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Abstract

The extraction of task-related single trial ERP features has recently gained much interest, in particular in simultaneous
EEG-fMRI applications. In this study, a specific decomposition known as parallel factor analysis (PARAFAC) was used,
in order to retrieve the task-related activity from the raw signals. Using visual detection task data, acquired in normal
circumstances and simultaneously with fMRI, differences between distinct task-related conditions can be captured in the
trial signatures of specific PARAFAC components when applied to ERP data arranged in Channels ¥ Time ¥ Trials
arrays, but the signatures did not correlate with the fMRI data. Despite the need for parameter tuning and careful
preprocessing, the approach is shown to be successful, especially when prior knowledge about the expected ERPs is
incorporated.

Descriptors: Cognition, Normal volunteers, EEG/ERP, fMRI/PET/MRI

Use of the electroencephalogram (EEG) is widespread for both
clinical and experimental neuroimaging purposes. One particular
field for which EEG is applied extensively is the study of event-
related potentials (ERPs). The most straightforward approach to
study these ERPs is to average over a set of event trials, thereby
emphasizing the time-locked brain activity and canceling out the
other ongoing neural processes and noise. This approach, however,
assumes that the brain is always reacting in exactly the same way
to a certain stimulus. This might not be true since processes like
attention and habituation do influence the brain’s responses
(Wesensten, Badia, & Harsh, 1990). Therefore, it is interesting that
recent improvements in analysis techniques allow going beyond
studying global effects with average ERPs and investigate fluctua-
tions in single trial characteristics (e.g., Makeig et al., 2002).

Moreover, a more particular interest in the extraction of infor-
mation from single trial ERP data has risen since researchers began
to focus on the relationship between ERPs and functional magnetic
resonance imaging (fMRI) data. Several studies have included
single trial ERP data in combined EEG-fMRI analyses (e.g., Bénar
et al., 2007; Debener et al., 2005; Debener, Ullsperger, Siegel, &
Engel, 2006; Eichele et al., 2005). A major part of these studies are
based on so-called integration-by-prediction analyses, using spe-
cific characteristics of ERP components on a single trial level as
regressors in the analysis of fMRI data. Nevertheless, so far there is
no gold standard for the estimation and validation of single trial
responses.

Several studies have employed different blind source separa-
tion (BSS) methods in order to isolate task-related activity from
the typical EEG mixture of brain and nonbrain sources (e.g., De
Vos et al., 2010; De Vos, De Lathauwer, & Van Huffel, 2011;
Joyce, Gorodnitsky, & Kutas, 2004). Independent component
analysis (ICA), for example, not only allows extracting single
trial ERP information (Makeig, Jung, Bell, Ghahremani, &
Sejnowski, 1997; Makeig et al., 1999), but can also relate this to
simultaneously measured fMRI activations (Debener et al., 2005,
2006; Eichele, Calhoun, & Debener, 2009). Methods like ICA,
however, can be applied in the spatial or in the temporal domain,
but they come with the inherent drawback of being only two
dimensional.
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A method that is able to disentangle brain activity but is not
limited to two dimensions is parallel factor analysis (PARAFAC)
(Harshman, 1970). This method decomposes three-dimensional (or
higher) data in a set of distinct “atoms,” which ideally represent
distinct brain sources. PARAFAC has already shown its value for
the analysis of EEG data, for example, for the identification of
activity in specific frequency bands (Miwakeichi et al., 2004), the
localization of the seizure onset zone in epileptic data (De Vos
et al., 2007; De Vos, De Lathauwer, Vanrumste, Van Huffel, & Van
Paesschen, 2007) and the determination of the location of neonatal
brain seizures (Deburchgraeve et al., 2009). It has also found its
way into the study of ERP data (Achim & Bouchard, 1997; Field &
Graupe, 1991; Möcks, 1988a, 1988b; Mørup, Hansen, Herrmann,
Parnas, & Arnfred, 2006; Wang, Begleiter, & Porjesz, 2000).
Although these studies proved PARAFAC to be a useful alternative
for the above-mentioned two-dimensional methods, no single trial
information was yet included as PARAFAC was only applied to
ERP measures that were averaged across trials. The current study
brings together the advantages of PARAFAC with the search for
task-related information in single trial ERPs. For this reason,
PARAFAC is used to extract sources from three-dimensional data
arrays with dimensions Channels ¥ Time ¥ Trials. Compared to
earlier studies (De Vos et al., 2007; Miwakeichi et al., 2004; Mørup
et al., 2006), no wavelet transformation is applied prior to decom-
posing the data. As such, the PARAFAC decomposition will be
based on characteristic spatiotemporal patterns rather than spectral
behavior.

More specifically, the performance of PARAFAC in identify-
ing distinct task-related conditions in single trial ERP data is
investigated at different levels of increasing difficulty. To this end,
the decomposition was validated on ERPs from EEG data both
acquired in a control room and recorded simultaneously with
fMRI data inside an MR scanner. Since the latter data are more
severely contaminated with artifacts, this allows testing the
robustness of the method. In addition, based on the superior
extraction of task-related information with PARAFAC, the result-
ing components are used to investigate the relationship between
ERPs and fMRI.

Materials and Methods

Subjects

Twenty-seven healthy subjects (11 female and 16 male, aged
18–44, mean = 26.4, SD = 5.2) with no history of neurological or
cardiological disorders participated in this study. Written informed
consent was obtained in accordance with the local ethical commit-
tee guidelines. Twenty-six of the subjects performed the experi-
ments inside an MR scanner with simultaneous fMRI acquisition.
Nineteen subjects (18 overlapping) performed the experiments
outside the MR scanner in the MR control room. The order of
testing in these two different recording environments was rand-
omized across subjects.

Task Paradigm

The employed stimulation paradigm was presented to the partici-
pants with Presentation software (Neurobehavioral Systems,
Albany, CA). More specifically, a visual detection paradigm was
used in which segments of circular black and white checkerboard
stimuli were presented one at a time in randomized sequences to
one of the four quadrants of the visual field (Di Russo, Martinez,

Sereno, Pitzalis, & Hillyard, 2002). The segments were 6°
(3.4 ¥ 3.3 cm) in size, and their centers were positioned at 8°
(5 cm) distance from the fixation point. The spatial frequency of the
stimuli was 0.5 cycles/degree. In addition, a large circular black
and white checkerboard with about 5° radius was presented as a
central stimulus on the middle part of the screen. The stimuli were
presented in four blocks of 100 stimuli (20 of each type) and 61
empty events. Subjects were asked to press a button upon detection
of each of the stimuli. In each condition, the stimulus was presented
for 150 ms with an interstimulus interval (ISI) varying between
900 ms and 2,400 ms. More detailed information about the set-up
of this task can be found in an earlier study (Novitskiy et al., 2011).
All subjects reported the task as being easy to perform and on
average only 0.51 and 0.80 of the stimuli per block were missed
for the simultaneous and the nonsimultaneous measurements,
respectively.

This task was chosen for this work since it is known to evoke
robust C1, P1, and N1 components, showing different properties
depending on the position in the visual field where the stimuli are
shown. In particular, the contralateral P1 is known to precede the
ipsilateral P1, whereas for the stimuli shown in the upper versus
lower visual fields, differences are found in the early C1 compo-
nent (inverting polarity between upper and lower stimuli) and
the amplitudes of the P1 and N1 components (Di Russo et al.,
2002).

Data Acquisition

Both inside and outside the scanner, the EEG data were collected
from 62 standard scalp sites using the MR-compatible BrainAmp
MR+ system (BrainProducts, Munich, Germany) with a sampling
rate of 5 kHz. Two additional electrodes were placed below the left
eye and on the left scapula. All 64 channels were recorded with FCz
as reference and Iz as ground.

For the acquisition of fMRI data simultaneously with the EEG,
a Philips 3T Intera whole-body scanner (Royal Philips Electronics,
Amsterdam, The Netherlands) was used. One hundred and sixty
echo-planar images (EPI) composed of 28 slices of 3 ¥ 3 ¥ 4.5 mm
voxel size and 4.8 mm slice thickness were recorded with ascend-
ing slice order with 1.95 s repetition time (TR) and 33 ms echo
time (TE) during each experimental block. In addition, a full brain
anatomical image was obtained with the magnetization prepared
rapid gradient echo (MPRAGE) imaging sequence (230 coronal
slices, TE = 4.6 ms, TR = 9.7 s). In addition, 5 out of the 26
“inside” subjects also performed the same paradigm in a Siemens
3T Allegra scanner (Siemens, Munich, Germany).

Data Preprocessing

The acquired EEG data were subjected to a number of standard
preprocessing steps, common for EEG simultaneously measured
with fMRI data. In particular, gradient artifacts were removed with
the average template subtraction method (Allen, Josephs, & Turner,
2000), as implemented in the Bergen EEG-fMRI EEGLAB plug-in
(Moosmann et al., 2009), and ballistocardiogram (BCG) artifacts
were reduced with a combination of the Optimal Basis Set (OBS)
method (Niazy, Beckmann, Iannetti, Brady, & Smith, 2005) and
ICA (Vanderperren et al., 2010). More details on this preprocessing
can be found in the article of Novitskiy et al. (2011). In addition,
both in simultaneously and nonsimultaneously recorded data, eye
artifacts were reduced with ICA (Joyce et al., 2004), and data were
rereferenced to the average of TP9 and TP10 (the closest electrodes
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to the mastoids in the present electrode set-up). To extract task-
related ERPs, data were then segmented from 100 ms before until
400 ms after stimulus onset, baseline-corrected and thresholded on
50 or 100 mV for measurements inside and outside the scanner,
respectively. fMRI analysis was performed with the statistical para-
metric mapping software (SPM5, Wellcome Department of Cogni-
tive Neurology, London, UK). The EPI time series were slice-time
corrected, realigned, coregistered with anatomical images, normal-
ized to a template, and smoothed with an 8-mm full width at half
maximum (FWHM) Gaussian kernel.

PARAFAC

PARAFAC is a multidimensional decomposition technique that can
decompose three-dimensional (or higher) signals into a series of

distinct atoms or components (Smilde, Bro, & Geladi, 2004). It can
be seen as a higher-order generalization of a matrix singular value
decomposition (Carroll & Chang, 1970; Harshman, 1970). Every
atom is characterized by a certain distribution or course in each of
the modes. For the three-dimensional case, each element of the data
array can be defined as follows:

x a b c edft dk fk tk dft
k

Nk

= ⋅ ⋅ +
=

∑
1

(1)

with Nk the number of atoms, adk, bfk, and ctk the signatures of every
atom in each of the modes, and edft the model error. In this study,
PARAFAC was performed based on an alternating least squares
algorithm (Smilde et al., 2004) with the N-way toolbox (Andersson
& Bro, 2000).

Figure 1. Grand mean ERPs for data acquired both simultaneously (“inside”) and nonsimultaneously (“outside”) with fMRI. a: ERP waveforms for the four
peripheral stimuli (UL = upper left; UR = upper right; DL = down left; DR = down right) and for three different parietal-occipital electrodes; b: scalp
topographies obtained from the ERPs around the latency of the P1 (left) and N1 (right), respectively.

Single trial ERP reading based on PARAFAC 3



Application of PARAFAC to Single Trial ERP Data

As mentioned above, in this study ERP data were arranged in
arrays with dimensions Channels ¥ Time ¥ Trials. More specifi-
cally, trials from all peripheral stimuli (upper left, upper right,
down left, and down right) were taken together in the three-
dimensional data array. Applying PARAFAC to this type of data
arrays results in a number of atoms, each characterized by a certain
spatial distribution, a certain time course, and a certain variation
across trials. The number of atoms corresponds to the rank of the
data array, but, as opposed to the two-dimensional case, this rank
has to be empirically determined. In this study, the performance of
the method was therefore investigated for the number of atoms
varying from 1 to 10.

Furthermore, since the aim of applying PARAFAC in this study
was to validate its feasibility in distinguishing between different
task-related conditions, it was verified whether including prior
knowledge about the expected task-related differences improved
the results. To this end, reducing both the number of channels and
the included time range were investigated. More specifically, to
distinguish between left and right stimuli, five parietal-occipital
channels in each hemisphere were chosen. To distinguish between
all four quadrant stimuli, the selected occipital set of channels was
extended with three channels on the midline (Pz, POz, and Oz).
Since for both cases the results clearly improved, all further analy-
ses were only performed on this limited set of channels. We believe
that such a subset of interesting channels can also be determined
for most other experimental paradigms. In the time domain, the
investigated time range was the period including the P1 and N1
waves (for the left-right case) and the one around the C1, P1, and
N1 waves (for the quadrant case).

Centering and rescaling. Before fitting PARAFAC to a three-
dimensional dataset, the data need to be preprocessed. As men-

tioned in earlier studies (Field & Graupe, 1991; Harshman &
Lundy, 1984), two ways of preprocessing the three-dimensional
data can be used: centering and rescaling. Centering is accom-
plished by subtracting the mean in a certain mode from the data
whereas rescaling is performed by dividing the data by its standard
deviation in one specific mode. In the current study, centering was
applied over channels (corresponding to applying an average ref-
erence to the selected subset of electrodes) while rescaling was
performed in the trial mode. Also, the combination of both was
investigated.

Orthogonality. A frequent problem occurring when fitting
PARAFAC models is the so-called phenomenon of degeneracy
(Harshman & Lundy, 1984). This term is used for models in which
the corresponding signatures of different atoms are mutually highly
correlated or in which two or more atoms counteract one or more
other ones. This causes components to be redundant and therefore
difficult to interpret (Field & Graupe, 1991). Field and Graupe
suggested imposing orthogonality in one of the modes in order to
avoid degeneracy (as also proved by Harshman & Lundy, 1984).
Since orthogonality constraints were believed to be data specific,
their effect was investigated in the channel, time, and trial mode
separately.

Evaluation of the Results

To test the ability of PARAFAC to capture task-specific informa-
tion, we checked the possibility to distinguish between different
task-related conditions based on the PARAFAC trial mode. For
comparison, a similar single trial classification was also performed
based on specific peak amplitudes retrieved from the raw data. In
addition, the relationship between the trial-by-trial modulations
of the obtained PARAFAC components and the fMRI data was
investigated.

Figure 2. Illustration of a PARAFAC decomposition on Channels ¥ Time ¥ Trials data from one subject. Two components (orthogonal in the channel mode)
have been retrieved from data from the detection task from 10 occipital channels and from a limited time frame. Upper: spatial distribution of the components
(only exact on the locations of the occipital electrodes, the rest of the scalp is extrapolated); Middle: time courses; Lower: distributions over trials.

4 K. Vanderperren et al.



Single trial classification based on raw data. Quantifying the
stimulus-related differences in the characteristics of certain ERP
components on a single trial level yields a classification between
single trial ERPs belonging to different task-related conditions.
The most prominent stimulus-dependent effect found in the ERP
components of the detection task is the difference in latency and
amplitude of the P1 and N1 peak for left versus right stimuli. For
this reason, we tested two types of raw data classification, based on
either the P1 or the N1 peak properties. The following approach, as
originally proposed by Novitskiy et al. (2011), was pursued for
each subject separately. First, the average latency of the P1 (and
N1) peak was determined based on an average contralateral ERP
from 10 parietal-occipital channels. Next, from every trial a P1 (or
N1) difference measure was calculated by subtracting the mean
from 5 right parietal-occipital channels of the average amplitude in
a small window around the average P1 (N1) latency from the same
mean value measured on 5 left parietal-occipital channels. Since it
is known that the contralateral P1 and N1 should always precede
the ipsilateral ones, the P1 difference should be positive for stimuli

shown on the right and negative for stimuli shown on the left visual
field, and the N1 difference should be exactly the opposite in
polarity. Further, a linear discriminant analysis (LDA) was used for
classifying these difference values in two groups. For this purpose,
half of the trials that remained after thresholding (50 or 100 mV)
were used for training and the other half for testing. The resulting
classification accuracy was averaged over 1,000 randomizations.

In addition to left-right differences, our detection task data also
show ERP differences for upper versus lower stimuli. Therefore, it
was also tested whether it is possible to separate all four quadrant
stimuli with a combination of two features. Apart from the P1 or N1
left-right difference measure, a single trial estimation of the ampli-
tude of the C1 peak on the POz lead was also used. Since the P1
(and N1) differences should show opposite polarities for left versus
right stimuli and the C1 peak should show opposite polarities for
upper versus down stimuli, this combination seemed a correct
criterion for classifying the raw single trials into the four quadrants.
For the classification itself, again LDA was used on the 1,000
randomized training-test sets.

Figure 3. Effect of centering and rescaling (in different colors), orthogonality (in different subplots), and the number of extracted components (on the
horizontal axis) on the PARAFAC classification accuracy for the outside data. The shown values are average (lines) and standard error values (error bars)
over subjects and correspond to the analyses including temporal prior knowledge (time frame of 50–250 ms). Regardless of the number of components
extracted in each case, each time only one component was used for classification.
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Single trial classification based on PARAFAC. A similar single
trial classification was now aimed for with PARAFAC. In line with
the classification based on the raw data, one feature was used for
distinguishing between left and right stimuli, and two features were
included in the differentiation between all four quadrant stimuli.
The features of interest were the PARAFAC trial modes.

For the left-right difference, the trial mode of each component
was fed into the LDA and, with the same repeated randomization as
for the raw data, classified into two groups. This resulted in a
classification accuracy for every component and for every number
of extracted components and selected preprocessing steps. After-
wards, the best component and parameter-preprocessing combina-
tions were selected.

For the quadrant-specific case, the best pair of trial modes was
selected beforehand. To this end, all trial signatures were correlated
with a vector based on the true left-right separation and a vector
based on the true upper-down difference. The two trial modes
showing the highest correlation for either one of them were fed
together in the LDA and classified into four groups. The accuracy
was evaluated in the same way as explained above for the left-right
case.

Relation with fMRI data. As mentioned in the introduction, task-
related information extracted on a single trial level can be used in

the analysis of simultaneously acquired fMRI data. Therefore, we
investigated whether the trial-by-trial fluctuations obtained with
PARAFAC provided additional information for the analysis of the
fMRI. However, since the ERP data were thresholded to remove
bad quality trials, not all trials that were originally acquired from
every subject were included in the eventual PARAFAC analysis.
Having the ERP information from all originally acquired trials is
nevertheless essential for connecting these to their corresponding
fMRI activation.

To address this problem, we used an extrapolation of the
obtained decomposition from a limited number of trials to all the
trials originally acquired. As such, an estimation Cnew was obtained,
representing the full trial signatures based on the channel and time
signatures from the PARAFAC decomposition on a limited number
of trials.

With these trial signatures, the effect of including amplitude
information from the PARAFAC trial mode in the analysis of the
fMRI data was investigated. The approach followed will be illus-
trated here on data from five subjects showing good to very good
classification accuracy (>78%) for distinguishing between left and
right stimuli. The classification was performed here based on a
K-means clustering approach (preferred here over LDA to avoid
the necessity of a separate training set), clustering the trial mode of
the extracted PARAFAC components into two groups. The classi-

Figure 4. Left-right classification accuracy values for all subjects (indicated with letter S) with both PARAFAC and raw data classification (based on either
the P1 or N1 peak) on the outside data. For PARAFAC, not only the best individual results are shown, but also results obtained by using one fixed
parameter-preprocessing set for all subjects.
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fication accuracy from clustering in four quadrants based on inside
data (see Results section) did not seem high enough for analyzing
fMRI data.

Based on the above clusters, we wanted to verify whether
single trial amplitude information from PARAFAC improved
the model for the fMRI data. This was done by using one stand-
ard regressor based on task triggers and constructing two other
regressors from the PARAFAC trial mode. For these latter two,
regressors were created corresponding to each of the stimuli,
thereby following the classification as explained above. However,
while the first type of regressors only consisted of fixed values at
the time instants of the trials (and zeros otherwise), the second
type contained the actual normalized amplitude values obtained
from the PARAFAC trial mode. The resulting signals were con-
volved with a hemodynamic response function (HRF) model and
employed as regressors, each in a separate analysis, in the general
linear model (GLM) explaining the fMRI data (with the SPM5
software). Afterwards, a simple t test was used to summarize the
results over the five subjects.

Results

Grand Average ERPs of Employed Data

To illustrate the data that have been used to obtain the results
shown below, Figure 1 shows the grand average ERPs for the four

peripheral stimuli (upper left, upper right, down left, and down
right) for a left, a middle, and a right parietal-occipital electrode,
together with the topographies at the latencies of the P1 and N1
(obtained from a window around 120 and 200 ms, respectively).
The ERP results are shown for data acquired both simultaneously
and nonsimultaneously with fMRI. This figure allows visually
identifying the differences between the responses to each of the
peripheral stimuli, both in the ERP waveforms and in their spatial
distribution.

Illustration of the PARAFAC Approach

Figure 2 shows an illustration of applying PARAFAC to a three-
dimensional data array from one individual subject (subject 8).
The data shown here were measured outside the scanner and only
the time frame around the P1 and N1 waves was included in the
analysis. Two components were retrieved, of which the spatial,
temporal, and trial distribution are shown.

The first component (shown on the left in Figure 2) is left-
right symmetrical over channels and corresponds to the ERP
information common to left and right visual field stimuli. The
second component represents the difference between left and
right stimuli. This can be seen in the asymmetry of the spatial
distribution and can be quantified by using the trial mode for
classifying between left and right stimuli, yielding a classification
accuracy of 94.75%.

Figure 5. Illustration of the combination of two PARAFAC components for distinguishing between the four quadrant stimuli in the detection task. The
results are shown for subject 5 with centered data, orthogonality imposed in the channel mode, and 10 components. The axes correspond to the trial modes
of the two PARAFAC components while the colors and shapes of the marks denote the true stimulus type (UL = upper left; UR = upper right; DL = down
left; DR = down right).
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Single Trial Left-Right Classification of Outside Data

The influence of the number of extracted components, the choice of
orthogonality, and the exact preprocessing steps on the average
classification accuracy across subjects is shown in Figure 3 for the
limited time frame (50–250 ms).

Without centering or rescaling, imposing orthogonality in the
channel domain requires fewer components for a reasonable clas-
sification accuracy (i.e., 80% on average for three components)
than orthogonality in trials or using no orthogonality at all. With
centering, this dependence on the number of extracted components
and orthogonality seems to almost disappear, such that the impor-
tance of careful parameter selection decreases to a great extent.

In Figure 4, the classification accuracy values from PARAFAC
on the outside detection task data are compared with the ones
retrieved from the raw data (based on either the P1 or the N1 peak).
For PARAFAC, not only the best individual results are shown, but
also results obtained by using one fixed parameter-preprocessing
set for all subjects. The choices made for the fixed parameter set
here are using data with only the limited time frame (50–250 ms)
included, applying centering and obtaining 5 components that are
orthogonal in the channel domain.

From this figure, it is clear that PARAFAC returns both a
significantly higher classification accuracy compared to the

P1-based raw data classification (Wilcoxon signed rank test:
p = 1.3 · 10-4 for both fixed and best case) and to the N1-based raw
data classification (p = 4.6 · 10-4and p = 1.3 · 10-4 for the fixed and
best case, respectively).

Single Trial Quadrant Classification of Outside Data

When aiming at distinguishing between all four quadrant stimuli,
two components need to be combined, one component explaining
the difference between left versus right stimuli and another com-
ponent related to the upper-down difference. An illustration of the
combination of two PARAFAC components, revealing a clear dis-
tinction between the four stimuli, is shown in Figure 5 (subject 5).
The values on the axes correspond to the respective trial signatures
of two components from a specific PARAFAC decomposition,
whereas the colors and shapes indicate to which stimulus these
points actually belong.

Figure 6 summarizes the results of classifying between all four
quadrant stimuli based on both PARAFAC and the raw data.
Similar to the results of the left-right classification, here also the
best results are compared with the accuracy obtained when using
one specific parameter set for all subjects. For this fixed parameter
set, centering was used on the data with a limited time frame

Figure 6. Classification accuracy for all subjects (indicated with letter S) with both PARAFAC and raw data classification (based on either the P1 or N1
peak) on the outside data, distinguishing the trials in the four quadrant stimuli. For PARAFAC, not only the best individual results are shown, but also results
obtained by using one fixed parameter-preprocessing set for all subjects.
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(30–250 ms), after which a decomposition in 10 components with
orthogonalization in the channel mode was applied.

This figure clearly shows that PARAFAC outperforms the raw
data classification also when used to separate all four peripheral
stimuli. This effect is confirmed statistically for both the P1- and
N1-based cases and for both the best and fixed parameter set (p
values of Wilcoxon signed rank test: P1: respectively, 1.3 · 10-4 and
1.6 · 10-4; N1: respectively, 1.3 · 10-4 and 6.3 · 10-4).

Single Trial Left-Right Classification of Inside Data

Due to the more severe contamination of the inside data, another,
more stringent, threshold was chosen (50 mV). However, as a con-
sequence, the number of trials included in the inside PARAFAC
classification is seriously reduced compared to the original number
of trials and compared to the data outside the scanner. More spe-
cifically, for the 31 datasets (26 subjects of which 5 were measured
in two different scanners), on average 67% of the trials were
retained after thresholding (with a minimum of 45%).

In Figure 7, classification accuracy values from PARAFAC on
the inside data are compared with the ones retrieved on the raw
data. For PARAFAC, not only the best individual results are

shown, but also results obtained by using one fixed parameter-
preprocessing set for all subjects (9 components, limited time
frame, centering, and orthogonality in the trial mode).

The classification based on PARAFAC with the best parameters
per subject is significantly better than the one based on the P1 and
N1 left-right differences in the raw data (p = 1.6 · 10-6 and
p = 1.5 · 10-5, respectively). Although in this case it was more
difficult to find one fixed parameter set, the results are also signifi-
cantly better (p = 2.8 · 10-6and p = 0.0014, respectively).

Single Trial Quadrant Classification of Inside Data

Figure 8 summarizes the results of classifying between all four
quadrant stimuli based on both PARAFAC and the raw data. Also,
here, the best results are compared with the accuracy obtained
when using one fixed parameter set for all subjects. In this case, the
time-limited data were centered and rescaled, and 9 components,
orthogonal in the trial mode, were extracted.

Although the performance of single trial quadrant classification
here is obviously lower than in the case of outside data, PARAFAC
is still better than the raw data classification. This effect is con-
firmed statistically for both the best and the fixed parameter set

Figure 7. Left-right classification percentages for all subjects (indicated with letter S) with both PARAFAC and raw data classification (based on either the
P1 or N1 peak) on the inside data. For PARAFAC, not only the best individual results are shown, but also results obtained by using one fixed
parameter-preprocessing set for all subjects. For five of the subjects, data measured in a Siemens scanner were also included; these datasets are indicated with
the letter b. Subject 4 is not included in this figure, since for this subject, only outside but no inside data were available.
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(p values for P1 of, respectively, 1.2 · 10-6 and 5.9 · 10-5 and for N1
of 1.6 · 10-6 and 0.04).

Relation with fMRI Data

Results shown here are based on data from five subjects. Three
types of regressors were used (in separate analyses). The first one
was a standard regressor based on the trigger information from the
task, whereas the second one was based on the triggers according to
the PARAFAC classification results. Finally, the third regressor
included the amplitudes from the PARAFAC trial signatures (the ctk

values in Equation 1) in the analysis. Activated regions obtained
with the PARAFAC approach without amplitude information are
summarized in Table 1 for each of the four trial types.

The obtained activations not only nicely correspond to the find-
ings when using the original task triggers but they also match the
expected regions for this type of task. This can also be seen when
comparing the obtained regions with the activations shown in a
study performed on the same dataset, but with a different type of
analysis (Mijović et al., 2012).

Using the regressors based on the PARAFAC amplitude infor-
mation revealed the same regions. However, the obtained t values

in these regions were lower than in the case without amplitude
information. This is illustrated in Figure 9. Five small regions of
interest (ROIs) were defined for each subject, based on the acti-
vation obtained using the original task triggers. These ROIs were
four locations in the early visual areas, each corresponding to one
specific stimulus, and a last ROI was defined in the motor area.
For each location and each stimulus, the average t value over all
corresponding voxels and the five subjects was calculated.

Because the extraction of the different ROIs is based on the
standard fMRI analysis using task triggers, it is obvious that
this analysis shows the expected activations for each of the
stimuli (dark blue). The analyses based upon PARAFAC (both
with and without amplitudes), however, also yield these same
regions. Nevertheless, there is a clear decrease in t values when
comparing the activation based on the amplitude regressors with
the activation obtained with the trigger information from the task or
the PARAFAC classification. This is confirmed statistically,
showing p values above .45 when comparing the triggers from
PARAFAC with the task, but resulting in p values between .03 and
.08 and between .007 and .05 when comparing the amplitude
approach with the approaches based on task and classification
triggers, respectively. As such, it can be seen that using the ampli-

Figure 8. Classification accuracy for same subjects shown in Figure 7 (indicated with letter S) with both PARAFAC and raw data classification (based on
either the P1 or N1 peak) on the inside data, distinguishing the trials in the four quadrant stimuli. For PARAFAC, not only the best individual results are
shown, but also results obtained by using one fixed parameter-preprocessing set for all subjects.
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tudes from the trial mode explaining most of the left-right differ-
ences seems to deteriorate the fMRI results.

Discussion

In this study, we explored the ability of the higher-order decompo-
sition method PARAFAC to extract specific task-related informa-
tion from single trial ERP data. The results were validated by using
the obtained components for classifying between different task-
related conditions and by comparing these results with a similar
classification based on raw data. Both data acquired in a control
room and data acquired inside an MR scanner simultaneously with
fMRI were used. The latter not only allowed testing the robustness
of the method on data with a lower signal quality, but also enabled
including the obtained single trial amplitude values (from the
PARAFAC signatures in the trial mode) in the analysis of the fMRI
data.

Our results indicated that PARAFAC is indeed able to capture
components reflecting task-related ERP differences on a single trial
basis. This was clearly shown for both the left versus right stimuli
and for the four quadrant stimuli. Careful parameter tuning was,

however, needed. The results were significantly better than when
only raw data characteristics were used for classification, possibly
suggesting an improved de-noising and a more complete and rel-
evant feature selection achieved with PARAFAC. Also the data
measured inside the MR scanner allowed this classification,
although the lower signal quality influenced the performance of the
approach. Since the PARAFAC trial mode was found to be a
meaningful representation of task-related information, its ampli-
tude information was also investigated in the context of EEG-fMRI
integration. However, although fMRI results based on the
PARAFAC classification were similar to the ones based on stand-
ard analyses, including the amplitude values seemed to reduce the
strength of the obtained activations.

Using PARAFAC for classifying between different conditions
on a single trial basis has certain advantages. First of all, the method
is relatively fast, especially when extracting lower numbers of
components (for which centering can be beneficial). More specifi-
cally, the computational time varies from less than a second to
maximally 1 or 2 min, the latter being for larger datasets and a larger
number of extracted components (4 ¥ Dual-Core AMD Opteron
processor 8214, 2.2 GHz, 16 GB RAM). This is particularly fast,
given the fact that more than two modes of data are included in the
analyses and can be important in certain applications (e.g., brain
computer interfaces, see below). Second, as opposed to the raw data
classification, PARAFAC does not require detecting specific peaks
or features from the ERP data. In our case, the raw data classification
might still have been improved by selecting other peaks or combin-
ing a set of peaks, but the need for peak detection and selection
makes it a more laborious approach. For PARAFAC, prior knowl-
edge concerning channels and time was used, but this selection was
clearly less stringent than the one needed for the raw data classifi-
cation. Third, PARAFAC also allows performing group analyses by
combining the datasets of several subjects in a four-way data array
with dimensions Channels ¥ Time ¥ Trials ¥ Subjects. Neverthe-
less, such group analyses require that the order of the stimuli is the
same for all subjects. As stimuli were randomized in the paradigm
presented here, a group analysis was not included in the current
study.Amajor disadvantage of the PARAFAC approach is, however,
the need for parameter tuning and careful preprocessing. Neverthe-
less, this finding does not come as a surprise, since also in order to
apply PARAFAC to average ERP data, the parameters had to be
optimized for each dataset (Field & Graupe, 1991). In any case,
incorporating centering and rescaling in the preprocessing of the
data is very common when using PARAFAC and also clearly
improved the results in this specific application (more prominent
with centering than with rescaling). Concerning validation, in this
study, the results were evaluated based on a classification in different
stimulus types.As many paradigms consist of different stimuli, such
validation procedures should be possible in other studies as well. To
find the optimal parameter and preprocessing settings, training data
can be used by, for example, splitting the data in several parts (as was
done in the current study) or by using the datasets from a few
subjects to set the parameters for the whole population. Our results
with the fixed parameter set on the data acquired outside the scanner
prove that the latter strategy might also be successful.

One might also ask whether the information provided by
latency shifts should be taken into account by PARAFAC to model
the ERP data and the condition-specific information. For this
reason, Mørup, Hansen, Arnfred, Lim, and Madsen (2008) pro-
posed the use of so-called shifted PARAFAC for ERP data. The
advantage of this approach would be that, for example, small time
shifts of certain components would not completely deteriorate the

Table 1. Regions Obtained by Using the Classified Trial
Information as Input for the GLM Analysis in SPM

Trial type Anatomical region Brodmann area

UL Right lingual gyrus BA 18
Right cuneus BA 18
Left middle occipital gyrus BA 19
Right precuneus BA 7
Left superior parietal lobule BA 7
Left precentral gyrus BA 4
Left postcentral gyrus BA 3
Left medial frontal gyrus BA 6
Right insula BA 13
Left and right cerebellum —

UR Left fusiform gyrus BA 19
Left middle temporal gyrus BA 37
Right middle temporal gyrus BA 37
Left postcentral gyrus BA 3
Left medial frontal gyrus BA 6
Left and right cerebellum —

DL Right cuneus BA 17
Left middle temporal gyrus BA 37
Right middle temporal gyrus BA 37
Left superior parietal lobule BA 7
Right precuneus BA 7
Left postcentral gyrus BA 3
Left medial frontal gyrus BA 6
Left and right insula BA 13
Left and right cerebellum —

DR Left lingual gyrus BA 17
Left middle temporal gyrus BA 37
Right middle temporal gyrus BA 37
Left superior parietal lobule BA 7
Right superior parietal lobule BA 7
Left precentral gyrus BA 4
Left medial frontal gyrus BA 6
Left insula BA 13
Left and right cerebellum —

Notes. The difference between upper and lower stimuli is based on the task
itself, while the left-right classification is based on the PARAFAC output.
As such, regions are retrieved for upper left (UL), upper right (UR), down
left (DL) and down right (DR) stimuli. For every region, both its anatomical
name and its Brodmann area (BA) are given.
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quality of the decomposition. This algorithm was, however, also
tested on these data and did not yield any good results. A short
simulation study (not shown here) revealed that this was probably
caused by the amount of noise on the data, which the employed
implementation of shifted PARAFAC (provided for MATLAB by
the same authors) did not seem to be able to handle.

The obtained classification of single trial ERP data among
several stimulus types makes the presented PARAFAC application
also a promising approach for use in real-time brain computer
interface (BCI) applications. These BCIs are systems that use brain
signals for the control of one or several external devices. The use of
PARAFAC in BCIs is, however, not completely new. A number of
studies investigated the potential of PARAFAC for distinguishing
trial types, especially in the field of motor imagery tasks (Cichocki
et al., 2008; Lee, Kim, Cichocki, & Choi, 2007) and also visually
evoked potentials (Li, Zhang, & Zhao, 2008). Nevertheless, to our
knowledge, these studies work on a wavelet-transformed version of
the acquired ERP data. In the current application, the shape (both
amplitudes and latencies) of the ERP waveform is essential for the
distinction between the different stimulus types. To capture this
information in the decomposition, it is necessary to use the raw

single trial data in the analysis. For this reason, we believe that the
application of PARAFAC in Channels ¥ Time ¥ Trials dimensions,
as presented here, might be a valuable alternative in specific BCI
applications. We do not claim, though, that the PARAFAC classi-
fication outperforms all existing methods in the field of single trial
classification. For that, we should compare them in an extensive
validation study, which was not the objective of the current work.

According to Bland, Mushtaq, and Smith (2011), an essential
step to study the relationship between EEG and fMRI single trial
variation is to be able to distinguish between functionally signifi-
cant trial-to-trial variability and variability that merely accounts for
noise. Our PARAFAC approach yielded meaningful components
that were related to task-specific conditions, significantly better
than similar measures on raw data. For this reason, we wanted to
compare the fMRI analysis based on the PARAFAC trial signatures
with the standard approach of using the trigger information from
the task. The results, however, did not confirm a relation between
the PARAFAC trial mode and the fMRI blood oxygen level-
dependent (BOLD) signal. This opens the question whether the
amplitude variation across trials as captured in PARAFAC is rep-
resentative for the amplitude variability across evoked responses

Figure 9. T values in five selected ROIs (four visual regions with their position around the calcarine sulcus indicated: R = right; L = left; and a motor region)
averaged over voxels and subjects and for each of the stimuli (UL = upper left; UR = upper right; DL = down left; DR = down right). Values are shown for
three different types of analyses: a standard GLM analysis based on the triggers from the task (dark blue), a similar analysis based on the left-right
classification obtained with PARAFAC (light yellow), and an analysis based on regressors including PARAFAC amplitude information (light blue).
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and, more generally, if single trial variability measures can always
be expected to correspond between ERPs and fMRI.

Our combined PARAFAC-fMRI approach starts from the
assumption that the single trial variability observed in the ERPs is
reflected in the fMRI data. However, it is an ongoing debate if this is
always true since EEG and fMRI can, for example, differ in their
sensitivity to experimental manipulations (Debener et al., 2006).
Moreover, in an empirical study of Vartiainen, Liljeström, Kosk-
inen, Renvall, and Salmelin (2011), functionally different hemody-
namic and electrophysiological patterns were shown within the

same task. Other studies (e.g., Becker, Reinacher, Freyer, Villringer,
& Ritter, 2011) reported relationships of the fMRI with ongoing
alpha power during a cognitive task. The variability of such sponta-
neous brain rhythms might be so pronounced that it hides or influ-
ences the functionally relevant variability of the evoked responses.
This might explain why the contribution found in a recent study of
De Martino, de Borst, Valente, Goebel, and Formisano (2011) of
single trial ERP modulations to the link between EEG and fMRI was
very small. Further research is needed to obtain a more complete
understanding of the observed phenomena.
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