
Highlights

• We present a patient-specific seizure detection algorithm conveying
structural information from the multichannel EEG using a novel ma-
chine learning technique applied to epileptic EEG data for the first
time.

• The proposed system automatically incorporates crucial spatial infor-
mation specific to the patient’s seizure and facilitates improved detec-
tion performance.

• The proposed system reduces the number of required seizure examples,
thus the training time needed to tune the system to individual patients

1



Incorporating structural information from the

multichannel EEG improves patient-specific seizure

detection

Borbala Hunyadia,b,∗, Marco Signorettoa,b, Wim Van Paesschenc, Johan
A.K. Suykensa,b, Sabine Van Huffela,b, Maarten De Vosa,b,d

aSCD - SISTA, Department of Electrical Engineering - ESAT, Katholieke Universiteit

Leuven
bIBBT Future Health Department

cDepartment of Neurology, University Hospital Gasthuisberg, Leuven, Belgium
dNeuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg,

Germany

Abstract

Objective: A novel patient-specific seizure detection algorithm is pre-
sented. As the spatial distribution of the ictal pattern is characteristic for a
patient’s seizures, this work aims at incorporating such information into the
data representation and provides a learning algorithm exploiting it. Meth-
ods: The proposed training algorithm uses nuclear norm regularization to
convey structural information of the channel-feature matrices extracted from
the EEG. This method is compared to two existing approaches utilizing the
same feature set, but integrating the multichannel information in a different
manner. The performances of the detectors are demonstrated on a pub-
licly available dataset containing 131 seizures recorded in 892 hours of scalp
EEG from 22 pediatric patients. Results: The proposed algorithm performed
significantly better compared to the reference approaches (p=0.0170 and
p=0.0002). It reaches a median performance of 100% sensitivity, 0.11/h false
detection rate and 7.8s detection delay, outperforming a method in the liter-
ature using the same dataset. Conclusion: The strength of our method lies
within conveying structural information from the multichannel EEG. Such
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formulation automatically includes crucial spatial information and improves
detection performance. Significance: Our solution facilitates accurate classi-
fication performance for small training sets, therefore, it potentially reduces
the time needed to train the detector before starting monitoring.

Keywords: seizure detection, EEG, structural information, convex
optimization, nuclear norm, LS-SVM

1. Introduction

Epilepsy, the second most common neurological disorder after stroke, oc-
curs in over 0.5% of the world population (De Boer et al. (2008)). This
disease is manifested through recurrent epileptic seizures, resulting from an
abnormal, synchronous activity in the brain involving a large network of neu-
rons. Depending on the brain regions involved in the seizure, the patient may
have diverse clinical symptoms, including sensory dysfunction, loss of con-
sciousness, motor automatisms, etc. Approximately 30% of epilepsy patients
are non-responsive to anti-epileptic drugs (refractory epilepsy) (see Engel
(1996)), hence their quality of life is seriously compromised and surgical re-
section of the epileptic focus has to be considered.

The electroencephalogram (EEG) measures the electrical activity of the
brain and is a well-established technique in epilepsy diagnosis and moni-
toring. As EEG monitoring takes several days, the amount of information
to be processed is huge. The benefits of the automatic analysis of EEG
recordings are twofold. An automatic seizure detection technique supporting
visual analysis would drastically decrease the workload of clinicians. Besides,
due to its fine temporal resolution, EEG can provide accurate information
about the onset of the seizure. As the seizure spreads quickly through the
brain, the early detection of the seizure is essential. Preparing the patient for
SPECT scan by injecting a contrast agent early in the course of the seizure
helps revealing the focus of the epilepsy, and facilitates a successful surgical
outcome.

The large inter-patient variability regarding seizure characteristics poses
a great challenge for developers of a universal, automatic seizure detector.
However, in case of unifocal epilepsy patients, patient-specific systems are
more promising, due to the rather consistent intra-patient seizures regard-
ing both temporal pattern and localization. We propose a seizure detector
capable of exploiting this crucial structural information underlying the mul-
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tichannel EEG data, therefore, providing better performance and requiring
a lower amount of seizure data for training than other approaches.

Several existing seizure detection algorithms act on single channel data
(e.g. Deburchgraeve et al. (2008), De Vos et al. (2011) Polychronaki et al.
(2010), Zandi et al. (2010)). Methods attempting to integrate multichannel
information include two-step systems, where, in the first step a decision is
made for each channel by a separate classifier, and in the second step the
outputs of these classifiers serve as the input of a combined, final decision pro-
cedure (e.g. Qu and Gotman (1997); Greene et al. (2008) ) compared such a
late integration method to an early integration method, where the features
extracted from each channel are sorted and stacked into a long feature vector,
which is then used to train a single classifier. The early integration method
was shown to be superior in performance, by preserving the synchronously
recorded nature of the EEG and exploiting the inherent inter-relationship of
the channels. Shoeb and Guttag (2010) developed a patient-specific seizure
detector, which relies on features describing the temporal evolution, the spec-
tral and the spatial structure of the EEG. In order to capture spatial infor-
mation, the features of each channel are concatenated to form one feature
vector. As opposed to the former study, where the sorting operation was
intended to remove spatial information, the goal of the stacking in this case
is to drive the attention to the locations corresponding to the channels con-
sistently showing seizure activity.

In the present paper a novel solution is investigated. The features ex-
tracted from the multichannel EEG are represented in the form of a matrix
which serves as an input to a classifier. The matrix representation of the data
helps preserving and exploiting the inherent spatial structure of the multi-
channel EEG data. Moreover, recent studies (He et al. (2006), Tao et al.
(2007)) show that matrix and tensor representation of signals reduce the
small sample-size problem, facilitating a precise classification performance
even for low number of training points and outperform traditional vector
representation.

The paper is organized as follows. In section 2 the EEG dataset used
in this study is presented. Afterwards, the extracted features are described,
together with three different strategies on integrating the feature information
extracted from the individual channels: the early integration and late inte-
gration approaches, and the feature-channel matrix we propose. Further, the
different machine learning solutions utilizing these data representations are
explained. At last, the applied performance evaluation measures are enu-
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merated. Section 3 presents the results of the study used to compare the
performances of the different seizure detection approaches. Finally, section
4 and 5 is devoted to the discussion and concluding remarks.

2. Materials and Methods

Fig. 1 depicts the consecutive steps of the entire procedure involved in
training and testing the seizure detectors. The following sections describe
each step in detail.

2.1. Training and testing EEG data

The seizure detectors were evaluated using the CHB-MIT database, which
includes the scalp EEG recordings of 23 pediatric patients, and is available
online at PhysioNet ( http://physionet.org/physiobank/database/chbmit,
Goldberger et al. (2000)). All patients of the dataset were included in our
study except for one, in case of which the entire electrode montage was al-
tered during the recordings. A number of channels were changed in case
of some other patients as well. In these cases 18 channels were considered,
which remained unchanged throughout the whole duration of the recording.
In the rest of the patients, all 23 channels of the electrode montage was used.
Our dataset, therefore, consists of the scalp recordings of 22 patients. A
second dataset was recorded 1.5 years after the first recording of patient 1.
This recording was handled separately, resulting in 23 distinct datasets. A
total of 131 seizures were recorded during 892 hours of monitoring. The data
were sampled at 256Hz and a bipolar electrode montage was used. Detailed
description of the dataset can be found online (see the link above).

In order to assess the capabilities of the seizure detectors trained with
different amount of seizure information, several experiments were performed.
Mutually non-overlapping training and testing datasets were created in each
experiment for each patient in the following way. The seizures of each patient
were ordered according to the times of their onset. In each experiment,
seizures which occurred earlier in time were included in the training set, and
the rest of the seizures were added to the test set. For instance, if four seizures
were recorded from a patient, three experiments were performed. In the first
experiment one seizure was included in the training, and three in the test; in
the second experiment two seizures were included in the training and two in
the test; finally, in the third experiment three seizures were included in the
training and one in the test. Maximum five experiments were performed per
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patient, even if the number of recorded seizures would have allowed larger
training sets.

Non-seizure datapoints for the training set were selected from the EEG
recorded over a twenty-four hour period, as this period covers the different
brain functioning states connected to sleep and other activity levels affecting
EEG (see Qu and Gotman (1997)). In order to limit the computational costs,
but at the same time cover as many different EEG patterns as possible, one
minute long segments recorded every fifteen minutes were included for the
training.

The seizure detectors were tested on continuous EEG data recorded after
the twenty-four hour period used for constructing the training set. All avail-
able seizure data, which were not included in the training were added to the
test dataset, resulting in a total of 474 hours of test data, on average 21.56
hours per patient, ranging from 1.13 to 125.94 hours.

2.2. Preprocessing and feature extraction

Seizures often involve involuntary movements and muscle contractions,
which contaminate EEG data seriously and hinder interpretation. Muscle
artifacts were automatically removed applying canonical correlation anal-
ysis for blind source separation (BSS-CCA) (see De Clercq et al. (2006);
De Vos et al. (2010)). Afterwards, each EEG channel was band-pass filtered
between 1-30 Hz. The signals were segmented into 2s long non-overlapping
epochs and a total of sixteen features were extracted from each channel of
each epoch. The extracted features, listed in Table 1, are well established
and widely used in the literature, not only for adult scalp EEG (Meier et al.
(2008); Minasyan et al. (2010); Qu and Gotman (1997)), but also for in-
tracranial recordings (Tito et al. (2009)) or neonatal seizure detection (Temko et al.
(2011)). The definition and computation of the features are described in
Appendix A. The feature set corresponding to one epoch (a total of 16
times 23 or 18 features) will be referred to as datapoint throughout this
paper.

2.3. Integration of multichannel information

A distinct feature set is extracted from each EEG channel, however, the
multichannel information has to be integrated in one global decision in each
epoch. We compared three different integration approaches. The first two
are described and studied in detail in Greene et al. (2008), the third one
is a novel approach we propose and evaluate in this paper. The different
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integration approaches result in different data representation, and require
different learning and classification schemes. The various stages of the three
algorithms are depicted in Figure 2, and are explained in detail below.

2.4. Early and late integration with least-squares support vector machines
(LS-SVM)

2.4.1. Late integration (LI)

Traditional seizure detection systems classify the feature set of each chan-
nel separately, and then combine the channel outcomes in an independent
step. There are several different strategies that can be followed. The outputs
of the channel classifiers can be binary or probabilistic. Post-processing can
be performed applying a moving average filter on the outputs from the con-
secutive epochs (Thomas et al. (2009)). A channel detection might automat-
ically induce an alarm (Deburchgraeve et al. (2008)); or the channel outputs
can be integrated via mean, max, min score, or majority vote (Greene et al.
(2008)). The number of channels contributing to the global score might as
well be limited (Saab and Gotman (2005)), or weighted, this way includ-
ing prior spatial information. The final classifier output may be converted to
posterior probabilities using a sigmoid function (Temko et al. (2011)). In the
current study p number of LS-SVM classifiers (see 2.4.3) are trained, where p
corresponds to the number of EEG channels. During monitoring the feature
sets of each channel are classified independently. The continuous outputs of
the single channel classifiers are integrated by taking their maximum. The
final decision is made by comparing the integrated output to the detection
threshold bLI . The choice of the detection threshold is explained below in
2.6.

2.4.2. Early integration (EI)

In this approach the feature vectors extracted from each EEG channel
are stacked into one long feature vector of length p ·d, where p is the number
of channels and d is the number of extracted features. As explained above,
stacking the channel vectors ensures that the synchronously recorded and
inter-dependent nature of multichannel EEG is preserved in the input pat-
terns, and therefore exploited in the learning procedure. Furthermore, the
channels are concatenated in fixed order, aiming at including spatial infor-
mation characteristic of the patient’s seizures. The stacked feature vectors
are used to train one global LS-SVM classifier (see 2.4.3). During monitoring
the feature set of each new epoch is processed by the global classifier and the
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continuous outputs are compared to the detection threshold bEI (see 2.6) in
order to obtain the final decision.

2.4.3. LS-SVM

A support vector machine (SVM) is a widely used universal learning
machine, which works based on the following principle: Let {xk, yk}

N
k=1 be the

training dataset with xk ∈ R
d input samples and yk ∈ {−1, 1} class labels. In

our case the input samples are the feature vectors extracted from the training
EEG epochs, which are labelled as seizure or non-seizure examples. Our aim
is to train a classifier based on the input samples, which will assign a class
label to each new EEG epoch. The classifier is defined by

y(x) = sign[wTϕ(x) + b], (1)

where w is a weighting vector and ϕ is the feature map which maps the in-
put data to a higher-dimensional feature space. The objective in the SVM
formulation is to construct a separating hyperplane in the feature space with
maximal margin. This can be translated to the following optimization prob-
lem:

min
w,ek,b

1

2
wTw + C

N
∑

k=1

ek, (2)

subject to

yk[w
Tϕ(x) + b] ≥ 1− ek, ek ≥ 0, k = 1, ..., N

where C is a regularization constant. By constructing the Lagrangian and
taking the conditions for optimality, one obtains the dual problem, which is
the following quadratic programming problem:

max
α

N
∑

k=1

αk −
1

2

N
∑

k=1

N
∑

l=1

αkαlykylK(xk, xl), (3)

subject to
N
∑

k=1

αkyk = 0 and 0 ≤ αk ≤ C for k = 1, ..., N,
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where xk ∈ R
d and K(x, xk) = ϕ(x)Tϕ(xk) is a symmetric and positive

definite kernel function satisfying the Mercer theorem. The xk input vectors
corresponding to non-zero αk values are called support vectors. The classifier
in the dual space takes the form:

y(x) = sign[
∑

k

αkykK(x, xk) + b] (4)

In the current paper we applied the least-squares support-vector machine
introduced by Suykens and Vandewalle (1999). In this formulation equality
constraints are used instead of inequality constraints in (2):

min
w,ek,b

1

2
wTw + γ

N
∑

k=1

e2k, (5)

subject to

ŷk[w
Tϕ(x) + b] = 1− ek,

together with a squared loss, which simplifies the computation to solving a
set of linear equations instead of a quadratic programming problem:

[

0 yT

Y Ω + γ−1I

] [

b

α

]

=

[

0
1N

]

(6)

with y = [y1, ..., yN ]
T , 1N = [1, ..., 1]T , e = [e1, ..., eN ]

T , α = [α1, ..., αN ]
T ,

Ωkl = ykylK(xk, xl). In the LS-SVM case all values of α are non-zero,
consequently, the model is based on the whole input dataset - which can
be beneficial in the current application due to the small training set size.
For the same reason, and due to the relatively high dimensionality of the
input data, a linear kernel was applied. However, as RBF kernel is of-
ten used for seizure detection (e.g. Temko et al. (2011); Shoeb and Guttag
(2010)), it has also been tested. The LS-SVMlab v1.8 toolbox implementa-
tion (www.esat.kuleuven.be/sista/lssvmlab, De Brabanter et al. (2011)) was
used in this study, which performs automatic model selection, namely deter-
mining the tuning parameters by coupled simulated annealing (see Xavier de Souza et al.
(2010)). As optimization criterion five-fold crossvalidated misclassification
error was used.
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2.5. Feature-channel matrix with nuclear norm learning (NNL)

2.5.1. Feature-channel matrix

This paper presents a novel approach, where the features extracted from
each epoch are preserved in their original arrangement, in the form of a ma-
trix of size d × p, where d is the number of features and p is the number of
channels. Each row of the matrix contains the feature set extracted from the
corresponding channel. There is a large variability between the seizure pat-
terns of different patients. However, synchronization between EEG channels
is a generally occurring characteristic (Varsavsky et al. (2011)). Synchro-
nization may be observed on a few channels in case of a partial seizure, or
on a larger scale given a generalized seizure. Similar EEG pattern, therefore,
similar feature values will be present on those channels and in the rows of
the matrix corresponding those channels, which are involved in the seizure.
Representing the data in matrix form allows to exploit the common informa-
tion among the channels. Channels not involved in the seizure might show
various patterns of background activity, not distinguishable from patterns of
normal brain state. Thus, one can assume that the channels involved in the
seizure and the features most descriptive about the seizure pattern will have
the best discriminative power. As we expect common information on the
seizure channels

2.5.2. Singular value decomposition

In order to establish the method we propose, the concept of singular value
decomposition has to be introduced. Any matrix of real or complex values
can be written as the following:

M = UΣV ∗, (7)

where U and V are unitary matrices, V ∗ is the conjugate transpose of V ,
and Σ is a diagonal matrix. The diagonal elements of Σ, denoted as σi, are
in decreasing order, and are called the singular values of M . The columns
of U and V are called the left and right singular vector of M , and denoted
as Ui and Vi, respectively. Alternatively, M can be written as the weighted
sum of their outer products:

M =
∑

i

σiUi × Vi, (8)
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The number of non-zero singular values is the rank of the matrix. Trun-
cating the summation at the first r elements gives the best rank-r approxi-
mation of M in least-squares sense.

2.5.3. Convex optimization with nuclear norm penalty

For classification of the feature-channel matrix extracted from an EEG
epoch X, we consider the following linear model:

ŷ(A, b) = 〈A,X〉+ b, (9)

〈A,X〉 =
∑

i,j

Ai,jXi,j

where X ∈ Rd×p is the input pattern, A ∈ Rd×p is the classifier matrix of the
same size, and b is a bias term or threshold. Decisions are made according
to sign(ŷ) ∈ {−1, 1}, where 1 and −1 correspond to seizure and non-seizure
epoch, respectively. The classifier, namely the pair (A, b), is found by solving
a non-smooth convex optimization problem using nuclear norm penalty:

min
A,b

F (A, b) = f(A, b) + µ||A||∗, (10)

f(A, b) =
N
∑

k=1

(ŷk(A, b)− yk)
2, (11)

where f(A, b) is the quadratic error function accounting for the misclassifica-
tion. The choice of a quadratic error function was made specifically because
the same loss function is used in LS-SVM classification. Further, µ ≥ is the
regularization parameter. Model selection, namely the selection of the µ was
done according to the five-fold cross-validation of the misclassification error,
similarly to the model selection of LS-SVM. Finally, ||A||∗ is the nuclear norm
of the matrix A with singular values σi :

||A||∗ =
∑

i

σi. (12)

Regularization via nuclear norm conveys structural information and facil-
itates an approximately low-rank solution. It has been used to devise convex
relaxation for various rank-constrained matrix problems (Candes and Recht
(2009); Recht et al. (2007)), for matrix classification (Tomioka and Aihara
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(2007)) and it has been extended to the case of higher order arrays as a
heuristic for multilinear rank constrained problems (Signoretto (2011)).

The consecutive steps of the nuclear norm learning approach is summer-
ized in Appendix B. The algorithm solving (10) can be implemented in CVX

(Grant and Boyd (2011)), as given in Appendix C.

2.6. Optimal detection threshold

Seizures are rare events, consequently, there is a large amount of non-
seizure data available for training compared to seizure data. Classifica-
tion problems with skewed class sizes are called unbalanced problems and
need special attention. The Bayesian formulation used by Saab and Gotman
(2005) inherently incorporates seizure and non-seizure class probabilities.
Gardner et al. (2006) bypasses this issue by reformulating the classification
problem as a novelty detection problem, applying a one-class support vec-
tor machine (SVM). Nandan et al. (2010), applied support vector data de-
scription (SVDD), which can make use of ictal data as well, yielding better
detection performance. Traditional SVM approaches addressing the same
problem also exist. In the work of Temko et al. (2011) the classifier outputs
are converted to posterior probabilities using a sigmoid function. This tech-
nique is proven to perform significantly better than applying a threshold on
the original outputs (Platt (1999)).

Alternatively, a bias term correction can be used (Suykens et al. (2002)),
by adjusting the model thresholds bLI , bEI and bNNL in order to achieve opti-
mal classification performance. Due to the small amount of available seizure
data, the detection threshold was set using the training dataset, similarly to
Lukas et al. (2002). In this work we used misclassification error as optimality
criterion. First, the classification outputs obtained for the training samples
were collected. From this discrete set, the value minimizing the number of
falsely classified training datapoints was selected and assigned as detection
threshold.

2.7. Evaluation measures

The receiver operating characteristic (ROC) curve reflects the discrimi-
native power of a classifier by depicting its sensitivity versus its specificity for
every possible threshold value. A good classifier has high sensitivity along
with high specificity, resulting in a large area under the ROC curve (AUC).

In order to characterize the performance of the classifiers applied in a
seizure alarm system, the outputs obtained for the individual epochs have to
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be postprocessed and converted to alarms. The outputs were first converted
to {0,1} values with a signum function. A detection was made, if a value
1 was obtained this way for at least five consecutive epochs. Detections
occurring less than 30 seconds after each other were grouped together and
one single alarm was set off.

The following event-based measures are used to evaluate the performances
of the detectors:

1. Detection sensitivity

dS =
number of detected seizures

total number of seizures

2. False alarm rate

Rfa =
number of false alarms

duration of the EEG

3. Alarm delay

D = time of alarm setoff− time of seizure onset

4. Quality value

QV =
1

(Rfa + 0.2)× (dS ×D + (1− dS)× 60)

The quality value was introduced by Qu and Gotman (1997) in order to
compare different seizure detectors based on one measure reflecting all the
three above enumerated aspects of the performance. Sensitivity and detec-
tion delay are taken into account by creating a weighted average detection
delay. When the weighted average detection delay or the false detection rate
decreases, the quality value increases. Thus, the detector with the highest
quality value is the best one.

3. Results

Figure 4(a), depicting the classifier obtained for Patient 1, illustrates
the nature of the structural information conveyed by nuclear norm regular-
ization and its physiological meaning. The 16 columns correspond to the
different features extracted from the 23 channels, which constitute the rows
of the matrix. The classifier is well approximated by a matrix of rank 1,
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the first singular value carries 97.6% of the total energy (see Figure 4(b)).
The values of the left and right singular vectors represent the relative dis-
criminative power of the channels and features, respectively. Note that the
highest channel entries (electrodes over the right temporal and parietal area),
and highest feature entry (normalized power in the theta band) characterize
well the seizure pattern and localization as observed on Figure 3. Nuclear
norm regularization induced a solution where the feature entries follow a sim-
ilar pattern in each channel involved in the seizure, in agreement with the
considerations in 2.5.1.

In comparison, the classifier matrix obtained by EI (Figure 4(c)) is less
structured. Its singular values decay slower, the first singular value carrying
47.6% of the total energy. There are more channel and feature entries present
with high values, and the feature patterns observed on the channels are
diverse. This intuitively means that more EEG pattern details are considered
in the classifier. Subtle characteristics of the training seizures might not be
present in other seizures. This leads to overfitting and decreased predictive
performance. While it separates better the training data than NNL does(EI:
AUC=0.9991 and NNL: AUC=0.9966), EI performs worse on the testing
data (EI: AUC=0.9616 and NNL: AUC=0.9718).

The degree of structure in the classifier is controlled by the regularization
parameter µ. This parameter is optimized for predictive performance in the
crossvalidation. Hence, if a low-rank solution is not favorable, a low µ value
would be set and the quadratic error function would dominate the expression
in 10. In such cases the classifier would not be enforced to be approximately
low rank. Nevertheless, in the majority (20 out of 23) of the cases the NNL
approach results in more structured classifiers than the EI approach (Figure
3).

The overall performance of NNL, EI and LI detection approaches are
compared in Table 2. Median and mean (in brackets) values of sensitivity,
false detection rate and alarm delay were computed for the test data of the
whole patient population. The false detection rate of NNL approach is three
times lower than the EI approach, and its sensitivity and alarm delay is just
slightly worse. The false detection rate of the LI approach lies between the
one of NNL and EI. At the same time its sensitivity is lower than both other
approaches, despite the fact that the OR function integrating the channel
decisions facilitates the highest possible sensitivity.

It is worth to observe how the performance on the test data evolves due to
additional training seizures. The detection sensitivity increases in all cases,
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nevertheless, at the cost of a higher false alarm rate. It is important to note,
though, that while the mean false alarm rates of the EI and LI approaches ex-
ceed 0.5/h (a value not acceptable in clinical applications see Qu and Gotman
(1997)), the false alarm rate of NNL approach always remains below.

The inevitable trade-off between sensitivity and specificity explains why
some seizures were missed by the NNL and not by the EI approach. Figure 6
shows the classifier outputs obtained by the EI 6(a) and NNL approach 6(b)
during the first seizure of Patient 8. The output time courses of both clas-
sifiers follow a similar pattern, indicating comparable discriminative power.
However, the seizure was missed by the NNL, due to the relatively high de-
tection threshold compared to the one of the EI approach. The detection
threshold was set according to the training data, and is only an estimation of
the optimal threshold. Observing the classifier outputs of Patient 8, this de-
tection threshold could be decreased, facilitating better sensitivity, but still
preserving high specificity.

Due to the ambiguous results regarding the comparison of sensitivity
and false detection rate of the NNL and EI approaches, a measure reflect-
ing to both aspects is needed. Therefore, the quality value introduced by
Qu and Gotman (1997) was applied to the results of each patient. The box-
plot in Figure 7 shows the distribution of the test performance differences
between the NNL and EI over the individual patients.

Wilcoxon signed rank tests were performed investigating whether any ap-
proach provides a significant improvement in the median quality value with
respect to the other approaches. The test results are reported in Table 3,
where the P-values below the significance level α = 0.05 are indicated in
boldface letters. The results show that the approaches utilizing multichannel
information (NNL and EI) provide significant improvement compared to the
LI approach, which processes the channels independently. Improved perfor-
mance was obtained also in cases where the NNL and the EI was trained with
less seizures than the LI approach. Moreover, the NNL approach performed
significantly better than the EI given two and three training seizures; also
when the EI approach was trained with one additional seizure.

Shoeb and Guttag (2010) report the performance of a seizure detector
evaluated on the same EEG dataset, reaching a median of 2 false detections
daily. Using one training seizure, their detector reaches 55% sensitivity on
five randomly selected patients, claimed to be representative for the dataset.
Given one training seizures the NNL algorithm presented here produces only
1.5 false detections daily, and reaches a median detection sensitivity of 75%,
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confirming the superiority of our approach.

4. Discussion

We presented a novel seizure detection algorithm and compared it to two
existing approaches. All the three solutions make use of the same feature set;
they differ in how the individual channel information is integrated into a final
decision. The late integration approach processes the channel information
independently, and integrates the channel decisions with an OR function.
The early integration approach stacks the features extracted from all the
channels in one long feature vector, which is used to train the classifier.
Finally, the nuclear norm approach constructs channel-feature matrices and
exploits structural information from these during the learning procedure.

All the three approaches facilitated successful seizure detection. However,
our results suggest that methods analyzing the multichannel EEG as one en-
tity perform better than approaches analyzing the channels independently.
This confirms the results presented by Greene et al. (2008), where the early
integration and late integration approaches were compared in a non-patient
specific setting. Moreover, enforcing a low-rank structure by nuclear norm
regularization is proven to bring additional improvement compared to the
early integration approach, where the inter-channel information is synthe-
sized without postulating any underlying model.

Our seizure detection system performed better than a reference method
reported by Shoeb and Guttag (2010), tested on the same online available
EEG dataset. Direct comparison with other patient-specific studies in the
literature is not feasible, as they use different datasets, moreover, those
datasets often contain preselected patients (e.g. Qu and Gotman (1997);
Minasyan et al. (2010)). In order to demonstrate the real-life clinical appli-
cability of our method, we chose to avoid any preselection whatsoever.

The detector presented in this work is a patient-specific system. It
achieves high performance by capturing spatial information from the avail-
able multichannel seizure recordings. The spatial information is incorporated
by assuming a low-rank model underlying the seizure epochs, defined by the
relative discriminative power of the features and their distribution over the
channels. Our model and the learning algorithm is closely related to the con-
cept of singular value decomposition. Similar structural assumptions were
made by De Vos et al. (2007), where the epileptic seizures were successfully
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localized by canonical decomposition, a possible tensor extension of singular
value decomposition.

The localization can be expected to be consistent among the seizures
of patients with unifocal epilepsy. However, seizures of multifocal epilepsy
patients will have different spatial distributions and will not all be detected
by our algorithm, unless seizures of all types occurring in the patient are
available in the training.

A real-life application requires that the seizure detection system collects
sufficient information already from a few seizures, and can start monitoring
within a short time. Thus, our classifiers are trained using small amount
of seizure datapoints. The consequence of this is twofold. This results in
a highly unbalanced training set, where, in addition, the dimensionality of
one datapoint is relatively large compared to the number of available positive
samples. Such system is prone to overfitting, nevertheless, the representation
and model assumption used within the nuclear norm learning approach helps
overcoming this issue.

Due to the unbalanced input data, additional bias term correction has
to be performed after the training to obtain the correct detection threshold.
Considering the low amount of available seizure samples, the bias term cor-
rection was performed on the training data. The classification performance
was assessed by computing the misclassification error. We have tested sev-
eral alternative optimality criteria, which take into account the skewed class
ratios, such as F2 score, balanced error rate, or a certain working point on
the ROC curve. However, none of them showed significant improvement
compared to the misclassification error.

The performance of our algorithm may be further improved by applying
additional features, however, finding an optimal feature set is beyond the
scope of this paper. The features used in this study are successfully applied
in the literature, and they are developed to characterize repetitive, rhythmic
seizure patterns. Nevertheless, seizures which are difficult to assess visually,
due to the lack of such patterns or artifacts, will also be poorly described
with these features. On the contrary, different data representations capturing
more complex interactions between the channels might improve detection in
these difficult cases as well.

Besides the morphology, spectral structure and spatial distribution, the
temporal evolution is an important characteristic of the seizure pattern as
well (Stern and Engel (2004); Shoeb and Guttag (2010)). A possible exten-
sion of the presented algorithm is to take into account temporal evolution

17



by analyzing consecutive EEG epochs together, forming a tensor from their
feature-channel matrices. Both training and detection are performed on such
tensorial data. The size of the tensors are n×m× k, with n and m are the
number of channels and extaced features, respectively, and k is the number
of consecutive EEG epoch analyzed at once. When choosing an appropriate
value for k, one has to take into account that a large k will delay the de-
tection. On the other hand, small k captures less information. The nuclear
norm learning algorithm is directly applicable to tensorial data, as explained
in Signoretto et al. (2011).

We presented successful seizure detection by using linear models, e.i. lin-
ear separation of seizure and non-seizure data. Although a non-linear sepa-
ration might be better suited for this problem, the low amount of available
seizure information does not allow the use of non-linear kernels. The early
integration approach has been tested with an RBF kernel, however, it per-
formed worse compared to the other approaches, and the test results are not
shown here. Nonetheless, future work will be focused on structure-preserving
tensorial kernel methods, which were shown to be relevant in solving such
problems (see Signoretto et al. (2011)).

This paper presents for the first time the nuclear norm learning approach
applied for seizure detection. There might be several related EEG applica-
tions where this technique can be beneficial. For instance, it is directly appli-
cable in brain-computer interfaces based on event-related potentials or event-
related synchronization and desynchronization. Such responses are consistent
in their waveform, frequency content and spatial distribution among the tri-
als, consequently, they can also be modeled with low-rank structures. Using
the nuclear norm learning approach could reduce the training time necessary
for reaching successful discrimination of these brain responses.

5. Conclusion

The strength of our method lies within conveying structural information
from the multichannel EEG data. Such formulation allows to automatically
include crucial spatial information characteristic to a patient’s seizures. Our
results show improved detection performance compared to alternative ap-
proaches, even if less seizure information is available for training. Therefore,
the presented method potentially reduces the time needed to train the de-
tection system before starting monitoring.
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Appendix A. Extracted features

Time domain features were extracted directly from the preprocessed EEG
window:

• Number of zero crossings (#0), maxima (#max) and minima(#min)

• Skewness

skew = E[(
A− µ

σ
)3] (A.1)

where A is the EEG time series, µ is the mean and σ is the standard
deviation and E denotes the expected value.

• Kurtosis

kurt = E[(
A− µ

σ
)4] (A.2)

• Root mean square amplitude:

rmsa =

√

√

√

√

1

N

N
∑

k=1

A(k)2 (A.3)

The frequency domain features were extracted from the power spectral den-
sity (S(f)) computed by Welch’s method:

• Total power:

TP =
30
∑

fi=1

S(fi), (A.4)
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• Peak frequency
PF = arg max

f∈[1,30]
S(f) (A.5)

• Mean power in delta, theta, alpha and beta frequency bands:

D =
3

∑

fi=1

S(fi), (A.6)

T =
8

∑

fi=4

S(fi), (A.7)

A =
13
∑

fi=9

S(fi), (A.8)

B =
20
∑

fi=14

S(fi) (A.9)

• Normalized power in delta, theta, alpha and beta frequency bands:

nD =

∑3
fi=1 S(fi)

∑30
fi=1 S(fi)

, (A.10)

nT =

∑8
fi=4 S(fi)

∑30
fi=1 S(fi)

, (A.11)

nA =

∑13
fi=9 S(fi)

∑30
fi=1 S(fi)

, (A.12)

nB =

∑20
fi=14 S(fi)

∑30
fi=1 S(fi)

(A.13)
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Appendix B. Algorithmic steps of the nuclear norm learning ap-

proach

Algorithm 1: Nuclear norm learning
Input: multichannel EEG recording
Output: classifier matrix A and bias term b

1. create the input data X ∈ Rd×p×N and labels y ∈ RN×1

preprocess EEG
segment EEG to 2s windows
for each N 2s window

extract d features from each channel
order the feature vectors in p rows to create p× d matrix
assign corresponding label
stack into X

end

2. model selection: obtain µ

for cv-loop

split X into training and validation set
for all µi values in a predifned range

solve Eq. (10) on the training set to obtain A, b

evaluate on the validation set to obtain misclassification

end

end

3. select µ with the best corresponding misclassification
4. solve Eq. (10) with with µ to obtain A, b

Appendix C. CVX implementation of the nuclear norm regular-

ization

The CVX implementation of the algorithm solving equation 10 is as follows:

cvx_begin

variables e(N) A(I,J) b

minimize(1/2*e’*e+reg_par*norm_nuc(A))

subject to

diag(y)*(X*A(:)+b)==ones(N,1)-e

cvx_end
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where X is a N × (IJ) matrix (the generic row n is the vectorization of the
n−th input data matrix of size I × J), A is the I × J classifier matrix and
b is a scalar bias term; y is the vector of labels. For consistency we have
reported a constrained formulation of the problem that mimic the one used
in the LS-SVM primal problem, see 5.
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Figure 1: Operational structure of the classifier training and the testing of the seizure
detector.
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Table 1: Extracted Features

Time domain features

1-3. number of zero crossings (#0),
maxima (#max) and minima (#min);
4. skewness (skew);
5. kurtosis (kurt);
6. root mean square amplitude (rmsa)

Frequency domain features
7. total power (TP);
8. peak frequency (PF);
9-16. mean and normalized power in
frequency bands:
delta: 1-3 Hz (D, nD)
theta: 4-8 Hz (T, nT)
alpha: 9-13 Hz (A, nA)
beta: 14-20 Hz (B, nB)

Table 2: Event-based performance evaluation measures computed on the test data com-
paring the performance of the three detection approaches given different training sets.
Sensitivities, false detection rates, detection delays and quality values are reported in
terms of median and mean (in brackets) over all 22 patients. The number of seizures used
for training is indicated in the first column of the table.

NNL EI LI

1
dS (%) 75 (63) 93 (76) 75 (57)
Rfa (/h) 0.06 (0.26) 0.31 (0.71) 0.09 (0.45)
D (s) 7.6(10.4) 5.5 (8.1) 9.7 (12.1)

2
dS (%) 100 (74) 100 (76) 60 (52)
Rfa (/h) 0.11 (0.29) 0.31 (0.71) 0.10 (0.60)
D (s) 7.8 (9.8) 5.5 (8.4) 5.0 (8.2)

3
dS (%) 100 (78) 100 (81) 90 (64)
Rfa (/h) 0.12 (0.40) 0.50 (0.76) 0.14(0.61)
D (s) 10.5 (10.1) 7.0 (8.1) 6.8 (9.1)

4
dS (%) 100 (76) 100 (82) 93 (64)
Rfa (/h) 0.11 (0.33) 0.47 (0.82) 0.43 (0.77)
D (s) 9.8 (10.7) 7.0(8.4) 7.9 (9.8)

5
dS (%) 100 (80) 100 (83) 100 (67)
Rfa (/h) 0.14 (0.41) 0.50 (0.88) 0.23(0.76)
D (s) 9.0 (10.0) 7.0 (8.5) 8.5 (11.2)
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Figure 2: Diagram depicting the various steps of the different seizure detection approaches
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Figure 4: Classifier matrices (4(a),4(c)) and their singular values (4(b), 4(d)) obtained by
training with the first seizure of patient 1, using the NNL and EI approaches, respectively.
4(a) also shows the left and right singular vectors. It is visually observed that outer product
of the singular vectors closely approximates the classifier matrix. 4(b) shows fast decaying
singular values: the first singular value carries 97.6% of the total energy, indicating an
approximately rank-1 structure. The values of the left and right singular vectors represent
the relative discriminative power of the channels and features, respectively. Note that the
highest channel entries (electrodes over the right temporal and parietal area), and highest
feature entry (normalized power in the theta band) characterize well the seizure pattern
on 3. In comparison, the classifier matrix obtained by EI (4(c)) is less structured. Its
singular values decay slower, the first singular value carries 47.6% of the total energy.
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Figure 5: The bar plot compares the degree of structure in the classifiers obtained by NNL
and EI. The degree of structure is expressed as percentage of energy carried by the first
singular value of the classifier matrix. In 20 out of 23 cases the NNL approach results in
more structured classifier.
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Figure 6: Classifier outputs obtained by the EI approach 6(a) and the NNL approach 6(b)
for the first test seizure of Patient 8. The vertical line indicates the onset of the seizure
according to the labeling of an expert. This is one of the few examples where a seizure
was missed by the NNL but detected by the EI approach. The output time courses of
both classifiers follow a similar pattern, indicating comparable discriminative power. The
seizure is missed by NNL due to the relatively high detection threshold.
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Table 3: P-values obtained by Wilcoxon signed rank tests comparing the detection ap-
proaches. The number of training seizure used to train train each method is shown after
the name of the approach in the different rows and columns. Values corresponding to
significant differences at level α = 0.05 appear in bold.

NNL vs EI
EI 1 EI 2 EI 3 EI 4 EI 5

NNL 1 0.6389 0.6482 0.4842 0.5034 0.6051
NNL 2 0.0459 0.0335 0.0619 0.1997
NNL 3 0.0392 0.0170 0.1485
NNL 4 0.1886 0.1311
NNL 5 0.0918

NNL vs LI
LI 1 LI 2 LI 3 LI 4 LI 5

NNL 1 0.1396 0.1011 0.3221 0.0221 0.0777
NNL 2 0.0061 0.0033 0.0014 0.0056

NNL 3 0.0002 0.0002 0.0010

NNL 4 0.0002 0.0004

NNL 5 0.0002

EI vs LI
LI 1 LI 2 LI 3 LI 4 LI 5

EI 1 0.0630 0.0534 0.0617 0.0156 0.0244

EI 2 0.0108 0.0045 0.0067 0.0108

EI 3 0.0457 0.0355 0.0420

EI 4 0.0078 0.0208

EI 5 0.0071
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