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ABSTRACT

In this paper, we describe a novel speaker adaptation algorithm based
on Gaussian mixture weight adaptation. A small number of latent
speaker vectors are estimated with non-negative matrix factoriza-
tion (NMF). These base vectors encode the correlations between
Gaussian activations as learned from the train data. Expressing the
speaker dependent Gaussian mixture weights as a linear combina-
tion of a small number of base vectors, reduces the number of pa-
rameters that must be estimated from the enrollment data. In order
to learn meaningful correlations between Gaussian activations from
the train data, the NMF-based weight adaptation was combined with
vocal tract length normalization (VTLN) and feature-space maxi-
mum likelihood linear regression (fMLLR) based speaker adaptive
training based. Evaluation on the 5k closed and 20k open vocabulary
Wall Street Journal tasks shows a 4% relative word error rate reduc-
tion over the speaker independent recognition system which already
incorporates VTLN. The proposed fast adaptation algorithm, using
a single enrollment sentence only, results in similar performance as
fMLLR adapting on 40 enrollment sentences.

Index Terms— Speaker adaptation, non-negative matrix fac-
torization, speaker adaptive training, maximum likelihood linear re-
gression, weight adaptation

1. INTRODUCTION

Given a sufficient amount of speaker dependent (SD) training data,
speaker dependent speech recognizers generally perform better than
their speaker independent (SI) counter parts [1]. However, for most
applications, only limited amounts of speaker dependent data are
available, insufficient to make a true speaker dependent system.
Examples thereof are speech based automatic vending machines or
automatic telephone services. Under these circumstances, speaker
adapted models form an appealing solution. Speaker adapted mod-
els transform the SI acoustic model so that, given some limited
amounts of example data from that speaker, the adjusted acoustic
model better describes the target speaker’s speech.

In the last decades, speaker adaptation techniques have focused
on feature-space and model-space transformations of the Gaussian
means (and variances). Little attention has been given to the Gaus-
sian mixture weights. In this paper, we focus on fast Gaussian
mixture weights based model-space speaker adaptation. Speaker
adaptation techniques are typically characterized on the following
characteristics: (i) generalization, i.e. can the model parameters
(context-dependent phone distributions) for which no or little en-
rollment data was observed (henceforth ”unseen parameters”) be
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derived from those model parameters that were observed, (ii) sus-
ceptibility to overfitting when only small amounts of enrollment
data are available, and (iii) convergence to the true SD model with
infinite amounts of data.

Maximum a posteriori (MAP) adaptation maximizes the poste-
rior probability of the model parameters given the adaptation data,
with the SI acoustic model parameters used as priors [2]. MAP es-
timations converge to the maximum likelihood (ML) estimations if
infinite amounts of enrollment data are provided. The priors coun-
teract overfitting. A disadvantage of the MAP algorithm is that it
does not generalize: only the observed parameters are updated, the
unseen parameters retain their SI model parameter values.

Eigenvoice speaker adaptation [3] expresses the Gaussian means
as a linear combination of eigenvoices of Gaussian means. The
eigenvoices are learned by means of eigenvalue decomposition of
the SD Gaussian means for the train speakers. By exploiting the cor-
relations between Gaussian means, as encoded in the eigenvoices,
this method can, based on very small amounts of enrollment data,
infer the Gaussian means reliably for both seen and unseen distri-
butions. Combination with MAP allows convergence to the true SD
model with infinite amounts of data.

Unconstrained and constrained (feature-space) maximum like-
lihood linear regression (UMLLR/fMLLR) [4] maximize the likeli-
hood of the enrollment data when allowing linear transformations of
the Gaussian means and variances. Generalization is largely depen-
dent on whether a linear transformation is a good model to charac-
terize inter-speaker differences. When convergence to the true SD
model is required, the number of transformations must be increased
when more data becomes available. To avoid overfitting, the num-
ber of free parameters in the linear transformations must be limited
if insufficient amounts of enrollment data are available, for example
by using eigenspaces [5].

In this paper, we look at adaptation of the Gaussian mixture
weights instead of the more common Gaussian mean and variance
adaptation. Similar to eigenvoice speaker adaptation, a set of base
vectors expressing correlations learned from the speakers in the train
database is used to provide generalization of unseen parameter distri-
butions from seen distributions. The base vectors are obtained with
non-negative matrix factorization (NMF) [6] of Gaussian posteriors
as recorded on the train speakers, similar to what was done in [7].
Next to providing a good generalization, NMF weight adaptation
also requires very small amounts of enrollment data. Estimating the
cumulative Gaussian posteriors (the input for the NMF adaptation)
is even less complex than estimating the Gaussian specific first order
feature moments required by the eigenvoice method, and hence can
be done with similar amounts of enrollment data. Given the tendency
of modern hidden Markov model (HMM) systems to use large Gaus-
sian mixtures to model the observation probability density distribu-
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Fig. 1. Speaker adaptive training in the proposed speaker adaptation
algorithm. The dashed lines show the outer loop of the SAT. The
dash dotted lines show the inner loop of the SAT process.

tions (pdfs), weight adaptation is also surprisingly flexible: complex
non-linear transformations can be obtained by just changing weights.
We also investigate the effect of NMF-based weight adaptation in
combination with state-of-the-art speaker normalization and adap-
tation techniques such as vocal tract length normalization (VTLN),
fMLLR, and speaker adaptive training (SAT) [8]. In fact, SAT with
good speaker normalization and adaptation schemes proved to be
highly favorable since this resulted in more active Gaussians per
speaker and hence allowed the NMF-decomposition to record more
meaningful correlations between the observed Gaussian activations.

The remainder of this paper is organized as follows. In section 2,
we introduce SAT based on speaker dependent fMLLR matrices, a
single shared set of Gaussians, and speaker dependent Gaussian mix-
ture weights. Section 3 recapitulates the NMF based speaker adap-
tation algorithm. We describe our recognition system and compare
the recognition results with different speaker adaptation algorithms
in section 4. In section 5, conclusions and possible future research
topics are presented.

2. SPEAKER ADAPTIVE TRAINING

Speaker adaptive training improves the performance of speech
recognition systems by reducing the inter-speaker variation and
meanwhile more accurately representing the phonetic variation in
the training data [8]. Figure 1 shows the SAT as used in com-
bination with our NMF-based speaker adaptation algorithm. Let
λ, μ,Σ,M represent the Gaussian mixture weights, mean vector,
variance matrix, and fMLLR extended linear transformation matrix
of the acoustic model respectively. Subscripts SI, SAT, and r rep-
resent the SI acoustic model, SAT estimated acoustic model, and
the rth training speaker (reference speaker). R is total number of
reference speakers, t the time index, s the state index, q the Gaussian
component index, Qs the set of component indices for a given state
s, and γr(q, t) the posterior probability of the observation for Gaus-
sian q at time t using the SAT model of speaker r. The SAT model
parameters {λr}R

r=1, λSAT, μSAT, ΣSAT, and {Mr}R
r=1 are trained

in a nested loop using maximum likelihood re-estimation. The outer

loop optimizes the feature-space transformation matrices. In Step 2,
fMLLR [4] is used to estimate the SD matrices Mr based on the
data of the individual speakers and based on the current estimate of
the SAT model, i.e μSAT, ΣSAT and λSAT. For reasons we will explain
later on, we also estimate a common fMLLR transformation matrix
MSAT on all speakers jointly using μSAT, ΣSAT and λSAT, the latter
being the common mixture weights as formed in Step 3.2. Trans-
forming the observation vectors ô(t)=Ao(t)+b with M= [b A]
and A a full transformation matrix, allows the inner loop to use the
standard expectation-maximization (EM) algorithm to update the
Gaussian distributions and mixture weights (Steps 3.1+3.2). The SD
Gaussian mixture weights {λr}R

r=1 are used to perform NMF based
mixture weight speaker adaptation as described in the next section.

3. GAUSSIAN MIXTURE WEIGHT ADAPTATION USING
NON-NEGATIVE MATRIX FACTORIZATION

In our speaker adaptation algorithm, the Gaussian mixture weights of
the SI/SAT model are adapted toward the evaluation (target) speaker.
The weights are adjusted through a NMF based speaker adaptation
algorithm described in detail in [7]. Here we recapitulate the funda-
mentals of the adaptation algorithm. NMF [6] approximates a non-
negative matrix V as the product of two non-negative matrices: a
basis vector matrix W and a coefficient matrix H. For the NMF
speaker adaptation, the matrices W and H are chosen to maximize
the data likelihood

Q(W, H) =
X

r

X
q

X
t

γr(q, t) log(λr(q)), (1)

with

λr(q) =

P
l Wq,lHl,rP

l Hl,r
, (2)

under the constraintsX
q∈Qs

Wq,l = 1, for all states s, and base vectors l (3)

Except for the state wise normalization of W , maximizing eqn. (1)
given the constraint (3) is equivalent to minimizing the extended
Kullback-Leibler divergence between a matrix V and WH:

D(V ||WH) =
X
q,r

(Vq,r log
Vq,r

(WH)q,r
− Vq,r + (WH)q,r) (4)

with Vq,r =
P

t γ(q, t). Hence, we found the same update rules for
W and H as in [6], except for an extra state-wise L1 normalization
of W after each iteration.

Given the latent speaker matrix W, the latent coefficients he

of a target (enrollment) speaker e are estimated iteratively based on
the EM algorithm (Baum-Welch) given the enrollment data of that
speaker. The ith iteration of the latent speaker coefficient is given by
equation (5) (see [7] for more details):

hi+1
e (l) =

X
q

X
t

γe(q, t)W (k, l)PL
j=1 W (q, j)hi

e(j)
× hi

e(l) (5)

where γe(q, t) are obtained by Viterbi alignment of the evaluation
speaker’s data using λSAT, μSAT, ΣSAT, Me/MSAT. If sufficient en-
rollment data are available, Me is estimated and used. Otherwise,
MSAT is used. In case of unsupervised adaptation, γe(q, t) are ob-
tained from alignment on the best hypothesis (see section 4.1).

The product of the latent speaker matrix W and the estimated
coefficient vector h is the estimated SA Gaussian mixture weight
vector for the target speaker.
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4. EXPERIMENTAL RESULTS

4.1. Recognition system

The Wall Street Journal (WSJ) corpus is used for training, develop-
ing and testing the NMF speaker adaptation. Training is done on the
SI-284 data from WSJ0+1 comprising 81 hours from 284 speakers.
The baseline speech recognizer used in our experiments is a semi-
tied Gaussian mixture HMM system. The system uses a shared pool
of 32754 Gaussians to model the observations in 5967 cross-word
context-dependent tied triphone states, using 94 Gaussian pdfs on
average per state. All acoustic units –context-dependent variants of
one of the 42 phones or silence– have a 3-state left-to-right topology.
The acoustic features consist of Mel Spectra with mean normaliza-
tion and VTLN [9], augmented with their first and second order time
derivatives. These features are then mapped to a 39 dimensional
space by means of a discriminative linear transformation [10] and
decorrelated [10].

Both the 5k closed and 20k open vocabulary corpora, each with
8 speakers, in the Nov92 evaluation data are used for adaptation and
evaluation. Identical to [7], we reserved the first 10 sentences of each
speaker for enrollment (of which either one or all ten are actually
used). We evaluate on the remaining (±30) sentences, henceforth
called “test data”. For tests with more (±40) enrollment sentences,
we evaluate on the same set, but extract the enrollment data from the
evaluation set with the other vocabulary size, i.e. enroll on the 5k
vocabulary, test on the 20k vocabulary and vice versa.

The proposed fast speaker adaptation algorithm has been tested
both supervised (the enrollment data transcription is known) and un-
supervised (the enrollment data transcription is unknown and must
be estimated). For unsupervised adaptation, a two-pass scheme is
required. First, the recognizer processes the enrollment data, gener-
ating both single best word sequences and word lattices. Word pos-
teriors are derived from the word lattices. Based on the word posteri-
ors, the 30% least likely words from the single best word sequences
are discarded. From there on, the recognition proceeds as with su-
pervised adaptation: Viterbi alignment is used to find the best state
alignment path, which is then used to estimate the Gaussian mixture
weight posterior probabilities and/or the fMLLR statistics needed
for the adaptation. Note that when combining SAT and NMF adap-
tation with only a single adaptation sentence, the fMLLR estimate
Me was found to be unreliable and hence was replaced with MSAT

during adaptation and evaluation.

4.2. Results

Table 1 gives the word error rate (WER) in % for the different
speaker adaptation algorithms. The 5k and 20k test corpus are both
evaluated with their respective bigram (2g) and trigram (3g) lan-
guage models, resulting in four configuration: 5k-2g, 5k-3g, 20k-2g,
and 20k-3g. For the NMF decomposition, the number of latent
speaker vectors is set to 10 and the model parameters correspond-
ing to the 3-state silence model are excluded, i.e. they retain their
SI/SAT model parameter values.

The standard deviation std on the WER for the four conditions,
calculated by eqn. (6) with Nword the number of words in the ref-
erence transcription, equals to: ±0.30% (5k-2g), ±0.44% (20k-2g),
±0.23% (5k-3g), and ±0.40% (20k-3g). Given this relatively large
standard deviations, one can best look at results averaged over all
four conditions when comparing methods.

std =

s
WER ∗ (1 − WER)

Nword
(6)

HMM adaptation method 5k-2g 20k-2g 5k-3g 20k-3g
SI / 3.74 8.97 2.21 7.35
SI NMF[1] 3.72 8.75 2.28 7.30
SI NMF[10] 3.79 8.61 2.31 7.32
SI fMLLR[1] 3.67 9.23 2.48 7.61
SI fMLLR[40] 3.81 8.66 2.53 7.18
SAT / 3.76 9.11 2.43 7.13
SAT fMLLR[40] 3.62 8.32 2.31 7.06
SAT NMF[40]+fMLLR[40] 3.38 8.47 2.21 6.96
SAT NMF[1] 3.62 8.66 2.23 6.85
SAT NMF[1]; unsupervised 3.64 8.51 2.23 6.85
SI NMF[1] (SAT W ) 3.69 8.62 2.31 7.17
SI NMF[10] (SAT W ) 3.67 8.67 2.28 7.09

Table 1. WER(%) obtained with different acoustic models and
speaker adaptation algorithms. The number between square brackets
is the number of enrollment sentences used for the adaptation.

10−10

10−5

100

SI, no−vtln
SI, vtln
SAT

Fig. 2. Distribution of the values in the NMF latent speaker vectors.

As can be seen from table 1, NMF weight adaptation on the
baseline SI acoustic model (SI+NMF[1] and SI+NMF[10]) does
not provide a significant WER improvement over the SI baseline.
This contrasts with the results reported in [7] which show a 5%
to 15% relative improvement in this situation. However, the setup
in [7] does not include VTLN in the front-end preprocessing. Con-
sequently the NMF based speaker adaptation in [7] predominantly
adapts the acoustic model to the speaker gender. In other words,
in [7], the NMF based speaker adaptation process mainly plays the
role of VTLN. On the other hand, in our setup, any observed im-
provement is an improvement in addition to VTLN.

Switching to the SAT+NMF setups shows that significant im-
provements can be obtained with the NMF-based weight adapta-
tion scheme. The key assumption underlying the NMF adaptation
technique is that meaningful correlations between Gaussian activa-
tions can be learned from the train data. With SAT, each speaker-
dependent HMM state will simply have more active Gaussians,
hence providing richer information to the NMF decomposition. This
results in better latent base vectors W . This is illustrated in figure 2.
Given the non-negative nature of the values in W , the only way
correlations between Gaussians activations can be encoded is by
having a positive value for the respective Gaussians. Hence, having
more non-zero weights is a strong indicator that more (meaningful)
correlations are encoded in W . As can be seen from the figure, SAT
clearly improves upon the SI model with vtln in that aspect. As will
be show later on, without vtln, the recorded correlations are even
reduced to those related to the speaker’s gender. A second indication
that the driving factor for the improvements observed when going
from a SI+NMF to a SAT+NMF setup, is the quality of the latent
base vectors W is given by the good results obtained with the last
two setups listed in table 1. For these experiments, we used the
latent base vectors W learned from the SAT system in combination
with the SI system.
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HMM providing the latent vectors
meta-data priors SI, no vtln SI, vtln SAT

gender 50% 99% 94% 95%
age 38% 41% 48% 51%

region 57% 57% 54% 57%

Table 2. Classification accuracy for different speaker characteristics.

Table 1 also lists several results with fMLLR speaker adaptation.
Comparing the different setups shows that: (i) without SAT, fMLLR
does not yield additional improvements over VTLN, (ii) with SAT
and with sufficient amounts of enrollment data, fMLLR lowers the
WER on average by 4%, (iii) fMLLR and NMF-adaptation show
similar (4% relative) improvements, and (iii) combining fMLLR and
NMF-adaptation results in a small additional improvement.

When the amount of fMLLR adaptation data is limited to 1 sen-
tence (SI+fMLLR[1]), it is no longer possible to reliably estimate
the speaker dependent transformation matrix Me. We hence replace
Me with MSAT and find that the NMF speaker adaptation benefits
are maintained (SAT+NMF[1]), even in the unsupervised scenario.

When NMF is applied to the SI or SAT baseline system, it gives
similar performance with a single enrollment sentence or 10 enroll-
ment sentences. This shows that (i) NMF is not susceptibility to
overfitting when only small amounts of enrollment data are avail-
able, and (ii) NMF generalizes well and hence can work with small
amounts of adaptation data. Even unsupervised adaptation can be
done with a single enrollment sentence. fMLLR adaptation (with a
full transformation matrix) on the other, clearly requires more that
one adaptation sentence (SI+fMLLR[1] versus SI+fMLLR[40]).

We also investigated the relations among the latent speaker vec-
tors and some observable speaker characteristics. Identical to [7],
the analysis was limited to the 200 WSJ1 training speakers for which
speaker meta-data is available. The following speaker characteristics
(with corresponding classes and counts) were considered: gender
(male: 100, female: 100), age (< 25: 26, < 35: 75, < 45: 55, < 55:
26, ≥ 55: 16), and region where the speaker went to primary school
(West: 110, the Midlands: 27, Southern: 19, New England: 16, the
Inland North: 9, New York City: 6, North Central: 5). The clas-
sification was done with a simple linear classifier trained on the H
matrix (the latent speaker coefficients) in a leaving-one-out scheme.
Table 2 shows the results. Classification based on the prior class dis-
tributions and based on the latent speaker coefficients for a SI model
without VTLN are added for reference. Without VTLN, gender is
the only discernible speaker characteristic. Adding VTLN and SAT,
allows the NMF-decomposition to encode additional speaker char-
acteristics such as age in the base vectors. However, gender remains
the most prominent feature, indicating that neither VTLN nor fM-
LLR can completely compensate for the gender differences. The
investigation whether the latent speaker vectors also reflect speaker
accent, measured by means of the region where the speaker went to
primary school, was inconclusive. The lack of any observed corre-
lation could be caused by several factors: (i) region may not predict
accent since a great amount of the speakers moved among different
regions, (ii) other characteristics such as ethnicity may be more re-
lated to accent, (iii) we work on read speech so most speakers adopt a
relative standard English accent, and (iv) the latent vectors only have
10 degrees of freedom and already encode gender and age informa-
tion; adding accent information may require more base vectors.

5. CONCLUSIONS AND FUTURE RESEARCH

This paper describes a novel fast speaker adaptation algorithm where
SAT and NMF based speaker adaptation techniques are combined.

It has been shown that these two maximum likelihood based tech-
niques are compatible. By combining both techniques, the WER of
the speech recognition system decreases on average 4% compared to
the speaker independent baseline system. Unsupervised adaptation
results in similar WER results as the supervised adaptation. The pro-
posed Gaussian mixture weight adaptation algorithm requires little
adaptation data (only one enrollment sentence).

A key characteristic of the proposed algorithm is that both the
seen and unseen acoustic model parameters are updated by express-
ing the target speaker Gaussian mixture weights as a linear combina-
tion of latent speaker Gaussian mixture weight vectors. The perfor-
mance of the weight adaptation is directly dependent on the quality
of the correlations encoded in the latent vectors. We showed that
SAT improves the quality of the latent vectors. Future research will
focus on additional methods to improve the quality of the latent vec-
tors. We also intend to apply hierarchical weight decomposition as to
adjust the degrees of freedom in the NMF-adaptation to the amount
of available adaptation data. Switching to a small number of base
vectors (degrees of freedom) avoids the overfitting problem when
little enrollment data is available. Increasing the number of base
vectors with large amounts of enrollment data allows the system to
get closer to the true speaker dependent model.
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