations in surface waters were higher, owing to the stronger in fl uence 

of subaquatic springs from depth. Seasonal variations of pCO 
2
  and CH 

4
  in the main 

basin of Lake Kivu were strongly driven by deepening of the epilimnion and the 
resulting entrainment of water characterized by higher pCO 

2
  and CH 

4
  concentra-

tions. Physical and chemical vertical patterns in Kabuno Bay were seasonally stable, 
owing to a stronger strati fi cation and smaller surface area inducing fetch limitation 
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of wind driven turbulence. A global and regional cross-system comparison of pCO 
2
  

and CH 
4
  concentrations in surface waters of lakes highlights the peculiarity of 

Kabuno Bay in terms of pCO 
2
  values in surface waters. In terms of surface CH 

4
  

concentrations, both Kabuno Bay and the main basin of Lake Kivu are at the lower 
end of values in lakes globally, despite the huge amounts of CH 

4
  and CO 

2
  in the 

deeper layers of the lake.      

    4.1   Introduction 

 Freshwater environments are important components of the global carbon (C) cycle, 
as they  fi x carbon dioxide (CO 

2
 ) into organic matter and transport organic and inor-

ganic C from the terrestrial biosphere to the oceans. This transport of C is not pas-
sive and freshwater ecosystems transform, store and exchange C with the atmosphere 
(Cole et al.  2007 ; Battin et al.  2008 ; Marotta et al.  2009 ; Tranvik et al.  2009  ) . 
Freshwater ecosystems are considered to be frequently net heterotrophic, whereby 
the consumption of organic C is higher than the autochthonous production of organic 
C, and excess organic C consumption is maintained by inputs of allochthonous 
organic C (Cole and Caraco  2001  ) . Net heterotrophy in freshwater ecosystems 
 promotes the emission of CO 

2
  to the atmosphere, with the global emission from 

continental waters estimated at ~0.75 Pg C year −1  (Cole et al.  2007 ; 0.11 Pg C year −1  
from lakes, 0.28 Pg C year −1  from reservoirs, 0.23 Pg C year −1  from rivers, 
0.12 Pg C year −1  from estuaries, and 0.01 Pg C year −1  from ground waters). Such an 
emission of CO 

2
  from continental waters is comparable to the sink of C by terres-

trial vegetation and soils of ~1.3 Pg C year −1  (Cole et al.  2007  )  and the sink of CO 
2
  

in open oceans of ~1.4 Pg C year −1  (Takahashi et al.  2009  ) . Part of the degradation 
of organic C that occurs in freshwater ecosystems is mediated by anaerobic pro-
cesses, among which methanogenesis, which leads to the emission of methane 
(CH 

4
 ) to the atmosphere. The global emission of CH 

4
  to the atmosphere from fresh-

water ecosystems has been recently re-evaluated by Bastviken et al.  (  2011  )  to 
103 Tg CH 

4
  year −1  (72 Tg CH 

4
  year −1  from lakes) which is signi fi cant when  compared 
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to other natural (168 Tg CH 
4
  year −1 ) and anthropogenic (428 Tg CH 

4
  year −1 ) CH 

4
  

emissions (Chen and Prinn  2006  ) . 
 Our present understanding of the role of lakes on C emissions could be biased 

because most observations were obtained in temperate and boreal systems, and in 
general in medium to small sized lakes, while much less observations are available 
from large tropical lakes. Tropical freshwater environments are indeed under- 
sampled compared to temperate and boreal systems in terms of C dynamics in 
 general, and speci fi cally in terms of CO 

2
  and CH 

4
  dynamics. Yet, about 50% of 

freshwater and an equivalent fraction of organic C is delivered by rivers to the 
oceans at these latitudes (Ludwig et al.  1996  ) . Tropical lakes represent about 16% 
of the total surface of lakes (Lehner and Döll  2004  ) , and Lakes Victoria, Tanganyika 
and Malawi belong to the seven largest lakes by area in the world. 

 We report the seasonal and spatial variability of CO 
2
  and CH 

4
  in the epilimnion of 

Lake Kivu, the smallest of the East African Rift lakes (2,370 km 2 ). It is a deep (maxi-
mum depth of 485 m), meromictic and oligotrophic lake (Chap.   5    ), characterized by 
a relatively simple pelagic foodweb (Chap.   8    ), with physical processes (vertical 
 mixing and transport processes) that are different from most other lakes in the world 
(Chap.   2    ). Subaquatic springs provide heat, dissolved salts and CO 

2
  to the bottom 

waters of the lake (Chap.   2    ). A prominent feature of Lake Kivu is the huge amounts 
of CO 

2
  and CH 

4
  (300 and 60 km 3 , respectively, at 0°C and 1 atm, Schmid et al.  2005  )  

that are dissolved in its deep waters. While CO 
2
  is mainly of magmatic origin, CH 

4
  

originates for two thirds from anoxic bacterial reduction of CO 
2
  and for one third 

from anaerobic degradation of settling organic material (Schoell et al.  1988  ) . 
 Seasonality of the physical and chemical vertical structure (Chap.   2    ) and biological 

activity (Chaps.   5    ,   6    ,   7    ) in surface waters of Lake Kivu is driven by the oscillation 
between the dry season (June–September) and the rainy season (October–May), the 
former characterized by dryer winds and a deepening of the surface mixed layer.  

    4.2   Material and Methods 

 In order to capture the seasonal variation of the studied quantities, four cruises were 
carried out in Lake Kivu on 15/03–29/03/2007 (mid rainy season), 28/08–10/09/2007 
(late dry season), 21/06–03/07/2008 (early dry season) and 21/04–05/05/2009 (late 
rainy season). Sampling was carried out at 15 stations distributed over the whole 
lake (Fig.  4.1 ).  

 Vertical pro fi les of temperature, conductivity, oxygen and pH were obtained with 
a Yellow Springs Instrument (YSI) 6600 V2 probe. Calibration of sensors was carried 
out prior to the cruises and regularly checked during the cruises. The conductivity 
cell was calibrated with a 1,000  m S cm −1  (25°C) YSI standard. The pH electrode was 
calibrated with pH 4.00 (25°C) and pH 7.00 (25°C) National Institute of Standards 
and Technology (YSI) buffers. The oxygen membrane probe was calibrated with 
humidity saturated ambient air. Salinity was computed from speci fi c conductivity 
according to Chap.   2    . 

http://dx.doi.org/10.1007/978-94-007-4243-7_5
http://dx.doi.org/10.1007/978-94-007-4243-7_8
http://dx.doi.org/10.1007/978-94-007-4243-7_2
http://dx.doi.org/10.1007/978-94-007-4243-7_2
http://dx.doi.org/10.1007/978-94-007-4243-7_2
http://dx.doi.org/10.1007/978-94-007-4243-7_5
http://dx.doi.org/10.1007/978-94-007-4243-7_6
http://dx.doi.org/10.1007/978-94-007-4243-7_7
http://dx.doi.org/10.1007/978-94-007-4243-7_2
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 Sampling for the partial pressure of CO 
2
  (pCO 

2
 ) was carried out at 10 m, with 

the exception of a 24 h cycle in March 2007 for which data at 1 and 5 m are also 
presented. Measurements of pCO 

2
  were carried out with a non-dispersive infra-

red (NDIR) analyzer coupled to an equilibrator (Frankignoulle et al.  2001  )  through 
which water was pumped with a peristaltic pump (Master fl ex E/S portable 

  Fig. 4.1    Map of Lake Kivu, showing bathymetry (isobaths at 100 m intervals), catchment area 
(shaded in grey), tributaries (courtesy of Martin Schmid), and sampling stations. The station 
identi fi ed with a star corresponds to the site of 24 h measurement cycle carried out in March 2007       
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 sampler). The sampling depth was determined with a DIMED S.A. Electronic 
Engineering PDCR 1730 pressure transducer.  In situ  temperature and temperature 
at the outlet of the equilibrator were determined with Li-Cor 1000-15 probes. The 
NDIR analyzer (Li-Cor, Li-820) was calibrated with pure nitrogen, and four gas 
standards with a CO 

2
  molar fraction of 363, 819, 3,997 and 8,170 ppm 

(Air Liquide Belgium). 
 Water for the determination of pH, CH 

4
  concentrations,  d  13 C of dissolved inor-

ganic carbon (DIC), total alkalinity (TA) and total organic carbon (TOC) concentra-
tions was sampled with a 5 L Niskin bottle (Hydro-Bios). Samples were collected 
every 10 m from 10 to 60–80 m depending on the cruise and station, except for CH 

4
  

which was only sampled at 10 m. Additional samples for pH,  d  13 C 
DIC

  and TA were 
collected at 5 m in Kabuno Bay. Water for CH 

4
  analysis was collected in glass serum 

bottles from the Niskin bottle with tubing, left to over fl ow, poisoned with 100  m L of 
saturated HgCl 

2
  and sealed with butyl stoppers and aluminium caps. Water samples 

for the analysis of  d  13 C 
DIC

  were taken from the same Niskin bottle by gently over fi lling 
12 mL glass headspace vials, poisoning with 20  m L of a saturated HgCl 

2
  solution, 

and gas-tight capped. A water volume of 50 mL was  fi ltered through a 0.2  m m pore 
size polysulfone  fi lter and was stored at ambient temperature in polyethylene bottles 
for the determination of TA. Un fi ltered water samples (20 mL) were preserved with 
NaN 

3
  (0.05%  fi nal concentration) for the determination of TOC. 

 Measurements of pH in water sampled from the Niskin bottle were carried out 
with a Metrohm (6.0253.100) combined electrode calibrated with US National 
Bureau of Standards buffers of pH 4.002 (25°C) and pH 6.881 (25°C) prepared 
according to Frankignoulle and Borges  (  2001  ) . Measurements of TA were carried 
out by open-cell titration with HCl 0.1 M according to Gran  (  1952  )  on 50 mL water 
samples, and data were quality checked with Certi fi ed Reference Material acquired 
from Andrew Dickson (Scripps Institution of Oceanography, University of 
California, San Diego). DIC was computed from pH and TA measurements using 
the carbonic acid dissociation constants of Millero et al.  (  2006  ) . For the analysis of 
 d  13 C 

DIC
 , a He headspace was created in 12 mL glass vials, and ~300  m L of H 

3
 PO 

4
  

was added to convert all inorganic carbon species to CO 
2
 . After overnight equilibra-

tion, part of the headspace was injected into the He stream of an elemental analyser – 
isotope ratio mass spectrometer (ThermoFinnigan Flash1112 and ThermoFinnigan 
Delta + XL, or Thermo FlashEA/HT coupled to Thermo Delta V) for  d  13 C measure-
ments. The obtained  d  13 C data were corrected for the isotopic equilibration between 
gaseous and dissolved CO 

2
  using an algorithm similar to that presented by    Miyajima 

et al.  (  1995  ) , and calibrated with LSVEC and NBS-19 certi fi ed standards or internal 
standards calibrated with the former. TOC was determined using a Dohrman Apollo 
2000 TOC analyzer. As in surface waters of Lake Kivu particulate organic carbon 
contributes to ~20% of TOC (not shown), we refer to dissolved organic carbon 
(DOC) for the purpose of the cross-lake pCO 

2
  comparison (hereafter). Concentrations 

of CH 
4
  were determined by gas chromatography (GC) with  fl ame ionization detec-

tion (GC-FID, Hewlett Packard HP 5890A), after creating a 12 mL headspace with 
N 

2
  in 40 mL glass serum bottles, as described by Abril and Iversen  (  2002  ) . After 

creating the N 
2
  headspace, samples were vigorously shaken during 1 min, were 
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placed in a thermostated bath overnight (~16 h) after which samples were again 
vigorously shaken during 1 min before starting the GC analysis. Certi fi ed CH 

4
 :N 

2
  

mixtures (Air Liquide France) of 10 and 500 ppm CH 
4
  were used as standards. For 

the March 2009 cruise, CH 
4
  measurements were carried out with the same proce-

dures but using 30 mL headspace with N 
2
  in 70 mL serum bottles, and a SRI 8610C 

GC-FID calibrated with CH 
4
 :CO 

2
 :N 

2
  mixtures (Air Liquide Belgium) of 1 and 

10 ppm CH 
4
 . The concentrations were computed using the CH 

4
  solubility coef fi cient 

given by Yamamoto et al.  (  1976  ) . 
 Diffusive air–water CO 

2
  and CH 

4
   fl uxes (F) were computed according to:

     = D[ ]F k C    

where  k  is the gas transfer velocity and  D [C] is the air–water gradient of CO 
2
  or CH 

4
 , 

using an atmospheric pCO 
2
  value ranging from ~372 to ~376 ppm (depending on 

the cruise) and an atmospheric CH 
4
  partial pressure of 1.8 ppm. 

  k  was computed from wind speed using the parameterization of Cole and Caraco 
 (  1998  )  and the Schmidt number of CO 

2
  or CH 

4
  in fresh water according to the algo-

rithms given by Wanninkhof  (  1992  ) . Wind speed data were acquired with a Davis 
Instruments meteorological station in Bukavu (2.51°S 28.86°E). F was computed 
with daily wind speed averages for a time period of one month centred on the date 
of the middle of each  fi eld cruise. Such an approach allows to account for the day-
to-day variability of wind speed, and to provide F values that are seasonally 
representative.  

    4.3   Results and Discussion 

    4.3.1   Spatial Variability of pCO 
2
  and CH 

4
  

 In the surface waters (10 m depth) of the main basin of Lake Kivu (excluding 
Kabuno Bay but including Bukavu Bay), pCO 

2
  values were systematically above 

atmospheric equilibrium (~372 to ~376 ppm depending on the cruise), and varied 
within narrow ranges of 537–603 ppm in March 2007, 702–775 ppm in September 
2007, 597–640 ppm in June 2008, and 581–711 ppm in April 2009 (Fig.  4.2 ). The 
coef fi cient of variation of pCO 

2
  in surface waters of the main basin ranged for each 

cruise between 3% and 6%, below the range reported by    Kelly et al.  (  2001  )  in  fi ve 
large boreal lakes (range 5–40%).  

 The most prominent feature of the spatial variation was the much higher pCO 
2
  

values in Kabuno Bay ranging between 13,158 and 14,793 ppm (between 18 and 
26 times higher than in the main basin). Compared to the main basin, surface and 
deep waters of Kabuno Bay were characterized by higher salinity, DIC and TA 
values (Figs.  4.3  and  4.4 ) and by lower pH and  d  13 C 

DIC
  values (Figs.  4.3  and  4.4 ). 

Comparison of DIC and TA pro fi les (Fig.  4.4 ) shows that the relative contribution 
of CO 

2
  to DIC is more important in Kabuno Bay than in the main lake, since TA is 
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mainly as HCO  
3
  −  , and if the CO 

2
  contribution to DIC is low, then DIC and TA 

should be numerically close. At 60 m depth, CO 
2
  contributes ~30% to DIC in 

Kabuno Bay, and ~1% in the main basin. Kabuno Bay was also characterized by a 
very stable chemocline (salinity, pH) and oxycline at ~11 m irrespective of the 
sampling period (Fig.  4.3 ). In the main basin of Lake Kivu, the oxycline varied 
seasonally between ~35 m in March and September 2007 and ~60 m in June 2008 
(Fig.  4.3 ). Overall, these vertical patterns indicate that there is a much larger con-
tribution of subaquatic springs to the whole water column including surface waters 
in Kabuno Bay than in the main basin of Lake Kivu. This is related to the different 
geomorphology, since Kabuno Bay is shallower than the main basin (maximum 
depth of 110 m vs. 485 m) and exchanges little water with the main basin (narrow 
connection ~10 m deep). Also, Kabuno Bay is smaller (~48 km 2 ) than the main 
basin (~2,322 km 2 ). Hence, there is a stronger fetch limitation of wind induced 
turbulence that also contributes to the stability of the water column vertical struc-
ture in Kabuno Bay whatever the season.   

 Part of the observed horizontal gradients of pCO 
2
  in the main basin of Lake Kivu 

could be related to diel variations, since measurements were carried out irrespective 
of the time of the day (mostly from dawn to dusk, but sometimes at night). We 
investigated the diel cycle of pCO 

2
  during a 24 h cycle on 23/03–24/03/2007 

(Fig.  4.5 ). The amplitudes of the daily variations of pCO 
2
  at the three depths were 

similar (~30 ppm), but pCO 
2
  during day-time was up to ~30 ppm higher at 1 m than 

at 5 m and 10 m depth. This was related to shallow strati fi cation during day-time, 
with temperatures at 1 m depth up to 1.05°C and 1.15°C higher than at 5 and 10 m 
depth, respectively. At the end of the night the top 10 m water column became 
isothermal, due to heat loss to the atmosphere and convection of surface waters. In 
order to remove the effect of temperature change on the CO 

2
  solubility coef fi cient, 

  Fig. 4.2    Spatial distribution of the partial pressure of CO 
2
  (pCO 

2
 , ppm) in the surface waters of 

Lake Kivu (10 m depth) in March 2007, September 2007, June 2008 and April 2009       
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  Fig. 4.3    Vertical pro fi les of salinity, oxygen saturation level (%O 
2
 , %) and pH in Kabuno Bay and 

in the three northernmost stations of the main basin of Lake Kivu, in March 2007, September 2007 
and June 2008 (vertical pro fi les were not acquired in April 2009)       
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  Fig. 4.4    Vertical pro fi les of total alkalinity (TA, mM), dissolved inorganic carbon (DIC, mM) and 
 d  13 C 

DIC
  (‰) in Kabuno Bay and in the three northernmost stations of the main basin of Lake Kivu, 

in March 2007, September 2007 and June 2008 (vertical pro fi les were not acquired in April 
2009)       
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pCO 
2
  values were normalized to a temperature of 23°C (pCO 

2
 @23°C). At 1, 5 and 

10 m depth, pCO 
2
 @23°C values increased during night-time and decreased during 

day-time, as expected from the dominance of community respiration during night-
time and occurrence of primary production during day-time. This was consistent 
with the %O 

2
  variations that roughly mirrored those of pCO 

2
 . The daily variations 

of pCO 
2
 @23°C at all depths were very consistent, and pCO 

2
 @23°C values were 

lower at 1 m than at 10 m, as expected from higher biological activity in relation to 
lower light attenuation in surface waters, and possibly also the loss of CO 

2
  to the 

atmosphere. Daily variability of pCO 
2
  in March 2007 was similar to the spatial hori-

zontal gradients in surface waters in the main basin of Lake Kivu observed during 
that cruise.  

 CH 
4
  concentrations in the surface waters of the main basin were systematically 

above atmospheric equilibrium (~2 nM), and varied within relatively narrow ranges 
of 30–75 nM in March 2007, 54–197 nM in September 2007, 30–120 nM in June 
2008, and 18–83 nM in April 2009 (Fig.  4.6 ). In September 2007, CH 

4
  concentra-

tions in Kabuno Bay were within the range of values in the main basin, but they 
were ~6 times higher in April 2009, and ~8 times higher in both March 2007 and 
June 2008. CH 

4
  concentrations in surface waters of lakes result from the balance of 

inputs from depth or laterally from the littoral zone, and of loss terms (bacterial 
oxidation and evasion to the atmosphere) (Bastviken et al.  2004  ) . Tietze et al.  (  1980  )  
showed that CH 

4
  concentrations in deep waters of Kabuno Bay are similar to the 

ones for similar depths in the main basin of Lake Kivu. The likely higher relative 
contribution of deepwater springs in Kabuno Bay than in the main basin increases 
the upward  fl ux of solutes and might explain the higher CH 

4
  concentrations observed 

  Fig. 4.5    Time series of the partial pressure of CO 
2
  (pCO 

2
 , ppm), temperature (°C), pCO 

2
  normal-

ized to a temperature of 23°C (pCO 
2
 @23°C, ppm) and oxygen saturation level (%O 

2
 , %) at 1, 5 

and 10 m depth at the station indicated by a star in Fig.  4.1  from 23/03/2007 (13:00) to 24/03/2007 
(14:00)       
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in Kabuno Bay than in the main basin. The shallower oxycline in Kabuno Bay could 
also promote less removal of CH 

4
  by aerobic bacterial oxidation.   

    4.3.2   Seasonal Variations of pCO 
2
  and CH 

4
  

and Diffusive Air–Water Fluxes 

 The average pCO 
2
  in surface waters of each of the four cruises in the main basin of 

Lake Kivu was positively related to the mixed layer depth and CH 
4
  concentrations, 

and negatively related to  d  13 C 
DIC

  (Fig.  4.7 ). This suggests than the deepening of the 
mixed layer and entrainment of deeper waters to the surface mixed layer is a major 
driver of seasonal variability of pCO 

2
  and CH 

4
  concentrations in surface waters of 

the main basin of Lake Kivu. Indeed, deeper waters are richer in pCO 
2
  and DIC 

(Fig.  4.4 ; Tietze et al.  1980 ; Schmid et al.  2005  )  and CH 
4
  (Tietze et al.  1980 ; Schmid 

et al.  2005  )  than surface waters, and the DIC in deeper waters is more  13 C-depleted 
than that in surface waters (Fig.  4.4 ; Tassi et al.  2009  ) .  

 Seasonal variations of wind speed were rather modest (coef fi cient of variation 
of 13%), ranging between 1.2 ± 0.4 m s −1  in September 2007 and 1.6 ± 0.2 m s −1  in 
June 2008. Hence, seasonal variations of diffusive air–water  fl uxes of CH 

4
  and 

CO 
2
  closely tracked those of CH 

4
  concentrations and pCO 

2
 . Emissions of CH 

4
  

from surface waters in the main basin ranged between 26  m mol m −2  day −1  in March 
2007 and April 2009 and 50  m mol m −2  day −1  in September 2007. Emissions of CH 

4
  

from surface waters in Kabuno Bay ranged between 53  m mol m −2  day −1  in 
September 2007 and 185  m mol m −2  day −1  in April 2009. Emissions of CO 

2
  from 

surface waters in the main basin ranged between 4 mmol m −2  day −1  in March 2007 
and 8 mmol m −2  day −1  in September 2007. Emissions of CO 

2
  from surface waters 

  Fig. 4.6    Spatial distribution of the CH 
4
  concentration (nM) in the surface waters of Lake Kivu 

(10 m depth) in March 2007, September 2007, June 2008 and April 2009 (Borges et al.  2011  )        
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in Kabuno Bay ranged between 270 mmol m −2  day −1  in September 2007 and 
307 mmol m −2  day −1  in March 2007.  

    4.3.3   Global and Regional Comparison with Other Lakes 

 When compared to other lakes globally (Bastviken et al.  2004 ; Sobek et al.  2005  ) , 
the main basin of Lake Kivu ranks 3,629th in terms of pCO 

2
  in surface waters (out 

of 4,904 lakes) and 47th in terms of CH 
4
  concentration in surface waters (out of 49 

lakes) (Fig.  4.8 ). Kabuno Bay ranks 7th in terms of pCO 
2
  and 30th in terms of CH 

4
  

concentrations in surface waters.  
 The comparison of pCO 

2
  and DOC has been frequently used in limnology for 

cross-system analysis of pCO 
2
  data (del Giorgio et al.  1999 ; Riera et al.  1999 ; 

Kelly et al.  2001 ; Sobek et al.  2003,   2005 ; Roehm et al.  2009 ; Teodoru et al.  2009  ) . 
There is in general a positive relationship between pCO 

2
  and DOC that can be 

indicative of terrestrial organic matter inputs (as traced by DOC) sustaining net 
heterotrophy in freshwater ecosystems (as indicated by pCO 

2
 ). Alternatively and 

not incompatibly, this positive relationship can also be indicative of lateral inputs 
of both DOC and CO 

2
  from soils by ground-waters and surface run-off. Values in 

the main basin of Lake Kivu compare surprisingly well to the relationship of pCO 
2
  

and DOC established from a global compilation of lakes across all climatic zones 
(Fig.  4.9 ), yet at the lower end of values in agreement with the oligotrophic nature 
of Lake Kivu. Values in Kabuno Bay stand clearly above the relationship of pCO 

2
  

and DOC in lakes globally, testifying the role of large contribution of CO 
2
  from 

subaquatic springs.  
  d  13 C 

DIC
  signatures for surface waters in Lake Kivu range between +2.6‰ and 

+3.5‰ for the main basin and between +0.3‰ and +1.5‰ for Kabuno Bay, which 
is in the higher range of that reported earlier for lakes (Fig.  4.10 ).  d  13 C 

DIC
  signatures 

  Fig. 4.7    Mean values of the partial pressure of CO 
2
  (pCO 

2
 , ppm) in the surface waters (10 m) 

versus mixed layer depth (m), versus CH 
4
  concentration in surface waters (10 m, nM) and versus 

 d  13 C 
DIC

  (‰) in surface waters (10 m) in the main basin of Lake Kivu in March 2007, September 
2007, June 2008 and April 2009. Error bars correspond to standard deviations on the mean       
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in lakes are to a large extent determined by the geochemistry of the watershed, but 
are further in fl uenced by biological processes including respiration (which adds 
 13 C-depleted CO 

2
 ), photosynthesis (which preferentially removes  12 CO 

2
 , and sub-

sequently leads to higher  d  13 C 
DIC

 ), and methane oxidation (which adds highly 
 13 C-depleted CO 

2
 ). In Lake Kivu, the majority of DIC is thought to be of magmatic 

origin (Schoell et al.  1988  ) , with typically rather  13 C-enriched signatures between 
 − 7‰ and −4‰ (Tietze et al.  1980  ) .  d  13 C 

DIC
  in surface waters of Lake Kivu are 

slightly higher and DIC concentrations are consistently higher in Lake Kivu than 
in Lakes Tanganyika and Malawi (Table  4.1 ), where the contribution of subaquatic 
springs is thought to be signi fi cantly lower (Table  4.2 ). Given the very high DIC 
concentrations in Lake Kivu, the magmatic inputs likely provide the dominant 
imprint on  d  13 C 

DIC
  signatures, although seasonal and depth variations (Figs.  4.4  and 

 4.7 ) clearly hold information on the mixing regime and biological processes which 

  Fig. 4.8    Comparison by rank of the partial pressure of CO 
2
  (pCO 

2
 , ppm) and of CH 

4
  concentration 

(nM) in surface waters of the main basin of Lake Kivu and Kabuno Bay (average of the four cruises 
at 10 m) with global compilations in lakes by Sobek et al.  (  2005  )  and Bastviken et al.  (  2004  ) , 
respectively       
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need to be examined in more detail. Interestingly, data from Lake Sonachi, a small 
crater lake adjacent to Lake Naivasha, Kenya (see e.g. Verschuren  1999  )  show even 
more extreme DIC concentrations (200–230 mM) and  d  13 C 

DIC
  signatures of +9‰ 

(Fig.  4.10 ) which is among the highest recorded so far in any lake system. The latter 

  Fig. 4.9    Relationship between partial pressure of CO 
2
  (pCO 

2
 , ppm) and dissolved organic carbon 

(DOC, mg L −1 ) in lakes reported by Sobek et al.  (  2005 ; log(pCO 
2
 ) = 2.67 + 0.414 log(DOC); r 2  = 0.26) 

and values in the main basin of Lake Kivu and Kabuno Bay (average of the four cruises at 10 m)       

  Fig. 4.10    Comparison of dissolved inorganic carbon (DIC,  m M) concentrations and  d  13 C 
DIC

  (‰) 
across a range of lakes: Lake Kivu (surface waters from main basin and Kabuno Bay, this study), 
Lake Tanganyika (Craig  1974  ) , Lake Malawi (Hecky and Hesslein  1995  ) , Lake Sonachi (Kenya, 
own unpublished data), and from a survey in a range of temperate lakes (Bade et al.  2004  )        
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values would be consistent with high primary production and predominantly mantle-
derived CO 

2
  inputs in this enclosed system.    

 In Table  4.1 , salinity, TA, DIC and pCO 
2
  values from surface waters of Lake 

Kivu are compared to limited data-sets from Lakes Malawi and Tanganyika. The 
higher salinity and TA values in Lake Tanganyika than in Lake Malawi are probably 
related to the higher residence time,  fl ushing time and ratio of evaporation to pre-
cipitation in Lake Tanganyika (Table  4.2 ). The higher salinity, TA, DIC and pCO 

2
  

values in Lake Kivu than Lake Tanganyika cannot be explained in terms of higher 
residence time and  fl ushing time. This would suggest that higher values of these 
quantities in Lake Kivu are due to subaquatic springs that are undocumented in 
Lake Tanganyika. Subaquatic springs in Lake Kivu are similar in terms of  fl ow to 
those in Lake Malawi but the volume of Lake Kivu is more than 14 times smaller, 
leading to a more intense impact on the chemistry of Lake Kivu. Based on available 
data, Lake Tanganyika behaves as a sink for atmospheric CO 

2
 , while the present 

data shows that Lake Kivu is a source of CO 
2
  to the atmosphere throughout the 

annual cycle. The sink of CO 
2
  in Lake Tanganyika should be sustained by an export 

   Table 4.1    Comparison of salinity, total alkalinity (TA, mM), dissolved inorganic carbon (DIC, 
mM) and the partial pressure of CO 

2
  (pCO 

2
 , ppm) from surface waters of Lake Malawi (Hecky and 

Hesslein  1995 ; Branchu et al.  2010  ) , Lake Tanganyika (Craig  1974  ) , the main basin of Lake Kivu 
and Kabuno Bay (this study)   

 Salinity  TA (mM)  DIC (mM)  pCO 
2
  (ppm) 

 Lake Malawi  0.2  2.33  2.3  N/A 
 Lake Tanganyika  0.7  6.54  5.9  280 
 Main basin of Lake Kivu  1.2  13.00  12.0  640 
 Kabuno Bay  1.6  16.90  17.3  13,640 

  pCO 
2
  data in Lake Tanganyika were computed from original DIC and TA data reported by Craig 

 (  1974  )  using the carbonic acid dissociation constants of Millero et al.  (  2006  ) , and adjusted to 2008 
by accounting for the increase of atmospheric CO 

2
   

   Table 4.2    Morphometry and hydrology of Lakes Kivu (Chap. 2 ) , Tanganyika and Malawi 
(Branchu  2001  )    

 Lake Kivu  Lake Tanganyika  Lake Malawi 

 Surface (km 2 )  2,370  32,600  28,800 
 Volume (km 3 )  580  18,880  8,400 
 Precipitation (km 3  year −1 )  3.3  32.6  44.1 
 Evaporation (km 3  year −1 )  3.6  55.3  59.6 
 Surface in fl ows (km 3  year −1 )  2.0  29.0  28.8 
 Out fl ow (km 3  year −1 )  3.0  6.3  12.1 
 Flow from subaquatic springs 

(km 3  year −1 ) 
 1.3  ?  1.3 

 Flushing time (years) a   193  2,997  697 
 Residence time (years) b   88  306  113 

   a Volume/out fl ow 
  b Volume/(precipitation + in fl ow)  



62 A.V. Borges et al.

of organic carbon from surface to depth. There is no reason to believe that Lake 
Kivu should behave otherwise in the terms of export of organic C to depth. This 
would imply that the source of CO 

2
  to atmosphere in Lake Kivu is mainly sustained 

from inputs to surface waters of DIC from depth (subaquatic springs). 
 The CH 

4
  concentrations in surface waters of Lake Kivu were surprisingly low 

compared to lakes globally, considering the huge amounts of CH 
4
  contained in the 

deep layer of the lake, i.e. concentrations up to 10 6  higher than in surface waters 
(Schmid et al.  2005  ) . Cross-system comparison of CH 

4
  in surface waters of lakes was 

carried out as a function of lake surface area (Fig.  4.11 ). Both Kabuno Bay and the 
main basin of Lake Kivu fall on the negative relationship between CH 

4
  and lake sur-

face area. There is probably not a unique explanation of the negative relationship 
between CH 

4
  concentrations and lake surface area, but rather a combination of several 

factors. In smaller systems there is a higher supply of allochthonous inputs (from 
catchment and littoral zone) of nutrients and organic C relative to volume of lake 
(i.e., large ratio of catchment area to lake surface area). This will sustain high levels 
of degradation in sediments of organic C of allochthonous and autochthonous nature 
(the former sustained by allochthonous nutrient inputs) (Schindler  1971  ) , and pro-
motes a higher  fl ux of CH 

4
  from sediments to the water column in smaller systems. 

As a  fi rst approximation, we can also assume that smaller systems are shallower than 
larger ones. In shallow systems there will be a higher probability of sediment re-
suspension coupled to a lower removal of CH 

4
  by bacterial oxidation, due to a shorter 

distance between sediments and the air-water interface. Finally, in larger systems, 
there will be a lower fetch limitation of wind induced turbulence and gas transfer 
velocity (Wanninkhof  1992 ; Fee et al.  1996  )  leading to a higher loss of CH 

4
  by 

  Fig. 4.11    Relationship between CH 
4
  concentration (nM) and lake surface area (km 2 ) in the main 

basin of Lake Kivu and Kabuno Bay (average of the four cruises at 10 m) and from the compilation 
by Bastviken et al.  (  2004  ) . Relationship between CH 

4
  concentration and lake surface area 

(log(CH 
4
 ) = 2.42 – 0.229 log(lake surface area); r 2  = 0.40; p < 0.0001; n = 47) was not originally 

reported by Bastviken et al.  (  2004  )  but is based on the same data-set. Note the higher number of 
observations of CH 

4
  in lakes smaller than 10 km 2  (adapted from Borges et al.    2011   )       
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 emission to the atmosphere (for an identical air-water gradient of CH 
4
 ). The lower 

fetch limitation of wind induced turbulence in larger systems will also promote deeper 
oxygenated mixed layers, promoting CH 

4
  loss by bacterial aerobic CH 

4
  oxidation.    

    4.4   Conclusions 

 There are several lines of evidence (see Chaps.   5     and   6    ) that suggest that the epilimnion 
of Lake Kivu is net autotrophic, whereby gross primary production exceeds com-
munity respiration. This is consistent with the fact that the watershed of Lake Kivu 
is only about twice as large as the lake surface (Chap.   2    ), and a very narrow littoral 
zone due to steep shores, whereby the contribution of allochthonous organic C 
inputs to the overall organic C  fl uxes in the lake is expected to be minor. We then 
conclude that the over-saturation of surface waters with respect to atmospheric CO 

2
  

and emission of CO 
2
  to the atmosphere (on average for the four cruises: 6 and 

289 mmol m −2  day −1 , in the main basin and Kabuno Bay, respectively) are sustained 
by inputs of CO 

2
  from depth derived from subaquatic springs and the degradation of 

organic carbon. 
 The CH 

4
  concentrations in surface waters of Lake Kivu were surprisingly low 

compared to lakes globally, considering the huge amounts of CH 
4
  contained in the 

deep layer of the lake, i.e. concentrations up to 10 6  higher than in surface waters 
(Schmid et al.  2005  ) . This is related to highly strati fi ed conditions of the lake that 
promote a very strong removal of CH 

4
  by bacterial oxidation (Jannasch  1975 ; Pasche 

et al.  2011  )  leading to low CH 
4
  concentrations in surface waters, and a modest emis-

sion of CH 
4
  to the atmosphere (on average for the four cruises: 36 and 

106  m mol m −2  day −1 , in the main basin and Kabuno Bay, respectively). 
 Kabuno Bay showed distinct pCO 

2
 , CH 

4
 , pH and  d  13 C 

DIC
  values compared to the 

main basin of Lake Kivu, which are related to a larger contribution of subaquatic 
springs inputs as suggested by vertical pro fi les of all reported variables. A large 
contribution of CO 

2
  from subaquatic springs could also explain that Kabuno Bay 

ranks seventh in terms of pCO 
2
  in surface waters compared to lakes globally, and 

that values strongly deviate from the relationship between pCO 
2
  and DOC in lakes 

globally.      
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