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Abstract

Even though the Graphical User Interface (GUI) has been in existence since 1974,
and available for commercial and home use since 1984, blind users still face many
obstacles when using computer systems with a GUI. Over the past few years,
our daily life has become more and more infused with devices that feature this
type of user interface (UI). This continuing trend increasingly impacts blind users
primarily due to the implied visual interaction model. Furthermore, the general
availability of more flexible windowing systems such as the X Window System
has increased the degree of complexity by providing software developers with a
variety of graphical toolkits to use for their applications.

Alternatives to the graphical user interface are not exclusively beneficial to the
blind. Daily life offers us various opportunities where presenting the UI in a
different modality may be a benefit. After all, a disability is a condition that
imposes constraints on daily life, and often those same constraints are imposed
by environmental influences.

Current approaches to providing alternate representations of a user interface
tend to obtain information from the default (typically visual) representation,
utilising a combination of data capture, graphical toolkit hooks, queries to the
application, and scripting. Other research explores the use of adapted user
interface development or context-based runtime UI adaptation based on user and
environment models. All suffer from inherent limitations due to the fact that they
provide alternate representations as a derivative of the default representation,
either as an external observer or as an adapted UI.

Based on the original design principles for graphical user interfaces, this work
shows that the original design can be generalised where a GUI is essentially
the visualisation of a much broader concept: the Metaphorical User Interface
(MUI). Expanding upon this MUI, a new definition is provided for “Graphical User
Interface”.

The well-known paradigm to provide access to GUIs rather than graphical screens
has been very influential to the development of assistive technology solutions for
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iv ABSTRACT

computer systems. Validation for this paradigm is presented here, and based
on the MUI concept, the focus of accessibility is shifted to the conceptual model,
showing that access should be provided to the underlying MUI rather than the
visual representation.

Building further on the MUI concept, and past and current research in Human-
Computer Interaction (HCI) and multimodal interface, a novel approach to
providing multimodal representations of the user interface is presented where
alternative renderings are provided in parallel with the visual rendering rather than
as a derivative thereof: Parallel User Interface Rendering (PUIR). By leveraging
an abstract user interface (AUI) description, both visual and non-visual renderings
are provided as representations of the same UI. This approach ensures that all
information about UI elements (including semantic information and functionality)
is available to all rendering agents, eliminating problems such as requiring
heuristics to link labels and input fields, or seemingly undetectable elements.

With the PUIR framework, user interaction semantics are defined at the abstract
level, thereby ensuring consistency across input modalities. Input devices may be
tightly coupled to specific renderings (e.g. a pointer device in a bitmap rendering),
but all user interaction by means of such a device maps to abstract semantic
events that are processed independent from any rendering.

The novel approach presented in this work offers an extensible framework where
support for new interaction objects can be included dynamically, avoiding the all
too common frustration that results from needing to wait for assistive technology
updates that might incorporate support for the new objects.

The PUIR approach can contribute to the fields of HCI and accessibility well
beyond the immediate goal of providing non-visual representations of GUIs. By
providing a framework where UI rendering and user interaction are abstracted,
additional rendering agents and support for additional input modalities can be
provided to accommodate the needs of other disability groups. The use of an
underlying AUI-based processing engine also ensures that a diverse group of
users can collaborate using a similar mental interaction model regardless of
the rendering they use. The PUIR framework is also capable of supporting
(accessible) remote access to applications, and the presented work may benefit
automated application testing methodologies as well by providing a means to
interact with an application programmatically.



Beknopte samenvatting

Hoewel het GUI concept reeds sinds 1974 bestaat en beschikbaar is voor
commerciëel en persoonlijk gebruik sinds 1984, worden blinde gebruikers nog
steeds geconfronteerd met frequente obstakels wanneer ze computersystemen
met een GUI gebruiken. Tijdens de afgelopen jaren zijn apparaten met dit
soort UI meer gebruikelijk geworden in ons dagelijks leven. De beperkende
invloed op blinde gebruikers blijft groeien ten gevolge van het impliciet visuele
interactie model. Bovendien heeft de algemene beschikbaarheid van meer
flexibele systemen zoals het X Windows System de complexiteit nog verhoogd
doordat softwareontwikkelaars een ruimere keuze hebben tussen verscheidene
grafische toolkits voor hun toepassingen.

Alternatieven voor de grafische gebruikersomgeving zijn niet exclusief nuttig voor
blinden. Het dagelijkse leven geeft ons situaties waar weergave van de UI in een
andere modaliteit nuttig kan zijn. Een handicap is nu eenmaal een conditie die
beperkingen oplegt aan het dagelijkse leven, en diezelfde beperkingen kunnen
dikwijls opgelegd worden door omgevingsinvloeden.

Huidige methodes om alternatieve weergaven voor de gebruikersomgeving te
kunnen verstrekken gebruiken meestal informatie van de standaard (meestal
visuele) weergave, via onderschepte informatie, haken in het grafische toolkit,
oproepen naar de toepassing en scripting. Ander onderzoek verkent het
gebruik van aangepaste gebruikersomgevingen of aanpassende UI’s op basis
van gebruiker en omgeving modellen. Al deze methodes hebben beperkingen
ten gevolge van het feit dat ze alternatieve weergaven als een afgeleide van
de visuele weergave verstrekken, hetzij als een externe waarnemer of als een
aangepaste UI.

Op basis van de originele GUI ontwerp principes toont dit werk aan dat de GUI
gegeneraliseerd kan worden zodat het eigenlijk een visualisatie is van een meer
algemeen concept: Metaphorical User Interface. Op basis van de MUI kan een
nieuwe definitie voor “Graphical User Interface” gegeven worden.

Het welbekende principe om toegang te verlenen voor GUIs in plaats van
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grafische schermen heeft een sterke invloed gehad op de ontwikkelingen van
ondersteunende technologie oplossingen voor computer systemen. Validatie
voor dit principe wordt hier gegeven, en op basis van het MUI concept wordt de
focus voor toegankelijkheid verlegd naar het conceptuele model. Dit toont aan dat
toegang moet verleend worden aan de MUI in plaats van de visuele weergave.

Verder bouwend op het MUI concept, en huidig en verleden onderzoek in
HCI en multimodale omgevingen wordt een nieuwe methode voorgesteld om
multimodale versies voor de UI te verstrekken via alternatieve weergaven in
parallel met de visuele weergave in plaats van als afgeleide: Parallel User
Interface Rendering. Op basis van een AUI beschrijving kunnen zowel visuele
als niet-visuele versies aangemaakt worden als weergaven van éénzelfde UI.
Deze aanpak zorgt ervoor dat alle informatie betreffende UI elementen (inclusief
semantische betrekkingen) beschikbaar is voor alle weergave-agenten, waardoor
problemen zoals de noodzaak aan heuristieken om verbanden tussen labels en
velden te vinden of schijnbaar onzichtbare elementen vermeden kunnen worden.

In het PUIR raamwerk wordt de semantiek van de gebruikersinteractie op het
abstracte niveau gedefiniëerd waardoor consistentie tussen input modaliteiten
gegarandeerd kan worden. Invoerapparaten kunnen sterk gekoppeld zijn aan
specifieke weergave agenten (bijvoorbeeld een muis in een bitmap weergave).
Alle interactie van de gebruiker via een dergelijk apparaat wordt naar abstracte
semantische interacties vertaald zodat ze onafhankelijk van de weergave geïnter-
preteerd kunnen worden.

De vernieuwende aanpak die in dit proefschrift voorgesteld wordt is een uit-
breidbaar raamwerk waarin ondersteuning voor nieuwe UI elementen dynamisch
kan worden opgenomen. Dit vermijdt de al te frequente frustratie ten gevolge
van het feit dat nieuwe elementen dikwijls pas in een nieuwere versie van een
toegankelijkheidstechnologie beschikbaar zijn.

De PUIR aanpak kan bijdragen leveren tot de gebieden van HCI en toegankelijk-
heid voor meer dan het onmiddellijke doel om niet-visuele weergaven voor GUIs
te verstrekken. Doordat een raamwerk beschikbaar wordt gemaakt waarin UI
weergave en gebruikersinteractie geabstraheerd worden, is het mogelijk om extra
weergave agenten en ondersteuning voor extra invoermodaliteiten te verstrekken
om de behoeften van andere gebruikersgroepen te ondersteunen. Het gebruik
van een onderliggende AUI-gebaseerde verwerkingseenheid zorgt er ook voor
dat diverse gebruikersgroepen kunnen samenwerken op basis van een soortgelijk
mentaal interactie model, ongeacht de weergave die ze gebruiken. Het PUIR
raamwerk kan ook (toegankelijke) interactie met programmatuur van op afstand
mogelijk maken. Dit werk kan verder ook van toepassing zijn in het kader
van het geautomatiseerd testen van toepassingen doordat het programmatische
interactie met een toepassing mogelijk maakt.
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Chapter 1

Introduction

“Let us not then speak ill of our generation, it is not any unhappier than its
predecessors.

Let us not speak well of it either.
Let us not speak of it at all.”

(Samuel Beckett, “Waiting for Godot”, 1954)

Over the past few years, our world has become more and more infused with
devices that feature a graphical user interface, ranging from home appliances with
LCD displays to mobile phones with touch screens and voice control. Although
GUIs have been in existence for nearly 30 years, blind1 people still encounter
significant obstacles when faced with this type of user interface. On UNIX-
type systems where mixing graphical visualisation toolkits is common, non-visual
access is even more problematic. The popularity of this group of systems keeps
growing, while advances in accessibility technology in support of blind users
remain quite limited.

Alternatives to the graphical user interface are not an exclusive need for the blind.
Daily life offers us various opportunities where presenting the UI in a different
modality could be a benefit. Sometimes the problem at hand is as simple as
sunlight glare on the screen of an Automated Teller machine (ATM); other times
one might be faced with the dangers of using a cellular phone while operating
a vehicle [83]. In addition, consider the use of computer displays in operating
rooms where a surgeon certainly would prefer not turning away from their patient
in order to access some information on the screen. All these situations are very
similar to the needs of a blind individual trying to access a computer system.

1This work use the term “blind” as opposed to “visually impaired” to indicate that an individual has
no usable sight at all. See section 1.2.2 for an explanantion of terminology as used in this dissertation.

1
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Alan Newell expressed that by embracing the needs of extra-ordinary people, we
do not limit the applicability of our work. Instead, we will discover and refine
techniques that will benefit the overall user community [102]. This is illustrated by
an example from his article:

“A simple example of the value of “design for disability” was a
Norwegian telephone, with a large keypad specifically designed to
assist people with physical disabilities; this was found to be invaluable
in outdoor kiosks where climatic conditions meant that able-bodied
users wore very thick gloves.”

The presence of higher level technologies in environments where conditions may
be variable contributes to the applicability of multimodal interfaces. Obrenović,
et al. present accessibility as a multimodal design issue that can be described
in terms of interaction constraints [108]. Analysis of the constraints imposed by
disabilities, and the effect of environmental constraints on activities in daily life
shows a remarkable overlap. Table 1.1 presents the effect of some constraints
on one’s ability to operate a moving vehicle. Being able to present information
through synthetic speech, and providing multiple data entry methods allows for
safer operation of in-car interfaces [35].

Looking towards contemporary and future trends in computing, Weiser coined
the term “Ubiquitous Computing” [162] to refer to a form of computing where
machines fit the human environment rather than forcing humans to adapt to
theirs. In the context of user interfaces, ubiquitous computing involves some
level of I/O processing that aims to mimic human communication channels such
as speaking, hearing, gesturing, reading, writing, . . . , which obviously relates to
multimodal interaction because in this context graphical user interfaces are no
longer appropriate [166]. York also notes that based on an extensive literature
review on HCI research topics, multimodal interaction and I/O techniques in
general are of paramount importance in view of ubiquitous computing. This
clearly shows that work in this field has application well beyond the realm of
accessibility for people with disabilities.

Aside from the obvious advantages of multimodal user interfaces, and the ability
to provide the most appropriate representation based on the context of use,
another very important aspect of daily life ought to be considered: people working
together. This can take the form of collaborating on a work project, teaching or
training, or even performing the same job functions as co-workers. Barriers to
collaboration can lead to segregation between the user groups based on their
abilities and needs [125]. In extremis, failure to make collaboration possible might
be considered a form of discrimination.

Not only is the ability to collaborate an aspect of equal participation in society
and work environments, it also influences people’s self-esteem. One of the
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Constraint Situation Influence

Traffic situation Car stopped No specific reductions.
Normal traffic It is not convenient to require the

user to move or use hands. Also,
user’s central field of vision is directed
towards the road.

Traffic jam In addition to the normal traffic situ-
ation, additional limitation in handling
attention requests, so the user is more
focused and stressed.

Noise level Low No specific reductions.
Normal A user’s audio perception, audio 3D

cues, and speech can be used
provided that they are of significant
intensity.

High All audio effects are significantly re-
duced.

Visual conditions Day No specific reductions.
Night or fog Driving conditions are tougher; user is

more focused and stressed.
Weather conditions Dry No specific reductions.

Rain or snow Driving conditions are tougher; user is
more focused and stressed.

Emotional state Relaxed No specific reductions.
Stressed Limited ability to handle attention re-

quests and use complex interaction
modalities.

Passengers No No specific reductions.
Yes Other users can use interfaces. Can

affect noise level and linguistic effects.
(Table based on [108].)

Table 1.1: Driving a car as a complex interaction constraint
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respondents to the survey presented in chapter 3 phrased this very eloquently
[85]:

“I would like to add that one reason why this topic is important to me is
that I would like to be able to help sighted persons with their computers.
I’m fairly knowledgeable about computers, but I can’t translate for a
sighted user. My dad is 84, and struggling to learn how to use email,
etc. I can only be of limited help to him, because I can’t tell him where
to look for certain buttons, etc. Some of my dad’s difficult experiences
with learning his computer – bad instructors, impatient tech support, or
my niece or nephew who have difficulty understanding his frustrations,
for instance – has gotten me interested in wanting to help older adults
learn computing. But, I am unable to do this without a solid working
knowledge of what things look like.”

Leveraging the well established paradigm of separation between presentation
and application logic [112], advances in multimodal UI development, and existing
research on abstract user interface descriptions, this dissertation presents a novel
approach to providing equivalent representations of multimodal user interfaces,
using a parallel rendering technique to support simultaneous presentation and
operation of the UI across different modalities.

The accessibility of computer systems has received quite a lot of attention
throughout the past 50 years, both in terms of research and commercial
applications. It is therefore beneficial to first introduce this field of research
in its historical context. This can be found in section 1.1, followed by a
definition of important terms in section 1.2. The thesis statement is presented in
section 1.3, along with motivations and explanations of the working hypotheses
and a declaration of scope. An enumeration of the main contributions of the
conducted research to the field of Human-Computer Interaction and Accessibility
follows in section 1.4. The chapter concludes with an outline of the subsequent
chapters in this dissertation in section 1.5.

1.1 History

According to the Computer History Museum, the world’s first personal computer
entered the market in 1971: the Kenbak-1 (Figure 1.1) [95]. Input was provided
by means of buttons and switches, and output consisted of a series of lights. The
computer was more educational than functional, but it would have been quite easy
to make it accessible to blind users. Sadly, at the time, accessibility of computer
systems was primarily focused on professional use.
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(Image courtesy of Computer History Museum.)

Figure 1.1: Kenbak-1, the world’s first personal computer

1.1.1 Consoles, teletypes, and terminals

Seven years earlier, in 1964, staff of the Medical Computing Center at the
University of Cincinnati College of Medicine published a groundbreaking paper
outlining techniques and aids in support of professional computer work for the
blind [136]. The authors recognised that proficiency in operating computers
would be an important asset for blind individuals and proudly wrote: “[. . . ] in
work with computers the blind may operate without handicap (for the first time in
history) [. . . ]”. Within a few years, time-shared computing presented an obstacle
by introducing remote terminal units. As early as 1968, blind programmers
were able to overcome this problem using specialised braille terminal devices
[2, 119], and similarly an observation was made that: “With a device of this
type a blind programmer has virtually no disadvantages compared with a sighted
programmer.”

Circa 1974 research at Xerox PARC led to the development of the graphical
user interface. It remained an internal project without successful commercial
application for roughly 10 years. Within that same time frame, terminals
with synthetic speech output were introduced as an alternative to the quite
cumbersome teletype-based braille terminals [117, 82]. This time in history also
marked the general availability of personal computers as a commercial product
[96, 97]. These systems provided the user with a text-only character-based user
interface. Within 2–3 years, various solutions to provide access for the blind
emerged, first as self-voiced applications, and shortly after as generic screen
readers [47].

1.1.2 The Graphical User Interface

While Xerox PARC was not successful in marketing the graphical user interface
as a competitive advantages, companies within the personal computer market
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segment succeeded. Well known examples are Apple Computer, Inc. with the
Macintosh (1984) and Microsoft Corporation with Microsoft Windows 1.0 for the
IBM PC (1985). This development presented significant obstacles to the blind.
Whereas before non-visual access was primarily a matter of reading the screen
content as characters in system memory, now assistive technology (AT) was
faced with pixel graphics and visual metaphors [16]. The introduction of the GUI
was perceived as a true crisis because [22] “[. . . ], some design decisions aimed at
improving the interface for the non-disabled user are making those same systems
less accessible to those that are handicapped.”

Bowe (quoted by Edwards [38]) phrased the implications of this development quite
pointedly:

“When Drexel University required every freshman to buy a Macin-
tosh. . . it was sending a message that ’No blind person need apply
here’.”

In 1989, five years after the introduction of the Macintosh personal computer,
Berkeley Systems, Inc. released outSPOKEN, a GUI screen reader with a novel
approach to determining the screen content: the Off-Screen Model (OSM) [126].
In 1992, Microsoft Windows became accessible to the blind with the release of
SLIMWARE Window Bridge. In subsequent years various other popular screen
readers for personal computers emerged [47], along with revisions of existing
ones. Microsoft Windows gained significant popularity in the workplace and
at home, and a lockstep progression ensued between operating system (OS)
releases and screen reader upgrades. IBM released Screen Reader/2 for their
OS/2 systems in 1994 [140], introducing scripting in the screen reader in support
of applications with graphical user interfaces.

1.1.3 UNIX-type systems

UNIX-type systems saw a quite different development in terms of accessibility for
the blind. Development started at Bell Labs in 1969, with first availability in 1975,
and a public release in 1982 [55]. Blind users were able to benefit from existing
remote access facilities (such as terminals with synthetic speech output).

Staff at the Massachusetts Institute of Technology started work on a GUI
environment for UNIX in 1984, and the X Window System (X11) was released in
1987. At this point in time, it was common for blind users to access UNIX systems
from a personal computer with a Microsoft Windows-based screen reader. As the
OS expanded from servers to workstations, the emerging X11 GUI environment
posed the same complications as seen earlier with non-UNIX based personal
computers [16]. Circa 1992 the Graphics, Visualisation, and Usability Center at
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the Georgia Institute of Technology commenced the Mercator project to [99] “[. . . ]
provide transparent access to X11 applications for computer users who are blind
or severely visually-impaired.” A significant contribution from this project was the
introduction of the Remote Access Protocol (RAP) in X11 [44], which could be
considered to be the first accessibility application programming interface (API).

When a free UNIX-type OS (Linux) became available, the general public
gained a powerful alternative to the primarily Microsoft Windows-based world of
personal computers. At the same time, workstations with commercial flavours
of the OS were gaining in popularity. With the added power of numerous
enthusiastic programmers embracing the open source development model, X11-
based desktop usage increased, and with it the need for accessibility. The
GNOME Accessibility Project [137] embraced this challenge with the help of
commercial entities and the formation of an accessibility working group within the
Free Standards Group [53]. In 2005, Sun Microsystems released their Solaris 10
operating system with various accessibility features, including the Gnopernicus
screen reader [76]. That same year, development started on a successor: Orca
[21]. Both are specific to the GNOME desktop environment, rather than being
generic X11 screen readers. Developers at IBM also worked on a screen reader
for GNOME: LSR (Linux Screen Reader) [111]. The project started circa 2006 but
was abandoned roughly a year later as a result of changes in corporate strategy.

Apple Computer, Inc. moved to a UNIX-type OS in 2001 with the release of Mac
OS X. The company recognised the strategic importance of accessibility and a
full-fledged screen reader was included with the Mac OS X 10.4 release in 2005:
VoiceOver.

1.1.4 Application programming interfaces

Prior to the introduction of GUI environments, screen readers were able to access
the content of the screen as characters in system memory. When that was no
longer possible, developers were forced to find alternative techniques to retrieve
information that in essence was not meant to be accessible to other applications
such as the screen reader [40].

The Mercator project introduced the concept of promoting changes or additions
to the underlying system in support of AT solutions. It was instrumental in adding
the Remote Access Protocol (RAP) in X11 along with various hooks in the toolkit,
enabling notifications about UI elements to be provided to external listeners [43].

The introduction of an accessibility API soon became a fundamental feature of the
OS. Microsoft Windows was first augmented with Microsoft Active Accessibility
(MSAA) in 1997, and in later releases with the UI Automation API (2005).
Likewise, Apple Computer, Inc. added an accessibility API to Mac OS X with its
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Technology Year Assistive Technology

IBM 1401 Mainframe 1961
1964 Punch cards, console probe
1968 Braille terminal
1974 Terminal with synthetic speech

IBM PC 1981
1984 DOS screen reader
1988 Screen Reader (IBM)

MS Windows 1985
1992 GUI screen reader (WinVision)
1997 MSAA (API)
2005 UI Automation (API)
2011 ISO/IEC 13066-2 Standard

Apple Macintosh 1984
1989 GUI screen reader (outSPOKEN)

MacOS X 2001
2002 Apple Accessibility API
2005 VoiceOver (MacOS X)

2011+ ISO/IEC 13066-5 Standard
X Window System 1987
SunOS 4.1.1 w/ X11 1990
Solaris 2.1 w/ X11 1992
Linux w/ X11 1992

1994 Remote Access Protocol (API)
1994 Mercator

GNOME 1999
2001 AT-SPI (API)
2005 Gnopernicus
2006 Orca

2011+ ISO/IEC 13066-4 Standard

Table 1.2: Time line of Accessible Technologies

10.2 release in 2002. On the UNIX-type side, the GNOME Accessibility Project
introduced the AT-SPI API in 2001, and it has been submitted as a candidate for
standardisation with the Free Standards Group.

1.1.5 Analysis

Table 1.2 provides an overview of various influential developments towards
providing blind users access to computer systems. The advances made towards
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accessibility of mainframe systems is quite significant. By 1974, braille terminal
devices and terminals with synthetic voice had been developed. While many
improvements were made to both forms of AT in more recent years, the
fundamentals of the technologies were established several years prior to the
introduction of the personal computer. It is therefore reasonable to conclude that
the majority of effort put into developing screen readers post-1981 was spent on
implementing mechanisms to access screen content and/or building off-screen
models rather than presentation in an accessible format.

The overview in Table 1.2 shows that commercial systems with a GUI environment
(aside from systems with X11) on average became accessible to the blind for the
first time within five years. Commercial screen readers have kept up to date with
system updates, albeit at times with minor delays (several months).

Computer systems with GUI environments based on X11 experienced a very
different history, with experimental developments that did not quite reach the level
of their commercial counterparts on non-X11 based systems. Development on
the Mercator project (and its spinoffs) ceased, and Gnopernicus was abandoned
in favour of Orca. Reliance on the AT-SPI API and a CORBA-based infrastructure
limits Orca to the GNOME desktop environment, although standardisation efforts
may result in a wider adoption of the API. Therefore, 24 years after the first
release of the X Window System we must conclude that there is still no generic
screen reader available for X11-based systems.

Contrary to other GUI environments, X11 does not impose the use of any specific
graphical toolkit or desktop environment on the user. The level of flexibility offered
by this design poses a significant complication for screen reader developers, and
it is one of the main reasons why progress towards accessibility for the blind has
been atypical in comparison with other systems.

Altogether, it is clear that accessibility is not generally a consideration when new
technology is designed. In fact, it is often added in response to pressure from
the user population or to satisfy regulatory requirements, years after the initial
release of the technology [19]. Adding support for accessibility features to an
existing product is usually quite costly, and it is bound to face limitations imposed
by the original design2.

An important development that is likely to influence accessibility of computer
systems in years to come is the work towards standardisation of accessibility
APIs. The ISO/IEC 13066-1 base standard was approved and published on May
5th, 2011 [68], while additional parts (as listed in Table 1.2) for specific APIs are
at different stages on the path towards formal approval.

2It can be argued that any such limitation can be overcome given sufficient resources, but the
economic considerations for doing so are typically prohibitive.
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1.2 Core terminology

The thesis statement presented in section 1.3 depends on some important core
terminology from the field of Human-Computer Interaction. Many concepts in
this field lack a clear consistent definition for which consensus has been reached.
Multimodality is a good example, because at a minimum it can be interpreted
both from a system-centric context and from a user-centric point of view. The
remainder of this section provides the definitions that are applicable for the
presented work.

1.2.1 Usability

Literature has defined “usability” in many different ways, often due to differences
in view point and context. Various international standards have provided
definitions that are not quite consistent with one another:

“The ease with which a user can learn to operate, prepare inputs for,
and interpret outputs of a system or component.” (IEEE Std.610.12
[65])

“A set of attributes that bear on the effort needed for use and on the
individual assessment of such use, by a stated or implied set of users.”
(ISO/IEC 9126 [66])

Yet, in the context of multimodal user interfaces, the following definition from ISO
9241-11 is most on target [67]:

Definition 1.1. “The extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a
specified context of use.”

It specifically defines three areas of concern that are to be evaluated towards
qualifying usability: effectiveness, efficiency, and satisfaction. When considering
multiple target user groups (e.g. groups with differing abilities and needs), it is
important to be able to measure usability as a success criterion. Achieving
equivalent levels of usability (measured by a common standard) is a long-term
goal for the approach presented in this dissertation.
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1.2.2 Blindness and visual impairment

Various terms relating to blindness and visual impairment are used in research
literature. By its very nature, visual impairment covers a very broad area ranging
from no light perception at all to blurred vision, and every gradation in between.
Light perception relates to the ability to e.g. determine through vision whether one
is in a dark or bright location. In addition, the field of view may be restricted or it
could include so-called blind spots.

The term “legally blind” is used to indicate that someone has met a specific set
of criteria based on either low acuity or a restricted field of vision. The criteria
differ from country to country; in the United States of America, legal blindness is
defined as having a visual acuity of 20/200 or less in the better eye, with the use
of a correcting lens, or a field of vision where the widest diameter subtends an
angular distance of 20 degrees or less in the better eye [30].

The term “low vision” is used to describe “individuals who have a serious visual
impairment, but nevertheless still have some useful vision” [64].

The term “blind” is often used in a restrictive sense to indicate that someone’s
vision is limited to light perception or less. Individuals who are deemed “blind” do
not have any usable vision.

The term “visually impaired” is used for any individual who is deemed legally blind
[87].

Of all visually impaired people, the blind constitute a well defined group. The
remainder of the community of legally blind individuals cover a whole range
of impairments and their associated needs. Accomodating one could exclude
another: using enlarging of text may be an obvious accomodation for partially
sighted people, but makes matters worse for a user with a restricted field of vision
because even less will be visible to them [39].

1.2.3 Accessibility

Bergman and Johnson define “accessibility” as follows [7]:

Definition 1.2. Providing accessibility means removing barriers that prevent
people with disabilities from participating in substantial life activities, including
the use of services, products, and information.

This definition is unfortunately not specific enough for the work presented in this
dissertation.
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As illustrated in section 1.1, the accessibility and usability of systems and devices
with a graphical user interface has been a concern for over 25 years. The overall
goal was very accurately phrased in 1964, albeit at that time with an overly
optimistic observation that [136] “[. . . ] in work with computers the blind may [now]
operate without handicap [. . . ].”

Mynatt recognised that an important aspect of accessibility is often overlooked
or taken for granted [98]: “An implicit requirement [is to] facilitate collaboration
among sighted and blind colleagues. [. . . ] Therefore it is imperative that [they] be
able to communicate about their use of application interfaces.”3

The barrier to collaboration between sighted and blind users is indeed often
overlooked when considering the accessibility and usability of computer systems,
which is a sad irony in view of the current proliferation of distributed work
environments where workers are no longer in close proximity to one another. In
addition, the aforementioned definition of accessibility does not quite make the
requirement for “usability” explicit [159]. While it is certainly implied (“. . . the
use of services, products, and information”), the need for usability as defined
in section 1.2.1 in order for a system to be truly accessible is of such great
importance that an explicit inclusion of the requirement is certainly warranted.

Specific to the context of computer systems, a more refined definition of
“accessibility” can therefore be formulated:

Definition 1.3. A computer system is fully accessible when (a) any user can
access and use all functionality independently4, (b) when that user can engage
in meaningful collaboration about the system with peers, regardless of individual
needs, and (c) when all users are provided with an equivalent level of usability.

1.2.4 Multimodality

Within the context of this work, multimodality is more a characteristic of the actual
system rather than an aspect of user interaction. Nigay and Coutaz provide a
definition for multimodality from a system centric point of view [103]:

Definition 1.4. Multimodality is the capacity of a system to communicate with a
user along different types of communication channels and to extract and convey
meaning automatically.

This definition clearly indicates that multimodality applies to both input and output
modalities. Then what sets multimodality apart from another common term:

3When the collaboration involves multiple users accesses the same data using the same instance
of an application, this is also referred to as “Computer Supported Cooperative Work” (CSCW).

4Either through direct manipulation (“direct access”) or indirectly (“assisted access”) by means of
some form of assistive technology solution.
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multimedia? Coutaz defines a multimedia system [32] as a system that allows the
acquisition, storage, and distribution of data across multiple media5. The relation
between the two terms can then be established as presented by Stanciulescu
[133]:

Definition 1.5. A multimodal system is a system with multimedia capabilities that
enables semantic data handling.

1.3 Thesis

This dissertation provides the defence for the following thesis:

The ability to provide multiple equivalent representations of a user
interface in parallel across multiple modalities promotes accessibility.

The remainder of this section will provide the motivation for the thesis, working
hypotheses, and a declaration of scope.

1.3.1 Motivation

Various aspects of the approach described in this work have been the topic of
research in past years. This section will discuss the underlying concepts of the
thesis statement, providing motivation for each component.

Multiple representations

The vast majority of user interfaces encountered in daily life are graphical in
nature. The appeal of a visually pleasing interface is strong, yet it does restrict
user interaction primarily to the visual channel. It also poses a significant hurdle
for users with visual impairments as discussed at the beginning of this chapter.
One of the influential responses to these concerns is the multimodal UI, a
paradigm shift away from conventional Window-Icon-Menu-Pointer (WIMP [28])
interfaces towards providing greater expressive power, naturalness, flexibility, and
portability [110].

Multimodality can be leveraged at two different levels:

5“Media” refers to physical devices used for input or output, or a physical object used to store data.
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• A user interface representations can benefit from supporting interaction
across multiple modalities. The various modes of communication comple-
ment one another.

• Multiple representations, each supporting interaction across one or more
modalities. Users can choose to interact with the system by means of a
specific representation. Any such representation in and of itself may be
multimodal as well.

With the prevalence of cross-platform applications, the large variety of interaction
devices (smart phones, netbooks, laptops, desktop computers, PDAs, . . . ), and in
support of individual user needs (e.g. visual impairment [5]), support for multiple
representations has become an important feature in user interface systems.

Parallel presentation

Collaboration between users is an important aspect of user interaction, be it in the
form of assistance, or in the form of working together on a project. In view of the
aforementioned large variety of contexts of use, it is obvious that situations will
and do occur where collaboration between users with different needs is desirable.
A sighted instructor teaching a blind user how to use a computer system is a very
common and obvious example [161]. While one can expect the instructor to be
very well versed in operating the UI from the context of use of a blind user, it is
certainly not the most natural mode of user interaction for the instructor.

Christian wrote on the topic of multimodal user interfaces and accessibility for the
blind [29]:

“Simply giving the blind efficient access to computers should not be
the goal of these types of interfaces. These interfaces should enhance
the ability of blind users to integrate into the larger community of users.
This would enable, for example, allowing blind workers to collaborate
with sighted coworkers on projects at the office. The interface should
give the blind user a clear ’picture’ of what a sighted partner is doing
with the system. To this end, the interface should attempt to convey to
the blind users a mental model of the system similar to that of sighted
users.”

Aside from training, users commonly have questions about the operation of an
application or system. From an accessibility perspective, it is quite unreasonable
to not offer support for collaboration between users with quite different needs. It is
also unreasonable to expect all users to be proficient with every modality that can
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be used to interact with a system. How can one then ensure that collaboration is
not hindered by differences in interaction modality?

The solution that is proposed in this work is to allow multiple representations to be
rendered in parallel, allowing e.g. a sighted user to observe visually all interaction
that a blind user is performing by means of a UI representation that is more
appropriate for the blind user. In reverse, the blind user should be able to observe
all interactions performed in a GUI by a sighted user, and that observation should
be able to take place through a UI representation that is non-visual.

Functionally equivalent representations

The notion of collaboration expressed in the previous topic clearly depends on
both representations (and in general, any number of representations) to be “in
sync”. This means that if multiple users are observing the system through
different UI representations6, each user must be presented with the same
semantic UI state, rendered in each respective representation as needed. In other
words, all UI representations should be independent from the actual functional
operation of the system.

1.3.2 Scope of the work

The work presented here is limited by the following considerations:

• All systems and applications are assumed to be interactive. This means
that all interaction with a system or application is provided by a user rather
than an automated system. It is also assumed that user interaction with the
system or application will yield output that is easily observed by a user.

The aim of this work is to provide a solution that is based on describing the
user interface from a functional point of view, and while it is not within the
scope of this work, it would be possible to generate final UIs for any context
of use, including automated system interaction facilities (e.g. automated
testing frameworks).

• Multimodal interaction can cover a large variety of modalities, making use
of all five major human senses7. The research presented here is primarily
limited to visual and auditory interactions, and tactile (through Braille) to a
lesser extent.

6UI representations could differ in terms of the modalities used for user interaction, or merely in
how the same set of modalities is used in different ways.

7The main human senses are: sight, hearing, smell, taste, and touch.
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• The graphical user interface is the standard interface on most computer
systems. Most users are familiar with this type of interface, and it is available
on almost every computing platform. While a GUI environment is very
common, it still often offers a significant degree of complexity by virtue of
supporting visualisation by means of multiple graphical toolkits.

In this work, all representations are essentially equivalent and thus no
preference should be given to any. However, for the purpose of comparison,
it is assumed that the natural representation is visual (GUI). Applications
will therefore be introduced with only a visual interface, and the outcome of
the work will support multiple equivalent representations.

• For the purpose of the work presented in this dissertation, the overall
scope of supported representations has been limited to a visual GUI
representation and a non-visual representation. This choice was made for
three important reasons:

– Providing both a visual and a non-visual representation, while ensuring
that equivalence between them is maintained, is one of the most
extreme scenarios.

– As described in section 2.2.1, enabling blind users to access a GUI-
based computer system is of great importance. The presented work
aims to provide the foundation for an approach that may accomplish
this important goal in future work.

– As defined in section 1.2.2, the blind represent a well define group,
with well understood needs. It is obvious that the visual channel
is not usable for a blind individual, and therefore an alternative
communication channel must be used. Also, the vast majority of
research that has been conducted on the topic of HCI for people with
visual impairments has been focused on the blind.

• Although “facilitation” is hardly a scientific concept, it is quite relevant to
the realm of accessibility and usability. During the design and development
of user interfaces, choices are made that may have significant impact on
the accessibility and usability of a system, and success is often dependent
(in part) on how well the system facilitates designing interfaces that will be
accessible. Still, in extremis, a developer could e.g. opt to render the entire
UI at the level of the application, merely using a canvas widget to display
the UI as an image. While this could still be done using the mechanisms
presented in this work, it is a violation in spirit of the underlying concepts.
This dissertation does not address the complications that arise from such
“creative programming.” It is recognised that no system is foolproof in view
of the flexibility offered to designers and developers, and that such flexibility
is needed to ensure that no arbitrary limits are imposed upon the creative
talents of UI designers.
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• The primary goal (presented in section 1.3) is to provide a design for a
user interface system. It is recognised that performance is not taken into
consideration in this work.

• The target audience for this dissertation is the community of HCI re-
searchers and professionals, especially anyone with a focus on accessibility.
Professionals involved in advocacy activities related to accessibility of
computer systems may be interested in the presented approach in terms
of accessibility as a feature versus an add-on.

Ultimately, the end user population as a whole (regardless of any needs a
user might have) is the intended beneficiary of this work.

1.4 Contributions

The main objective of the research presented in this doctoral dissertation has
been presented in section 1.3. The research conducted throughout the course of
the doctorate program provides the following main contributions:

• A re-interpretation of the Graphical User Interface concept
When researchers developed the original concept of the GUI (also known
as the WIMP interface) the full impact of their creation may not have been
known. The research presented in chapter 2 shows that the graphical user
interface can be re-interpreted as a visualisation of a broader fundamental
concept, introduced here as the Metaphorical User Interface. The MUI
is specified at the conceptual level, whereas the GUI operates at the
perceptual level. In view of recent developments with novel user interaction
technologies, a deeper underlying form can be identified as the Conceptual
User Interface, capturing the original intent of the GUI design.

• Validation of the “access to GUIs – not graphical screens” argument
Edwards, Mynatt, and Stockton discussed this argument for a paradigm shift
in the provision of accessibility for GUI-based computer systems in their
1994 paper [45]. The authors did not provide research-based validation
for their claim . In chapter 2 this argument is revisited, and the presented
research provides the missing validation.

• Providing access to the underlying conceptual user interface, not its
visual representation

This contribution is a derivative of the previous two contributions. The
decomposition of the GUI concept into a conceptual component and a
perceptual component makes it possible to further refine the “access to
GUIs – not graphical screens” paradigm shift. The presented research and
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analysis in chapter 2 shows that the accessibility problem should shift from
the perceptual layer to the conceptual layer.

• Survey to determine familiarity of WIMP-based user interface elements
and mental models for blind users

Various research in the past has been based on the assumption that the
underlying metaphor (and derived user interface elements) for the original
GUI design is not appropriate for blind users. The survey presented in
chapter 3 shows that the blind are in fact quite familiar with these elements
and the metaphor they are based upon. However, the survey also shows
that the accuracy of the mental model used by blind users is very dependent
on the quality of information that the user can access to create the model.
Limitations in assistive technology present a significant complication, often
augmented by the fact that (at times in relation to the AT limitations) sighted
peers do not usually provide good verbal descriptions of the UI, even in
response to directed questions.

• Concurrent representations of the same conceptual model in different

modalities

The Parallel User Interface Rendering approach presented in chapter 5
introduces a novel approach to providing multimodal user interfaces
by breaking through the limitations imposed by derivative models and
their representations. The PUIR framework provides each user with an
appropriate and semantically equivalent representation of the underlying
conceptual UI. The GUI becomes one of potentially many representations
of the same UI.

• Unified processing of user interaction at a semantic level

Alternative representations of a user interface cannot be provided as first
generation renderings if user interaction semantics are dependent on a
specific modality. This has not only been a problem with the accessibility
and usability of systems for people with special needs, but also in terms
of e.g. ensuring that user interaction with a system can be done both
by keyboard and by mouse. The techniques presented in chapter 6
make it possible for all user interaction semantics to be defined in a
modality-independent way at the abstract UI level, while supporting multiple
representations across modalities.

• Experimental implementation to validate the designs

A fairly minimal version of the PUIR framework has been implemented as
an experimental system. The purpose of the implementation is to validate
the design of the PUIR approach, and to gain knowledge concerning
the complexity of implementing the PUIR system in an existing GUI
environment.
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• Validation of the approach

Based on the established requirements for this work, derived from the
state of the art discussion, the approach presented in this work is
to be validated. Internal validation comprises assessment against the
requirements, together with an evaluation based on the same criteria
used in the state of the art analysis. External validation outlines a test
plan approach to perform real-world testing of the approach, and provides
information on performing comparison testing also.

1.5 Chapter by chapter overview

The remainder of this dissertation is organised in 8 chapters, providing an in-
depth discussion of the problem areas in terms of challenges and requirements,
and presenting the contributions of this work.

• Chapter 2 discusses the design principles that form the basis for the
graphical user interface concept, and relates them to providing non-visual
access to GUIs and the associated HCI issues. The concept of Universal
Access (UA) is also discussed as a new perspective on HCI. Relating the
GUI concept with UA and HCI issues, the presented research discusses the
use of AUI descriptions in the specification of user interfaces.

The concept of using AUI descriptions as underlying technology for the
provision of non-visual access to GUIs was presented (with analysis) in
conference papers at HCI International 2005 [145], AAATE 2005 [146],
ICCHP 2006 [147], and UIDL 2011 [151].

• Chapter 3 presents a survey of the target user population (individuals who
are totally blind). The purpose of the survey is to gain information about
how blind users perceive graphical user interfaces, how they construct
mental models for UIs, and what specific UI elements present themselves
as significant obstacles to user interaction for the blind.

• Chapter 4 provides a discussion and analysis of related works. Based on
presented evaluation criteria and identified shortcomings, further require-
ments for the approach presented in this dissertation are formulated.

A subset of the content of this chapter has been published in conference
papers at ICCHP 2006 [147], ICCHP 2010 [150], and UIDL 2011 [151]. Part
of the content is under review for publication in an upcoming issue of the
Universal Access in the Information Society journal [152].
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• Chapter 5 introduces the Parallel User Interface Rendering approach. First,
the design principles that the PUIR approach is based on are introduced.
The remainder of the chapter presents the actual design of the framework.

A significant portion of the content of this chapter was presented in
conference papers at HCI International 2005 [145], AAATE 2005 [146],
ICCHP 2006 [147], ICCHP 2010 [150], and UIDL 2011 [151].

• Chapter 6 introduces the concept of a single event queue where all user
interaction events are posted (from any and all devices) for handling by an
abstract UI engine. To make this possible, events must be transformed from
the context of the input device to the context of the AUI model.

The handling of events from different input modalities in the PUIR framework
was first discussed in an unpublished paper in 2007 [148], and addressed
further in conference papers at ICCHP 2010 [150], and at the 1st Interna-
tional ÆGIS Conference [149].

• Chapter 7 presents the experimental implementation of the PUIR framework
in Java. Through a discussion of the various components, this chapter
illustrates the practical application of the design discussed in chapter 5,
and the handling of the two problems presented in chapter 6. The
implementation is validated with a sample application, developed both as
a regular Swing application and as a PUIR-based application.

The experimental implementation of the PUIR framework has previously
been presented in conference papers at ICCHP 2010 [150], and at the 1st

International ÆGIS Conference [149].

• Chapter 8 provides a discussion about the evaluation and validation of this
work. Both internal and external evaluation is presented. Internal validation
involves an evaluation of the presented work in view of the requirements,
making a determination for each one whether it was addressed effectively
and efficiently. External validation involves the development and execution
of an evaluation plan. This chapter provides such a plan, although the actual
execution of the plan as external validation remains to be completed as
future work.

• Chapter 9 presents a summary of the presented research, with some
discussion and insights on future work.



Chapter 2

Graphical User Interface,

Human-Computer Interaction,

and Universal Access

“Excuse me; but as a geologist, you would rather study a book,
some special work on the subject and not a drawing.”

“The drawing shows me at one glance
what might be spread over ten pages in a book.”

(Ivan Turgenev, “Fathers and Sons”, 1961)

This chapter discusses the important relationships between the Graphical User
Interface concept, the field of Human Computer Interaction, and the concept of
Universal Access.

2.1 Introduction

For many years, the accessibility of GUIs has been approached from the user’s
perspective. How can one enable a blind individual to operate a graphical user
interface? This chapter shows that this has been found to be the wrong way
to approach the problem, and instead the question to ask is: “How can one
design a user interface such that it can be presented to a sighted user in a
visual way, and to a blind user in a non-visual way, while maintaining the same
interaction semantics?” The team that invented the GUI did so based on design
principles that turn out to be more influential than previously envisioned, enabling

21
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a restatement of the definition of “Graphical User Interface”. This forms the
foundation for the remainder of this dissertation. Along the way through this
chapter, an important yet unsubstantiated argument by Edwards, Mynatt, and
Stockton [45] is shown to be correct based on established research. Surprisingly,
their argument for providing GUI accessibility rather than screen accessibility
remained an accepted assumption without real backing for over 15 years.

Section 2.2 starts with the dictionary definition of GUI, and formulates a more
accurate definition within the context of accessibility, drawing on the original GUI
design principles. Section 2.3 provides a description of HCI issues that relate to
non-visual access of GUIs. Section 2.4 further explores how accommodations
can be made for a wider variety of needs, and relates the Universal Access
concept to GUIs and HCI. Section 2.5 discusses abstract user interface
descriptions as a step towards UA. In closing, the conclusions of this introductory
chapter can be found in section 2.6.

2.2 Graphical User Interface

The American Heritage® Dictionary of the English Language, Fourth Edition,
defines a Graphical User Interface as:

Definition 2.1. GUI: An interface for issuing commands to a computer utilising
a pointing device, such as a mouse, that manipulates and activates graphical
images on a monitor.

From the perspective of blind users, this very definition contains two elements
that tend to raise concerns:

• “a pointing device”: While the mouse is definitely the most common pointer
device in use, various alternatives do exist, such as touchpads, touch
screens, tablets, haptic input devices, . . . The significant common feature is
that they support the “Seeing and Pointing” principle (see page 26).
Problem: How can a blind user point at something he or she cannot see?

• “graphical images”: This is generally considered to refer to the use of
windows, icons, and menus. Albeit not explicitly mentioned in the definition,
any text in the UI is also rendered as a graphical image, because computers
with a GUI use a bit-mapped display.
Problem: How can a blind user interpret inherently graphical information
and visual metaphors?

Together, these two elements constitute what is known as the WIMP [28] interface.
It should be noted that the GUI paradigm is not limited to WIMP interfaces;
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advances in technology and understanding of the psychological principles of HCI
have led to a new form of interaction: Reality-Based Interaction (RBI) [70]. This
work primarily discusses GUI accessibility in view of WIMP interaction, although
no explicit limitations are imposed on the original contributions. Section 9.2
provides further information on how the novel approach presented in this work
can be expanded upon within the context of alternative interaction models.

2.2.1 GUIs and blind users

The intuitive concern about the (in)accessibility of GUIs, especially in view of the
aforementioned definition, is exemplified in a 1989 article in PC/Computing by
Herb Brody [18]:

“[. . . ] the Macintosh uses a graphical user interface that is essentially
inaccessible to the blind: the Mac’s screen memory contains only
raw information about each pixel, and the screen readers can’t make
sense of the bit-mapped display. The more graphical the interface, the
less translatable it is into speech. A screen full of icons, pictures, and
overlapping windows becomes gibberish to a screen-reading program
seeking clean ASCII code. To the extent that DOS and OS/2 emulate
the Mac’s graphical interface, the blind will soon be locked out of PCs
as well.”

This assessment of the impact of the GUI paradigm on blind users’ access to
mainstream computer technology has been invalidated by history as presented in
Section 1.1.2. However, in the late 1980s it was a view shared by many, primarily
because of the believe [16] “that blind people cannot make sense of what appears
on a graphical computer screen, that they cannot interact with a computer using
a mouse and pointing system, and that graphical computers are so different in
basic design that even standard text cannot be understood.” Why would many
subscribe to this notion of inherent inaccessibility, when it is widely accepted that
although the world around us is essentially a 3D visual entity, blind people are
quite capable navigating it with the use of basic accommodations such as a white
cane?

A large contributing factor has been the misconception that a GUI is essentially
a bit-mapped display of windows, icons, menus, dialog boxes, . . . that the user
interacts with by means of a pointing device. Given that the earlier character-
based user interface (CUI) could be made accessible by providing a solution that
would literally read the content of the screen and present it to the blind user in an
alternative format (a screen reader), research and development primarily focused
on the problem of deciphering and interpreting the content of the graphical screen.
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Boyd, Boyd, and Vanderheiden enumerate the major differences between the CUI
and GUI paradigms in their influential paper “The Graphical User Interface Crisis:
Danger and Opportunity” [16]:

• Pixels as the technical foundation for the Graphical User Interface
This refers to the technology used to present the user interface to the user: a
bit-mapped display. The paper refers to this difference as the most technical
and fundamental.

• The use of visual metaphors: icons, windows, menus, dialog boxes, and
control buttons
This is listed as the most radical difference because a GUI employs visual
imagery instead of textual commands. The images are carefully chosen as
visual metaphors.

• Locational and contextual (formatting) information
The spatial placement of visual objects onto the screen often carries
meaning, although the sighted user may not realize this. A sequence of
images often conveys a sense of order or priority, while the placement of
text in a particular location relative to a text input element may imply that
the text is a label for that element.

• Mouse controlled interaction, screen navigation, and random access
This refers to the pointer device that is mentioned in the definition of a GUI.

• The standardised interface
While the paper states that the introduction of GUIs facilitated the ideal of
one interface for all applications, reality is quite different, especially on UNIX-
type systems. The availability of multiple distinctly different graphical toolkits
limits the scope of any standardisation effort. Still, for each toolkit a standard
API has been made available that application developers utilise.

It is important to observe that these differences between CUI and GUI are
primarily stated from the user’s perspective, i.e. from the perspective of a person
who is confronted with the presentation of the UI as a GUI. Screen readers
therefore were designed to try to make sense of graphical information as it
appeared on the screen while effectively ignoring the existence of the pointer
device. Research efforts took place to provide useful alternatives for blind users
such as tactile mouse devices [16] and tactile tablets [158] but without mainstream
adoption.
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2.2.2 GUI accessibility vs screen accessibility

When the assistive technology solution for non-visual access to a GUI involves
interpreting the graphical screen content, the blind user is effectively forced to
learn the visual metaphors that are used and to map the visual presentation onto
the non-visual mental model of the user interface. This approach is not only
counter-intuitive; it is also more limited. Edwards, Mynatt, and Stockton make a
strong case for providing access to the GUI instead of providing access to the
screen content [45]: “[. . . ] the power of graphical user interfaces lies not in
their visual presentation, but in their ability to provide symbolic representations
of objects which the user can manipulate in interesting ways.” Although this
observation seems beyond doubt, the authors did not provide references to
support their argument. It is therefore prudent to validate their claim through
analysis of past research, commencing with the original design principles for the
graphical user interface paradigm.

2.2.3 GUI design principles

The historical overview in section 1.1.2 lists Xerox PARC as the birthplace of what
is now known as the Graphical User Interface. The design team that pioneered
this novel way to interact with computer systems employed a very scientific
methodology, approaching the problem using four fundamental principles based
on cognitive psychology [8]:

• Users should be presented with an explicit model of the system, that is both
familiar and consistent. It should build upon known objects and activities
that users already employ in daily life.

• Based on a well-known psychological principle (“recognition is generally
easier than recall” [3]), locating a visual entity and pointing at it is a powerful
form of interaction, because it is much easier than recalling a name and
typing it.

• Users should be presented with commands that are uniform across multiple
contexts that have corresponding actions. Therefore, a delete command
could delete a character in a word, delete a word in a text, delete a line
from a document, delete a line from a drawing, or even delete a file from a
directory.

• The screen should always present the current state of the object that the
user is manipulating. This concept has been named: “What-You-See-Is-
What-You-Get” (WYSIWYG).
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These fundamental principles drove the formulation of eight design goals for the
Star User Interface at Xerox PARC [130]. The following sections provide an
explanation of each goal.

Familiar user’s conceptual model

A conceptual model is to be defined, capturing concepts that the user is already
familiar with. This mental model enables the user to understand and interact with
the system. Employing concepts that are based on analogies or metaphors of
the physical world has the distinct advantage that the user can relate to them in a
non-technical manner.

The physical metaphor for sending mail could be implemented as moving a
document to an “outbox” icon. The document contains the recipient’s address.
The physical world would require us to duplicate the document if we wanted to
send it to multiple people, whereas the electronic version allows us to simply list
additional recipients in the document.

Although the system does not impose the limitations of the physical world, the
metaphor remains valid as a familiar concept to the user.

Seeing and pointing

As mentioned earlier in this chapter, cognitive psychology teaches us that it is
easier to see something and point at it than it is to recall a word and typing it.
Research has also shown that conscious thought depends heavily on concepts
in the short-term memory, and that the capacity of short-term memory is limited.
The visual presentation of the user interface serves as a “cache” for the short-term
memory, decreasing the load significantly [4, 93]. It also reinforces the analogy
with the physical world, allowing the user to see the display as “reality”. The user
interface as it is seen by the user matches the mental model: objects are defined
by their visual properties, and actions by their effect on the visualisation.

What-You-See-Is-What-You-Get (WYSIWYG)

When manipulating documents meant to be printed, there is a significant
advantage to being able to see an accurate rendition of the printed page. A
WYSIWYG-based system accomplishes this by means of bit-mapped displays.
Manipulations to a document are represented immediately, so that the user can
examine the appearance of a page on the computer screen, and continue making
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(Image courtesy of David Smith.)

Figure 2.1: WYSIWYG: Star User Interface

changes until it is satisfactory. The printed page will be virtually identical to the
displayed image (see Figure 2.1).

In general, being able to visualise1 the result of user interaction immediately
strengthens the user’s perception of the conceptual model.

Universal commands

David Smith, et al. stated [130]: “Just as progress in science derives from simple,
clear theories, progress in the usability of computers is coming to depend on
simple, clear user interfaces.” One important way to accomplish this is to define
a generic set of fundamental commands or operations that are widely applicable.
Not only does this reduce the overall size of the command set, but it also provides
an important level of consistency to the user. Once a concept is known, it can be
applied everywhere, thereby making it easier for users to develop a mental model
of the system.

It should be noted that whereas Star [131] provided a special key on the keyboard
for each generic command, current systems no longer utilise such custom
hardware. This universal commands design goal is however still applicable within
the context of interaction metaphors.

Consistency

Consistency is an important goal for any design, yet it is not always easy to
achieve, especially in an environment that is created as an analogy with the
physical world. It is also not always desirable from a user friendliness perspective.

1Or more generically: observe.
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Consistency requires that objects in the system behave in the same way wherever
they are encountered.

One consideration must be model dominance. The analogy with the physical
world is the foundation for the user’s understanding of the system, and for learning
new ways to apply known operations.

Another important consideration is pragmatic in nature: it is a bad idea to
implement functionality that generally performs operations that users do not
expect, especially if it may result is loss of work items. When a user sends a
couple of pages to a colleague by postal mail, there is a chance that the mail
item will not arrive. While this is fortunately a rare event, people have learnt that
the possibility exists. When a user sends an electronic document by e-mail to a
colleague, there is a practical assumption that the document will not be erased
from the sender’s system at the time of sending the e-mail, even though the
analogy with the physical world would imply that.

Simplicity

The best designs tend to be more simple in nature. Within the context of the GUI
paradigm and the variety of potential users, simplicity is not easy to define. Novice
users may see it as a focus on ensuring that it is easy to perform most operations.
Expert users are more likely to see simplicity as a means to increasing efficiency.
The two viewpoints are not quite compatible.

Simplicity can be achieved in a way that is likely to satisfy all users by enforcing
consistency, and thereby simplifying the mental model that the user must
understand in order to operate the GUI.

Another means to simplicity is minimising redundancy. If there are multiple ways
to accomplish the same task, the overall user interaction becomes more complex
without real benefit.

Modeless interaction

David Smith, et al. quote a colleague (Larry Tesler) for the definition of a UI mode
[130]:

Definition 2.2. A mode of an interactive computer system is a state of the user
interface that lasts for a period of time, is not associated with any particular object,
and has no role other than to place an interpretation on operator input.
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Modes are typically used to address a need for overloading functionality onto
a single operation, and should therefore be introduced with caution. Common
examples are found with text editors that have explicit text input and text-based
command invocation modes, and with mode-driven focus management where text
input is typically directed to the UI element that has focus unless a specific mode
is active, in which case the text input is redirected to a specific element other than
the one that holds focus2.

It is not always possible to avoid modes, and neither should they be considered
a design flaw by default. Some systems allow for a user assistance exploration
mode where UI elements can be selected in order to access their documentation.
This is a very helpful use of modes.

User tailorability

The individual needs of users are impossible to predict, regardless of the
complexity of a system. User tailorability can be implemented by allowing the
user to extend the system with custom features, and it can also be provided in
part by means of customisation options.

2.2.4 Towards a new definition for GUI

The design principles behind the original concept of a graphical user interface
enumerated in the previous section identify the conceptual model that the GUI
is based on as the most fundamental. Several other principles are formulated
to further enhance the mental image that the user develops. Even the most
specifically visual aspects of the GUI are used to strengthen the perception of
the conceptual model. The established metaphor for the GUI paradigm was (and
still is) defined as a physical office, with the top surface of an office desk (the
“desktop”) as one of its most prominent features.

With this renewed focus on the importance of the conceptual model as underlying
design principle of the GUI paradigm, a more accurate definition can be
formulated:

Definition 2.3. GUI: A user interface based on a conceptual model using familiar
concepts, presented to the user using simple, consistent visual metaphors
rendered in real-time on a bit-mapped display.

The visual representation provides the user with visual metaphors and a way to
interact with these metaphors (the pointer device). It is however the underlying

2This is often used for so-called modal dialogs.
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Conceptual

Perceptual

Figure 2.2: Two layers of metaphor; two mappings

model that defines the semantic interpretation of the UI. As such, there are two
layers of metaphor involved in the design and implementation of a graphical user
interface as described by Gaver [50]:

• Conceptual: This layer consists of metaphors that relate concepts of the
computer environment (hardware, software, . . . ) to the model world that
exists in the mind of the users. Figure 2.2 illustrates how entities within the
computer effectively can be thought of as representative of a physical desk
top. Technical concepts are mapped onto objects that the user is familiar
with in the physical world, and thereby the metaphors allow the user to apply
generalised knowledge about objects (especially in terms of how they can
be used) to the less familiar world of computing.

• Perceptual: The model world that the user envisions is not tangible. Further
mapping of this world onto the computer display by means of visual
metaphors results in a reality that the user can interact with. Figure 2.2
shows the mapping from the (imagined) physical desk top to the visual
presentation that is commonly known as the GUI desktop.

In terms of accessibility, it is important to observe that only the perceptual
mapping involves visual metaphors. The model world that is created as a result
of the conceptual mapping is defined in terms of manipulatives. Edwards, Mynatt,
and Stockton stated [45]: “At the highest level, we can describe an interface
in terms of the operations it allows us to perform in an application. [. . . ] It
is the operations which the on-screen objects allow us to perform, not the
objects themselves, which are important. This level is the semantic interpretation
of the interface.” The Mercator project however still operated based on the
programmatic implementation of the GUI by means of the X11 graphical toolkit.

The model world that the conceptual metaphors relate to is effectively an abstrac-
tion of the physical world. This observation allows for a further specification of the
definition of a graphical user interface:
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Definition 2.4. GUI: A user interface presentation that utilises visual metaphors
to render and interact with an abstract user interface that conceptualises the
operational characteristics of an application.

This definition satisfies the requirements that are expressed in the original design
concepts for a graphical user interface. It is also consistent with the notion
that one should provide access to GUIs, not the content of graphical screens
[45]. The analysis presented in this section makes it possible to validate the
Edwards/Mynatt/Stockton argument. The focus of providing accessibility should
therefore be on the interaction between the user and the computer rather than the
visual representation.

2.3 Non-visual access to GUIs: HCI concerns

The field of Human-Computer Interaction is the study of the interaction between
people and computers. It specifically addresses all aspects of the user interface,
be it in hardware, in software, or at a semantic or logical level. It also considers
variables on the side of the user, such as limitations, accommodations, and
abilities. Blind users accessing applications or systems with a graphical user
interface is therefore a problem context that certainly belongs in the HCI field.

Given the prevalence of graphical user interfaces in daily life, blind users do face a
common lack of accessibility. Interpreting Definition 1.3 presented in section 1.2.3
in the context of blind users and a GUI system, the problem can be described as:

A computer system with a graphical user interface is fully accessible
when (a) a blind user can access and use all functionality indepen-
dently, (b) when that user can engage in meaningful collaboration
about the system with peers, regardless of individual needs, and (c)
when the user is provided with a level of usability that is equivalent
to that provided to sighted users that use the graphical user interface
directly.

Mynatt, Weber, and Gunzenhäuser formulate five important HCI concerns that
need to be addressed in order for an approach towards providing non-visual
access to a GUI to be deemed a viable solution [100, 57], based on the works
of Edwards and Vanderheiden, et al. [37, 156]. These concerns can certainly
be taken as necessary requirements under the accessibility problem description
given above, yet it is recognised that they do not constitute a sufficient set of
requirements.
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2.3.1 Coherence between visual and non-visual interfaces

Collaboration between sighted and blind users requires coherence between the
visual and non-visual presentations of the user interface. The mental model of
how to interact with an application must be sufficiently similar for both user groups
to allow clear communication about how to accomplish tasks within the context
of an application. Any user should be able to observe the actions of another,
regardless of what interface is being used by either user.

Weber further specified coherence in two different forms [159]:

• Static coherence: A mapping between all visual and non-visual objects,
which lets users identify an object in each modality. This form of coherence
is most commonly the primary focus for screen readers.

• Dynamic coherence: A mapping that defines for each step in interaction
within the visual modality one or several corresponding steps within the non-
visual modality. This form of coherence satisfies the “Equivalence” CARE
property presented in section 4.1.3. This form of coherence is favoured in
non-visual toolkits for longer periods of interaction.

2.3.2 Exploration in a non-visual interface

Non-visual modalities (auditory and tactile) are limited in their ability to provide
information to the user in part due to their predominantly serial nature, whereas a
visual user interface often can provide information in parallel in a very efficient way.
A screen reader implementation must provide specific mechanisms to explore the
non-visual interface. Given that the GUI is capable of providing information by
means of spatial properties of UI elements (often beyond the scope of a single
application), non-visual alternatives must also be provided.

2.3.3 Conveying semantic information in a non-visual inter-
face

The inherently graphical nature of GUIs commonly leads to presenting semantic
information in a strictly visual way: icons, object attributes, appearance, . . . A non-
visual presentation must be able to convey relevant3 aspects of that information
in an alternative format, because it is effectively part of the semantics of the
application.

3In this context, “relevant” means that the information carries meaning at the conceptual level.
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Mynatt and Weber phrased this concern as “conveying graphical information
in a non-visual interface” because their work was focused on providing non-
visual access to existing graphical user interfaces. Therefore, their approach
had no choice but to capture and interpret graphical information for the purpose
of presenting it in an alternative format to the user. Advances in the HCI field
support the more generic phrasing of the concept presented here, and it will be
used throughout this work as well.

2.3.4 Interaction in a non-visual interface

Interaction within a GUI is often based on visual idioms (clicking buttons, moving
sliders, dragging objects, . . . ) whereas a blind user requires specific non-visual
forms of interaction.

2.3.5 Ease of learning

The introduction of non-visual access to GUIs should not be a major obstacle for
blind users. The success of the GUI concept depends in part on the intuitive
nature of that environment, and on the fact that users can share knowledge
easily and learn from one another. Ease of learning can be accomplished by
ensuring that the non-visual UI is sufficiently intuitive to its target group, and that
sighted and blind users can share a sufficiently similar mental model of interaction
semantics.

2.4 Universal Access

Stephanidis provides a description for Universal Access [134]:

“[. . . ] Universal Access refers to the global requirement of coping
with diversity in; (i) the target user population (including people with
disabilities) and their individual and cultural differences; (ii) the scope
and nature of tasks; and (iii) the technological platforms and the
effects of their proliferation into business and social endeavours. [. . . ]
Though there have been efforts in the direction of specifying the
attributes of Universal Access, we are still far from an operational
definition of the term. [. . . ] As a result, Universal Access remains
an abstract goal, rather than a well-articulated engineering target.”
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A popular alternative description is “interaction by anyone, anywhere, and at
any time.” UA is not defined within a specific context but rather applies to all
aspects of life which is one of the reason why an operational definition is still
lacking. The underlying concepts have long been recognised, and to some extent
aspects of UA have been codified through legislative procedures, such as the
Communications Act of 1934, Section 508 of the 1986 Federal Rehabilitation Act,
and the 1992 Americans with Disabilities Act (ADA).

2.4.1 Universal Access: a new perspective on HCI

In the development of software, the user interface component handles the direct
interaction with the user and it is here where UA introduces new perspectives.
The all-inclusive principles that drive this paradigm shift broaden the context of
HCI. Whereas in the past direct access or access through add-on (assistive)
technologies have been deemed adequate to address the needs of users,
Universal Access implies that accessibility should be an integral part of the
design rather than merely a concern. From the onset of user interface design,
the broadest interpretation of user population is to be taken into consideration
[155, 7, 135, 143]. This aspect is often called Design for All (or Universal Design).

While the all encompassing nature of UA has drawn significant criticism in view of
perceived complexity, impracticality, and increased cost, it is important to note
that there is no expectation that a single solution is appropriate for everyone
[7, 135]. Instead, UA promotes a user-centric approach. People also often do
not realize that many products in everyday life were originally designed as an
assistive technology for people with special needs. The telephone originated from
research on hearing aids. As an alternative to much more bulky braille transcribed
books, the audio cassette was invented as an alternative format for the blind.
People who could not use a fountain pen due to dexterity limitations were helped
by the invention of the ballpoint pen. These are three representative examples
where the general public certainly benefited from the research and development
concerning assistive technology [42].

2.4.2 High level requirements for universal usability

As discussed in section 2.4.1, Universal Access has triggered an important
paradigm shift in HCI by putting a strong focus on user-centric UI design and
development. Where previously users would accommodate the limitations of
technology in products and systems with a rigid UI, advances in HCI drove
the introduction of user preferences as a way to provide a limited level of
accommodations for users’ wants. UA has changed the perspective towards the
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technology accommodating the limitations of the the user population. HCI aims to
provide support for a wide range of human abilities levels across the modalities of
interaction while maintaining a high degree of flexibility towards user preferences.
Therefore, focus is both on users’ needs and wants.

Trewin, Zimmermann, and Vanderheiden formulated high level requirements
for universal usability [143]. In their terminology, they refer to programs and
devices as targets, devices that are used to access and interact with targets are
controllers, and the combination of the user, the environment, and the controller
is referred to as the delivery context. The UI that the user interacts with is
considered a concrete user interface.

The remainder of this section presents the requirements, and how each can be
interpreted within the context of this dissertation.

Applicability to any target

Within the context of user interfaces for computer systems, Universal Access
implies that the UI can be represented on any relevant target, such as home
and office computers, appliances, information kiosks, . . . There is no clarity on
whether this requirement implies that any user should be able to access a specific
UI representation on any relevant target, especially given that the target is not
considered a component of the delivery context.

While the ideal of UA would likely include a scenario where any user should
be able to access any target, practical considerations often limit the ability to
accommodate all combinations. Section 2.4.1 stresses the fact that UA does not
imply that a single solution is appropriate for everyone. Within that context, this
requirement supports the notion of specialised targets to accommodate specific
needs, and it puts an expectation on both the UI design and the targets to support
being able to present the UI an any relevant target.

A typical example can be found with electronic book readers. A sighted user
might use a very book-alike device using E-Ink technology, whereas a blind user
may opt for an audio-only device. If the two devices use the same software,
with a graphical user interface for one and a non-visual audio-based interface for
the other, this requirement would still be met if at a semantic level the UIs are
equivalent, aside from presentation.

Applicability to any delivery context

A user interface that satisfies the principles of UA takes into consideration all
aspects of the delivery context:
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• User: age, gender, culture, education, health, abilities, expertise, . . .
Note that there can be considerable overlap between these facets of the
user profile.

• Environment: noise level, lighting, population, level of privacy, local vs
remote, . . .

• Controller: direct access, assistive technology, recognition-based interfaces,
. . .

It is important to note that within the context of this dissertation, “user interface”
does not refer to a specific presentation and interaction model, but rather to
the underlying conceptual model of user interaction. This requirement therefore
refers to the ability to provide a concrete user interface for any applicable
delivery context. Various existing approaches to accomplish this are discussed in
chapter 4.

Personalisation

Usability requires that the user is able to personalise various aspects of the user
interface to accommodate specific individual needs. Often this is part of satisfying
the previous requirement to support any delivery context. Some approaches to
UA provide for automated personalisation, usually with support for the user to
make further adjustments.

Trewin, Zimmermann, and Vanderheiden do not explicitly address user prefer-
ences, and in fact the examples given for the personalisation requirement are all
aspects of the delivery context and therefore can be addressed as such. It seems
prudent to associate user preferences with this requirement. Personalisation is
a form of accommodation for user’s “wants” while the delivery context can be
interpreted as a reflection of the “needs”.

Flexibility

This requirement seems to be unnecessary within the context of Universal Access
because it is covered already by the applicability to any delivery context and
personalisation. The examples provided in [143] can all be interpreted within the
scope of the delivery context. For this reason, this dissertation does not consider
flexibility as a separate requirement for UA.



UNIVERSAL ACCESS 37

Extensibility

Given the wide variety of possible targets, contexts, etc. . . a mechanism
should exist to allow target providers and third parties to provide specific
extensions to address (and resolve) missing functionality and to augment existing
implementations. This should be done in a manner where extending a specific
concrete user interface does not negatively impact support for other targets and/or
delivery contexts.

Extensibility should also cover support for altering or augmenting the overall
underlying user interface in a way where the changes are available on all targets
and in every delivery context. Any such change should consider the variety of
targets it can affects. Being able to provide extensibility and alteration both on the
level of the underlying UI and the target (and handling of the delivery context) is
a powerful concept.

Simplicity

The complexity of the user interface has a direct effect on the complexity of
providing support for a wide variety of targets and delivery contexts. It is
therefore important to address the aforementioned requirements with a design
that is optimised towards simplicity. This does not mean that the user interface
itself must be designed to cater to the less experienced user, or that product
functionality should be kept simple.

Simplicity in the context of Universal Access is relevant at multiple levels:

• Simplicity in the underlying UI design, which positively impacts the devel-
opment effort on the side of target providers. It also improves the ability to
support a wider variety of delivery contexts.

• Simplicity in the concrete user interface implementation, providing support
for personalisation and extensibility.

• Simplicity in user interaction, as discussed in section 2.2.3.

2.4.3 GUI design principles vs UA requirements

Providing alternative representations of GUIs is clearly a topic within the realm of
Universal Access, and the perspective it puts on HCI. In view of the new definition
of GUI (Definition 2.4, page 31), the design principles listed in section 2.2.3 can
be revisited within the context of the UA requirements presented in section 2.4.2,
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Figure 2.3: Relating GUI to UA and HCI
The figure above shows the correspondence between GUI design principles, UA

requirements, and HCI issues related to non-visual access to GUIs

while also considering the HCI concerns related to non-visual access to GUIs
(see Figure 2.3):

• [UA] Applicability to any target and any delivery context
This requirement is the heart of the “anyone, anywhere, and at any time”
concept. The broad range of contexts that needs to be supported requires
product providers to either invest substantial amounts of money in the
development of alternative user interfaces, or they must develop user
interfaces that can adapt to a variety of contexts [143]. The latter solution
has been adopted by industry and research institutions alike.

The requirement to be able to provide user interface representations for
various different contexts is a good fit for abstract user interface descriptions.
This technique supports the well established development paradigm to
separate presentation from application logic and it has been identified as a
necessary concept for providing the flexibility to render the UI for any target
[73, 145]. See section 2.5 for a more detailed discussion.

Gaver described two layers of metaphor for user interfaces (not specifically
for GUIs): conceptual and perceptual [50]. The conceptual metaphor
relates back to the original GUI design principle of the conceptual model,
further augmented and reinforced by the notion of universal commands and
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consistency. Both operate at the level of the fundamental user interface,
independent from the presentation. The principle of modeless interaction is
also relevant here because it makes it much easier to represent the UI for
different targets.

From the perspective of HCI issues that relate to non-visual interfaces,
coherence between the visual and non-visual interfaces can be achieved
based on the underlying abstract user interface. Exploration in the non-
visual interface is also supported by this powerful technique, because it
involves exploration of the conceptual model rather than trying to make
sense of the visual representation. Finally, it also facilitates non-visual
user interaction because the user interaction semantics are defined at the
abstract level.

It is important to note that while both multiple GUI design principles and
some HCI issues related to non-visual interfaces are associated with this
UA requirement, they may not be applicable at the same point in time. E.g.
modeless interaction (GUI design principle) and exploration (HCI issue) are
generally not compatible because non-visual exploration typically requires
a specific interaction mode.

• [UA] Personalisation
The ability to modify aspects of the user interface based on user preferences
has been a design principle for GUIs from its inception. It has been identified
as a requirement for Universal Access as well.

• [UA] Simplicity
As stated earlier, the best designs tend to be more simple in nature. It is
therefore no surprise that simplicity is recognised as a GUI design principle,
a UA requirement, and a HCI concern. Everyone from user to developer and
designer benefit from a focus on simplicity, through consistency, minimising
redundancy, and carefully considered design decisions.

• [HCI] Conveying semantic information in a non-visual interface
The need to somehow convey semantic information that is typically
presented visually in a non-visual way seems counter-intuitive, and is not
really covered by any Universal Access requirement. It is related to the
WYSIWYG design principle in Figure 2.3 because it represents the need
to convey accurate information about the presentation of information in a
specific modality.

Word processing is a good example. If the end result of the task that the
user is performing is a print document that should satisfy specific formatting
requirements, a blind user must be able to obtain accurate information about
the visual presentation of the document. Otherwise the blind user is unable
to perform the task.



40 GRAPHICAL USER INTERFACE, HUMAN-COMPUTER INTERACTION, AND UNIVERSAL ACCESS

The need to be able to exchange modality specific information can be
covered under the UA requirement for applicability to any delivery context,
as a function of the environment. However, it has significant implications on
the way in which UA is implemented and therefore it will be identified as a
specific requirement within the context of this work.

• [GUI] Seeing and pointing
The design principle of a pointer device for user interaction in a graphical
user interface is an aspect of the presentation of the UI rather than a
fundamental component of the conceptual model that lies at the core of
the user interface.

The graphical user interface concept is based on a well-researched
conceptual model: the metaphor of a physical office, providing a model
with concepts that users are very accustomed to. These familiar concepts
are then presented to the user by means of visual metaphors. As discussed
in section 2.2.4, this involved two layers of metaphor. The pointer device
is a component of the perceptual metaphor, tightly coupled with the visual
presentation.

This specific design principle and its implications for alternative representa-
tions of a graphical user interface will be further explored in chapter 6.

• [UA] Extensibility
The Universal Access requirement of extensibility is not present in the
original GUI design, nor is it considered as part of HCI issues that relate
to non-visual access to GUIs. Traditionally, graphical user interfaces
were static entities, defined programmatically during product development.
Mynatt, Weber, and Gunzenhäuser [100, 57] formulated the HCI issues
based on traditional GUIs, and therefore also did not consider extensibility.

While this requirement is not explicitly discussed in this work, the use of
abstract user interface descriptions as presented in section 5.3.2 provides
a good foundation for supporting extensibility (see also section 2.5.1).

2.5 Abstract User Interface descriptions

The UI design and development paradigm to separate presentation from applica-
tion logic has been well established years ago. The initial benefits were primarily
in the area of software development where graphical designers could focus on the
“look” of the product, while software developers focused on the actual functionality.
Further advances introduced mechanisms to allow the user to control the “Look
& Feel”4 of the application by means of user preferences. Going further still, Java

4The term “Look & Feel” became popular as a result of the very controversial and ground breaking
court battle between Apple Computer, Inc. and Microsoft Corporation, from 1989 through 1994. The
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allows the developer or the user to choose from a (often small) set of different
graphical toolkits that are used to visualise the user interface. All this falls within
the category of user tailorability rather than usability and/or accessibility.

Abstract user interface descriptions take things further with the decoupling of
presentation and semantics. The AUI does not make any assumptions about what
modality is used (visual, tactile, auditory, haptic, . . . ), describing the UI elements
and how they relate to the meaning of user interaction scenarios rather than being
involved with the mechanics of the user interaction. The AUI ideally describes the
user interface in a target and delivery context independent way. As such, the
proper use of AUI descriptions supports Universal Access.

2.5.1 Technical requirements for AUI description languages

Trewin, Zimmermann, and Vanderheiden derived high level technical require-
ments from the requirements listed in section 2.4.2 [143]. They are reformulated
here within the context of providing non-visual access to GUIs, and Universal
Access to software applications.

Separation of interface elements and their related data from their presenta-
tion

The separation between presentation and semantics has already been identified
as a crucial component. This requirement however augments the established UI
development paradigm with the stipulation that any data that directly relates to
the semantics of the UI element is also decoupled from the presentation. Failure
to do so might result in details of the presentation inadvertedly influencing the
way the data is represented within the application and the AUI. This would
likely impact the ability to support other targets and/or delivery contexts. The
expanded requirement still follows the general principle of separation of concerns
as presented by Parnas [112].

Explicit machine interpretable representation of all UI elements

The AUI description covers information that the user can manipulate, controls
to operate, and information to be presented to the user (be it pre-defined or
generated). All of these elements must be present at the abstract level, and

“Look” refers to the visual presentation of UI elements, whereas the “Feel” refers to the interaction
semantics of the UI elements.
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the target must be able to represent them accurately because they are required
components in the concrete user interface.

Ideally, no specialised knowledge should be required for the AUI description to
be created, because target and delivery context are not expected to be known at
development time.

Explicit machine interpretable semantic relations between UI elements

Dependencies between UI elements carry a high degree of semantic meaning
that is traditionally presented programmatically, thereby negatively impacting the
ability to support a wide range of targets and/or delivery contexts. Often a UI may
contain elements that are only meaningful when specific selections are made in
the interface. A customer service application might provide an element to mark
whether the user would like to leave a contact telephone number. It is common
practice to leave the telephone number entry field immutable unless the user has
indicated that he or she would like to leave a number. Including this level of
dependency at the AUI level yields better UIs.

Often UI elements also relate to one another in a way where such knowledge
would be beneficial to the presentation layer. A common example is the use of text
elements to provide labels and descriptions for user input elements. By encoding
the coupling between labels, descriptions, and input elements, the presentation
components are better equipped to provide a meaningful layout of the UI to the
user. More so, it enables the presentation to make these decisions rather than
either ignoring the relations or encoding layout at the AUI level, breaking the
separation between presentation and semantics.

Flexibility in inclusion of presentation information, while maintaining a
target and delivery context independent abstraction

This seems to be a contradiction in and of itself, but it is actually a rather
powerful requirement that enhances the HCI experience for the user. While the
AUI description must capture the essence of the UI from a semantic point of
view, effectively modelling the operational characteristics of the application, it is
beneficial to augment it with optional presentation-specific information that assists
the target in providing an optimal presentation. Note that this information does not
carry any semantic meaning. A basic example can be found in alternative texts
for labels, where an abbreviated text may be provided for presentation on targets
with small screens. Similarly, a button would be defined in the AUI with a text
label, whereas additional information may provide an icon image for targets that
support graphical information.
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Ideally it should be possible to incorporate presentation information from external
sources such as third parties for extensibility, both to augment and to possibly
replace existing presentation information. Note that it would not be acceptable for
such information to affect the actual abstract UI model.

Support for different interaction styles

The AUI defines user interaction semantics at the conceptual level, independent
from target or delivery context. This effectively means that basic layout and flow
of UI elements is defined as part of the abstraction. Some delivery contexts may
have requirements that affect the layout and/or flow of UI elements.

This requirement has not been addressed within the scope of this dissertation,
although consideration has been given to how it could be handled. More
information can be found in chapter 9.

2-way communication between target and controller, with support for

synchronisation

The user interface may at times need to be responsive to changes on the side of
the target (e.g. activation of a control or an external event getting triggered), so
2-way communication is required. The controller sends messages to the target
concerning UI events, and the target sends messages to the controller concerning
external events and target-specific user interaction.

Some targets may also impose delays in the flow of the UI, either due to technical
limitations or deliberately as an accommodation in function of the delivery context.
Whatever the reason, there needs to be a way to enforce synchronisation between
the AUI and the target to ensure consistency.

2.6 Conclusions

When circa 1974 a team at Xerox PARC developed the concept of the Graphical
User Interface, they may not have realized that they actually laid the foundation
of a much broader (and powerful) concept: the Metaphorical User Interface. This
chapter has shown that the extensive research that led to the establishment of
design principles for the GUI concept can largely be applied to UIs beyond the
context of a specific presentation. As a result, a new definition for GUI can be
formulated, conveying the importance of the underlying abstraction that models a
conceptual metaphor of the physical world.



44 GRAPHICAL USER INTERFACE, HUMAN-COMPUTER INTERACTION, AND UNIVERSAL ACCESS

When discussing this new definition with David Smith [129], formerly of Xerox
PARC, he brought up a very important observation. Technology advances in the
area of user interaction modalities have led to the development of visual interfaces
that are undeniably graphical in nature, and thus should be considered graphical
user interfaces, and yet they are not based on any metaphor of the physical world.
The GUI of the Apple iPad is a good representative of this class of user interfaces.

Further analysis of the user interaction semantics at the conceptual level shows
however that while there may not be an underlying metaphor of the physical world,
nevertheless the user interface is based on familiar concepts. In that sense, it is
certainly a conceptual user interface, albeit without the metaphorical connection.

In that regard, it seems prudent to provide a definition for the graphical user
interface concept based on the current more generic state of development.

Definition 2.5. Conceptual User Interface (CUI): An abstract user interface that
models the operational characteristics of an application using concepts familiar to
the user population.

Definition 2.6. Metaphorical User Interface (MUI): An abstract user interface that
uses a metaphor of the physical world to augment a conceptual user interface.

Definition 2.7. Graphical User Interface: A user interface presentation that
utilises visual metaphors to render and interact with the underlying conceptual
user interface.

Definition 2.8. Non-Visual User Interface: A user interface presentation that
utilises non-visual metaphors to render and interact with the underlying concep-
tual user interface.

For many years, it was taken on face value that in order to provide access to a
GUI environment one should provide access to the GUI rather than to the actual
screen image. While this insight by Edwards, Mynatt, and Stockton [45] seems
trivial, it was never substantiated based on established research. Section 2.2
provides the analysis to validate their argument based on the original GUI design
principles. They also provide clear support for the insight that the screen image
is merely a visual representation of a powerful underlying conceptual model, and
that accessibility should be aimed at the underlying model rather than on the
representation of choice.

Finally, this chapter provides the important analysis that abstract user interface
descriptions are not only powerful tools in the design and development of UIs
in general, but they also play an instrumental role towards providing Universal
Access.



Chapter 3

Target user survey

“The presence of those seeking the truth
is infinitely to be preferred

to the presence of those who think they’ve found it.”
(Terry Pratchett, “Monstrous Regiment”, 2003)

In order to gain a better understanding about blind individuals interacting with
graphical user interfaces, a survey was conducted. Participation was solicited
from totally blind individuals by means of direct email and pass-through email
communication1. The main questions that this survey intended to address are:

• How do blind users perceive graphical user interfaces?

• Are the users comfortable with the established metaphors?

• What type of mental model(s) do blind users use?

• Is a verbal description of the UI by a sighted peer useful?

• What type of UI concepts are difficult to interact with?

This chapter first presents the participants to the survey in section 3.1, followed
by an introduction to GUI concepts that are commonly known to blind individuals
presented in section 3.2. Section 3.3 discusses the survey responses concerning
UI elements and concepts. Section 3.4 discusses the mental models used by the
blind, and section 3.5 expands upon this in view of assistance from sighted peers.
Section 3.6 presents common troublesome UI elements within the context of
screen readers. The conclusions from the survey are summarised in section 3.7.

1All participants were encouraged to share the survey with anyone else they knew to be totally
blind.

45
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Respondent Gender Age Exp. Occupation Blind Braille/
since Speech

P1* M 35 26 AT specialist Birth Both
P2 F 54 18 Data entry Birth Speech
P3* M 42 25 Programmer 3 Both
P4* M 31 17 AT specialist Birth Both
P5 F 54 9 Designer Speech
P6* F 35 23 Homemaker Birth Speech
P7* F 44 26 Homemaker Birth Speech
P8* F 33 20 Student 23 Speech
P9 M 27 20 Not employed Birth Both
P10 M 18 8 Student 4 Speech
P11 M 25 13 Student Birth Both
P12 M 59 15 Not employed Birth Speech
P13 M 19 11 Student Birth Both
P14 M 29 11 Not employed Birth Speech
P15 F 36 24 Student 3 Speech
P16 M 29 20 IT repair Birth Both
P17 M 57 38 Programmer Birth Speech
P18 M 50 22 Admin. Assist. 28 Speech
P19 F 68 25 Retired 64 Both
P20 M 28 18 Teacher 2 Both
P21* F 41 24 Homemaker Birth Speech
P22* M 35 16 Supervisor 14 Speech
P23 M 51 8 Teacher Birth Speech
P24 M 44 24 Self employed 26 Speech
P25 M 58 40 Analyst Birth Both
P26 M 47 23 Student Birth Both
P27 F 37 20 Homemaker Birth Both
P28 F 48 15 Director Birth Both

Table 3.1: Demographic information of survey participants
Respondents marked * responded to a direct invitation to participate.

3.1 Participation

An initial group of 10 participants was selected from a larger group of acquain-
tances based on the following criteria:

• Be totally blind.

• Use computers regularly.
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• No involvement with in-depth discussions about this doctoral research.

These criteria were chosen in order to ensure that the survey was targeted at
the right user population. Individuals with a visual impairment often retain some
usable sight, possibly requiring some form of augmentative assistive technology
to compensate the limited visual ability. When an individual has no usable sight,
he or she is deemed totally blind2. The AT needs related to total blindness are
quite different from those related to low vision. Within the context of this work,
focus lies with the needs related to total blindness only.

The second criterion aims to increase the likelihood that each individual has
sufficient experience operating a computer system to be able to articulate
a personal perspective on the questions asked. The evaluation of potential
participants based on this criterion was very informal, merely taking into
consideration whether the individual was known to regularly communicate by
email or to use a social networking website.

The final criterion aimed to avoid bias in respondents. Given that individuals who
have been indolved in discussions about the subject matter for the survey may
retain a preconceived notion about the underlying questions following any such
conversations, it was deemed inappropriate to solicit responses from this group
of people.

The survey (see section A.1) was distributed to the 10 selected participants by
means of direct email. It was accompanied by an introductory note explaining
the purpose of the survey, the need for answers based on personal perception
and experiences, and inviting each individual to pass the survey along to others.
The intent of the request to invite others to respond to the survey was not only
an attempt to solicit more responses, but also to limit any potential bias caused
by the selection process. The goal was to limit the contribution of directly invited
respondents to no more than 50%.

Out of the initial group of 10 selected participants, 8 responses were received
(80% response ratio). An additional 20 responses were received from participants
who learnt about the survey from one of the participants. As a result, the
contribution from directly invited participants to the results of the survey is no
more than 29%.

3.1.1 Demographics

The demographic information of all respondents is presented in Table 3.1,
identifying the 8 individuals who responded to the survey that was sent to them

2Refer to section 1.2.2 for blindness-related definitions.
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directly. The purpose of identifying this select group of people is to enable any
reader to analyse any potential bias in the data presented in Table A.2 and
Table A.3.

In total, 18 men (64%) and 10 women (36%) responded to the survey. The group
of respondents covers a rather wide age range (age = 40.5, σage = 12.84) with the
youngest participant 18 years old, and the oldest 68 years old. All respondents
indicated to be quite experienced with computer systems, with a minimum of 8
years of overall computer experience (exp = 19.96, σexp = 7.74). Based on the
reported occupation, half of the respondents are gainfully employed3, covering a
wide spectrum of job functions.

Of the 28 respondents, 18 people (64%) reported that they have been blind from
birth. An additional 4 people (14%) stated that they became totally blind before
age 54, and another 4 people (14%) became totally blind between the ages of
10 and 50, leaving one respondent who became blind at the age of 64. One
participant did not indicate when they become totally blind.

Three participants (11%) gained experience using computer systems prior to
losing their sight completely.

Concerning the use of assistive technologies, 15 respondents (54%) reported
that they use synthetic speech as output modality during their interaction with
computer systems, whereas 13 respondents (46%) expressed preference for
using both tactile (primarily braille) output and synthetic speech. None of
the participants indicated sole use of a refreshable braille display during their
interaction with computers.

3.2 Concepts of the Graphical User Interface

As discussed in section 2.2.3, the design of the graphical user interface is (in part)
based on the fundamental principle that users should be presented with an explicit
model of the system that is both familiar and consistent, and it should build upon
known objects and activities that users already employ in daily life [8]. After many
work-years dedicated to the design of the GUI concept, concensus was reached
on what was considered an appropriate model for an office information system:
the metaphor of a physical office [130]. Some of its most prominent features
are the top surface of an office desk, traditionally the focal point of a person
performing his or her job functions in the office, and objects in its immediate

3Gainful employment means that a person performs activities intended to provide them with an
income.

4For the purpose of this survey, individuals who became totally blind before the age of 5 can be
considered blind since birth [87].
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surroundings, such as filing cabinets, wastebasket, . . . All these features are
represented in the conceptual model of the GUI.

This metaphor was decided upon in part because the focus of the design was
a user interaction system with visual presentation. Non-visual interaction was
not taken into consideration. With the introduction of screen readers, one of
the concerns has been that blind users may not be able to use a system with
a graphical user interface, even if the screen content is accessible: an issue of
whether blind people can grasp the concepts behind the user interface elements
they observe through the screen reader.

Now, many years later, the reality is that blind people can access computer
systems with GUIs to a variable extent. The survey presented in this chapter
is therefore not focused on whether the blind can work with a GUI, but rather on
how well the established metaphors and the conceptual model work.

Sarah Morley wrote “Windows Concepts” [94] in an attempt to relieve some of
the concern about the accessibility of GUIs by means of screen readers. In this
guide, she provides explanations for the various concepts in GUIs, and how to
interact with them in a non-visual manner. It is based on the author’s experiences
teaching visually impaired users on how to use MS Windows. Her work has
undoubtedly influenced the development of various training materials that have
since been released. As Edwards wrote concerning Morley’s work [40]:

“The components of the [graphical user] interface [. . . ] need no
description to sighted people, they can simply be shown them. For
people who can never have the experience of seeing or using a GUI
the concepts are difficult to describe, but anyone who needs such a
description might consult Morley [94].”

It should be noted that as a result of graphical user interfaces having been
in existence on personal computers for almost 30 years, understanding of the
GUI concepts has largely become collective common knowledge, especially
for younger generations. The difference can be found in the following two
descriptions for the “Desktop” metaphor [94]:

“[MS] Windows is based on the ’Desktop Metaphor’ to make accessing
your computer feel easier. The principle is based on real-life: that you
are sitting at your desk (your screen), which has a filing system in
drawers (your hard disk). You can arrange both your desktop and your
hard disk however you choose. On some areas on your desk you have
a variety of things relating to report writing – a typewriter, a dictionary,
other documents you are referencing. In another area on your desk
there might be things to do with numerical analysis and storage – data
sheets, a calculator, financial reports, a statistics manual. In another
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area on your desk, you might have your appointments diary, and an
address book. In a single work session, you might want access to all
this information, and so you have spread it all out on your desk, some
of it is overlapping, and you can see little bits of all of them, and all
of some of them. You might just leave some room by your hands, for
your notetaker, for example. [MS] Windows allows you to have all of
these activities immediately available to you at the same time, without
having to put one activity away before starting the next one. ”

versus

“The desktop is the area on which all windows appear, and if there
are no windows open, only the desktop would be visible. The desktop
can be full of many open windows, overlapping, of different sizes and
shapes, but it could be fairly neat and clear, and does not have to be
completely filled by these application windows.”

Not only is the first description much more verbose – it is also perceptual in its
description of the metaphor. The latter description is more abstract, but in the
present time, it appears to be the more common way to describe the “Desktop”
concept in GUIs. In fact, all but three respondents to the survey presented in this
chapter described the desktop in a manner that is equivalent to the latter, more
abstract description.

It goes to show that the concepts in the graphical user interface are largely learnt
concepts that may have lost some of their original metaphorical meaning through
frequent use in daily life. While it is not possible to measure the influence that
works like “Windows Concepts” have had on the understanding of GUI concepts
by blind individuals, the survey presented here certainly seems to indicate that it
is far from negligible.

3.3 UI elements: perceptual or conceptual

The survey asked participants to describe three cornerstone GUI elements based
on their personal perception and experience: “Window”, “Button”, and “Desktop”.
The goal of these questions was to determine to what extent a participant
perceives UI elements from a perceptual point of view or from a conceptual point
of view. A perceptual view relates to presentation characteristics of the element,
such as shape, size, location, layout, . . . whereas a conceptual interpretation
relates to the functionality of the element.
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Figure 3.1: UI elements: Perceptual vs conceptual

One respondent (P5) did not seem to understand the questions about UI
elements, although answers to other questions indicated a basic understanding
of the functionality of the GUI. The overall tone of the submitted survey responses
for this person reflected a position of frustration with existing solutions, and
a strong desire that “it should just work.” Interestingly, despite the apparent
confusion and lack of understanding of GUI concepts, the participant did not
indicate in any way that an alternative concept for the UI would be beneficial.

Amongst the other respondents, 79% expressed their interpretation of the
“Window” UI element between neutral and very conceptual (Figure 3.1). Their
descriptions did refer to a region on the screen in which an application presents
all or part of its user interface, but beyond that the primary focus was on the
functional aspects of the window and not its appearance (or the physical form
that the metaphor relates to).

One participant (P8) expressed a strong perceptual view, providing commentary
that explained that she had used computers for 10 years prior to losing her sight,
and that she uses a very visual mental image of the user interface when operating
a computer. She wrote (translated from Dutch): “I try to imagine [it] based on how
it was visualised on the screen when I was still able to see.”

Answers from respondents who indicated expertise in areas like assistive
technology and training included perceptual aspects, often in conjunction with
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a reference towards what sighted people might perceive.

When asked to describe a “Button”, the answers were more extreme. All but
one respondent (96%) expressed a view between neutral and very conceptual
(Figure 3.1). Participant P8 again expressed a strong perceptual view, for the
reasons stated above. Respondents with a technical background again included
some aspects of the presentation as sighted users would view a button, but the
interaction was clearly identified by all users as a trigger for an operation, and
only two respondents actually referred to activation as “clicking”.

The survey explored the understanding of the “Desktop” metaphor specifically,
because of its common use in the underlying conceptual model for GUIs. It is a
more abstract concept because one does not typically interact with it, but rather
with objects located on it. Similar to the window and button concepts, 89% of the
respondents indicated a view between neutral and very conceptual (Figure 3.1).
While most descriptions focused on the functionality of the desktop, some did try
to describe it as an area that holds other objects. One respondent expressed the
notion that it is the main window of the system.

There was clear consensus on it being a container that is central to locating other
entities in the system5.

While only three elements of the GUI metaphor were asked about, the response
is overwhelmingly in favour of a conceptual interpretation of the concepts,
as evidenced by the chart shown in Figure 3.1. The scoring6 discussed in
section A.2.1 expresses this conclusion more formally (scores are a scale ranging
from very perceptual (1) to very conceptual (5)):

• Window: score = 3.57, σ = 1.40

• Button: score = 4.29, σ = 0.94

• Desktop: score = 3.57, σ = 1.03

3.4 Mental models

Kurniawan, et al. surveyed visually impaired users in view of how they use mental
models for interacting in a graphical user environment [80, 81]. Their study
determined three categories of mental models:

5The term ’locating’ as it is used here does not imply any representation dependent context.
6It is important to note that due to practical constraints, the survey answers were scored solely by

the author. It is therefore possible that unintentional bias is reflected in the scores. Further analysis
with multiple independent scorers is left for future work (see section 9.2).
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• Structural: Models in this category are characterised by a strong emphasis
on how elements in the UI are arranged, i.e. the layout of the UI. In their
study, three out of five participants were identified as using a structural
mental model.

• Functional: These models are based on sequences of operations and
commands, independent from the on-screen configuration of the UI. One
participant was identified as using a functional mental model.

• Hybrid : Models in this category are based on both structural and functional
information. One participant was identified as using a hybrid model.

The logical conclusion based on the distribution of participants across the three
categories would be that in general, blind users tend to construct a structural
mental model for a UI. Kurniawan, et al. report on a followup study (with four
of the five original participants) concerning free recall of operations. The results
indicated that blind users seem to use a functional mapping for menu items rather
than a structural one. It is therefore appropriate to conclude that the users in this
study operate using a hybrid mental model, despite the earlier conclusion.

It may be premature to generalise the findings of the study due to the very small
number of participants. On the other hand, the three categories of mental models
identified by Kurniawan may have been an incorrect starting point altogether.
After all, whereas structural models are concerned with elements and how they
are laid out, the functional models are concerned with sequences of operations
carried out on those elements. It seems unlikely that one could reason in
the context of a functional mental model without incorporating the information
captured in a structural model. The operations carried out on elements in the
mental model are at a minimum in part influenced by the structural composition
of the model.

The initial hypothesis of mental modelling was proposed by Craik, stating
that people reason by carrying out thought experiments on internal models
[34]. Johnson-Laird provided further analysis of this concept, and essentially
expressed that a mental model is a structural analog of a real or imagined
situation, event, or process, created by the mind in the course of reasoning. The
concept of ’structural analog’ essentially means that the mental model consists of
a representation of the spatial and temporal relations among events and entities,
and of the causal structures connecting them [71, 101]. Based on this definition
of a mental model the expectation would be that a hybrid of the structural and
functional models as studied by Kurniawan is found to be the most accurate
categorisation for mental models used by the blind in operating a graphical user
interface. Despite the small number of participants, Kurniawan, et al. found
evidence to support this hypothesis. The survey reported on in this chapter will
also be used to test this hypothesis.
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Figure 3.2: Importance of layout, mental model, and verbal descriptions

More importantly however, Kurniawan, et al. reported that the users’ mental model
is dependent upon the information provided by the screen reader rather than the
actual UI, and therefore users may unfairly associate usability problems with the
UI rather than recognising the possibility that limitations in assistive technology
are the real cause.

This significant problem with establishing an accurate mental model offers support
to Landau’s position that it is not realistic for an average blind user to create an
accurate mental model for a complex layout without some assistance from sighted
peers [84].

The survey discussed in this section included questions to study the mental model
used by the blind, how it was constructed, and to identify possible additional
problems with the creation process. Figure 3.2 provides a chart concerning the
scored responses to three questions:

• How important is it to know the layout of elements in the user interface?

• How much does a user rely on a mental model when operating a GUI?

• How useful are verbal descriptions by sighted peers in the construction of a
mental model and/or the operation of the UI?
This question is explored in more detail in section 3.5.
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The scoring discussed in sections A.2.2 through A.2.4 provides the following
statistical parameters (scores are a scale ranging from strongly diagree (1) to
strongly agree (5)):

• Importance of layout: score = 3.57, σ = 0.88

• Importance of a mental model: score = 3.07, σ = 1.30

• Usefulness of descriptions: score = 2.14, σ = 1.08

Seven respondents to the survey (25%) indicated that they did not in fact create
a ’mental image’ of a user interface while they explore it. This seemed to be a
rather unusual answer and further analysis of answers to other questions confirms
that this is likely a misinterpretation of the question because the respondents
indicated that they do explore the UI prior to interacting with it, and that the
primary information they look for relates to how UI elements are positioned in the
UI. It seems appropriate to conclude that these participants do in fact construct a
mental model, even if they are not necessarily consciously aware of that fact7.

All but three respondents (89%) indicated that they explore the UI prior to
interacting with it, for the purpose of identifying both layout and functionality.
One person specifically identified this as a potential problem because some UI
elements are known to trigger functionality when they gain focus rather than
requiring an explicit activation.

The exploration of the UI is primarily focused on identifying the elements that
comprise the UI, their logical placement8, and the relationship between elements.
This constitutes building a hybrid mental model.

One participant stands out by virtue of indicating that they do not believe that
there is any point to exploration when it is known that coherence between the
visual presentation of the UI and the OSM is all but present. Answers to other
questions indicate that this user has a strong focus on creating a mental model
that is an accurate representation of the visualised UI. Based on this analysis, it
is fair to conclude that this person strongly favours a structural mental model.

Four participants in the survey noted that their mental models are likely to be
inaccurate, and one respondent particularly identified the fact that there is no
correlation between what is shown on the screen and what is presented by the
screen reader as an important reason.

7The survey shows evidence of similar circumstances with most respondents. The term ’mental
image’ may have been interpreted as implying some aspect of visualisation, and perhaps should
have been substituted with ’mental model’, although that concept might not have been known to or
understood by all participants.

8As opposed to physical placement in the visual representation. Logical placement is often referred
to as focus traversal order.
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Descriptions
Agree Neutral Disagree

L
a
y
o

u
t

Agree 2 6 10 18
Neutral 2 – 5 7

Disagree – – 3 3
4 6 18

Table 3.2: Importance of layout vs usefulness of descriptions

3.5 Assistance from sighted peers

In view of the findings of Kurniawan, et al. [81] and the opinion expressed
by Landau [84] (see section 3.4), participants in the survey were asked about
assistance from sighted peers in the form of verbal descriptions of the UI,
regardless of whether information was provided spontaneously or in response
to direct questions. If one accepts the notion that it is not realistic to expect that a
blind user can construct an accurate mental model without some assistance from
sighted peers, four important questions come to mind:

• How important is it to have knowledge on the layout of the user interface?

• What types of information are requested from sighted peers to improve the
accuracy of the blind user’s mental model?

• How well do sighted people describe aspects of a user interface?

• Does the information provided by sighted people improve the accuracy of
the mental model?

When asked about the importance of knowing the layout of the user interface,
64% of respondents indicated a higher than neutral importance. At the same time,
64% of respondents expressed a less than neutral position on the usefulness of
descriptions provided by sighted peers. Table 3.2 provides a breakdown of the
responses, relating the importance of layout aginst the usefulness of descriptions
by sighted peers. Of the 18 respondents who agree knowing the layout of the
UI is important, 10 (55%) do not agree that descriptions by a sighted peer are
useful in understanding the layout, while 6 respondents (33%) are neutral on
that topic. Respondents who disagree that layout is important wholeheartedly
disagree that descriptions are useful either. Those who expressed a neutral
opinion concerning the importance of layout indicate a 29% to 71% split on
agreement vs disagreement on the usefulness of descriptions.
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Perhaps the most significant statistic here is the fact that 89% of the respondents
who agree that layout is important still are at best neutral about the usefulness of
descriptions by sighted peers.

There is general consensus that descriptions by sighted peers are usually quite
vague and (understandably) show bias towards a vision-based interaction model.
The most requested information was found to be concerning semantic relations
between UI elements, explanations concerning seemingly obscure functionality,
and the identification of elements that screen readers fail to recognise correctly
(or at all).

One respondent summarised the primary concern with assistance from sighted
peers rather eloquently:

“[. . . ] sighted folks are absolutely horrible at putting into words what an
interface looks like, especially when asked to focus on such things as
location of items, and screen design. They tend to focus on the eye-
candy (colours, designs, shading effects, and so on) none of which
contribute the least to my understanding of the overall layout of the
screen.”

Overall, everyone who participated in the survey expressed that in order for
assistance by sighted peers in the form of descriptions to be useful, it must
involve well balanced descriptions, combining information about logical layout,
functionality, and physical configuration. It should contain information that does
not only assist in building an accurate mental model, but also information that
helps improve communication with sighted users. Such descriptions are rare,
and as such there is usually a need to ask more probing questions in an
attempt to obtain the necessary information despite the sighted peer’s bias.
As noted by several respondents, the best assistance is usually obtained from
AT professionals, or in general individuals who have a lot of experience with
how assistive technology for the blind operates. Ultimately, the source of this
complexity stems from the fact that often neither party (blind or sighted) can truly
envision how the other party interacts with the UI.

This is further exemplified by participants who used to have full vision, and who
experienced sudden and complete loss of vision. The answers provided by those
individuals indicate an expectation of being presented with a representation that
retains most of the spatial properties of the visual UI. Two of these participants
expressed frustration with screen readers that do not present the UI as a reliable
replica of the visual form.

Alternatively, participants who have been totally blind since birth expressed an
overall lack of interest in the physical properties of UI elements.

Based on this survey, Landau’s statement should be restated:
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The accuracy of a mental model created by a blind user is dependent
upon the ability of the AT solution to accurately reflect the UI, and the
expertise of sighted peers that provide assistance.

3.6 Troublesome UI elements

Participants in the survey were asked about specific UI elements or types
of elements that were perceived as especially troublesome in terms of user
interaction. By their very nature, questions of this kind capture the effects
of multiple influences, and it is important to view the answers in that context.
Complications in user interaction could stem from limitations in the screen reader
support for an UI element, input device limitations, implementation details of the
UI element, and/or interaction semantics of the application.

Surprisingly, despite the many variables in the operational context of user
interaction, all participants identified essentially the same groups of elements as
the source for most of their UI interaction frustrations.

3.6.1 Trigger-happy UI elements

Some UI elements are implemented with “hover” functionality. This means that
functionality is triggered by merely moving the cursor to the element, without
actively selecting it, or by leaving the cursor on the element for a set amount
of time (hence the terminology). The accessibility issue related to this type
of elements is that mere exploration of the UI (which has been identified as a
common activity for blind users) can cause operations to be performed that the
user did not mean to trigger.

Another common example referenced in the survey answers concerns auto-
select UI elements. In this case, merely shifting focus to an element causes
it to be selected. This is sometimes encountered in groups of radio-buttons9

where keyboard navigation for cycling through the choices implies selection of
the current choice. Again, in this case, exploration of the UI triggers an operation
rather than merely providing information to the user.

This problem is a combination of the implementation details of the UI elements
and the operation of the screen reader. When the assistive technology is
implemented as a derivative of the graphical representation, it is restricted to the
user interaction as implemented for the GUI. Moving the cursor or focus to the

9A group of radio buttons is a container of buttons where only one button can ever be selected.
Selecting one button automatically deselects any previously selection.
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element triggers functionality, and the effects of that operation are reported back
to the user by the screen reader as it processes notifications from the graphical
toolkit (or changes in the UI itself).

Some screen readers implement a special “review mode” to circumvent this
problem, where exploration operates entirely on the off-screen model rather than
resulting in actually interaction with the UI. This solution requires the user to use
this mode for exploration, because it is often not known whether a troublesome
element is in use in the UI until the problem presents itself. It is also not always
possible to provide full exploration due to limitations in the OSM implementation.

3.6.2 Unidentified UI elements

Many existing assistive technology solutions depend on explicitly defined accessi-
bility information, and when such information is missing or deemed unnecessary
by application developers, screen readers may not be able to determine the
function of a UI element, or even determine its existence. In other cases, the
information is not consistent with the visualisation, causing confusion. This is
most often seen in dialogs where by default “OK” and “Cancel” buttons are
presented. Many applications have been reported where a button is visually
presented with a label other than “OK” yet it is still reported by a screen reader as
“OK button”.

More troublesome are UI elements that are truly unidentified. One respondent
gave reference to an application where a regular text label turned out to be an
element with button functionality. Upon selecting this item, a pop-up menu was
presented with multiple items. Some were identified as buttons whereas others
were identified as links, despite the fact that visually all items look exactly the
same. Users depend on the correct identification to know what form of user
interaction is possible on a specific element, and therefore incorrect identification
can cause undesirable effects.

Respondents also reported UI elements that the screen reader could not locate,
although they were clearly visible on the screen. This type of problems is usually
related to limitations in the OSM construction process.

3.6.3 Semantic relations between UI elements

User interfaces often employ labels to commnicate the meaning of entry elements.
This association between a label and an entry field is often represented visually.
Screen readers may employ heuristics to detect this link, but it is an error prone
process and mistakes can render a UI quite difficult to use. Figure 3.3 shows
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Figure 3.3: The complexity of entry field label placement

a rather complex example, although visually it is rather obvious. Depending
on the actual implementation of heuristics in the screen reader and the exact
implementation of the UI layout10, this little form can be presented in many
different ways. When testing this form using a commercial screen reader on
MS Windows11, the form was announced as follows:

Entry form

First

Middle

Last

Full name Edit field

Edit field

Edit field

No spaces

Occupation Edit field

A combination of this type and the previous can be found in entry forms where a
single label is used to associate meaning with a group of entry fields, as might be
done when entering a postal address. Visually, the size and placement of various
entry fields can clearly indicate street name and number, postal code, and city
name. However, to the screen reader it might appear that the first entry field has
a label “Address”, and the rest of the entry fields do not have a label at all.

3.7 Conclusions

The survey discussed in this chapter provides information about how blind users
perceive and interact with graphical user interfaces. Participants were solicited
both by direct invitation and indirectly by other participants. Although the number
of participants was quite high compared to similar studies, it is still much less
than what would be required to achieve statistically significant results. However,

10There are usually multiple ways to implement the exact same visual layout – but the screen reader
will often read the seemingly identical layouts quite differently.

11JAWS for Windows, version 7.0.135.
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the consistency of results in various areas does give confidence that the results
are a fair representation.

The demographic data on the participants (Figure 3.1) shows a quite diverse
group of individuals who share two main characterstics: they are totally blind, and
they have a reasonable level of experience operating computer systems.

During the analysis of the responses to the survey, a question was raised out of
sheer academic curiosity: Is there any correlation between the responses and
a specific age group. Figure 3.4 charts the scores to all questions discussed in
this chapter against the age of the respondents, and a time reference of Sarah
Morley’s “Windows Concepts” [94]. The chart presents the age on the x-axis, and
in the bottom half the year as y-axis, to chart birthyear, and year of first computer
use. The top half shows the 6 categories of scored responses, and for each 10-
year interval of age, the average score per category. Scoring took place on a 1–5
scale, with 1 and 5 representing opposite choices (3 is the neutral value), so the
primary focus is on whether score averages are above or below the neutral point,
i.e. in favour of one or the other option.

The score averages per 10-year interval do not show any particular correlation for
any of the categories across all age intervals.

Five fundamental questions were being addressed through the survey:

• How do blind users perceive graphical user interfaces?
The analysis of responses concerning UI elements (see section 3.3)
indictates that participants think about them mostly in a conceptual way,
from a functional point of view. A few people did try to provide a description
of the visual appearance of the elements they were questioned about
because they believed that this information was requested as well. Almost
all respondents were clearly able to determine the semantic meaning of the
UI elements.

• Are the users comfortable with the established metaphors?
All respondents demonstrated familiarity with the established metaphors for
user interaction. One person indicated not knowing UI elements when
considering questions where they were referred to by name, but then
demonstrated a working knowledge of using those same UI elements in
responses to other questions.

• What type of mental model(s) do blind users use?
Previous research (Kurniawan, et al. [80, 81]) identified three types of
mental models are common for blind users: structural, functional, and hybrid
(a combination of the previous two types). Under the original hypothesis
for mental modelling, mental models are by definition hybrid because they
involve entities and the relations between them. This is discussed in
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section 3.4. The survey presented in this chapter confirms the hypothesis.
Interestingly, multiple people indicated n their survey responses that they
do not create mental models for UIs, even though their answers to other
questions clearly indicated they do.

Everyone did point out (in various ways) that the accuracy of mental models
(or people’s understanding of the UI as a whole) is highly dependent upon
the information that the model is based on. This information is often
obtained from a screen reader, which is unfortunately not always a very
reliable source.

• Is a verbal description of the UI by a sighted peer useful?
The usefulness of verbal descriptions by sighted users is debatable. A
common concern is that people often do not know what information is most
useful to a blind individual, which ultimately relates to the differences in how
specific user populations interact with user interfaces. It is quite difficult for a
sighted user to truly understand how a blind user operates, and vice versa.

In addition, multiple participants reported that it is very common for there to
be a discrepancy between what is visually shown on the screen and what is
presented by the screen reader. This makes it difficult to collaborate at any
level.

• What type of UI concepts are difficult to interact with?
Respondents were quite consistent in their identification of UI elements that
present significant complications. Their primary concern was found to be
with elements that activate functionality while the blind user is exploring the
UI. Another frequent complication was found with unidentified UI elements.
Such elements are either not reachable12 by means of operations that the
user can use, or they can be reached but they lack nay indication concerning
what user interaction can be used to operate them.

The responses to the survey presented in this chapter indicate that blind users
are quite familiar with the components of WIMP-based user interfaces. By means
of a mental model that incorporates both structural and functional information,
users are proficient at interacting with the UI. Discrepancies between visual and
non-visual representation are unfortunately common, and they affect the ability to
create an accurate mental model. This is further complicated by the fact that
sighted users are often not very good at providing useful verbal descriptions.
Furthermore, some UI elements present challenges due to their implementation.

It is important to note that regardless of the high level of familiarity with the UI
elements that blind users tend to possess, the limitations to being able to create
an accurate mental model pose a significant problem. Without an accurate model,

12I.e. it is not possible to move focus to them.
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user interaction is hindered (and for some elements simply impossible), and
collaboration is negatively affected as well.



Chapter 4

State of the art

”The artist is the creator of beautiful things.
To reveal art and conceal the artist is art’s aim.

The critic is he who can translate into another manner
or a new material

his impression of beautiful things.”
(Oscar Wilde, ”The Picture of Dorian Gray”, 1891)

This chapter presents past and current approaches to multimodal user interfaces
in the field of Human-Computer Interaction. While not all were designed in
function of accessibility, the tools and techniques most certainly can be applied
to this problem.

4.1 Introduction

The overview presented in section 1.1 (page 4) illustrates the expansive history
of research dedicated to making computer systems accessible. In this chapter,
significant past and current contributions will be discussed and compared based
on a common set of criteria. This section serves as an introduction to a reference
framework that can be applied to the approaches discussed in the remainder of
the chapter.

65
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Figure 4.1: Four distinct layers of user interface design

4.1.1 The four layers of user interface design

While UI design is often thought of as a self-contained, straightforward process,
four distinct layers of design can be identified (see Figure 4.1) [46, 69, 45]1, and
in view of Gaver’s work [50] as discussed in section 2.2.4, they can be grouped
together in function of the layer of metaphor (or model) they operate on:

• Conceptual metaphor layer

– Conceptual
This layer of design describes the basic elements from the physical
world metaphor that are relevant to the UI. It also describes the
manipulations that each element supports.

– Semantic
This layer of design describes the functionality of the system, in
an abstract way, independent from any specifics concerning user
interaction. It defines the operations that can be performed in the
system, and provides meaning to syntactic constructs in a specific UI
context.

• Perceptual metaphor layer

– Syntactic
This layer of design describes the operations necessary to perform

1Edwards, Mynatt, and Stockton list only three layers in [45], but they limited themselves to a
description of the layers of modelling, where the conceptual layer forms the basis for those three
layers of modelling.
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the functions described in the conceptual layer. This description
is modality specific, using the fundamental primitive UI elements to
construct a higher order element that either enables some functionality
or that encapsulates some information. Examples are: buttons,
valuators, text input fields, . . . These elements are presented to the
user as entry points of interaction to trigger some aspect of the
system’s functionality as defined at the conceptual layer.

– Lexical
This layer of design maps low-level input modality operations onto
higher level fundamental operations of UI elements. At this level, the UI
is expressed as a collection of primitive elements, such as dots, lines,
shapes, images and text.

The distinction between the different layers and their grouping is important
in consideration of accessibility because solutions will generally encompass a
specific layer and all those below it (usually in order of the list above). Adaptations
at the lexical level may involve the use of haptic input devices or a braille keyboard,
whereas assistive technology solutions at the syntactic level are more involved.
They affect the perceptual layer as a whole. Common representatives are various
screen readers. Approaches to accessibility at the semantic or conceptual level
are less common because they usually require an adaptation at the level of
application or system functionality.

4.1.2 Unified Reference Framework

Calvary, et al. developed a Unifying Reference Framework (URF)2 [24, 26, 25]
for multi-target user interfaces, specifically intended to support the development
of context-aware UIs3. The context of use in this framework comprises three
components: a target user population, a hardware/software platform, and a
physical environment. Each aspect of the context of use may influence the UI
development life cycle at any of four distinct levels. The levels of abstraction
recognised in the Unifying Reference Framework correspond to the four layers of
UI design presented in section 4.1.1 (see Figure 4.2):

• Tasks & Concepts (T&C): User interface specification in terms of tasks to
be carried out by the user and well-known underlying concepts (objects that

2Also known as the CAMELEON Reference Framework.
3The Unifying Reference Framework comprises more elements than are presented here. The

discussion of the state of the art does not require all elements of the framework, and the scope
has therefore been limited to what is sufficient to describe, understand, and compare the various
approaches.
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Figure 4.2: Design layers in the Unified Reference Framework

are manipulated during the completion of tasks). This level is computational-
independent.

• Abstract User Interface (AUI): Canonical expression of the interactions
described at the T&C level. The interactions can be grouped to reflect
logical relations, commonly seen in multi-step tasks and sequences of tasks.
This level is modality-independent.

• Concrete User Interface (CUI): Specification of the UI in terms of a
specific ”Look & Feel”, but independent from any specific platform. The CUI
effectively defines all user interaction elements in the UI, relations between
the elements, and layout. This level is toolkit-independent.

• Final User Interface (FUI): The final representation of the UI within the
context of a specific platform. This is the actual implementation of the UI. It
may be specified as source code, compiled into object code, or it may be
instantiated at runtime.

The development of a UI (as modelled in the Unifying Reference Framework)
can be accomplished by means of transformations between the aforementioned
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Figure 4.3: Unified Reference Framework

levels. Both top–down and bottom–up transformations are possible, depending
on the initial design.

• Reification (top–down): A derivation process whereby an abstract specifi-
cation is made more concrete.

• Abstraction (bottom–up): A reverse engineering process whereby an
abstract specification is inferred from a more concrete one.

By means of these two operations, the framework is able to model a large
variety of UI development processes. E.g. a designer might prototype a UI at the
concrete level using a design tool. In this case, reification will yield the final UI,
whereas abstraction provides for the specification of the user tasks and underlying
concepts.

When multimodal user interfaces are considered, the development of the UI spans
multiple contexts of use. The Unifying Reference Framework supports this with
the addition of a third operation (see Figure 4.3):

• Adaptation (cross context): A transformation process whereby a UI
specification at a given level for a specific context of use is translated to
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a UI specification (possibly at a different level of abstraction4) for a different
context.

4.1.3 The CARE properties

In the context of multimodal user interfaces, possible relations between modalities
may exist. Coutaz, et al. [33] define a set of four properties to characterise these
relations: Complementarity, Assignment, Redundancy, and Equivalence. The
formal definition of these properties is based on the following important concepts:

• State: A set of measurable properties that characterise a situation.

• Interaction trajectory: A sequence of successive states.

• Agent: An entity that can initiate the execution of an interaction trajectory.

• Goal: A state that an agent intends to reach.

• Modality: An interaction method that an agent can use to reach a goal.

• Temporal relationship: A characterisation for the use of a set of modalities
over time.

In addition, the following predicates are used in the formal definition of the CARE
properties:

• Card(M) represents the number of modalities in set M .

• Duration(tw) expresses the duration of time interval tw.

• Active(m, t) indicates that modality m is being used at some point t in time.

• Pick(s, m, s′) means that modality m was chosen from a set of modalities
to satisfy interaction trajectory s → s′.

• Reach(s, m, s′) means that interaction trajectory s → s′ cam be satisfied
with modality m.

• SetReach(s, M, s′) means that interaction trajectory s → s′ can be satisfied
with the modalities in set M .

4The initial version of the Unifying Reference Framework [24] defined the adaptation operation as a
transformation between representations at the same level of abstraction. Revisions made in support
of plasticity of user interfaces (being able to adapt to context changes without affecting usability)
introduced adaptation as a cross level operation.
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• Parallel(M, tw) ⇔ (Card(M) > 1)∧ (Duration(tw) 6= ∞)∧ (∃t ∈ M · ∀m ∈

M · Active(m, t))
Parallel events (simultaneous use of modalities) over a temporal window are
characterised by the fact that there is a point in time where all the modalities
in M are active.

• Sequential(M, tw) ⇔ (Card(M) > 1) ∧ (Duration(tw) 6= ∞) ∧ (∀t ∈

tw · (∀m, m′ ∈ M · Active(m, t) ⇒ ¬Active(m′, t)) ∧ (∀m ∈ M · ∃t ∈

tw · Active(m, t))
Sequential events are characterised by the fact that there is at most one
modality active at any given time in the temporal window, and where all the
modalities in set M are used at some point in the temporal window.

The four CARE properties can then be defined as follows:

• Equivalence:
Equivalence(s, M, s′) ⇔ (Card(M) > 1) ∧ (∀m ∈ M · Reach(s, m, s′)
The equivalence property expresses that interaction trajectory s → s′ can
be accomplished by means of any of the modalities in set M . It therefore
characterises choice of modality. It is important to note that no temporal
constraint is enforced, i.e. different modalities may have different temporal
requirements for completing the interaction trajectory.

• Assignment:
StrictAssignment(s, m, s′) ⇔
Reach(s, m, s′) ∧ (∀m′ ∈ M · Reach(s, m′, s′) ⇒ m′ = m)
AgentAssignment(s, m, M, s′) ⇔
(Card(M) > 1)∧(∀m′ ∈ M · (Reach(s, m, s′)∧(Pick(s, m′, s′)) ⇒ m′ = m))
Contrary to the equivalence property, assignment characterises the ab-
sence of choice. A given modality m is said to be assigned to the
interaction trajectory s → s′ if no other modality is used for that trajectory,
either because it is the only possible modality (StrictAssignment), or
because the agent will always select the same modality m for the trajectory
(AgentAssignment).

• Redundancy:
Redundancy(s, M, s′, tw) ⇔
Equivalence(s, M, s′) ∧ (Sequential(M, tw) ∨ Parallel(M, tw))
The redundancy property characterises the ability to satisfy the interaction
trajectory s → s′ with any of the modalities in set M within temporal window
tw. Redundancy comprises both sequential and parallel temporal relations.

• Complementarity:
Complementarity(s, M, s′, tw) ⇔
(Card(M) > 1) ∧ (Duration(tw) 6= ∞)∧
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(∀M ′ ∈ PM · (M ′ 6= M) ⇒ ¬Reach(s, M ′, s′)))∧
SetReach(s, M, s′) ∧ (Sequential(M, tw) ∨ Parallel(M, tw))
The complementarity property expresses that the modalities in set M must
be used together in order to satisfy the interaction trajectory s → s′, i.e.
none of them can individually reach the goal.

4.2 Evaluation criteria for related work

The remainder of this chapter will present various past and current approaches
towards multimodal user interface development. The framework presented in
section 4.1.2 and the CARE properties discussed in section 4.1.3 serve as a
reference for comparison of the related work. Specifically, the following aspects
are considered:

• URF diagram: The Unified Reference Framework diagram visualises
the transformation process from source specification to the final target
representation for the user interface. As such, it identifies:

– The entry level of abstraction (and context, if applicable) that serves as
source for the UI creation,

– The operations (reification, abstraction, adaptation) that are required
to perform the transformation.

– The exit level of abstraction (and context, if applicable) that corre-
sponds to the outcome of the transformation process.

• Non-visual access to GUIs: This represents one of the extreme contexts
for multimodal UIs, and it is therefore a good criterion to consider. Based
on the work of Mynatt, Weber, and Gunzenhäuser (see section 2.3), the
following requirements are reported on:

– Coherence between visual and non-visual interfaces, both static and
dynamic

– Exploration in a non-visual interface

– Conveying semantic information in a non-visual interface

– Interaction in a non-visual interface

The ”ease of learning” topic is not taken into consideration in this disserta-
tion.

• CARE properties: The properties defined by Coutaz (see section 4.1.3)
help characterise the influence of multimodality on the user interaction.
Input and output modalities are considered independently, to the extent
possible.
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• Conceptual model: The underlying conceptual model for a UI tends
to have a significant influence on the overall design, and it is therefore
important to consider whether an approach is based on a single (shared)
conceptual model, or whether multiple models are used.

• Concurrency: Collaboration between users may benefit from both users
being able to explore and interact with the system at the same time. The
ability to present the UI in different modalities at the same time is therefore
an important consideration.

• Cost factors: Every approach has a cost associated with it, be it the cost of
specialised hardware, cost of the software component, cost of implementing
applications based on a specific UI toolkit, . . . While it is well beyond the
scope of this work to estimate the actual costs5, it is possible to compare
approaches based on the factors that contribute to the cost. E.g. if special
hardware is required for a specific approach, the cost barrier tends to be
higher6.

In addition, the advantages and shortcomings of each approach will be discussed
within the context of this work. Based on the comparison of related work,
and in view of the identified advantages and shortcomings of each approach,
requirements for the presented work will be defined.

4.2.1 Classification of related work

The extensive research into the state of the art presented in this chapter covers a
quite varied collection of projects and studies. Different methods of classification
can be used to group the various works. In view of the criteria presented in this
section, classification based on the underlying model in the Unified Reference
Framework has been selected for this chapter:

• Abstraction of a final user interface
This classification is still quite broad in view of the work that has been
done on multimodal user interfaces and alternative representations of user
interfaces. The final UI level in the Unified Reference Framework captures
the toolkit dependent part of the UI specification, and therefore approaches
that are covered in this class of works may be based on:

– Lexical adaptation: In terms of impact on application development,
this technique is by far the least invasive because it primarily relates

5Also note that the purchase of assistive technology solutions is often funded (in part or in full) by
government programs.

6This is even true if the hardware itself is not expensive, because hardware that has a single
purpose tends to be less favoured.
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to adaptations at the level of the input and output devices. A very
representative example with historical significance is the console probe
[136].

– Graphical screen analysis: Assistive technology in this category
applies some form of image detection processing and/or OCR to the
content of the graphical screen. This technique is also less invasive,
although it is often combined with a more invasive technique in order
to improve its accuracy and/or performance.

– Perceptual adaptation: Approaches in this category typically involve
reproducing the lexical and/or syntactic structure of the user interface
in an alternative form. Based on a variety of information sources, an
off-screen model is composed, and an assistive technology solution
uses that model to provide information to the user.

Works in this classification are discussed in section 4.4.

• Adaptation of an abstract user interface
Approaches to multimodal user interfaces that fall in this class of works
share a common path through the Unified reference Framework: an abstract
specification of the interface (at the AUI level) is adapted for a new context
of use (typically a different modality). Two common forms are observed:

– Abstraction from a concrete user interface: This group captures
techniques where the user interface is specified at the final UI or
concrete UI level, and an abstract UI is obtained by abstracting the
concrete UI (rendering it modality independent). The resulting AUI
specification is then adapted for the new context of use.

– Reification from an abstract user interface: In this case the user
interface is defined a the abstract UI level, and it is used as-is for
adaptation in the next context of use.

Works in this classification are discussed in section 4.5.

Prior to the discussion of representative contributions in the HCI field of
multimodal interfaces for the classifications mentioned above, other important
works are presented more briefly in section 4.3. Conclusions drawn from the
state of the art, and a statement of requirements for the work presented in this
dissertation conclude the chapter in section 4.6.

4.3 Related works

The related works in this section are grouped based on their primary goal.
Projects that work towards providing accessibility are discussed in section 4.3.1.
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The development of user interfaces based on abstract user interface descriptions,
and user interface description languages are presented in section 4.3.2. A
discussion of the Web Accessibility Initiative (WAI) Accessible Rich Internet
Applications (ARIA7) follows in section 4.3.3. While it is specific to web
technologies, its concepts are of importance to this dissertation and accessible
user interfaces in general.

4.3.1 Accessibility

The Mercator project was a research effort at the Georgia Institute of Technology,
replacing the GUI with a hierarchical auditory interface [100]. A speech synthesis
system is added to the standard desktop configuration, and both speech and
iconic sound cues are used to convey information to the user. An off-screen model
is created based on captured X11 protocol information, and by means of toolkit
hooks (the X11 Remote Access Protocol), taking in consideration that many
features of GUIs are related to limitations of the output modality. Overlapping
windows and clipping occur in a GUI environment due to screen size limitations,
and can therefore be avoided for non-visual access, albeit at the expense of
sacrificing coherence between the visual and non-visual representations. With
the emergence of higher-level graphical toolkits, the capturing at the X11 toolkit
level is no longer sufficient to determine the semantics of user interaction.

Weber and Mager discussed various existing techniques for providing a non-
visual interface for X11 by means of toolkit hooks, queries to the application and
desktop objects, and scripting [160]. Blenkhorn and Evans provide similar details
for screen readers on MS Windows [11].

Barnicle [6] described obstacles that blind users face when using GUIs by means
of assistive technology. Pontelli, et al [114], and Theofanos and Redish [141]
discussed obstacles that affect web accessibility. In comparison, the problems
are very similar; so much in fact that the successes with World Wide Web (WWW)
forms provide strong support for considering abstract descriptions (similar to
HTML) as basis for developing UIs in view of accessibility concerns.

4.3.2 Abstract user interface descriptions

Bodart and Vanderdonckt introduced the concept of Abstract Interaction Objects
(AIO) [154, 12] as part of a design to automatically generate user interfaces based
on application semantics. This can be seen as the early beginning of model based
interface development. The AIO work is of significance because it recognised the

7The official acronym to refer to this new specification is ”WAI-ARIA”.
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importance for presentation independence and separation of concerns. Whereas
the AIO defines the behaviour of the interaction object, the presentation (graphical
appearance) is provided by a Concrete Interaction Object.

The Views system described by Bishop and Horspool [9] introduced the concept
of runtime creation of the user interface representation based on an XML
specification of the UI.

Mir Farooq Ali conducted research at Virginia Tech on building multi-platform user
interfaces using UIML [1]. By means of a multi-step annotation and transformation
process, an abstract UI description is used to generate a platform-specific UI in
UIML. This process takes place during the development phase as opposed to
the runtime processing proposed in this dissertation. His thesis identifies the
applicability of multi-platform user interfaces as a possible solution for providing
accessible user interfaces, yet this idea was not explored any further beyond
references to related work. The research into the construction of accessible
interfaces using his approach is left as future work.

User interface description languages (UIDL) have been researched extensively
throughout the past eight to ten years. Souchon and Vanderdonckt [132]
reviewed 10 different XML-compliant UIDLs: UIML (User Interface Markup
Language) created by Virginia Tech and partners, AUIML (Abstract User Interface
Markup Language) by IBM, XIML (Extensible Interface Markup Language) by
RedWhale Software Corp., Seescoa XML by a research consortium of four
Belgian universities, Teresa XML by the HCI Group of ISTI-C.N.R., WSXML
(Web Services Experience Language) by IBM, XUL (Extensible User interface
Language) by Mozilla, XISL (Extensible Interaction Sheets Language), AAIML
(Alternate Access Interface Markup Language) by the National Committee for
Information Technology Standards, and TADEUS-XML. The review focused
mostly on ascertaining which UIDLs are more appropriate for developing fully
functional UIs. The final conclusion unfortunately indicates that no single UIDL
satisfies the requirements, and as the authors note: ”it is meaningless to possess
a refined specification of a UI that cannot be rendered or only partially.”

A followup study was conducted by Guerrero-Garcia, et al. [56] based on an
updated list of UIDLs. Confirming the conclusion from the previous study by
Souchon and Vanderdonckt [132], the authors note that given all the different
characteristics that can be identified for the UIDLs it appears difficult to determine
which UIDL to use. The authors also express the opinion that the decision
process for choosing a UIDL for a project may benefit from matching up project
requirements to the characteristics used to compare the UIDLs in their study.

Trewin, Zimmermann, and Vanderheiden [143, 144] present technical require-
ments for abstract user interface descriptions based on Universal Access and
”Design-for-All” principles, and they evaluated four different UIDLs based on
those requirements: UIML, XIML, Xforms, and AIAP. Their findings indicate
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that ”existing abstract languages for user interface representations are close to
meeting the requirements outlined in this paper.” However, the authors also note
that ”[. . . ] analysis at a more detailed level and practical experience [is required]
in order to provide a realistic assessment of the extent to which they can support
the goal of universal usability.”

The Belgian Laboratory of Computer-Human Interaction (BCHI) at the Université
Catholique de Louvain developed an UIDL to surpass all others in terms of goals
for functionality, ”capturing the essential properties [. . . ] that turn out to be vital
for specifying, describing, designing, and developing [. . . ] UIs”: UsiXML [89]. Of
special importance are:

• The UI design should be independent of any modality of interaction.
This goal captures the applicability to any target requirement for Universal
Access discussed in section 2.4.2.

• It should support the integration of all models used during UI development
(context of use, user, platform, environment, . . . ).
This goal relates to the applicability to any delivery context requirement for
Universal Access discussed in section 2.4.2.

• It should be possible to express explicit mappings between models and
elements.
This goal reflects the technical requirement discussed in section 2.5.1
concerning flexibility in inclusion of presentation information.

UsiXML has also proven to be quite extensible, as exemplified by the research of
Kaklanis, et al. on a haptic rendering engine using an extension to the UsiXML
CUI model [72]. Their work is aimed at web browsers, where the source HTML
document is transformed into an XHTML document that can then be used to
generate a UsiXML description for later use. While this technique derives both a
haptic rendering and a visual representation from the same HTML source, there
is no mechanism in place (yet) to ensure coherence.

Draheim, et al. introduce the concept of ”GUIs as documents” [36]. The authors
provide a detailed comparison of four GUI development paradigms, proposing a
document-oriented GUI paradigm where editing of the graphical user interface
can take place at application runtime. In the discussion of the document-based
GUI paradigm, they write about the separation of GUI and program logic: ”This
makes it possible to have different GUIs for different kinds of users, e.g. special
GUIs for users with disabilities or GUIs in different languages. Consequently, this
approach inherently offers solutions for accessibility and internationalisation.” The
idea did not get developed further, however.
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4.3.3 WAI-ARIA

As World Wide Web (WWW, commonly referred to as ”the Web”) technologies
advance, so does the complexity of providing accessibility. With the introduction
of Web 2.08, the Web has evolved from a repository of data to a world wide
interactive platform. As the complexity of Web interactions increased, so did the
user interfaces become more sophisticated. These advances have brought forth
new accessibility issues that go beyond the recommendations in the Web Content
Accessibility Guidelines (WCAG) put forth by the W3C in response to the original
Web accessibility concerns [31].

Application user interfaces on computing devices are typically developed based
on a specific presentation toolkit that defines a distinct set of widgets (button,
label, valuator, . . . ). The interaction semantics of these widgets are well defined
and it is therefore possible to provide reasonable support for these widgets
in assistive technology solutions. Web 2.0 Internet applications often require
similar UI elements, yet they are not part of the HTML specification. Developers
commonly construct these more advanced elements by means of span and div
elements, combined with images and other elements, and further customised with
style sheets and scripting. Developers may even opt to use custom widgets in lieu
of standard elements such as buttons in order to have greater control over their
appearance and/or behaviour [142].

The Web Accessibility Initiative (WAI) has been in the process of establishing
an accessibility specification to address the Web 2.0 advances: WAI-ARIA. It
introduces several important concepts to provide information on UI element
interaction semantics and to assist assistive technology providers with making
Web 2.0 entities accessible [90, 165]:

• Roles: The new role attribute specifies the widget or document structure
type that is assigned to a specific element, regardless of any semantic
inherited from the implementing technology. The available widget roles
reflect UI widgets that are commonly found in presentation toolkits and the
roles are often already represented in accessibility APIs. Each role has a
specific set of states and/or properties associated with it.

• Document landmarks: Landmarks are roles that are used to identify regions
in a document as navigational landmarks, e.g. banner, form, navigation, . . .
The purpose of landmarks is to make it easier to identify specific sections,
and speed up navigation.

• States and properties: Changeable states and properties are attributes of a
role that are used to support accessibility APIs. They convey information

8A term coined by O’Reilly Media [51].
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that is associated with the behaviour of a specific role, e.g. whether a
checkable item is checked, or the value of a valuator.

• Live regions: These are perceivable regions in a document that can be
updated independently, i.e. a construct to support partial UI updates. Live
regions are implemented by means of specific properties on the regions
(e.g. priority of updates, atomicity, types of relevant changes, . . . ). Regions
may be associated with UI elements that control their content updates.

• Tabindex extension: The standard HTML tabindex attribute has become
available for any visible element in the UI, and can be given the value −1 to
indicate that the element can only receive focus by means of a JavaScript
operation. This can be used to implement arbitrary keyboard navigation,
including arrow-based navigation9.

Analysis

The Accessible Rich Internet Applications specification fills an important gap
in the world of interactive web content. The application of this ontology-based
approach is quite diverse because of its nature. Any web content can potentially
be made more accessible by ensuring that semantic information is provided for
all elements in the UI.

One of the big advantages of this approach is that WAI-ARIA makes it possible
to assign semantic information to UI elements based on their contribution to the
overall UI rather than based on their presentation. At its core, the design of this
technique is rooted in the notion that e.g. a UI element is a button if and only if it
acts like a button, regardless of its appearance.

As a result of the fact that WAI-ARIA is based on annotating UI elements with
semantic information, one important shortcoming is that the specification of
accessibility related information is not an integral part of the UI design process, or
rather it is not enforced as a requirement. As a result, it is not uncommon for the
WAI-ARIA annotation of the UI to take place well after the UI has been finalised,
i.e. when the ”meaning” of all UI elements has been established. This amounts to
an adaptation at the concrete UI level, based on an interpretation of the concrete
UI.

Because WAI-ARIA annotations are often added to an otherwise finished UI
design the quality of the accessibility support depends on the expertise of the
people involved in the annotation process. Mikovec, et al. performed a web
toolkits accessibility study focused on WAI-ARIA and found significant issues [92].

9The standard form of keyboard navigation in HTML documents is by means of the Tab key which
moves focus to the next focusable element. This is often not adequate.
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Figure 4.4: Abstraction of a Final User Interface

It is important to note however that WAI-ARIA is still an emerging specification,
and as any work in progress it remains to be seen how well adoption will progress
and whether the lengthy process towards a firm specification may have resulted
in incompatibilities in assistive technology.

When the annotation of the UI elements takes place after the UI is designed, there
is also a potential danger that what would amount to design issues at the level
of the UI in terms of accessibility gets masked by annotations that essentially
resolve the issue. Clearly what should happen is that the design of the UI gets
updated to fix the problem.

4.4 Abstraction of a Final User Interface

The least invasive and most desirable method for transforming an existing user
interface in a given modality into a representation in a different modality is a
transformation of the final UI in the source modality into a final UI in the target
modality. In terms of practical considerations, the actual path taken generally
involves an abstraction towards an adapted concrete UI in the target modality
context, followed by a reification to the final target UI (see Figure 4.4).

It is important to note that a final UI has multiple forms, depending on the
implementation of the multimodal UI approach:
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Figure 4.5: Total Access System with VTAP

• Source code: The FUI is either developed as a procedural implementation
of a design, or it is generated by a UI design tool.

• Object code: Executable code generated from source code, or an internal
representation of the UI created through runtime interpretation.

• Rendering: The final representation of the FUI, rendered in a specific
modality and presented to the user.

In this section, approaches are discussed that either capture the rendered FUI
(e.g. a screen image), or obtain information about the FUI from specific hooks in
the rendering toolkit.

4.4.1 Archimedes a.k.a. Total Access System

The Archimedes project at the University of Hawaii (since September 2003,
formerly at the Stanford University Center for the Study of Language and
Information) provides non-invasive access to any computer by means of external
devices: the Total Access System (TAS) [127]. While this approach primarily
focuses on providing support for a wide range of input modalities, the discussion
here will consider the Visual Total Access System (Visual TAS). At first glance
this may seem to be a narrowing of scope, but the actual design will show that
the Visual TAS is actually an extension of the basic system.
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Figure 4.5 provides the high level design of the system. Aside from regular key-
board and mouse interaction, users can also interact by means of personalised
input devices that present him or her with a preferred input modality. These
devices are called ”Accessors”, and they can be tailored to individual needs,
be it as a specialised keyboard or pointer device, or in the form of advanced
speech recognition, head or eye tracking, or even video-based interpretation of
sign language.

The input accessor communicates with the Total Access Port (TAP), providing
information about the specifics of the user interaction. The TAP translates
the events from the accessor into equivalent simulated keyboard and mouse
operations that are then presented to the computer system as if the user did
operate a physical keyboard and/or mouse. The work flow from user interaction
with the input accessor, through the TAP, into the computer system is what is
known as the Total Access System.

Obviously, blind users have the added disadvantage that they cannot observe
the results of their interaction on the graphical screen. This is addressed by
means of the Visual TAS extension. A Visual TAP (VTAP) captures the video
stream from the computer system to the display, and extracts information from
it by means of sophisticated image analysis and Optical Character Recognition
(OCR) techniques, augmented with advanced pattern matching. The information
is used to create an off-screen model that is tightly coupled to the overall Total
Access System architecture. An output accessor is used to present the system
output in the user’s preferred output modality. Supported output options include
synthetic speech, and tactile, haptic, and non-speech auditory feedback.

Analysis

The Archimedes project provides for a strict separation between input and output
processing. The two components can be used independently, and are therefore
treated here as two distinct sub-systems.

Total Access System (input)
The (basic) Total Access System does not address aspects of UI presentation
and it is therefore not possible to describe the system in the Unified Reference
Framework. What it does provide is support for user interaction in various
alternative input modalities, mapping all actions onto equivalent keyboard and
mouse operations. This does make the assumption that keyboard and mouse
devices are the default input modalities for the system, which is known to be true
for the vast majority of computer systems.

As a result of the fact that the TAS addresses input modalities only, an immediate
conclusion can be reached that static coherence, non-visual exploration, convey-
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ing of semantic information, the support for concurrent representations, and a
determination of CARE properties for output are not applicable.

The Total Access System provides users with an interaction mechanism that is
tailored to the preferred input modalities of each user by means of accessor.
Operations carried out with an accessor generate TAS-specific interaction events
that are presented to the TAP, where they are translated into equivalent keyboard
and mouse operations. The translated operations are delivered to the computer
system as if they were generated directly by the keyboard or mouse. It is
therefore possible to ensure dynamic coherence. This approach also allows
for the accessor to implement custom interactions as needed for the target user
population. Therefore, it is possible to ensure non-visual interaction.

Furthermore, given that all user interaction must either be delivered to the
computer system as simulated keyboard and/or mouse operations, or actual
keyboard and/or mouse operations, both ”Equivalence” and ”Redundancy”
are provided.

The Total Access System provides an approach to supporting multimodality of
user interaction, i.e. providing support for input by means of a variety of different
input devices. This is implemented as an external system that merely delivers
(simulated) keyboard and mouse actions to the computer system. As such, the
Total Access System does not impose any specific conceptual model of its own
design. Instead it exposes the single conceptual model that forms the basis for
interaction with applications on the computer system.

Visual Total Access System (output)
The Visual Total Access System implements the UI adaptation process described
in the Unified Reference Framework diagram shown in Figure 4.4. The final UI
representation of the computer system is used as input by capturing its video
stream10. Analysis of the captured image yields an off-screen model at the
concrete UI level, which in turn is reified into a final UI in the context of the end
user’s preferred output accessor.

Static coherence is ensured because the Visual TAP creates the off-screen
model based on the rendered final UI as presented on the screen of the computer
system. Given that the Visual TAP cannot access semantic information about the
UI, all elements in the user interface must be presented to the user in the non-
visual context in order for the user to be able to make user interaction decisions
based on his or her perception of the UI.

Dynamic coherence does not apply for this adaptation approach because the
Visual TAS is independent from the user interaction processing. That is handled
by the (basic) Total Access System as described earlier in this section. For the

10This is about the most extreme form of using a final user interface as source for an adaptation
process because it captures the UI post-presentation.
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same reason, non-visual interaction and determining CARE properties for input
are not applicable here.

Non-visual exploration can be supported in the Visual Total Access System
provided that the output accessor includes explicit facilities for user interaction
with the final UI rendering in non-visual format, e.g. a tactile pad that provides
navigation controls for ”scrolling” so that a user can explore the entire UI
regardless of the fact that the tactile pad can only render a small subset of the
visual screen at a time. This user interaction is entirely independent from the
interaction with the computer system.

The Visual Total Access System relies solely on the final UI presentation in
graphical form as its source of information, and therefore may not always be
able to determine the semantics behind a visualisation. As a result, its ability

to convey semantic information is partial at best.

The approach of capturing a screen image and creating an off-screen model by
means of analysis can only be successful if it is capable of identifying all user
interface elements accurately. By doing so, it ensures that the ”Equivalence”
CARE property applies to the presentation component of the Archimedes
project. It also ensures that a single conceptual model forms the basis for
the multimodal UI presentation, because the non-visual rendering is created by
interpreting the visual output.

Since the non-visual representation of the UI by means of an output accessor
cannot exist without capturing a video stream from a computer display, the Visual
Total Access System provides concurrent representations.

Advantages and shortcomings

By far the greatest advantage offered by the Archimedes project’s Total Access
System is the fact that it is both modular and external to the computer system
it provides access to. The modularity aspect (and its resulting separation of
concerns) ensures that accessors remain independent of the target hardware,
operating system and applications. The Total Access Port and the Visual TAP
have some dependency on hardware and operating systems specifics, but in a
very limited way.

Accessors are device independent, i.e. they can operate any device that has a
TAP available. This is important because it isolates the accessors (typically the
most expensive component of the system) from software upgrades of both the
operating system and applications. The communication between an accessor
and the TAP uses a universal protocol that is both accessor and operation system
independent. As such, modality specific aspects of the user interaction are never
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visible to the computer system. Even more so, the computer system will typically
not be aware of the fact that an assistive technology solution is in use on the
system.

Using the visual rendering of the UI (at the FUI level) as source of information
poses significant limitations in being able to interpret the meaning of parts or all of
the captured image. While significant advances have been made towards fast and
accurate recognition of UI elements, icons and texts, inter-element relations are
typically not detectable. The burden of interpreting the UI is placed on the user,
often requiring specific knowledge of the underlying graphical system. It must also
be noted that despite the use of very efficient image analysis techniques, real time
abstraction from FUI to CUI imposes delays in the delivery of a representation of
the UI in alternate modalities.

The Visual Total Access System also depends on pre-programmed knowledge
(in the VTAP) concerning how to recognise specific parts of a UI. When faced
with brand new icons or unusual UI elements, the system cannot make a
determination as to the identity or meaning. When this occurs, the interaction
dialogue may face significant obstacles and meaningful collaboration will suffer.

The system does not allow exploration of the UI beyond observing what is on the
screen, and then only if the output accessor provides modality specific exploration
features that are accessed from the output device directly. In some cases this
problem can be alleviated by combining the input and output accessors in a single
device, e.g. a refreshable braille display with built in keyboard.

The need for specialised hardware is a concern due to the potential high costs
involved. The Archimedes project, in support of blind users, requires that an
accessor be obtained for UI representation and interaction11, and both a TAP and
VTAP. The (V)TAS design does ensure that an accessor is system independent
and therefore can be reused for a longer time and across multiple systems.
The cost factor is a consideration however, and the Archimedes Project staff
characterises it as follows (in a section named ”Advantages of the VTAS”) [116]:

”The [. . . ] costs of providing access are shared between the user who
provides a personal accessor, and the provider of the IT infrastructure
who provides a VTAP [and TAP].”

4.4.2 TIDE/VISA

One of the projects in the European Technology Initiative for the Disabled and
Elderly (TIDE) addresses the problems facing visually impaired users due to the

11The assumption is made, from a cost factor perspective, that preference is given to an accessor
that provides both functions rather than two independent accessors.
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Figure 4.6: The VISA-Comp System

growing use of graphical user interfaces: Video Interface and Signal Analysis
(VISA). Much like the later Visual Total Access System, the VISA approach is
based on capturing the video signal from the computer system that is to be made
accessible, and through analysis and re-interpretation, a presentation based on
speech and auditory cues is provided [59, 60, 113].

The VISA-Comp system (see Figure 4.6) is implemented as a desktop computer
system where applications are running, a computer system with special hardware
for video capturing and for simulating keyboard and mouse events to be sent to
the desktop system. Presentation of the UI in non-visual format is done by means
of specialised hardware: the Tactile Acoustic Screen Orientation (TASO).

The content of the screen on the desktop system is captured as a bitmap and
analysed by means of fast icon and character recognition implemented in a
specialised OCR software component. The analysis yields information about
visual elements in the UI, which is used to create or update the Current Screen
Model (CSM). The TASO uses the CSM as its authoritative source for presenting
the UI as text through synthetic speech.

The TASO can present information in two distinct modes:

• Exploration mode: In this mode, all information in and about the UI is
represented such that spatial properties are retained. In other words,
elements are represented in their original location.

• User mode: In this mode, all information is represented sequentially, per
identified category. Spatial information about UI elements is ignored in this
mode.
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Users can navigate through the information (in either mode) by means of two
physical sliders, providing access to a 2-dimensional spatial field, augmented with
acoustic feedback. When the desired information is located, the built in speech
synthesiser speaks the selection.

Text input can be provided by the user by means of the regular keyboard that is
part of the TASO, while UI element based operations can be initiated by means
of a specialised numeric keypad.

Because screen image analysis is a rather expensive operation, VISA-Comp
implements heuristics to assist with this process. User interaction is used to
augment the image analysis process by using operations initiated by the user
to predict upcoming changes to the rendering of the UI. E.g. selecting a toggle
element will change its boolean state, and therefore the visualisation of that action
can be predicted. Of course, the prediction can be wrong, e.g. if the toggle
operation triggers a validation, and the change is found to be illegal or possibly
requires confirmation by means of a modal dialog. Once the operation has been
performed on the desktop system, the effects on the UI will become visible, and
this allows the system to recover from a possibly incorrect prediction.

Analysis

The VISA-Comp system relates very well to the Unified Reference Framework
shown in Figure 4.4. Video stream intercept hardware captures the screen image
of the final UI representation, and OCR-based analysis of the image yields a
Current Screen Model at the concrete UI level in the non-visual context. The
CSM information is used by the TASO to render the UI in the new final UI.

Static coherence is ensured because the CSM construction process can only
be considered successful if all UI elements have been recognised, identified, and
are represented in the CSM. In cases where not all UI elements are accurately
identified, the conclusion must be reached that VISA-Comp is not capable of
providing a non-visual representation.

Dynamic coherence is not upheld because the design of the VISA-Comp
system does not automatically provide for direct manipulation operations on UI
objects (e.g. dragging an object to the trashcan).

The VISA-Comp system provides an explicit exploration mode in the TASO, which
satisfies the requirement for non-visual exploration.

Poll and Waterham discuss the disadvantages of deriving and maintaining the
CSM based on an analysis of the visual representation of the UI [113]. The
visual appearance of two UI elements is sometimes near impossible to distinguish,
and semantic relations between elements are typically not visible in the final
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UI rendering. Therefore, VISA-Comp cannot consistently convey semantic

information.

While the VISA-Comp approach provides specific non-visual interaction mecha-
nisms in the TASO, the lack of dynamic coherence clearly indicates that not all
interactions are possible, let alone being provided for in a specific non-visual way.

Regular text input and issuing of commands is provided for with the TASO in a
manner that is equivalent to the use of a regular keyboard. Mouse interaction is
quite different, and this approach provides alternative ways to accomplish many
of the typical tasks that would involve mouse actions12. The system therefore
provides for the ”Equivalence” and ”Assignment” CARE properties in terms

of input modalities.

On the UI representation side the ”Equivalence” CARE property applies for

output by virtue of the ability to ensure static coherence.

The conceptual model underlying the visual UI representation is reflected in the
structure and content of the final UI in visual form. The VISA-Comp approach is
designed to capture this information accurately, and render it in non-visual format.
The CSM that is created as intermediary representation at the concrete UI level,
and the final UI in non-visual modalities therefore both reflect the same single
conceptual model.

Since the non-visual representation of the UI through the TASO cannot exist
without being able to capture the video signal from the visual representation in
real time, the VISA-Comp system provides concurrent representations.

Advantages and shortcomings

One of the most important advantages of the VISA-Comp approach is the fact that
it is a very non-invasive approach. The desktop system that is made accessible
does not require any software or hardware modifications, and the system is not
able to distinguish between regular use and use by means of the VISA-Comp.
The approach is also independent from the actual GUI system that is used as
long as the outward (visual) appearance of its UI elements is known to VISA-
Comp.

A major shortcoming in this approach is the fact that all information about the
UI is captured from the rendering of the final UI in a visual modality. Quite
important semantic information is typically no longer available at this level, and

12The actions performed with the TASO are translated into keyboard and/or mouse events, so as far
as the desktop system is concerned, it appears as if a regular keyboard and mouse are being used to
interact with the system.
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it is therefore not possible for the VISA-Comp system to determine the semantic
relations between elements, etc. . .

In order for the system to be able to recognise UI elements it must have some
knowledge about the appearance of the elements. When new elements are
introduced, or existing elements might be changed, the system must be updated
to make it possible to recognise them. This usually involves a quite substantial
development effort.

Finally, this approach usually imposes a high cost on the end user because
additional hardware is required (including a dedicated device for user interaction).

4.4.3 GUIB

GUIB was a cooperative effort of multiple partners within the European Union,
funded in part by the European Commission. It translates the screen contents
into a tactile presentation while retaining spatial organisation. A matrix of braille
cells with touch-sensors is used as primary input and output modality, augmented
with sound [100].

One of the important design decisions at the foundation of GUIB is the desire to
continue the use of the spatial metaphor that forms the basis of the graphical user
interface. While this is a rather unusual design choice for a non-visual interface,
it has proven to be quite powerful. As a result, the spatial configuration of the
interface is mirrored onto the tactile pad and braille display used with GUIB.

This approach captures data from a variety of sources in order to be able
to provide an accurate non-visual representation of the interface. First of all,
keyboard and mouse input is intercepted and analysed. While often the user
interaction events are passed on to the system without additional processing,
knowledge about the ongoing interaction offers important information that helps
augment the off-screen model. Information about the visual presentation is
obtained from the GUI directly, both at the lexical level by means of a Virtual
Screen Copy (VISC), and at the syntactic level by means of presentation toolkit
hooks.

The VISC is a database that contains information that links every display pixel
with the character or graphical entity (icon, border, . . . ) it is part of [75]. The
database is constructed by means of two techniques:

• Modified video driver: This component provides information to the VISC
during the bitmap construction processing, where characters and graphical
elements are visualised by means of specific pixel patterns. This constitutes
capturing the results of a forward engineering process.
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Figure 4.7: GUIDE

• OCR: The screen content is captured either directly from video memory
or by capturing the video signal. OCR is used to reverse the process
performed in the video driver, transforming pixel patterns into their source
graphical element or character. This process is less reliable and tends to
require significantly more processing resources. This constitutes a reverse
engineering process.

The primary source of information is the graphical presentation toolkit because it
is able to provide information at a higher abstraction level. An off-screen model
is constructed based on this source, creating a hierarchical tree of interaction
objects. This tree is augmented with information from the VISC whenever the
syntactical level provides insufficient information.

Using the off-screen model, GUIB translates the graphical interface into a textual
representation that can be transcribed into braille. The non-visual representation
of the UI is provided by the GUIDE input/output device. Figure 4.7 shows
a drawing of the device, highlighting the 6 most important components: (1)
speakers for auditory output (speech and sound), (2) a vertical refreshable
braille display with routing keys, (3) two horizontal refreshable braille displays
with routing keys, (4) a touch pad, (5) exploration keys, and (6) mouse button
emulation keys.

The screen reader software component of GUIB was developed in an event-
response language named GUIB-ERL, based on Hill’s Event-Response Lan-
guage (ERL) [63]. ERL (and GUIB-ERL) is a dialogue specification language
that supports the specification of concurrent dialogues. It establishes a rule-
based system specifying responses to external events, and actions to be taken
when a specific state is entered. In GUIB-ERL, rules are used to transform the
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hierarchical off-screen model into braille output, augmented with synthetic speech
and non-speech auditory cues where appropriate.

Analysis

The GUIB approach relates to the process described in the Unified Reference
Framework diagram shown in Figure 4.4. At first glance, it would seem that
adaptation should be modelled at two different levels because GUIB collects
information from both the lexical level and the syntactic level. As shown in
Figure 4.2, relating the four layers of design to the Unified Reference Framework
abstraction levels, the syntactic layer relates to the concrete UI level in the URF
diagram. In GUIB however, syntactic information is obtained from hooks in the
graphical presentation toolkit which therefore falls at the final UI level.

The lexical and syntactic information is used to construct an off-screen model at
the concrete UI level in the non-visual context. Rendering the OSM on the GUIDE
device is a CUI-to-FUI reification process within the alternative context.

Static coherence is one of the cornerstones of the GUIB design. The spatial
metaphor of the graphical representation is retained, and therefore not only is
there a one-to-one correspondence of UI elements between the visual and non-
visual interfaces, but spatial location of elements is also consistent.

The two representations are synchronised by translating user interaction events
from one context to the other context. Specialised processing is required for
pointer device based interactions because braille is a fixed size font whereas
most graphical toolkits use proportional fonts.

One of the more complex problems with providing non-visual access to a
graphical user interface relates to the observation that the main interaction
mechanism in GUIs does not translate well to non-visual interfaces. Alternative
forms of interaction are necessary, and GUIB provides two different substitutes
for pointer device interaction. First of all, every braille cell can be selected by the
user (which can then be translated to its equivalent semantic operation such as
selecting a character or entire UI element). Second, a pressure sensitive touch
pad can be used to provide direct manipulation interaction. Together with regular
keyboard input, GUIB ensures dynamic coherence.

GUIB provides non-visual exploration based on the spatial metaphor. Two
modes are supported: full screen exploration, and application scope exploration.
Direct manipulation by means of Braille cell selection and planar touch pad
interaction provides for a quite efficient exploration mechanism.

Conveying semantic information is supported by means of two mechanisms:
non-speech auditory cues, and rendering information in braille. The primary
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approach to rendering semantic or symbolic information is by integrating it into
the braille code where possible. The classification of each interaction object is
encoded by special characters, e.g. button labels are enclosed in square brackets.
Text attributes are also included in the braille notation, providing for a relatively
concise form to convey this often important information.

Whenever braille rendering is not feasible or appropriate, synthetic speech and/or
non-speech auditory cues are used.

GUIB supports non-visual interaction by means of keyboard input, and two
mechanisms to substitute for pointer device interaction (as described above in
the context of dynamic coherence). Another important aspect of interaction is
notification about changes in the UI. GUIB implements a variety of cursors to
mark specific UI changes, such as dialog pop-ups, label changes, new windows,
. . . This is also an aspect of conveying semantic information.

User interaction can take place based on both the visual representation by means
of the keyboard and the mouse, and the non-visual representation by means of
the keyboard, braille cell selection, and the touch pad. Some operations can be
accomplished by more than one input modality, while others are to be completed
by combining interaction with more than one modality. In addition, there is a level
of user interaction that is specific to GUIB and the GUIDE device. In terms of the
CARE properties, this provides support for ”Complementarity”, ”Assignment”,

”Redundancy”, and ”Equivalence” for input.

Aside from the regular visual representation provided by the system, GUIB also
provides for output in the tactile modality by means of braille output, and in the
auditory modality for synthetic speech and non-speech sounds. While coherence
between the visual and non-visual representations is maintained, GUIB does
allow for additional information to be presented in the non-visual interface (e.g.
as a response to exploration), and some responses require output in multiple
modalities. This indicates that GUIB conforms to the ”Complementarity”,

”Assignment”, and ”Equivalence” CARE properties for output.

The very design of GUIB is centred on the concept of a single conceptual model

across both representations in support of collaboration between sighted and blind
users. In fact, Mynatt and Weber write [100]: ”the visual and nonvisual interfaces
[must] support the same mental model of the application interface.”

GUIB supports concurrent representations in support of collaboration because
it provides a non-visual representation alongside the visual form.
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Advantages and shortcomings

As discussed in section 2.3, the HCI concerns related to non-visual access to
GUIs were introduced by Mynatt, Weber, and Gunzenhäuser [100, 57], in part in
relation to the description of GUIB. It is therefore no surprise that this approach
satisfies the derived requirements for non-visual access rather well. The analysis
of GUIB in terms of this part of the criteria presented in section 4.2 therefore
serves more as a point of reference rather than an evaluation of the approach.

GUIB makes extensive use of multimodality for both input and output, which is a
powerful feature because it allows the user interaction to be less cumbersome.
It presents a less common approach of retaining the spatial metaphor of the
graphical user interface, and also by putting the primary focus on tactile output.

The very strong focus on supporting collaboration between sighted and blind
users is a great advantage because it addresses an important need for blind
users to be able to be productive in the work environment.

Although GUIB captures information from both the lexical and the syntactic levels,
it still depends on the final UI level as source of information because even the
syntactic info is toolkit specific. This limits the approach because it is not able
to capture semantic properties and relations that are part of the UI design,
but whose influence on the UI implementation is the only remaining trace of
their existence, and this residual information is often not sufficient to reverse
engineering the original semantics.

GUIB combines multiple modalities in a very successful manner, but at some
cost in terms of usability. The GUIDE device provides braille output augmented
with auditory feedback, but is limited to providing positional input events (braille
cell selectors or touch pad). Text input and various aspects of application level
navigation are still performed by means of the regular keyboard, which requires
the user to switch between the two devices quite frequently.

GUIB was designed to provide a spatial metaphor based representation on a
25 line by 80 character braille cell matrix (effectively 200 by 160 dots), which
according to Mynatt and Weber is sufficient to represent a 640 by 480 pixel
screen13. Current graphical screen technology far surpasses that resolution
(1400 by 1200 is not uncommon), yet using larger braille matrix devices is not
a practical solution. The specialised hardware required for GUIB is a drawback
because it limits its use by a larger population due to the high cost.

13The most common graphics standard in use on personal computers in the late 1980s, early 1990s
was the Video Graphics Array (VGA) with a standard display resolution of 640 by 480 pixels.
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(Reprinted from [58], with permission.)

Figure 4.8: The GNOME Accessibility Architecture

4.4.4 GNOME Accessibility Architecture (Orca)

The GNOME Project was started in 1997 by a team of students, with a very
ambitious aim: developing a free desktop environment for UNIX-type systems. As
the project matured, and gained both community and corporate support, providing
facilities towards accessibility became important. This was in part driven by the
realization that acceptance of the GNOME desktop by government and corporate
entities would require support for assistive technology. Initial work culminated in
the design of the GNOME Accessibility Architecture [137].

Figure 4.814 provides a schematic overview of the GNOME Accessibility Archi-
tecture [58]. Central to the design is the Assistive Technology-Service Provider
Interface (AT-SPI), a system-wide interface that exposes modality-independent
accessibility information about applications to AT providers such as screen
readers, magnifiers, . . . The AT providers are consumers of information posted
to the AT-SPI, and they can also explicitly request information from an application
through the AT-SPI.

14This diagram mentions Gnopernicus as the screen reader for GNOME. It has since been replaced
by Orca.
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Figure 4.9: URF Diagram for the GNOME Accessibility Architecture

Applications come in many flavours, and the GNOME Accessibility Architecture
is designed to cope well with the complexity imposed by the fact that applications
may present their UI based on any of several available presentation toolkits. Java
applications may use Java AWT or Swing to implement their UI, GNOME desktop
applications use GTK+, and a web browser is likely to use the gecko engine for
rendering the UI.

On the producer side of the AT-SPI, toolkit specific application UI information is
mapped onto a common specification that is toolkit and modality independent.
Java applications provide accessibility information through the Java Accessibility
API. GNOME applications are typically implemented using GTK+ as the presen-
tation toolkit, augmented with the Accessibility ToolKit (ATK). The Gecko engine
uses ATK as well, whereas an application like OpenOffice.org provides its own
API. The various distinct toolkits or toolkit extensions provide their information to
AT-SPI by means of specific bridge components: the Java bridge, the ATK bridge,
. . .

A typical work flow therefore commences with user interaction resulting in a state
change in a widget that is part of the UI of the application. By means of an
accessibility API related to the presentation toolkit, the user interaction and/or
its effect is passed through a bridge component to the AT-SPI, where it is made
available to assistive technology providers.

From the perspective of the AT providers, applications present their user interface
by means of an abstract toolkit, independent of modality or specific presentation.
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Analysis

Figure 4.9 provides the Unified Reference Framework diagram for the GNOME
Accessibility Architecture. Applications are developed against a specific pre-
sentation toolkit, typically implementing the UI programmatically, as a final UI.
Accessibility information is provided either programmatically or obtained from an
external resource, and it is used to annotate widgets at the concrete UI level
(abstracted from the final UI) in order for the widgets to be exposed through an
accessibility API.

The API bridge that links the accessibility API to the AT-SPI component essentially
performs an adaptation operation that further abstracts the information to the
abstract UI level. The AT-SPI exposes a modality and toolkit independent abstract
UI to AT providers.

The AT providers use the information obtained through the AT-SPI as source for
a reification process to yield the alternative UI representation as a final UI in the
context of the AT provider.

The ability for an AT provider to accurately and appropriately present all UI
elements from the visual interface is limited by the supplemental information
provided through the toolkit specific accessibility API. Unless it is explicitly
specified, system defaults are used, and those defaults offer minimal accessibility
at best. Therefore, static and dynamic coherence are partial, at best.

All AT providers work off information obtained through the AT-SPI. This means that
the off-screen model approach that historically has been at the foundation of most
AT solutions can often be eliminated within the GNOME Accessibility Architecture.
However, the consequence is that exploration without causing side-effects is often
no longer possible because the AT provider must consult the application through
the AT-SPI to obtain information such as e.g. the content of an as-yet closed menu.
In conclusion, only partial support for exploration is available.

While the augmentative accessibility information that developers provide is often
of reasonable quality, the visualisation of semantic information is not always
perceived as requiring additional information. The abstraction process within
the toolkit (from FUI to CUI), and again when information is passed to the AT-
SPI (abstraction from CUI to AUI) has a reasonable potential for not identifying
all semantics because it is often not represented at the concrete and/or final UI
levels. There is only partial support for conveying semantic information.

The AT-SPI supports interaction events from AT providers to accommodate
alternative input modalities. Widgets are exposed through the AT-SPI as abstract
entities with defined role and attributes, making it possible to ensure interaction

by defining modality specific alternatives for the distinct (and limited) set of
supported roles.
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While an AT provider acts on information from the AT-SPI, it is able to augment
the representation at will (and often does). Likewise, interaction by means of
alternative input modalities can be filtered to enforce certain modality specific
actions. This amounts to ”Assignment” and ”Equivalence” support for input

and output in terms of the CARE properties.

The alternative representations created by AT providers are based on a reification
of the information provided through the AT-SPI, which is based on abstracting the
visual representation at the final UI level. This ensures that there is only a single

conceptual model involved.

The alternative representations of the UI are rendered by the AT providers as
information is obtained from the executing applications, and they therefore are
true concurrent representations.

Advantages and shortcomings

A significant advantage offered by the GNOME Accessibility Architecture is that it
is an open source project. It is supported by an active community of developers
and testers, and has received significant contributions from corporate entities as
well. Furthermore, it is available for free, which is a very significant advantage
over many other accessibility solutions.

As explained in this section, the GNOME Accessibility Architecture provides
support for a variety of presentation toolkits. Given the fact that it is quite common
to use a wider variety of applications within a single desktop environment on
UNIX-type systems, offering cross-toolkit support is important.

In a posting to the GNOME Accessibility mailing list on July 20th, 2004, Peter
Korn stated that GNOME was taking the approach that applications must ”opt-in”
to accessibility. This is typically done by having the application code explicitly
call functions in the toolkit’s accessibility API to provide information that can be
queried later by means of AT-SPI, and by limiting oneself to using widgets and
features that are well supported in the accessibility architecture. It also often
involves providing additional UI annotations as an external resource that can be
loaded by an accessibility component in the toolkit implementation. The downfall
of this approach is that the process of keeping the UI description in sync with the
application UI code is entirely manual.

The need to explicitly specify accessibility information for widgets opens up
various other potential problem areas:

• The quality of the augmentative information provided drives the quality of
the accessibility that can be provided for by AT providers. This places a
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Figure 4.10: Adaptation of a Abstract User Interface

significant burden on application developers, who may not be experienced
in this area. Alternatively, the information could be provided by AT experts,
but they often do not have the expertise to programmatically specify the
additional information.

• This approach makes it possible to add in accessibility support after
development has completed. This most commonly implies that accessibility
was not an integral aspect of the application design, which is likely to impact
the quality of the support that can be offered by AT solutions.

• It may be tempting to developers to provide accessibility annotations for
specific needs only rather than in an all-inclusive manner.

It is also important to recognise that there is a significant amount of popular
applications that are not developed based on any of the supported toolkits.
When these applications are used on a GNOME-based system (which is a quite
common scenario), no accessibility information is available and AT providers are
unable to assist the user.

4.5 Adaptation of an Abstract User Interface

As discussed in section 2.5, the use of abstract user interface descriptions has
become more popular in recent years. The advantages range from supporting
the separation of concerns paradigm, allowing expert designers to focus on
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the UI design without being burdened with aspects of programming, automated
UI implementation code creation, to presenting the UI by means of runtime
interpretation.

The related works presented in this section all share a common path through the
Unified Reference Framework as shown in Figure 4.10. The diagram shows the
theoretical model where in context A the user interface is created as a multi-level
reification from the specification of tasks and concepts, through to the final UI
representation. Alternative representations are made possible through adaptation
at the abstract UI level for a new context of use (B), and then reification in context
B towards the alternative final UI. Note that the adaptation at the abstract level
can be combined with the reification to the concrete level in context B as a single
cross-level operation, and this is reflected in Figure 4.10 because it is commonly
done in the works discussed in this section.

The URF model does not place any restrictions on the form in which the UI is
specified at any of the abstraction levels, and the related works discussed in this
section illustrate some of the variants.

4.5.1 MetaWidgets

Applications that are developed with a graphical user interface are commonly
developed using libraries of standard widgets that represent UI elements that
users are familiar with. Multimodal applications require a library of widgets
defined at a higher level of abstraction, independent of a specific modality, to
ensure that they can support interaction with the user in several modalities.
Blattner, et al. have proposed widgets that can satisfy the requirements of
multimodal application design: metawidgets [10, 163].

A metawidget is an abstract container of presentation widgets for a specific
data item, providing methods for the selection of a specific representation. The
selection of a representation may have temporal constraints, and even the actual
representations may be time dependent. The mechanism for selecting a specific
representation for a metawidget takes into account all aspects of the context of
use, including user preferences, system resources, and environmental conditions.

One of the more unusual yet revolutionary conditions that were considered in
the design of the metawidgets concept is cognitive load. This metric measures
the demands on a user’s cognitive system due to the multisensory interaction
that results from using a multimodal application. As the cognitive load is affected
by the current state of the interface, it influences the representation selection
mechanism towards using representations that minimise the overall cognitive load.
This may cause active representations to undergo metamorphosis in order to
reduce the load.
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The decision on what representation to use is therefore made at the moment the
widget is to be presented to the user, and at any time when the context of use
changes.

The fundamental assumptions that drive the metawidget design, and specifically
the association with its representations are [52]:

• A metawidget must have one or more representations.

• The representations for a metawidget may be in the same or (preferably)
different modalities.

• The representation to be presented by a metawidget is selectable at runtime,
based on user preferences, as well as extra- and intra-system information.

• The representation of a metawidget may change (metamorphose) while it
is in use, i.e. presented to the user.

Therefore, metawidgets need not be aware what representation has been
selected at any given time, and the representation selection is not influenced
by the actual information encapsulated by the widget or the modality of the
presentation.

The collection of metawidgets comprises an abstract presentation toolkit that is
used to develop multimodal applications. The application code interacts with the
metawidget in a manner that is equivalent to how it would interact with a modality-
specific presentation toolkit widget. The metawidget delegates the functionality to
the actual representation.

Analysis

The MetaWidgets approach is rather unique in its support for dynamic selection of
representation on a per-widget level. The Unified Reference Framework diagram
in Figure 4.11 represents this design. The user interface is defined based on the
abstract metawidget toolkit at the abstract UI level. As widgets are selected for
presentation, each widget may map to a different context of use as a result of the
selection mechanism in function of all aspects of the context of use, including the
cognitive load. Furthermore, any widget may be re-presented at any given time.
This is equivalent to a redirection of the adaptation operation for that specific
widget.

It is obvious from the design discussed in this section that a widget cannot exist
in any modality unless it also exists in the abstract UI specification. Furthermore,
when a widget is part of the active presentation, it will be represented in one of the
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Figure 4.11: URF Diagram for MetaWidgets

active modalities. The interaction with a widget is dependent upon the modality it
is presented in, however the overall semantics of the interaction are a reflection
of the semantics defined in the abstract UI. In conclusion, static and dynamic
coherence are ensured regardless of the chosen distribution of widgets across
the modalities for any given stable point in time15. The fact that all interaction
between the application and the user interface is handled by the metawidget
component ensures that at all times a single conceptual model is represented.

The discussion concerning coherence also provides the basis for being able to
conclude that exploration, interaction, and conveying semantic information

is ensured with the MetaWidgets approach. Again, any failure to satisfy any
of thee requirements would be an indication that the implementation of the
MetaWidgets concept is flawed.

The very concept that (by design) all presentation widgets for a given metawidget
are equivalent for both presentation and interaction specifies that ”Equivalence”

for input and output is provided for.

The design as presented by Blattner, et al. [10], and Glinert and Wise [163, 52]
does not support concurrency. Some widgets may provide representations
that utilise multiple modalities, but that would not constitute concurrency, but
rather a multimodal representation for that specific widget.

15The condition of stability is introduced here to acknowledge that metamorphosis is not
instantaneous and therefore short intervals where coherence is lost will occur when a widget goes
through metamorphosis.



102 STATE OF THE ART

Application
Program

Session
Manager

Interaction
Shell

Device Drivers

Rendering Widgets

Abstract Widgets

Comm Stub

(Image based on [73].)

Figure 4.12: The ”Fruit” project

Advantages and shortcomings

MetaWidgets present a very novel approach to multimodal interfaces. With
selectable representations at the metawidget level, this approach offers a level
of flexibility that is remarkable.

One of the major shortcomings with this approach is the complexity of providing
support for a new metawidget. Not only must the semantics be defined at the
abstract level, but an implementation is to be provided all desired representations.

In view of collaboration between users, MetaWidgets introduces a complication
that may be difficult to overcome. Because of the fact that the user interface
changes based on context of use, where some parameters may be less stable, it
is more difficult to ensure that a colleague can replicate the configuration of the
user interface in order to discuss its operation.

4.5.2 Fruit

Kawai, et al. describe the architecture for a user interface toolkit that supports
dynamic selectable modality: ”Fruit” [73]. The system accommodates the needs
of users with disabilities and users in special environments by means of a model
of semantic abstraction, where a separation of concern is enforced by decoupling
the user interface from the application functionality. This allows users to select a
UI representation that fits their circumstances as much as possible.
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The ”Fruit” project has two immediate goals:

• Allow a user who is operating an application program to suspend his or her
interactive session, and to resume it from another computer system.

• Allow for the interaction with an application program to switch from an
auditory/tactile interface to a graphical interface without interrupting the
execution of the application.

In this system, the application program is developed using a UI toolkit that
provides abstract widgets, i.e. widgets that define functionality rather than the
representation in a specific output modality. The rendering of the UI is delegated
to an interaction shell that uses reified widgets, i.e. widgets that inherit from the
corresponding abstract widget, and provide added functionality for the rendering
of the widget in a specific modality.

Figure 4.12 shows the architecture of the Fruit project. Essentially, three main
components can be identified:

• The communication stub: This is a library of abstract widgets to be linked
with the application code. Effectively, the application’s UI is designed and
developed based on this toolkit library, equivalent to how it would be done
based on a graphical toolkit. The abstract widgets implement the semantics
of user interaction.

• Interaction shell: All interaction with the user is handled through an
interaction shell. It provides input and output facilities through one or
more modalities. In general, a user will use a single interaction shell to
operate all his or her applications, though it should be possible to use
multiple interaction shells simultaneously. The rendered widgets provide
the representation of the UI in specific modalities.

• Session manager: This component manages and coordinates the as-
sociation between applications (through their communication stub) and
interaction shells. Applications register themselves with the session
manager, and the user is then able to ”connect” to an application by
means of their interaction shell of choice. It also supports suspend/resume
operations to allow for switching between interaction shells.

Typical operation starts with a session manager running on a specific host16, and
the user starting an interaction shell of their choice on their system17. To invoke
a new application, the user uses the interaction shell to signal the appropriate

16Each host where application code may be executed must have a session manager running.
17It is possible for all components to run on a single system.
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Figure 4.13: URF diagram for Fruit

session manager. The session manager handles the launching of the application,
providing it with communication parameters so it can contact its controlling
interaction shell.

The communication stub initiates contact with the interaction shell, and receives
a reply that indicates the capabilities of the shell, e.g. whether it can process bit-
mapped images or whether it support a pointer device. The communication stub
uses this information to filter the information that is sent to the interaction shell so
that only relevant information is transmitted.

User interaction takes place from this point forward as input is passed from the
interaction shell to the application, and output is passed back. At any moment, the
user can disconnect from the application, causing it to become suspended. User
interaction can be reestablished from the same system or from another system,
and with either the same interaction shell or a different one.

Analysis

The Unified Reference Framework diagram for the Fruit system (Figure 4.13)
illustrates the overall flow of UI presentation. Note that with this approach, the
target context may be one of multiple possible contexts. The application is
developed programmatically using an abstract widget toolkit. Given that the toolkit
is explicitly developed to be modality independent, this can be considered to be
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a development at the abstract UI level. Upon establishing contact between the
application’s communication stub and the user’s interaction shell, the rendering
widgets are created to augment the abstract widgets in the application with a
concrete reified form. By means of the actual presentation toolkit, the final UI is
then generated.

In principle, static coherence should be maintained in this system because the
rendering widgets are essentially instantiations of the corresponding abstract
widgets. However, the Fruit system provides for filtering at the communication
stub level based on capability information provided by the interaction shell,
thereby allowing UI elements to be omitted from the UI because they are deemed
irrelevant or impossible to render. As a result, Fruit does not always uphold

static coherence.

The available documentation for this approach does not address input modalities
beyond the standard keyboard and mouse. It is therefore (within the scope of the
represented UI elements) obvious that dynamic coherence is ensured.

The system does not explicitly address the notion of modality-specific exploration
of the user interface, yet it is possible to make a determination based on the actual
design. The interaction shell is a self-contained entity, regardless of whether it
is running on a secondary system or alongside the application, and has both
total control over the user interaction and access to the user interface at both the
concrete UI level and the final UI level. It is therefore quite realistic to ensure
that exploration is provided for. Furthermore, this also ensures that modality-
specific interaction is ensured.

As a result of the filtering of UI information that is applied at the level of the
communication stub (effectively the abstract UI level), the ability to convey

semantic information is limited.

Fruit does not address alternative input modalities, so no determination of CARE
properties for input needs to be addressed. As far as output modalities are
concerned, it is clear that ”Equivalence” is provided for output modalities.

A single conceptual model drives the entire UI presentation chain as described
in the URF diagram in Figure 4.13, because the final UI is created as the multi-
level reification from the (adapted) AUI, through the CUI level, to the final UI
representation.

Kawai hints at the ability to provide multiple representations by means of multiple
interaction shells [73], albeit seemingly in a read-only fashion. It therefore seems
prudent to consider this ability partial concurrency at best.
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Advantages and shortcomings

The Fruit system combines two important goals: remote operation of applications
with suspend/resume support, and the ability to switch between multiple user
interface representations. This was a quite novel development, recognising the
importance of providing multi-device user interface support for applications.

In recognition of the separation of concerns concept, Fruit also provides for a
clean API between the communication stub and the interaction shells. This is
an advantage in the overall design/development process because application
developers need not be concerned with UI presentation details, while UI
designers need not be concerned with application logic.

One of the disadvantages in terms of development and change management is
that the UI is still constructed in a procedural, programmatic manner, making
changes more cumbersome because they require a rebuilding of the application.
Any rendering-specific annotations that might need to be specified at the
application level need to be predetermined at build time because there is no
mechanism to make runtime changes.

The filtering of information at the communication stub based on capabilities
reported by the interaction shell is a concern because it violates the separation
of concerns principle. It delegates functionality that is clearly an aspect of the
final UI level to the abstract UI level. The filtering is a premature optimisation that
perhaps should have been deferred until more data was collected to determine
its necessity and to assist in formulating a better design.

4.5.3 HOMER UIMS

The HOMER UIMS [124, 125] is a language-based development framework,
aimed at dual interface development: equal user interaction support for blind
and sighted people. The dual interface concept is designed to hold the following
properties:

1. Concurrently accessible by blind and sighted people
Cooperation between a blind and a sighted user is recognised as quite
important to avoid segregation of blind individuals in their work environment.
The HOMER system supports cooperation in two modes: both users
working side-by-side on the same computer system, or the users (not
physically close to one another) working on their own computer systems.

2. The visual and non-visual metaphors of interaction meet the specific needs
of their respective user group, and they need not be the same.
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Figure 4.14: HOMER UIMS

This property expresses a potential need for interaction metaphors that
are designed specifically for the blind. It is important to note that the
HOMER UIMS design is in part addressing the perceived notion that the
underlying spatial metaphor for the GUI system is by design based on
visually oriented concepts, and therefore not appropriate for non-visual
interaction. This property is as such not limited to just metaphors that relate
to the visualisation of the UI.

3. The visual and non-visual syntactic and lexical structure meet the specific
needs of their respective user group, and they need not be the same.
This property (also in view of the exact meaning of the previous property)
addresses the possible need for a separate non-visual interface design. The
explicit mentioning of the syntactic and lexical structure in this requirement
establishes the scope for the non-visual design proposed here as limited to
the perceptual layer, although that is not specifically stated.

4. At all times, the same semantic functionality is to be accessible to each user
group through their respective modalities.
Essentially, the underlying functionality should be accessible to all users,
albeit possibly through alternative modalities. Regardless of the modality,
the functionality must be presented to all users in an equivalent manner.
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5. At all times, the same semantic information is to be accessible to each user
group through their respective modalities.
Similar to the handling of functionality as expressed in the point above,
information should be made available to all users, by means of any
appropriate modality that can guarantee equivalence.

The second and third properties are largely based on an analysis of sample user
interfaces that employ highly visual idioms. Savidis and Stephanidis reach the
very valid conclusion that the visual user interface may visualise information in a
manner that is not accessible to blind users and likewise interaction techniques
may be used that are inaccessible [124, 125]. Under those circumstances, it
seems logical that a non-visual user interface (NVUI) would be designed with
distinct non-visual features (metaphors and design) to provide an accessible
solution. The fourth and fifth properties provide further requirements for the visual
and non-visual designs.

Figure 4.14 provides a schematic overview of the ”Dual Run-Time Model”
introduced with HOMER UIMS [124, 125]. The application server provides
the program functionality for the system, and remains separate from the user
interaction handling. All UI processing originates from the dual dialogue manager,
where virtual interaction objects provide the underlying semantics of the user
interface. An application programming interface channels semantic operational
data between the application and the dual dialogue manager in order to maintain
a separation of concerns. The actual realisation of the dual UI presentations
is handled by means of an instantiation mechanism within the dual dialogue
manager, where the visual and non-visual physical interaction objects that are
associated with virtual interaction objects are created. These physical objects are
rendered according to specific representation toolkits (as appropriate for chosen
modalities) by means of the toolkit servers.

It is important to note that the HOMER UIMS does not require that every virtual
interaction object is represented by a visual and a non-visual physical object.
Likewise, even when dual physical interaction objects do exist, they need only
implement those aspects of behaviour of the virtual object that are relevant for
the modality in which the physical object is represented. A common use can
be found in various visual effects that are associated with user interaction in a
graphical user interface.

In view of the need for a non-visual representation of the user interface,
Savidis and Stephanidis developed a new metaphor for non-visual interaction
[123]: the ”Rooms” metaphor. The rationale for this new development can
be found in the observation that existing approaches were ”merely non-visual
reproductions of interactive software designed for sighted users” and that these
approaches ”explicitly employ the Desktop metaphor for non-visual interaction.”
The alternative presented by the authors is shown schematically in figure 4.15.
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Figure 4.15: The ”Rooms” metaphor

The interaction space comprises a collection of virtual rooms, where each room
acts as container for interaction objects:

• Door : A door is a portal to a neighbouring room at the same (vertical) level.

• Lift: A lift provides access to the room directly above or below the current
room, allowing for a change in (vertical) level while retaining the same
position on the horizontal plane.

• Switch: An on/off switch represents a toggle.

• Book : A book is a read-only text entity.

• Button: A control to activate some functionality.

• . . .

Interaction objects can be placed on any of the six surfaces of the room: the four
walls, the floor, and the ceiling.

Analysis

Based on the schematic overview of the HOMER UIMS (Figure 4.14) it would
seem that this approach essentially amounts to a dual path reification from a
single AUI description to two distinct concrete UI contexts, both further reified into
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Figure 4.16: URF diagram for HOMER UIMS

thei respective final UIs: one visual, and one non-visual. Closer analysis of the UI
development process in the HOMER UIMS however indicates a less trivial model.

The Unified Reference Framework diagram in Figure 4.16 illustrates the flow
used for UI development in the HOMER UIMS. The most fundamental concept
that HOMER is based on is the notion that the metaphors used in a graphical
user interface are not appropriate for blind users, and that there is a need for
alternative interaction metaphors that are deemed appropriate for blind users.
The development process for the UI begins therefore at the tasks and concepts
level, in two distinctly different contexts.

The specification of tasks and concepts in each context of use yields an
abstract UI specification. Based on the visual and non-visual abstract UI
descriptions, virtual interaction objects are defined that use the visual and non-
visual components as alternative representations for a virtual entity. The virtual
interaction objects comprise an abstract UI in a neutral context.

The virtual interaction objects (encapsulating both the visual and the non-visual
instances) are adapted in both the visual and non-visual contexts, and yield final
UIs in their respective modalities by way of reification.

Given that the visual and non-visual representations of the UI in the HOMER
UIMS are actually derived from independent tasks and concepts specifications,
static coherence is not ensured. The very design is based on two dis-

tinct conceptual models, which makes the conveying semantic information

concept not applicable because there is no notion of providing a non-visual
representation of information from the visual UI because they are for all intents
and purposes concurrent yet independent.

Dynamic coherence is ensured although primarily on a semantic interaction
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level rather than for step-by-step interaction sequences. The HOMER UIMS
ensures that both contexts can perform the same tasks, albeit often in quite
different ways.

Both contexts (visual and non-visual) provide a complete user interaction
experience, including full support for exploration and interaction. Both operate
in a very unrestricted manner because of the fact that each UI representation is
based on what is perceived as the most appropriate modalities with metaphors of
interaction that are tailored to the specific needs of the user population.

In terms of CARE properties as they apply to input and output modalities, there
is a combination of ”Assignment” and ”Equivalence” for both input and

output because although tasks of semantic interaction are provided for in both
environments in an equivalent manner, each environment also provides for some
exclusive interaction and representation features.

Advantages and shortcomings

The HOMER UIMS takes a quite revolutionary approach to providing both
visual and non-visual access to the same application. The authors made the
assumption from the very beginning that the conceptual model (and metaphors)
that are used for graphical user interfaces are not appropriate for blind users
because they are based on visual concepts. Therefore, the design is strongly
rooted in the decision to provide a more appropriate interaction metaphor (and
essentially conceptual model) for blind users, and use that to develop a UIMS
where a user interface for an application can be modelled and created in two
different contexts of use: visual and non-visual. While this is a very interesting
and perhaps groundbreaking approach, it also results in a situation where the
blind users must be introduced to an entirely new world of interaction.

It also takes away from the opportunities for collaboration between users.
Savidis and Stephanidis discuss collaboration as a consideration in the design
of the HOMER UIMS [125] and characterise it in terms of proximity: local
collaboration or remote collaboration. While this is certainly one of the dimensions
of collaboration that can be considered, it is not necessarily relevant when
considering blind and sighted people working together.

One of the problems concerning concurrent UI representations is related to the
fact that user interaction can take place in multiple UI renderings at the same
time. Obviously, some level of synchronisation may be needed. The HOMER
UIMS implements a system where user interaction control is passed between
users explicitly in what essentially amounts to a manual mutual exclusion protocol.
While this system certainly works well, it remains unsure whether there is a true
need for such explicit serialisation of user interaction.
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4.5.4 Ubiquitous Interactors

Nylander introduced the concept of the Ubiquitous Interactor (UBI) in his doctoral
work [105]. It presents itself as a solution to the difficulties of developing cross-
device services. In UBI, a service can be represented with device-specific user
interfaces, i.e. two devices may present the same service with quite different
interfaces. At the same time, the actual interaction semantics remain the same
across all devices.

Rather than developing device-specific versions of each service, or using a more
generic (but limiting) user interface such as web-based interfaces, UBI provides
an approach where the service is developed as a device-independent entity with
separable device-specific user interfaces.

The interaction between a service and users is expressed in terms of eight
fundamental actions that can be used to describe the interface in a device
independent way:

• input: Input that the user provides to the service.

• output: Output from the service to the user. This is the only interaction act
that is sent from the service to the user.

• select: Make a selection from a set of alternatives.

• modify : Modify some data that is managed by the service.

• create: Create a service-specific object.

• destroy : Destroy a service-specific object.

• start: Start an interaction session with the service.

• stop: End an interaction session with the service.

These operations are abstract units of interaction that are independent of device,
service, and modality.

The specification of the user-service interaction is written based on these
operations, possibly grouping them together as a compound action. Each
user interaction carries attributes that enable the service (and user interface) to
uniquely identify the action, and to define additional features such as life cycle
information, whether an element is modal, . . . It is also possible to associate
metadata with an interaction act to assist the UI rendering process in laying out
the interface. The interaction acts are encoded in an XML-compliant interaction
specification language.
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Figure 4.17: The Ubiquitous Interactor

The user interface presentation for a specific device is generated based on
the user-service interaction specification, based on device and service specific
presentation information. This information is captured in customisation forms,
providing directives to link interaction acts to specific UI elements, and resources
(e.g. images, sounds, . . . ) that are used in the rendering of the UI on the device.

Figure 4.17 provides a schematic overview of the UBI design, illustrating the
interdependencies of the various components. A device specific interaction
engine provides runtime interpretation of interaction acts and a customisation
form to generate a suitable user interface for the service on a specific device.
The interaction engine is also responsible for encoding user interaction as an
interaction act prior to passing it on to the service. As part of an evaluation of the
Ubiquitous Interactors approach, Nylander, et al. implemented interaction engines
using Java Swing, HTML, Java AWT, and Tcl/Tk [107].

Analysis

The ubiquitous interactor approach creates user interfaces based on interaction
specifications that are modality and toolkit independent, and therefore are at the
abstract UI level in the Unified Reference Framework diagram in Figure 4.10.
The user interface generation takes place at the final UI level, combining the
interaction specification with a customisation form. It could therefore be argued
that the adaptation should be modelled as a cross context, cross level operation
from AUI level directly to FUI level rather than passing through the CUI level in the
target context. However, upon closer investigation it is evident that the interaction
engine operates both on the concrete UI level and the final UI level:

• Interpretation of interaction acts from and to the service operates on the
concrete UI level because although it may have dependencies on the
modality, it does not relate directly to the presentation toolkit.
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• Generation of the actual user interface based on the interpretation of
the interaction acts and the customisation forms depends on the actual
presentation toolkit and therefore operates on the final UI level.

The ubiquitous interactor is designed to present itself with different user interfaces
on different devices, providing different presentation information depending on
the specific device being used [107]. Therefore, this approach does not provide

static coherence.

On the other hand, one of the cornerstones of the design is that interaction is kept
the same across all devices. This is accomplished with the interaction acts that
are defined at the abstract UI level. This mechanism makes it possible to ensure
dynamic coherence.

The approach presented in this section places its main focus on the generation of
different user interfaces for various devices in terms of user interface presentation.
User input is translated as input interaction acts and sent to the service for
processing. The ubiquitous interactor therefore does not provide non-visual
exploration features.

Based on the underlying principle of implementing the same interaction across
all devices, regardless of differences in the presentation of the user interface, it
is clear that the UBI supports conveying semantic information across all UI
representations.

In order for the same interaction to be offered on all devices, context specific forms
of interaction must be provided for. While the available sample interaction engines
are all providing visual representations, the design behind the UBI approach is
generic enough to ensure non-visual interaction if an interaction engine for
non-visual representation were to be implemented.

As previously discussed, the ubiquitous interactor system does not provide
any special processing functionality or support for input modalities. In all, it
merely provides for adequate support to ensure that the required interaction acts
can be provided on any given device. This does satisfy the requirements for
”Equivalence” for input modalities.

For output modalities, i.e. representations of the UI, device characteristics and
other aspects of the context of use may influence the presentation and can affect
the availability of functionality. The TAP Broker service discussed by Nylander, et
al. [106, 107] allows viewing of the complete transaction history in the desktop
UI, while this option is removed from the UI in the Java AWT based presentation
for small screen devices (e.g. cellular phones). The UBI support ”Equivalence”
and ”Assignment” properties for output modalities.
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Given that all user interfaces for a service are derived from a single interaction
specification, with presentation specific attributes specified by means of device
dependent customisation forms, it is obvious that the UBI operates based on a
single conceptual model.

Concurrency is not supported in the ubiquitous interactor design.

Advantages and shortcomings

The ubiquitous interactor allows service providers to develop services without
having to be concerned about the presentation aspects of the user interfaces
on various devices. This is a significant advantage in terms of development
and maintenance effort because there is only a single service entity. The
actual user interface can be adapted based on context of use by means of
customisation forms, which need not necessarily be done by service developers.
In addition, changes to customisation forms are easy and do not impact the
service implementation at all.

This design also provides a very open ended mechanism for supporting a wide
variety of devices, and ensures that even future devices can be supported by
providing an interaction engine for any such device. Given that there are only
eight fundamental operations used in interaction acts, support for a new device is
quite a bit more manageable.

While the claim is made that interaction remains the same for all devices, the
TAP Broker sample service [106, 107] illustrates that there is no guarantee that
the same functionality is present on all devices. It therefore seems prudent to
reinterpret the claim to mean that if a certain functionality is provided in a user
interface, then it’s interaction semantics will be equivalent to those in alternative
interfaces on other devices.

The ubiquitous interactor does not provide device-level input processing that
is presentation specific beyond translation from input events to interaction
acts. Providing device-dependent exploration support would therefore require an
entirely new software component.

The lack of concurrency support combined with the possibility that some
interactions are not included in a specific device dependent user interface limits
the level of support for collaboration between users in different contexts of use
rather significantly.
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Figure 4.18: GITK

4.5.5 GITK

Stefan Kost developed a system to generate user interface representations
dynamically based on an abstract UI description [77, 78]. His thesis centres
on the modality-independent aspect of the AUI description, providing a choice
of presentation toolkit for a given application by introducing a meta-toolkit: the
Generalised Interface ToolKit (GITK).

Rather than providing facilities for programmatic user interface construction,
a markup language is used to describe the user interaction dialogues: the
Generalised Interface Markup Language (GIML). The GITK transforms the
abstract UI description in GIML into a UI representation that is tailored to the
context of use.

Figure 4.18 provides an overview of the multi-layered architecture of the GITK.
Five distinct layers can be identified:

• Application: This layer contains the actual implementation of the applica-
tion logic. It contains both the data objects and the abstract UI descriptions.

• Wrapper: Although GITK is implemented in the C programming language,
applications can be written in C, C++, Java, or Perl. Language specific
wrappers are provided to allow the applications to interface with the GITK
core by means of its C-based API.

• Core: The actual transformation from abstract UI description to UI
representation takes place in this layer. It encapsulates the API to the
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application (possibly by means of a wrapper object) and the transformation
logic. It creates a pipeline of transformation plug-ins that take an abstract
UI description and yield a transformed UI description that can be used by a
rendering plug-in for presentation to the user.

• Transformation plug-ins: These components each provide a very specific
adaptation to the user interface. Each plug-in performs a GIML-to-GIML
transformation, so that it is possible to combine them in any configuration
as a processing pipeline.

• Rendering plug-ins: The rendering plug-ins use the transformed UI
description to compose the final user interface within the context of a
specific modality-dependent rendering toolkit.

This architecture allows for a multi-dimensional adaptation. Domain independent
transformations are carried out early in the processing pipeline, and the UI
description is then handed off to the target domain for further processing (which
may involve additional adaptation). These later transformations are domain
dependent.

It is theoretically possible to accommodate runtime changes to the adaptation
profile, yielding changes in the transformation pipeline. When such a change is
necessary, the user interaction processing is temporarily suspended while the
change is applied. Once the UI description is re-processed by the transformation
pipeline, the user interaction processing is restarted using the new final user
interface representation.

Analysis

The GITK approach can be described well using the Unified Reference Frame-
work diagram shown in Figure 4.10. It takes a UI description in GIML at the
abstract level, and transforms it into a concrete UI description by a combined
process of adaptation and reification. Further reification yields the final UI,
rendered by a specific rendering plug-in.

An evaluation of the GITK approach in view of the HCI aspects of non-visual
access to UIs can only be done based on theoretical analysis of the design
because non-visual representation of the UI is not discussed in [77, 78] except as
possible future work.

Static coherence is ensured by the GITK by virtue of its design. The
transformation process makes modifications to the various interface elements,
adding annotations, default attributes, etc. . . without changing the logical
structure of the interface. Therefore, elements are never filtered out, although
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some may be transformed into more simple, more complex, or even compound
elements.

Dynamic coherence is ensured as well because of the design contract between
the GITK core and the rendering plug-ins. Rendering plug-ins must ensure that
the user interaction semantics for any given interface element are supported in
the representation it renders.

The GITK approach implements a multi-level reification from abstract UI to final
UI, where the handling of both user interaction and UI presentation is delegated
to the rendering plug-ins. In the existing design, only a single rendering plug-
in can be active at a given time, ensuring that all user input events will be
processed by that plug-in. It would therefore be technically possible for the
rendering plug-in to implement additional user interaction functionality for the
purpose of UI exploration beyond the control of the application, i.e. in such way
that the exploration is essentially invisible to the application. However, given
that the current design and implementation does not address the possibility for
implementing such features, one must conclude that based on the available
information, non-visual exploration is not supported.

One of the important design choices made in GIML is the need for media-
neutral attributes on interface elements. The transformation pipeline will use
this information to annotate the UI description with rendering-specific information.
E.g. while emphasis in text is often visualised using italics, it would be wrong
to conclude that all text in italics is emphasised. The abstract UI description
provides semantic information in a media-neutral way, and therefore it is possible
to ensure that all rendering plug-ins can convey semantic information in a
modality appropriate way.

As discussed earlier in this section, the GITK approach does ensure dynamic
coherence in its UI representations. Although non-visual representations of the
UI is not explicitly discussed in the GITK design, it is possible to make the
determination that due to the commitment to dynamic coherence, a non-visual
rendering plug-in would ensure non-visual interaction.

The very core of the GITK design is to ensure that the user interface of an
application can be rendered by means of any of the supported rendering plug-
ins, without any loss of functionality. The correctness of a rendering plug-in
implementation is essentially based on its ability to render the UI to be equivalent
(both in presentation and interaction) with all other representations. Therefore,
the GITK approach provides ”Equivalence” for input and output.

The GITK approach presents a user interface toolkit to the application, with a
minimal API. Rather than providing functionality for programmatic construction
of the UI, it supports loading abstract UI descriptions in GIML, binding data to
(abstract) interface elements, and establishing callbacks. The GIML documents
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provide the functional description of the interface, thereby reflecting the under-
lying conceptual model. The transformation pipeline that applies adaptations
to this UI description implements a multi-level reification process, and therefore
regardless of the chosen transformations and rendering plug-in, any final UI will
reflect the same single conceptual model.

Stefan Kost acknowledges the importance of being able to provide multiple inter-
face instances in support of collaboration between users, and more specifically
in terms of multimodality, CSCW where some of the users may present with
special needs. Some ideas are offered towards a possible design on a theoretical
level, but they have been left as potential future work. Therefore, GITK does not

support concurrent representations.

Advantages and shortcomings

The GITK approach provides multimodal interfaces based on abstract interface
descriptions that are truly modality independent. This offers a high degree of
flexibility and makes it possible to support a potentially endless number of different
representations. The transformation pipeline based adaptation process supports
a clear separation of interface aspects throughout the system, and makes it
possible to support runtime changes to the context of use. This design also
ensures that all representations are based on a single conceptual model, and
that both static and dynamic coherence are provided for.

Stefan Kost notes in [78] that interaction serialisation is a problem related to
the layout of a representation, and states: ”in a usable interface the interaction
sequence should match the layout of the interaction objects.” However, doing
so would render any navigational aspects of the user interaction semantics
irrelevant. This approach also implies that there is no consistency between
different representations in terms of logical navigation order of interface elements.
A better approach would be to have the logical navigational flow through the
interface elements influence the modality-specific layout decisions.

The GITK approach provides for a clean separation of interface aspects, and
carries all aspects of the interface from abstract description through to the final UI
representation provided by the rendering plug-in. This works well for the overall
goal of being able to render the interface for an application in one of multiple
different modalities, yet it introduces additional complexity when concurrent
representations are considered. By delegating both the interaction handling and
the presentation to the rendering plug-ins there is no coordination between the
representations in terms of e.g. focus management. The solution proposed in [78]
of implementing cross-instance communication falls short of being acceptable
because it introduces semantics at the presentation level. A more appropriate
solution centralises the user interaction processing at a higher level of abstraction.
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Separating the user interaction processing from the presentation is also more
appropriate in view of upholding the separation of concerns principle.

Another aspect of the lack of separation between interaction and presentation
is that input and output modalities are combined as a rendering plug-in context.
This coupling of input and output modalities results in duplication of effort in the
implementation of rendering plug-ins because many share some (or all) of the
input modalities.

4.6 Conclusions

The various projects discussed in this chapter represent the extensive field of
research concerning HCI, multimodal interfaces, and accessibility. The results of
the analysis of the primary related works presented in sections 4.4 and 4.5 are
summarised in Table 4.1 and Table 4.2. For each project, the evaluation criteria
introduced in section 4.2 are addressed.

The remainder of this section first presents the primary shortcomings of the state
of the art in section 4.6.1, and then concludes with a set of requirements in
section 4.6.2 that are derived from the analysis of the state of the art and the
identified shortcomings. These requirements will be used as basis for the work
presented in this dissertation, and also in chapter 8 to evaluate the presented
work.

4.6.1 Shortcomings

The following shortcomings have been identified in the state of the art. They serve
as a starting point for formulating requirements for the design of an approach to
provide equivalent representations of multimodal user interfaces.

The related works can be separated in two groups based on the primary goal that
they are trying to resolve, and the shortcomings will be presented in the same
fashion.

Accessibility of user interfaces

• Lack of semantic information: When a final UI representation is used
as primary source of information for constructing an off-screen model
at a higher level of abstraction, most semantic information about the UI
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remains unavailable because it is not explicitly represented in the final UI
presentation.

• Lack of generalisation: When a final UI representation is used as
primary source of information, the approach depends on direct and
detailed knowledge about the output modalities used in the primary
representation. When changes occur in the rendering of the primary
representation, extensive modifications are required to maintain the same
level of functionality. It is usually also not possible to use the approach with
any other source modality.

• Lack of separation between contexts: When a user accesses the presenta-
tion of a UI in an alternative modality, while still performing most (if not all)
interaction by means of the same input modalities as a user of the primary
presentation, user interaction is sub-optimal, and the separation of concerns
concept is negated.

• Lack of extendibility : Assistive technology solutions tend to target a specific
needs category, and fail to generalise their ability to provide alternative
representations across other modalities.

• Poor support for collaboration: It is not sufficient to provide an alternative
representation of the user interface based on the primary representation in
order for users with differing abilities and/or needs to be able to collaborate
successfully. Both static and dynamic coherence should be maintained to
ensure that the representations are equivalent.

Multimodal user interfaces

• Lack of support for concurrent representations: While techniques for
presenting a UI in a modality of choice offer a high degree of flexibility,
multiple concurrent representations are needed in order to support a higher
level of collaboration between users with differing abilities and/or needs.

• Lack of separation between contexts: When a multimodal UI system
provides a choice of output modality independent from the input modalities
used for user interaction, the separation of concerns concept is no longer
maintained.

• Lack of extendibility : Programmatically defined user interfaces based
on abstract toolkits must be able to support any available presentation
component, and ideally any future presentation components that may be
implemented for alternative modalities.
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• Lack of separation between application and presentation: When the user
interface is generated during system development, and compiled into the
application as program code based on an abstract presentation toolkit,
UI presentation aspects cannot be updated without updating the entire
application.

4.6.2 Requirements

An approach that is able to provide the ability expressed in the thesis statement in
section 1.3 is essentially one that combines elements from solutions that provide
accessibility and elements from solutions that provide multimodal user interfaces.

1. Multimodal input and output: The proposed approach shall support the use
of multiple distinct input and output interaction modalities. This requirement
is implied by the very definition of multimodal user interfaces (Definition 1.4
on page 12), and it is explicitly specified in the thesis statement in
section 1.3.

2. Separation of concerns: This important software development concept was
introduced by Parnas [112]. Multiple shortcomings found in the state of the
art relate to a failure to maintain separation of concerns. Specifically, a
strict separation between application logic, user interaction semantics, and
UI presentation should be maintained.

3. Equivalent representations: Analysis of the state of the art (summarised
in Table 4.1 and Table 4.2) shows that both static and dynamic coherence
are prerequisites for resolving the HCI concerns presented in section 2.3.
Ensuring that all representations satisfy static and dynamic coherence
amongst one another establishes equivalence between the representations.
This requirement is directly related to the concept of equivalent representa-
tions specified in the thesis statement.

4. User interface design that is independent of any modality : In order to be
able to provide UI representations in any modality, the UI design must be
truly modality-independent. This means that the user interface design is
handled at the abstract UI level. The discussion of the state of the art and
the shortcomings derived thereof shows that abstraction from the final UI
level does not provide sufficient information to support presenting the UI in
other modalities while maintaining dynamic coherence.

5. Use of abstract user interface descriptions: The shortcomings derived from
the analysis of the state of the art show that programmatically defined user
interfaces pose complications in terms of maintainability, and in terms of
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support for future presentations. Providing the (abstract) UI specifications
in the form of UIDL-compliant descriptions ensures that many updates can
be carried out without requiring changes to the application code. The use
of abstract user interface descriptions supports modality-independent UI
design.

6. Runtime reification: When the UI is defined in a UIDL-compliant description,
providing multimodal representations amounts to a runtime reification
process that yields a final UI in the context of use. Performing the reification
process at runtime promotes maintainability and it reinforces the separation
of concerns.

7. Concurrent representations: Full collaboration between users with differing
abilities and/or needs requires that all users can observe and interact with
the UI in an equivalent way. When the UI can only be rendered in a single
presentation at any given time, users must either collaborate based on
recollection (a memorised mental image) or engage in context switching
between presentations, which is very counter-productive.





Chapter 5

Parallel User Interface

Rendering

“Our grand business undoubtedly is,
not to see what lies dimly at a distance,

but to do what lies clearly at hand.”
(Thomas Carlyle, “Signs of the Times”, 1829)

The Parallel User Interface Rendering approach to providing alternative repre-
sentations of graphical user interfaces is based on the significant advantages of
abstract UIs, described in a sufficiently expressive UIDL. It also builds on the
ability to present a UI by means of runtime interpretation of the AUI description.
This chapter introduces the design principles that lay the foundation for this novel
technique, and it provides details on the actual design. Based on the discussion
of GUIs and accessibility in chapter 2 an analysis is presented of how the PUIR
approach satisfies the requirements for an accessibility solution for graphical user
interfaces.

5.1 Introduction

Existing accessibility solutions for supporting blind users on graphical user
interfaces (on UNIX-type systems and elsewhere) are mostly still “best-effort”
solutions, limited by the accuracy of the off-screen model that they derive from
the GUI. The OSM is created based on a variety of information sources. Much
of the syntactic information can be obtained from hooks in the graphical toolkit,

127
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Figure 5.1: Screen reader using the visual UI as information source.

and by means of support functions in the graphical environment. In addition,
various toolkits provide an API for AT solutions to query specific information
about the GUI. Sometimes, more advanced techniques are necessary, such as
OCR and interposing drivers to capture data streams for low-level analysis [59].
Further enhancement of the OSM information often involves complex heuristics
and application-specific scripting.

Figure 5.1 provides a schematic overview of the screen reader implementation
that is typically used in current AT solutions. As described above, the screen
reader derives an off-screen model from the visual representation of the GUI1.
The visualisation part of the implementation is created based on the syntactic
and lexical portions of the UI design, and therefore the screen reader is unable
to access important semantic information about the UI [19]. This has proven
to be a significant limitation, often requiring application specific scripting on
the side of the screen reader to essentially augment the OSM with semantic
information. Obviously, this is a less than ideal solution because it requires UI
data to be maintained outside of the actual application. Accessibility is also
limited in function of the ability of the script writer to capture application semantics
accurately.

Clearly, OSM-based screen readers still operate entirely based on information
from the perceptual layer, and they are thereby limited to providing a translated

1Even though some of the data capturing may take place between the application and the graphical
toolkit (e.g. by means of an interposing library), and therefore prior to the graphical rendering, the data
can still be considered visual because the application usually either tailors the data in function of the
chosen representation, or it passes it to specific functions based on a chosen visualisation.
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reproduction of the visual interface. This is an improvement over the traditional
approach of interpreting the graphical screen, but it still depends on strictly
visual information, or an interpretation thereof. The complications related to this
approach are reminiscent of a variation of the “Telephone” game, where a chain
of people pass on a message by whispering from one to the next. Only, in this
case the first person (Designer) describes (in English) a fairly complex thought
to the second person (Implementation), who explains the thought to the third
person (Visual Presentation), who writes down the actual information and passes
it to the fourth person (Screen Reader, who does not read English fluently), who
then verbally provides the last person (You) with a translation of the message.
The probability that the message passes through this chain without any loss of
content is essentially infinitesimal.

Various research efforts have focused on this problem throughout the past 25–30
years (e.g. [125, 15, 79]), with mixed success and often quite different goals.

Parallel User Interface Rendering is a novel approach based on the following
fundamental design principles:

1. A consistent conceptual model with familiar manipulatives as basis for all
representations.
See section 5.2.1.

2. Concurrent use of multiple toolkits at the perceptual level.
See section 5.2.2.

3. Collaboration between sighted and blind users.
See section 5.2.3.

4. Multiple coherent concurrently accessible representations.
See section 5.2.4.

(a) The same semantic information and functionality is accessible in each
representation, at the same time.

(b) Each representation provides perceptual metaphors that meet the
specific needs of its target population.

This chapter commences with a discussion of the design principles for the Parallel
User Interface Rendering approach in section 5.2, and they are further refined into
the actual design that is presented in section 5.3. A brief comparison with one of
the cornerstone paradigms of UI design, the Model-View-Controller, is presented
in section 5.4. The chapter closes with the conclusions in section 5.5.
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5.2 Design principles

This section provides a detailed discussion of each of the four design principles
listed in section 5.1 that form the foundation for the Parallel User Interface
Rendering approach. Further refinement towards an actual design is deferred
to section 5.3.

5.2.1 A consistent conceptual model with familiar manipula-
tives as basis for all representations

The conceptual model is by far the most important design principle for any user
interface, and therefore lies at the very basis of Parallel User Interface Rendering.
Seybold writes (discussing the Star project at Xerox PARC) [128]:

“Most system design efforts start with hardware specifications, follow
this with a set of functional specifications for the software, then try to
figure out a logical user interface and command structure. The Star
project started the other way around: the paramount concern was to
define a conceptual model of how the user would relate to the system.
Hardware and software followed from this.”

Smith, et al. define a user’s conceptual model as [130]:

Definition 5.1. Conceptual Model: The set of concepts a person gradually
acquires to explain the behaviour of a system.

Based on this very definition one might conclude that a conceptual model is a user
specific model, based on personal experiences while operating or interacting with
a system. While that is generally true, ample examples can be found that indicate
that there are many “systems” for which a collective conceptual model exists,
i.e. a model that is shared by most people. Examples include the operation
of household appliances, driving an automobile, . . . In some cases, the same
conceptual model may develop independently for multiple individuals as they
interact with a system in the same environment, so that their experiences are
sufficiently similar. More often however, a conceptual model becomes a collective
conceptual model through teaching, be it direct or through guidance.

Given the need to define a conceptual model for a user interface, designers
have essentially two choices: design the user interface based on a existing
model employing familiar metaphors, or develop a brand new model2. Extensive

2This not only involves defining objects and activities (functionality of objects), but also developing
strategies to introduce the new model to the anticipated user population.
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Figure 5.2: The role of the conceptual model

research was done when the original GUI concept was developed, leading to the
conclusion that the metaphor of a physical office is an appropriate model [130].
It is however important to note that this conclusion was reached in function of
developing a user interface for visual presentation, and non-visual interaction was
therefore not taken into consideration.

Is it then possible to have a consistent conceptual model as basis for both visual
and non-visual representations, or does the lack of sight necessitate a specialised
non-visual conceptual model?

Savidis and Stephanidis suggest that specific interaction metaphors are to be
designed for non-visual interaction, because the “Desktop” metaphor is visual
by design [123, 125]. This seems to be contradictory to the design principle
presented in this section, especially given that Gaver explicitly states that [50]:
“The desktop metaphor [. . . ] is the result of a conceptual mapping.”, thereby
clearly associating the Desktop metaphor with the conceptual model. Savidis and
Stephanidis however do not differentiate the multiple layers of metaphors in a user
interface the same way as Gaver does, as evidenced by an important statement
of scope in their work [123]: “The work [. . . ] concerns the general metaphor
for the interaction environment (i.e. how the user realizes the overall interaction
space, like the Desktop metaphor) which is different from metaphors which are
embedded in the User Interface design.” They associate the Desktop metaphor
with the perceptual level instead. Their work is therefore not contradicting the
design principle presented here. Furthermore, it actually provides support for
the design principle of needs-driven perceptual metaphors for representation, as
discussed in section 5.2.4.
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Kay presents some compelling arguments to avoid the terminology of metaphors
in relation to the conceptual model [74], instead referring to “user illusion” as a
more appropriate phrase. Indeed, conceptual metaphors used in user interface
design are more often than not a weak analogy with their physical counterpart.
While the notion of a “paper” metaphor is often used within the context of a word
processing application, users are not limited by the typical constraints associated
with writing on physical paper. Moving an entire paragraph of text from one
location to another on the “paper” is quite an easy task on a computer system
whereas it is rather complicated to accomplish on physical paper. Smith, et al.
expressed a similar notion when expressing that: “While we want an analogy with
the physical world for familiarity, we don’t want to limit ourselves to its capabilities.”
[130] It is clear that the underlying conceptual model is therefore a tool to link the
internal workings of the computer system to a model that the users can relate
to, without requiring the model to be bound by constraints of the physical world,
and without any assumptions about representation (see Figure 5.2). The mental
model reflects the metaphors that link the computer reality3 to a task domain.

With the relaxed interpretation of metaphors and under the assumption that the
separation between the conceptual and perceptual layers is maintained, the real
question becomes whether a blind user can fully comprehend the conceptual
model for a user interface. At this level, both sighted and blind users are faced with
a mental model4 that captures manipulatives5. The common model represents an
office or a desktop, concepts that sighted and blind people are certainly familiar
with. Whether a user can conjure up a visual image of the mental model is
not necessarily relevant in view of the assumed separation from the perceptual.
Still, often people will use visual imagery to represent the model in their mind,
regardless of whether that is truly necessary to reason about it, and this applies
to both sighted and many blind users. The exact nature of this mental image and
whether it is truly visual or perhaps perceptual in an alternative form is a matter
of individual preference and/or ability. Edwards states in a very insightful yet
unpublished paper (in draft) [39]: “If an existing visual interface is to be adapted,
it may be that there are aspects of the interface which are so inherently visual
that they will be difficult to render in a non-visual form [. . . ] but the suggestion
is that this need not be the case, if the designer would not commit to a visual
representation at an early stage of the design process.” This early stage would
correspond with the development of the conceptual model for the user interface,
which by design should be medium-independent in order to support this level of
accessibility [41].

3The “computer reality” is defined by Gaver as [50]: “the domain in which computer events are
described, either by reference to the physical hardware of the system or its operations expressed in
some programming language.”

4Sighted users may often not even realize that a mental model is involved due to the fact that a
GUI is generally presented visually using iconic elements that are closely related to the underlying
conceptual (mental) model.

5Objects and the manipulations that are possible on and with those objects.
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In an inspiring article in The New Yorker, Oliver Sacks wrote about several
blind individuals who all experienced the effects of blindness on visual imagery
and memory in different ways [120]. One individual effectively lost not only
the ability to visualise but in fact the very meaning of visual concepts such as
visible characteristics of objects and positional concepts based on visual imagery.
Other people reported an enhanced ability to use visual imagery in their daily
life. In addition, Sacks also wrote about sighted people who did not possess
visual imagery. Noteworthy is that none of the people discussed in Sacks’ article
seemed to have any difficulties leading a functional and successful life in a
predominantly sighted world. Whether one can visualise the physical does not
seem to impact one’s ability to operate in and interact with the world. Within the
context of conceptual mental models, the focus should be on on what objects
exist in the model, and what one can do with them, rather than what objects look
like or how they function.

The research and analysis presented in this section supports the notion that,
when a clear separation between the perceptual and the conceptual is maintained,
a single conceptual model for a user interface can be appropriate for both blind
and sighted users. There is therefore no need to consider a separate non-visual
UI design at the conceptual level.

5.2.2 Concurrent use of multiple toolkits at the perceptual
level

Providing access to GUIs for blind users would be relatively easy if one could
make the assumption that all applications are developed using a single standard
graphical toolkit and if that toolkit provides a sufficiently feature-rich API for
assistive technology. Unfortunately, this situation is not realistic. While the
majority of programs under MS Windows are developed based on a standard
toolkit, the provided API still lacks functionality that is necessary to ensure full
accessibility of all applications. X Windows does not impose the use of any
specific toolkit, nor does it necessarily promote one. It is quite common for users
of a UNIX-type system to simultaneously use any number of applications that
are each built upon a specific graphical toolkit. Some applications even include
support for multiple graphical toolkits, providing the user with a configuration
choice to select a specific one.

In order to be able to provide access to application user interfaces regardless
of the graphical toolkits they are developed against, the chosen approach must
ensure that the provision of non-visual access is not only medium-independent
but also toolkit-independent.
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Figure 5.3: X11 session with multiple graphical toolkits

Figure 5.3 shows a fairly typical session on a UNIX-type system, displaying four
applications: Firefox, J-Pilot, Xfig, and GAIM. Firefox and J-Pilot are built upon the
GTK 1.2 graphical toolkit. Xfig uses the Athena Widget Set, whereas GAIM uses
GTK 2.0. The bottom of the figure also shows the FVWM window manager button
bar. The “Look & Feel” of the graphical interaction objects for the four applications
is quite different, yet sighted users know intuitively how to operate them. All
buttons, input fields, or menu bars essentially work the same way, regardless
of how they look. To a blind user, the visualisation of the UI element is obviously
also irrelevant unless somehow it is used to convey information to the user6. The
problem therefore lies with the implementation of the accessibility solution and/or
the implementation of the toolkits. Toolkits often have very different ways in how
they implement the visualisation of a specific UI element which complicates the
introduction functionality to support AT needs. Toolkit developers (and vendors)
may also be less inclined to keep up with AT changes, etc. . .

Many of the existing approaches based on an accessibility API involve mapping
graphical toolkit features (widgets and their interaction semantics) onto a set of
accessible features. This effectively amounts to creating an abstraction from a

6It is safe to assume for the purpose of this discussion that the element provides user interaction
functionality only. Conveying information is an aspect of abstract UI semantics that can be represented
in various ways - it is not purely related to visualisation.
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realized (concrete) user interface, often with an implicit loss of information7. When
confronted with multiple graphical toolkits, multiple distinct mappings are required
to accommodate abstracting all concrete UIs onto a defined model. This has
proven to be quite complex, and typically involves significant limitations as shown
above.

Section 5.3 will show that when multiple toolkits operate on the same conceptual
model, effectively performing a reification of an abstract user interface within the
context of a specific “Look & Feel”, a unified source of information is available
for assistive technologies to operate upon. Mapping is no longer required
because accessibility information can be derived directly from the abstraction that
previously had to be derived from each concrete UI by means of a specialised
bridge.

5.2.3 Collaboration between sighted and blind users

The Collins English Dictionary – Complete & Unabridged 10th Edition defines the
term “collaboration” as follows:

Definition 5.2. Collaboration: The act of working with another or others on a joint
project.

In order to ensure that segregation of blind users due to accessibility issues can
be avoided, appropriate support for collaboration between the two user groups is
important. This collaboration can occur in different ways, each with its own impact
on the overall requirements for the accessibility of the environment.

Savidis and Stephanidis [125] consider two types of collaboration:

• Local: Sighted and blind users interact with the application on the same
system, and they are therefore physically near one another. This would
typically involve one user approaching the other in order to ask a question
or share information about interaction with the application. Common
occurrences are often characterised by conversations “let me do . . . ”, “let
me show you . . . ”, and “how about we do . . . ”.

• Remote: Sighted and blind users access the application from different
systems, and they are physically distant from one another. This situation
would typically still involve a conversation as illustrated in the previous item,
possibly by means of a communication channel outside the scope of the

7It is important to note that although information may be lost, accessibility may not be impacted
because often only perceptual information is affected,
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application (e.g. by phone). It is important to note that both users8 are using
physically distant systems to access the application on a central system.

The distinction of these two types is not sufficient to accurately describe the
possible ways in which sighted and blind users may collaborate. Proximity
between users9 does not actually impact collaboration much as long as an
adequate communication channel10 is available. The ability to interact directly
with the computer system that the users collaborate about can certainly be a
benefit, and this can often be accomplished both locally and by means of remote
connectivity. Note that local collaboration between two blind users can be a bit
less efficient when a refreshable braille display is used because typically only a
single device will be supported for a given computer system, requiring a pass-the-
keyboard style interaction. The work presented in this dissertation would allow for
multiple refreshable braille displays to be operated simultaneously on a computer
system.

Consider a case where a worker walks up to a co-worker and they discuss the
user interface of an application. Even without touching the computer system,
users can still talk about the operation of the application, e.g. “Select this and
that, and then click on the button that reads . . . ”. This requires that the users can
understand the user interaction semantics of the UI elements that are part of the
discussion, and that the user can either visualise the user interface, or otherwise
reason about it based on an alternative perceptual model.

Also consider a situation where a worker needs to call someone for help, and
those who can help are at a remote location. In the current age of distributed
computing and multi-location businesses this situation is quite common. Again,
collaboration may be limited to a communication channel only.

The communication portion of collaboration can occur at two different levels
(applying [50] in the broader context of interaction between users as it relates
to GUIs):

• Conceptual: Users talk in terms of the semantics of user interaction. Quite
typical conversation would resemble: “Select double sided printing, and the
collate option, and then print the document.” When direct interaction11 is
possible (be it local or remote), the dialogue is likely to be augmented with

8This dissertation may often refer to users in a pure one-to-one sense, even though these principles
apply to larger teams of users as well.

9Either between blind users, or between a sighted and a blind user. Sighted users often tend to
depend on a visual focal point when collaborating about the interaction with a system or an application.

10The main requirement for the communication channel is that it provides for sufficient bandwidth
to enable efficient and specific exchange of information. A phone connection is often much more
constructive to collaboration than e.g. an online chat session.

11In the context of conceptual and perceptual collaboration, “direct interaction” means that both
participants can operate the computer system during the exchange.
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either a demonstration of the interaction, or a verification that the instruction
is understood correctly.

• Perceptual: Users talk in terms of how to operate manipulatives that are
present in the UI. Conversations would resemble: “Check the double sided
check box and the collate check box, and then click on the ’Print’ button.”
Direct interaction would add a demonstration component to the exchange,
or alternatively, a mode of verification that the other person is accurately
following the directions.

Since proximity between users does not directly impact their collaboration, there
is no need to make a distinction between local and remote. On the other hand,
the fact that communication between users can take place on two different levels
does require us to consider two specific cases12.

Communication at the perceptual level involves details about the representation
of the user interface in a specific modality. It is therefore not an effective way
for sighted users and blind users to discuss the operation of an application. It
requires that both parties have a good understanding of the actual operational
details of the representation of the UI. While many blind users certainly
understand the vast majority of visual concepts [94, 120], manipulation of UI
elements in the visual representation is often not possible13 [125]. It is also
important to note that an expectation for blind users to be able to communication
with others at the perceptual level amounts to reducing the level of accessibility
back to the graphical screen rather than the conceptual user interface (see
section 2.6).

Definition 5.3. Perceptual collaboration: The act of working with another or
others on a joint project with communication at the perceptual level (i.e. within
the context of the representation of the user interface in a specific modality).

Communication at the conceptual level relates directly to the semantics of user
interaction for the application, independent from any representation. In this case,
users communicate within the context of the conceptual model that lies at the
core of the user interface. Rather than referring to elements of the representation
of the UI (visual or non-visual), users refer to elements of the conceptual (often
metaphorical) user interface14.

Definition 5.4. Conceptual collaboration: The act of working with another or
others on a joint project with communication at the conceptual level (i.e. within
the context of the modality-independent user interface interaction semantics).

12An almost identical distinction was identified in section 2.2.4 in view of graphical user interfaces,
with the conceptual layer of metaphors, and the perceptual layer of metaphors.

13Or at least, not possible in an equivalent and/or efficient manner.
14See section 2.6 for definitions.
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Figure 5.4: Example of a visual layout that can confuse screen readers.

Figure 5.5: Example of the effects of a viewport on text visualisation.

5.2.4 Multiple coherent concurrently accessible representa-
tions

A common problem with existing approaches for non-visual access to GUIs is
related to the use of an off-screen model: lack of coherence between the visual
and the non-visual interfaces. Mynatt and Weber identified this as one of the
important HCI issues concerning non-visual access (see section 2.3).

The problem is most often related to the information gathering process that drives
the construction of the OSM15. Limitations in being able to obtain the following two
pieces of information are examples of what can cause this lack of coherence:

• Semantic relationships between user interface elements.
A typical example can be found in the common relation between labels and
input fields. If this relation is either not encoded in the GUI implementation,
or if it is not available through hooks, the OSM will contain the label and the
input field as independent elements. The screen reader will present them as
such, which may cause the user to be presented with an input field without
any indication what data is expected to be entered there. On screens where
multiple input fields occur in close proximity, this can result in significant
levels of confusion and potential data entry errors. Figure 5.4 shows an
example of how lack of semantic relation information can confuse a screen

15Kochanek provides a detailed description of the construction-process for an off-screen model for
a GUI [75].
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reader. The placement of multiple label widgets in close proximity to a text
entry field makes it difficult to determine what label should be spoken when
the user accesses the text entry field.

• Effects of the visualisation process on the actual data contained in user
interface elements.
This problem is mostly observed with larger text areas, where the text that
is actually visible in the GUI may be much less than the actual text that
is contained within the UI element. GUI toolkits often use a viewport-
technique to render a subset of the information in the screen, in function
of the available space on the screen (see Figure 5.5). If the assistive
technology solution (e.g. the screen reader) cannot obtain information on
what portion of the text is visible to the user, a blind user may be presented
with data that a sighted colleague cannot see on the screen. In Figure 5.5,
a blind user would typically be presented with an equivalent of the view at
the left whereas a sighted user would be presented with the (more limited)
view on the right. This leads to significant difficulties if the two users wish to
collaborate concerning the operation of the application and the content of
the text area.

Both problems can be solved by providing a single user interface representation
that is tailored to the specific needs of a user or target group. Coherence is in
that case not an issue because only one interface is ever presented at any given
time. Unfortunately, this impacts collaboration between users with different needs
negatively because not everyone will be able to accurately determine the state of
the user interface at any given time. Limiting the user interaction to just one target
population at a time is clearly not an acceptable solution.

The discussion on the collaboration design principle (section 5.2.3) shows that
direct access to the system is fundamental to working together successfully. The
requirements for making that possible can be summarised as:

• Users can access the system concurrently.
This requirement has been discussed in the preceding paragraphs.

• Users can interact with the system by means of metaphors that meet their
specific needs.
While the user interface is designed using a single consistent conceptual
model with familiar manipulatives (see section 5.2.1), the actual repre-
sentation that the user interacts with should meet the specific needs of
that user. This relates directly to the perceptual layer, covering both
the lexical and syntactic aspects of the UI design, and the perceptual
metaphors of interaction as appropriate for the needs of a specific user
population. Mynatt, Weber, and Gunzenhäuser [100, 57] present HCI
concerns related to non-visual representations of GUIs, identifying the
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Figure 5.6: Multiple perceptual representations of the same user interface
Concurrent representations of the same user interface, each providing perceptual

metaphors that meet the specific needs of a group of users.

need to support exploration and interaction in a non-visual interface. The
generalised interpretation of this concern is captured by this requirement,
and is discussed further in the remainder of this section.

• Coherence between UI representations is assured.
The preceding two requirements effectively describe a configuration where
multiple users can access the system concurrently by means of represen-
tations that meet their individual needs. The HCI concerns phrased by
Mynatt, Weber, and Gunzenhäuser [100, 57] relate to a more specialised
scenario of a dual representation (visual and non-visual). Coherence
between the representations was presented as an important concern. In
the more general context of multiple concurrent representations, the need
for coherence certainly remains. Further discussion on this requirement is
presented at the end of this section.

Each representation provides perceptual metaphors that meet the specific

needs of its target population

At the conceptual level, all users are presented with the same user interface.
No adaptations are necessary because the conceptual model is by design
not dependent upon any modality of interaction (see section 5.2.1). Edwards
suggested that there is not really a substantial difference between the conceptual
models of blind users and sighted users, but rather that the information channels
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used are different [39]. Extensive research has been conducted in exploring the
information channels that are most conducive to perceptual reasoning in blind
individuals [50, 99, 23, 122, 121, 41]. At the perceptual level, tactile and/or
auditory presentation of information is by far the most appropriate for non-visual
access. It is therefore obvious that blind users would be best served with specific
non-visual metaphors of interaction. Likewise, other groups of users with specific
needs may benefit from specific metaphors of interaction that are different from
those that are provided in e.g. the visual representation of the UI.

Figure 5.6 illustrates the design principle of specialised representations at the
perceptual layer. The conceptual layer captures both the conceptual and
semantic levels of the design, providing a description of the functionality of the
application. The lexical and syntactic levels of the design need to be interpreted
within the context of the target population16, thereby driving the design of the
perceptual layer. The presentation of the UI can essentially become a pluggable
component17, interfacing with the conceptual layer of the UI.

The same semantic information and functionality is concurrently accessible

in each representation

Edwards, Mynatt, and Stockton define the semantic interpretation of the user
interface as [45]: “the operations which the on-screen objects allow us to perform,
not the objects themselves.” This refers to the actual functionality that an
application provides, but this is only part of the semantic layer in UI design.
Trewin, Zimmermann, and Vanderheiden provide a more extensive list of the core
elements of a user interface based on what they believe should be represented
in an abstract user interface description18 [143]: variables (modifiable data items)
that are manipulated by the user, commands the user may issue, and information
elements (output-only data items) that are to be presented to the user.

Therefore, the semantic model of the user interface consists of:

Definition 5.5. Semantic Information: Data elements in the UI that have meaning
within the context of the conceptual model.

Definition 5.6. Semantic Functionality: Operations that can be performed in the
UI and that have meaning within the context of the conceptual model.

16Specifically, the needs of the target group as those relate to UI interaction.
17A pluggable component is one that can easily be replaced by an equivalent component. The term

is commonly used in UI contexts to indicate exchangeable presentation components. It is a derivative
of the “plug-n-play” hardware concept.

18This AUI description effectively defines the user interface at the conceptual and semantic level. It
is a formal description of the conceptual model.
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The semantic information covers both dynamic data that is encapsulated in UI
elements that allow the user to input or manipulate that data, and static data that
carries meaning and that is to be presented to the user. It also captures those
properties of data items that associate additional meaning to the data.

The semantic functionality captures the manipulations that are possible for each
UI element, regardless of representation. The functionality is defined in context
of the tasks that can be accomplished with the application.

In order to ensure coherence between concurrent representations of the UI, the
same semantic information and functionality must be used to render the UI for
each user based on their needs. All users must be able to perform the same user
interaction operations at a semantic level, and all users must be able to observe
all results of any such operation at the same time19. While this seems to be
a rather obvious requirement, existing approaches to providing access to GUIs
for the blind often provide a sub-optimal implementation where the sighted user
is able to interact with a UI element prior to a blind user being able to observe
(through synthetic speech or braille output) that the element exists. Similarly,
sometimes a blind user can interact with a UI element that isn’t actually visible to
a sighted user. This is an example of semantic functionality that is accessible in
one representation but not in another.

5.3 Design

Using the design principles presented in section 5.2, a framework can be
designed for providing access to graphical user interfaces for blind users20. This
section provides details on the various components while deferring the majority
of implementation aspects to chapter 7.

The schematic overview of the Parallel User Interface Rendering approach is
shown in Figure 5.7. Rather than constructing the UI programmatically with
application code that executes function calls into a specific graphical toolkit,
applications provide a UI description in abstract form, expressed in a UIDL. This
authoritative AUI description is processed by the AUI engine, and a runtime
model of the UI is constructed. The application can interact with the AUI
engine to provide data items for UI elements (e.g. text to display in a dialog),
to query data items from them (e.g. user input from a text input field), or to

19Note that this does not necessarily imply that the result of user interaction is immediate, although
it has become common practice to provide near-immediate results in support of the WYSIWYG design
principle (see section 2.2.3, page 26).

20While the design has a primary focus on providing blind users with user interaction that is
equivalent to what their sighted peers use, the techniques presented here are generic enough that
they could be applied for providing access in support of a variety of needs.
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Figure 5.7: Schematic overview of Parallel User Interface Rendering

make runtime changes in the structure of the UI. The AUI engine implements
all application semantics, ensuring that the functionality does not depend on any
specific modality.

The representation of the UI is delegated to modality specific rendering agents,
using the UI model at their source of information. At this level, the AUI is
translated into a concrete UI (CUI), and the appropriate widget toolkit (typically
provided by the system) is used to present the user with the final UI, by means
of specific output devices. Therefore, the UI model that is constructed by the
AUI engine serves as information source for all the different rendering agents. All
representations of the UI are created equally, rather than one being a derivative
of another21. The application cannot interact with the rendering agents directly,
enforcing a strict separation between application logic and UI representation.

21It is important to note that it is not a requirement that all representations are generated at runtime,
although development time construction of any representations could imply that dynamic updates to
the UI structure are not possible.
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Figure 5.8: Logical flow from interaction to presentation

The handling of user interaction events from input devices22 occurs at the AUI
engine level. The PUIR framework is based on meaningful user interaction,
and therefore only semantic user interaction events are given any consideration.
Given that events are typically presented to toolkits by means of OS level device
drivers, and the fact that these event sources are very generic23, additional
processing is required in order for the PUIR framework to receive the semantic
events it depends on.

Figure 5.8 shows the flow of user interaction through the PUIR framework. User
interaction is presented to the AUI engine as semantic events (activate element,
select element, . . . ) Processing of the semantic event results in a notification
event being sent to all rendering agents, and the application. This event indicates
that the semantic operation completed. Rendering agents will use this event
to trigger a presentation change (if applicable) to reflect the fact that a specific
semantic operation took place on a specific widget. The application may use the
notification to determine whether program logic must be executed as a result of
the semantic operation, e.g. activating the submit button for a form might trigger
validation and processing of the form content.

A more detailed discussion concerning user interaction event handling can be
found in chapter 6.

22The physical devices that the user employs to perform operations of user interaction with the
application.

23Device drivers at the OS level are meant to serve all possible consumers. The events they
generate are most commonly very low-level events.
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5.3.1 Conceptual model

The most fundamental design principle is the establishment of a conceptual
model as the basis for all UI representations. Discussion of this principle in
section 5.2.1 not only shows that a single model suffices, but also that the well
established metaphors of the physical office and the desktop may be appropriate
for both blind and sighted users.

It can be argued that these conceptual models are inherently visual, based on a
spatial metaphor from a visual perspective, and that it is therefore advisable to
design a specialised non-visual model [123]. This argument, in and of itself, is
not sufficient to dismiss the existing models and metaphors as not appropriate for
blind users because it makes the assumption that they are not appropriate for the
blind just because they have been selected based on visual considerations. The
argument also fails to take collaboration between users with different abilities into
consideration, and this is another important design principle.

To illustrate the problems with the aforementioned argument, consider the case
of print-to-braille transcription. Braille books are known to be quite bulky due to
the nature of braille (standard cell size, and limited opportunities to represent
a sequence of characters with a shorter sequence of braille cells24) and it is
therefore more convenient to transcribe books in ways that promote minimising
the number of pages needed to transcribe the print text. However, doing so
would make it much more difficult to collaborate with sighted peers because
correspondence between e.g. page numbers is lost completely. It is for this
reason that the Braille Association of North America stipulates that with the
exception of some preliminary pages, all pages of text must be numbered as in the
print book [17]. Furthermore, it specifies strict rules on how to indicate print page
number changes in the middle of a braille page, to facilitate collaboration and to
support page-based references to print materials. This is a clear example where
the need to support collaboration between sighted and blind users outweighs the
advantages of a format that is optimised for blind users, without any regard for
being able to consult references.

Blind users live and are taught in a predominantly sighted world, where they learn
to interact with many of the same objects and concepts as their sighted peers.
While there are often definite differences in user interaction techniques between
the two groups25, the semantics of the manipulation are essentially the same. As
example, consider the task to lower the volume of a music player. Regardless of
whether the control to do so is a slider or a turn knob, once a user knows where

24This is known as a contraction in English Braille, American Edition.
25It is obvious that even amongst the blind or the sighted, not necessarily everyone will prefer

everything the same way. This has been a driving force behind the efforts to provide user
customisations for UIs.
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Control/Object Description

Window Logical container for controls, establishing a
context for focusing user interaction.

Button Control that can be activated, and that can
either automatically reset to its default state
after activation, or that operates as a switch
between two states.

Set of “radio” buttons Set of buttons where only a single one can
ever be selected. It remains selected until
another button in the set is selected.

Slide control A control that allows the user to select an
arbitrary value along a predefined range (at
the implementation level, this will translate to
a value on a discrete range), e.g. a volume
setting on a radio.

Input field A place for the user to enter information.
Label An object that conveys information to the user,

e.g. a description of a control.
Selection list A control that allows the user to select one or

possibly more items in a list., e.g. a checklist
for a complex task.

Table 5.1: Examples of controls and objects in the conceptual model

the control is located, he or she generally knows how to operate it26.

It is also important to observe that although the established terminology seems
to refer to visual aspects, the underlying concept is often more abstract. One
does not generally consider a GUI “window” in any way equivalent to a physical
window, but rather it is seen as a two-dimensional area that usually contains other
UI elements. In a sense, it is a top level grouping of all or part of an application
UI. Many people are able to identify windows on a screen because they have
been taught that a certain entity on the screen is called a “window”, but it could
as easily have been named a “tableau”. What really matters is what you can do
with it (semantics).

Similarly, a “button” is rarely interpreted as a strict analogy with physical push
button controls. Instead, it is intuitively accepted as a UI element that triggers
something when it is selected. In general, most users have learnt to think about
UI elements in terms of their semantics and less in terms of what they might
represent in the physical world.

26Generically, this type of control is known as a “valuator”.
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The various controls that are represented in the conceptual model for the
UI (see Table 5.1 for examples of controls and objects) are somewhat weak
analogies for their physical counterparts. As Kay stated, they should perhaps be
referred to as “user illusions” [74]. Both sighted and blind users must approach
them as concepts that are familiar, yet the mode of interaction is inherently
different. Neither user group can truly push a button or move a slider that is
merely presented as a visual image or an auditory artefact. Still, users will
communication in terms of the metaphor because of the familiarity of the concept.

The PUIR framework is designed around this very notion, allowing for a single
conceptual model that is not only familiar to all users, but that has also been a
well established model within the context of computer systems for many years.
Using the physical office and desktop analogy as underlying model for this work
also helps maximise the opportunity for collaboration between users with differing
abilities.

5.3.2 AUI descriptions

Edwards, Mynatt, and Stockton suggested that the best approach for creating
non-visual user interface representations is a translation of the UI at the semantic
level, i.e. render the UI in function of the needs of the user, using perceptual
metaphors that meet the needs of the target population (see section 5.2.4,
page 140). The perceptual layer is merely a reification of an application’s abstract
user interface. Their goal was to provide non-visual access to existing X11-based
applications, and their work therefore involved attempting to capture application
information at the semantic level by means of toolkit hooks. A hierarchical off-
screen model was constructed based on this information: a semantic OSM. While
this effectively results in a pseudo-AUI description of the application user interface,
it is sub-optimal because it is created as a derivative of the programmatic
constructs that realize the visual representation.

The concept of abstract user interface descriptions has been known for a long
time already, and it has mainly been intended as a source document for the
automated generation of the UI, i.e. generating application source code for the
programmatic construction of the UI representation and its interaction with the
process logic [86, 89]. Using the AUI as the basis for the UI is a powerful
concept because it provides a canonical description of the conceptual model,
thereby taking a very prominent place in the design process. Given a sufficiently
expressive UIDL, the AUI description can enable application designers and/or
developers to implement a true separation of presentation and logic, and it can
alleviate part of the burden of implementing a UI by providing for its automation.

Even when the UI implementation is generated automatically based on an AUI
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Figure 5.9: Web forms bear a striking resemblance to UI data entry screens.
On the left a web form is shown for a address book contact entry. On the right one can

see the UI for an application that implements address book management features.

description, providing non-visual access to the UI is still sub-optimal because
information can still only be obtained from the realized graphical user interface.

A possible solution could be to make the AUI description available alongside the
application, to be used as an information source in support of AT solutions (i.e.
the Glade project [27]). Because the implementation of the UI is still generally
hard coded in the application, this approach does open up the possibility that
inconsistencies between the application and the UI description occur27. In
support of the coherence design principle (see section 5.2.4, page 141), the
PUIR framework is designed on the concept that all representations are to be
reified from the same AUI. This is a significant paradigm shift from the majority of
AT solutions that are still implemented as a derivative of the GUI.

Can the construction of the UI representation(s) be delayed until execution time of
the application? In other words, can the UI be rendered by means of AUI runtime
interpretation rather than AUI development-time compilation?

When comparing a form on a web page with an application UI where data
entry is expected to occur (see Figure 5.9), striking similarities can be observed.
Both feature almost identical UI elements: buttons, drop-down lists, text entry
fields, and labels. In addition, the obstacles that blind users face when using
web forms [114, 141] are known to be very similar to the obstacles they face

27This is a common problem in any circumstance where essentially the same information is
presented in tow different locations.
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when interacting with GUIs [6]. Furthermore, HTML documents are essentially
abstract descriptions although specific modality dependent information can be
embedded in the document as augmentation to the abstract description. Web
browsers handle the rendering of the HTML document, providing the user with
a representation that is commonly tailored to the device the user is using, and
possibly other user preferences. Based on these observations and research on
the use of AUI descriptions (such as the works of Bishop and Horspool [9], and
of Stefan Kost [78]), we can therefore conclude that it is possible to describe user
interfaces by means of HTML-style documents, to be rendered in function of the
output modalities.

This paradigm shift from representing the UI by means of program code in the
application to utilising a system that interprets and renders the UI based on an AUI
description document has slowly been taking place for the past ten to twelve years.
Yet, the shift has not progressed much past the point of using the AUI description
as part of the development process. The preceding discussion shows that it is
possible (and necessary for this work) to complete the shift to what Draheim, et
al. refer to as “the document-based GUI paradigm” [36]. Expanding the notion
of the representation of the UI description to the realm of concurrent alternative
representations, this can be extended as “the document-based UI paradigm”. The
advantages of this approach are significant, although there are also important
trade-offs:

• Separation of concerns between UI and application logic
This has been identified as (part of) an important technical requirement
for AUI description languages (see section 2.5.1), but the very use of AUI
descriptions also enforces this concept through the need for a well-defined
mechanism to incorporate linking UI elements to program logic. This also
implies a trade-off in flexibility because the application logic is limited in its
ability to directly interact with the UI.

• Maintainability of the application
When a UI is described programmatically as part of the application, it
typically will have a stronger dependency on system features such as the
presentation toolkit that it is developed for. AUI descriptions do not exhibit
this complication because because they are toolkit independent. In addition,
the document-based nature of AUI makes it much easier to modify the
UI for small bug fixes, whereas a code-based UI requires changes in the
application program code.

• Adaptability
The adaptability of code-based UIs is generally limited to toolkit-level
preference-controlled customisation, whereas the ability to make changes
to the AUI description at runtime (e.g. by means of transformation rule sets)
provides for a high level of adaptability.
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The document-based UI paradigm is powerful, but it does impose some limitations
on the designer/developer because some very specialised toolkit features may
not be available in all modalities. Toolkits for programmatically defined UI
development generally offer a more rich feature set to the developer because
they often allow access to the underlying lexical and/or syntactic elements. A
rendering agent that creates a UI representation based on an AUI description
offers a higher level of consistency and stability through the use of common higher
level semantic constructs, at the cost of some flexibility.

While working towards universal access, it is important to be mindful of the
creativity and æsthetic insight of designers. It is easy to reduce the user interface
to its abstract semantic existence, but ultimately appearance does matter28.
Empirical observation of both sighted and blind users as they operated computer
systems has shown that there is a tendency to favour more æsthetically pleasing
representations, and it seems to improve productivity. AUI descriptions in the
PUIR framework therefore allow for rendering agent specific annotations to be
added to the specification of UI elements29. The information is stored by the
AUI engine for delivery to a rendering agent that requests it, but beyond that it is
ignored by the AUI engine, because it is modality specific.

Despite the very powerful advantages of the document-based UI paradigm, it is
important to recognise that the specification of the UI at the abstract semantic
level does present a few complications, as illustrated by the following issues.

Dynamic user interfaces

It is common for UIs to contain elements that are not entirely statically defined, i.e.
they contain information that is not known at development time. Prime examples
are interaction objects that contain user modifiable data and elements that provide
for user input. Another common occurrence is a UI element that only allows
conditional interaction. GUIs often presents such elements as “grayed out”, and
they tend to not respond to user interaction while in that state. All these examples
do not alter the composition of the UI presentation, and they therefore do not
directly impact non-visual access.

A more disruptive feature involves truly dynamic updates in the user interface. A
common example can be found in the almost iconic “File” menu on the application
menu bar. It commonly displays (alongside various operations) a list of 5 or 10
most recently used files. The exact content and even the size of this list cannot be

28Although “appearance” is commonly interpreted as an aspect of visual perception, it actually
carries a much broader meaning, across multiple modalities of perception.

29This is fundamentally different from other approaches (e.g. the HOMER UIMS [124, 125]) where
UI objects are described multiple times: once in abstract form, and once or more in modality-specific
forms.
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determined ahead of time. One possible solution may be the implementation of
a feature in the AUI that specifies that this specific content must be queried from
the application30. Alternatively, providing a facility for dynamic updates in the AUI
description would provide a more generic solution to this type of problem.

Abstract user interfaces are commonly described in an XML-compliant UIDL,
providing a natural hierarchical structure: an object tree. Given that the PUIR
framework renders the UI at runtime based on the AUI description, it is possible
to support alterations to the user interface by means of adding, removing, or
updating parts of the hierarchy (sub-trees). This ensures that dynamic UI changes
are possible in a generic way. Components that render the actual representations
can then receive notification that an update is in order.

Legacy applications

The adoption of AUI-based application user interface design and development is
still ongoing. It is therefore a reality that many legacy applications will not support
a UI that is generated at runtime, based on an AUI description. Two possible
approaches have been researched in recent years:

• Reverse engineering the user interface
The UsiXML project includes techniques that make it possible to reverse
engineer an existing (programmatically defined) UI, and obtain a represen-
tative AUI for the legacy application [14, 89, 153].

• Interposing toolkit library implementations
This is essentially a form of reverse engineering by capturing all toolkit
function calls using an API-compatible replacement library. This technique
provides a non-invasive approach to capturing the programmatic construc-
tion of the UI. One such implementation was developed by the Visualisation
and Interactive Systems Group at the University of Stuttgart [118].

“Creative programming”

By far the biggest obstacle in providing non-visual access to GUIs is the
occasional case of extreme use of features that are provided by user interface
toolkits. In its worst form, an enthusiastic developer may implement his or her own
toolkit, using a single large image widget from an existing toolkit as canvas for a
custom rendering engine. Alternatively, an existing toolkit may be extended with
some widgets that are not implemented in a compliant manner. Creative minds

30This is commonly known as a “call back” feature.
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have even been known to implement buttons in dialog boxes that “run away” from
the mouse pointer once it is within a predefined pixel-distance.

The only conclusion that can be reached in view of such creative programming is
that it is not likely to be feasible to provide non-visual access to each and every
application. It is obvious however that the use of techniques that result in this level
of complexity are indicative of a sub-optimal design because separation between
application logic/functionality and visual presentation is lost.

5.3.3 AUI engine

As introduced at the beginning of this section (see page 142), the AUI engine is
the core of the PUIR framework. It provides the following functionality:

• Translation of the AUI description from its textual UIDL form into the UI
object model.

• Focus management (i.e. tracking which widget is to receive context-free
input, such as keyboard input).

• Implementation of the user interaction semantics of UI elements.

• Re-routing user interaction events in support of rendering agent specific
functionality.

The UI object model used in the AUI engine is a hierarchical model, using a tree
structure to represent the UI. The root of the tree, the singleton node that does
not have a parent, is the window. Children of the root node are by definition
components in the UI. They have exactly one parent: a component that functions
as a container, providing a way to group multiple components together in a logical
and/or semantic unit. Components that are not containers appear as leaf nodes
in the tree structure, whereas containers appear as internal nodes. Figure 5.10
shows a partial UI object tree for a sample UI. In this figure, the parent-child
relationship is represented by left-right connections, whereas top-down stacking
represent grouping (sibling) relations. Note that this is similar to the commonly
used off-screen model [79].

In order to maintain a strict differentiation between grouping and application
semantics, a container can only function as a logical grouping of components.
As such, it does not have any semantic user interaction associated with it. In fact,
the only user interaction that is allowed for containers in the PUIR framework is
related to establishing focus.

The objects in the AUI object model are abstract widgets (Table 5.2 lists the
supported widgets; see Appendix B for more detailed information), and each



DESIGN 153

Widget Description

window Self-contained portion of a UI

Window
group Grouping of related widgets
menu bar Container for menus
status bar Notification message
tool bar Container for easy-access widgets

Menu bar
menu Container for menu items

Menu (and item groups in a menu)
menu Sub-menu (contains menu items)
menu group Grouping of menu items
menu item Menu option that can be activated
mutex Group of mutually exclusive toggles
toggle Menu option that can be toggled

Mutex groups and menu mutex groups
toggle Mutually exclusive toggle

Group (non-menu)
button Button that can be activated
edit select list Single-select list of items

(provides a write-in option)
group Logical grouping of widgets
multi select list Multi-select list of items
mutex Group of mutually exclusive toggles
single select list Single-select list of items
text Display text
textField Text entry field
toggle Selectable option
valuator Ranged value entry

Table 5.2: Widgets provided by the AUI layer, by container
Every section is preceded by its container widget, except “window” as the root widget.
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Window Group 1

Group 2

Group 3

TextField

MultiSelect

Valuator

Bu t ton  1

But ton  2

But ton  3

SingleSelect

EditSelect

Figure 5.10: Sample hierarchical AUI object model

has been chosen specifically because of the fact that most (if not all) users are
familiar with it. Note that the notion of using familiar concepts traces back to the
initial design principles for the graphical user interface. Research has shown (e.g.
Kurniawan, et al. [80, 81] and the survey discussed in chapter 3) that blind users
have a good understanding of most UI elements in terms of their user interaction
semantics. Being able to use the same familiar underlying concepts affirms the
use of a single conceptual model, and it offers stronger support for collaboration.

It is important to note that the abstract widgets listed in Table 5.2 are only
“visible”31 in terms of their semantics. Some widgets (as mentioned previously)
serve as a container for parts of the UI, and they are therefore typically only
noticeable by virtue of the effect they may have on focus traversal.

From the context of an application, the AUI engine will handle one or more
windows simultaneously. In that sense, the application itself could be considered
the root of the overall AUI object model. Yet, it is deliberately omitted in order to
maintain separation of concerns.

31In this context, being “visible” means that the user can note the existence of the widget. Being
part of the AUI, the widget obviously has no perceptual characteristics.
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Focus management

While conceptually, the GUI is primarily based on the “seeing and pointing”
design principle, empirical evidence shows that automated move-to-next-element
functionality and keyboard navigation are essential components of productivity
when text entry is required. The mental context switching between coordinating
typing and pointer device movements seems to impose a delay32.

Keyboard input (such as filling in text entry fields) operates without an implicit
context as opposed to e.g. pointer device operations. When the user operates a
mouse in order to activate a button, the position of the pointer cursor determines
what button is being activates. Keyboard input does not explicitly indicate what UI
element it belongs to. Instead, an external focus management component takes
care of this.

An element is said to be “in focus” or to “have focus” if it has been selected to
receive user interaction events that are not explicitly associated with a UI element.
The AUI engine manages the process of assigning focus to elements in three
different ways:

• Programmatically: the application can request that focus be moved to the
next or the previous UI element in the focus traversal order (see below
this list for more information). It can also request focus to be given to a
specific element. Aside from the application, it may also be beneficial to
allow widgets to do the same, e.g. as a default action after an operation is
completed.

• User interaction event: the user can navigate the window by moving
between UI elements by means of direct user interaction. This is most often
used for keyboard navigation (and exploration) based on the focus traversal
order. Common navigation operations are: move to next element, move to
previous element, move to next group, move to previous group, . . .

• User interaction side-effect: when the user performs an operation on a UI
element that is not currently in focus, it is common practice to shift focus
to that element. This is essentially a special case of the programmatical
assignment of focus.

The “focus traversal order” mentioned in the list above refers to a well defined
strict ordering of elements across the hierarchy of objects in the AUI object model.
It specifies in what order the various elements receive focus, in a strict linear
order. Containers are not included in the list because they have no semantic user
interaction associated with them.

32More specific research into the impact of mental context switching and related topics is outside
the scope for this dissertation.



156 PARALLEL USER INTERFACE RENDERING

The AUI engine defines the order in the AUI object model tree as depth-first, left to
right. Based on the example in Figure 5.10 (where the order is rightmost-first, top
to bottom because the tree is flipped horizontally for display purposes), the focus
traversal order will be: Button 1, Button 2, Button 3, SingleSelect, EditSelect,
TextField, MultiSelect, Valuator.

User interaction semantics

As mentioned in section 5.3, the AUI engine is responsible for providing an
implementation for the user interaction semantics of all widgets. This is crucial
in the design of the PUIR framework because it ensures that the behaviour of UI
elements is independent from the representation of the UI.

Various user interaction operations are supported by the PUIR design:

• Action: This interaction is used to trigger a specific operation or function. It
is one of the most basic forms of the “Seeing and Pointing” design principle
for GUIs, because it captures the familiar action of pressing the “On/Off”
button on an appliance.

• Container : Adding and removing components is the interaction that typically
takes place on containers. This is equivalent with the physical world model
that containers are based upon.

• Focus: This is probably the most obscure of all forms of user interaction.
It captures the notion of what the user’s attention is focused on. When a
person is filling out a form on paper, it is common to visually locate a specific
item, and to then bring one’s pen to the writing space that is associated with
that item. The person truly remains focused on the item he or she is filling
out.

• Selection: When a user is presented with multiple options with the
restriction that only one can be chosen, a selection process takes place.
Often, a user will consider several options (selecting an option, only to
then later dismiss that selection), until a final choice is made, which is then
finalised (by means of an Action operation).

• SetSelection: It is sometimes appropriate to select more than one item from
a list of choices (e.g. a buffet). Items that are part of the selection may be
consecutive or separate. It is also quite likely that the selection set may
change while the user makes up his or her mind. When finally a decision
is reached, the appropriate selection is finalised (by means of an Action
operation).
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• TextCaret: This operation is (alike the Focus operation) quite obscure
because it also relates to the location on which the user is focusing his
or her attention. This operation targets text, and is used as the equivalent
of placing one’s pen tip in a specific position (at a particular character in the
text string).

• TextSelection: When a user intends to select some text, he or she will
commonly utilise a method that requires the least effort. If the user knows
an entire line of text is to be selected, locating any point on that line is
generally sufficient. Likewise, when trying to select a specific word, any
point within the word boundaries is usually acceptable. Only when the text
selection is more complex, will a user specifically select starting and end
points by character.

• ValueChange: Any element that represents a dynamic value, i.e. an
element for which the user can select or input a specific value, supports
user interaction that modifies the current value. The changing of the value
is not a final operation, as it is not uncommon for a user to change their
mind (even multiple times) before deciding on the final value (which is then
finalised by means of an Action operation).

• Visibility : For widgets that are not always represented in the UI, a
conceptual characteristic of visibility can be assigned. While ordering food
in a restaurant, a person typically consults a menu. Once the desired
selection is made and communicated to the waiter, the menu is often taken
away by the waiter, or it is put aside. No one pays any attention to it unless
a followup order (or the intent to) is anticipated.

User interaction is presented to the AUI engine as semantic events, targeted at
the widget it operates on. The operations that each widget supports are listed in
Table 5.3. The abstract widget implementation handles the event, and (usually)
dispatches notification events to rendering agents and the application to indicate
that the semantic operation has been processed. More information about each
widget can be found in Appendix B.

Re-routing user interaction events

Because the AUI engine is in total control over all user interaction, rendering
agents would not be capable of implementing modality-specific operations that
assist the user. A very significant example is exploration in a non-visual
representation, where the rendering agent must be able to receive interaction
events from the user concerning navigation of the user interface.
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Containers Operation(s)

group Container
menu Container, Focus, Visibility
menu bar Container
mutex Container
status bar Container, ValueChange
tool bar Container
window Container, Focus, Visibility

Components Operation(s)

button Focus, Action
edit select list Focus, Selection, ValueChange, Action
multi select list Focus, SetSelection, Action
menu item Focus, Action
single select list Focus, Selection, Action
text ValueChange
text field Focus, TextCaret, TextSelection, ValueChange, Action
toggle Focus, Action
valuator Focus, ValueChange, Action

Table 5.3: Operations supported by abstract widgets

The AUI engine provides functionality that enables rendering agents to register
a key stroke combination that uniquely identifies the rendering agent. When a
user interaction event is received by the AUI engine for this key stroke, all further
user interaction events get re-routed to that rendering agent for processing. This
of course means that interaction with the user interface is effectively suspended
until the rendering agent reliquishes control. The more immediate result on the
rendering agent side is that all user interaction takes place with the rendering
agent.

This special functionality exist to make it possible for the rendering agent to
provide modality-specific features that the user can control. This can be used
to implement configuration controls, or more commonly, it allows the rendering
agents to offer a truly safe exploration mode for the application user interface.
The AUI engine still responds to query requests concerning the UI, and therefore
the rendering agent is capable of providing the user with any and all details about
the current state of the user interface.
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GWindow GGroup 1

GGroup 2

GGroup 3

GTextField

GMultiSelectList

GValuator

GBut ton  1

GBut ton  2

GBut ton  3

GSingleSelectList

GEditSelectList

JLabel

JTextField

JTextField

Figure 5.11: Sample hierarchical CUI object model for the AUI in Figure 5.10
The clear boxes indicate components that are created in one-to-one correspondence with

the AUI model. The shaded components are necessary additions in order to render the

UI correctly in the specific rendering agent.

5.3.4 Rendering agents

The AUI engine described in section 5.3.3 operates entirely within the context of
the abstract UI object model, at the conceptual level. In order to be able to present
the user with a UI representation within the context of a specific modality, the AUI
must go through a reification process. This part of the PUIR framework operates
at the perceptual level and is provided by the rendering agents.

Each rendering agent provides AUI reification within the context of one or more
modalities. This is generally done as a two-step process:

1. On request of the AUI engine, a concrete UI object model is constructed,
incorporating a specific “Look & Feel” based on an established set of
interaction metaphors.

2. Based on a modality-specific presentation toolkit, the CUI from the previous
step is finalised into the FUI that is presented to the user.
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Mapping the AUI model onto a CUI model

Figure 5.11 provides a (partial) example of the CUI object model that a rendering
agent might build based on the AUI object model that resides with the AUI engine
(Figure 5.10). As illustrated with this example, there is no guarantee for a one-
to-one correspondence between the two models, because abstract widgets may
very well map onto multiple concrete widgets. This is the case for the abstract
TextField widget that e.g. as part of a visual representation agent based on Java
Swing is presented as a JLabel object and a JTextField object.

The reverse is certainly possible as well. A rendering agent may have no need for
some intermediary container objects, and thereby map multiple abstract widgets
onto a single more complex presentation widget. Note that regardless of the
mappings between models, the user interaction semantics remain the same.

User interaction

In support of the separation of concerns concept as suggested by Parnas [112],
there is no direct communication between the application and the rendering
agents whatsoever. Any and all requests (be it from the application or the
rendering agent) are to be processed by the AUI engine, which will then provide
notification to the rendering agents. Upon receiving a notification event, a
determination is made whether the operation requires updating the representation
of the UI.

Many commonly available presentation toolkits provide an implementation for
both the presentation and interaction components of the UI, rendering the
effects of a user interaction immediately, and providing a notification or call back
mechanism to the application to allow program logic to react to the user interaction
event. Within the requirements of the PUIR design principles, if a presentation
toolkit contains a user interaction component, any events from this component
must be forwarded to the AUI engine for processing, and the presentation of UI
changes as a result of the interaction (e.g. visually showing that a button was
pressed, or providing auditory feedback for the same action) must only take place
as a response to receiving a notification event from the AUI engine that a specific
semantic operation took place. Without this clear separation it would be very
difficult to ensure coherence between parallel representations33.

It is important to note that rendering agents may implement context-specific user
interaction. This level of interaction is independent from the actual UI and the

33A common problem would be that the modality in which the user interaction was initiated might
render the feedback prior to the application logic responding to the operation, whereas all other
renderings would render feedback afterwards. This is also commonly observed in assistive technology
solutions such as screen readers that are implemented as a derivative to the graphical representation.
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application semantics, and therefore not restricted to processing by the AUI
engine. Being able to provide this level of interaction is important in order to
support exploration of the UI in alternative representations, as a solution to one
of the HCI issues related to the usability of alternative UIs (see section 2.3).
The user interaction provided by the rendering agent must not result in actual
UI interaction, and it therefore operates as a distinct UI mode (see Definition 2.2
on page 28).

Also note that this is a different level of exploration than provided by the user
interaction re-routing discussed in section 5.3.3. Re-routing at the level of the
AUI engine provides for suspending all user interaction with the user interface,
whereas context-specific user interaction will not prevent other input modalities
from having their interaction events processed by the AUI engine. As such,
exploration by means of context-specific user interaction provides the user with a
“view” on the user interface while interaction may be taking place.

Queries to the AUI engine

The rendering agent must also be able to query information from the AUI engine,
as needed. Such queries are almost always in response to receiving an event
from the AUI engine, but there may be legitimate reasons for the rendering agent
to spontaneously request some data from the AUI engine. The most common use
is to request additional information about a component in the AUI object model in
order to render that component.

Modality-specific limitations

The rendering agent may impose some limitations on the overall UI due to
modality-specific limitations. Due to the significant impact imposed on the entire
UI, care must be taken to only require this when absolutely necessary. One
common relatively low-impact limiting requirement is synchronisation. When only
a single representation is used, the UI is primarily self-synchronising because the
user cannot interact with components that are not rendered yet. In the presence
of parallel representations, it may be necessary to ensure that all agents are
presenting the same state of the UI at any given time. Latency with some
modalities may therefore require delays to be inserted into the flow of interaction.

Temporal relations within the UI are not addressed in this dissertation, but this
is another area where rendering agents may need to provide the AUI agent with
limitations in its rendering capabilities. Although this is outside the scope of this
work, some insights on this particular aspect are presented for future work in
section 9.2.
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5.4 Comparison to Model-View-Controller

The Model-View-Controller paradign (MVC) is extremely important in the world
of UI design because it provides for an explicit separation of the user input, the
modeling of the external world, and the visual feedback to the user [20]. It models
a division of labour that is both natural and important to providing flexibility and
maintainability.

The so-called MVC triad comprises:

• View : This manages the perceptual presentation to the output modality,
typically a bitmapped graphical display.

• Controller : This component interprets user interaction events from the user,
instructing the model and/or the view to change as appropriate.

• Model: This manages the behaviour and the data of the application. It
provides information about its state and data to the view, and it acts upon
requests from the controller to make changes in its state.

The model may be associated with multiple View-Controller pairs, but a view is
always associated with a single controller, and a controller has always just a single
view. In the MVC model, the link between the view and the controller is considered
to be very tight.

The MVC paradigm is similar to the PUIR approach, where the view definitely
corresponds to the rendering agent at the final UI level. The model corresponds to
an abstract UI widget at the AUI engine level. The controller is more complicated
because user interaction in the PUIR framework can be modality-dependent
or modality-independent. For modality-dependent interaction such as a pointer
device, the controller functionality would definitely be found in the rendering agent.
However, for regular keyboard input, an independent entity takes on the role of
controller. It is responsible for routing the keyboard based user interaction, yet it
is not associated with any output modality.

In conclusion, it is clear that the PUIR approach is quite similar to the MVC
paradigm. Model and view correspond well to their respective counterparts. The
controller is a bit of an anomaly because in the case of keyboard, or keyboard-
alike input, there is no corresponding output modality that provides context.
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5.5 Conclusions

In this chapter, the Parallel User Interface Rendering approach has been
presented. Fundamental design principles were formulated based on existing
research and analysis, forming a solid basis for the design of this novel approach
to providing alternative representations of graphical user interfaces in support of
the accessibility needs of blind users. A detailed discussion of the design shows
how the design principles are incorporated, and how this novel approach satisfies
the requirements for providing access to GUIs for blind individuals.

The PUIR approach provides for multiple concurrent representations of the UI
model, rendered from a single source as opposed to alternative renderings being
created as derivatives of a primary representation. This is a significant contri-
bution to the field of HCI and Universal Access because it elevates accessibility
to the level of alternative representation rather than an accommodation. The
visualisation of a UI is merely one of many forms of presenting the UI to a specific
group of users based on their needs.

It important to recognise that any approach that allows for a high degree of
flexibility34 increases the risk that someone will use that flexibility in a way that
interferes with the very design principles that the presented solution is based
upon. This work does not intend to guarantee that any UI developed within the
PUIR framework will be 100% accessible. However, the presented work promotes
sound UI design, and ensures that at a minimum each user is aware of the
existence of UI elements, even if it is possible that in rare cases 100% functional
user interaction cannot be assured due to potential improper use of features.

34Or perhaps better expressed as “creativity”.





Chapter 6

Context-based interaction

“But you can’t die. You’re a machine.”
“No.”

“No, you’re not a machine?”
“Yes.”

“Yes, you are, or yes, you’re not?”
“Yes.”

“Yes, WHAT?”
“Yes, not.”

“Talk about a malfunction.”
(Stephanie Speck & Number 5 in “Short Circuit”, 1986)

One of the ultimate goals of a graphical user interface, or a UI in general, is to
provide a mechanism for the user to interact with an application or system. User
interaction requires careful management of input event streams and translation
of events within the context where they are generated lest miscommunication run
rampant. This is especially true when input mechanisms are associated with
multiple simultaneous representations.

6.1 Introduction

The complications addressed in this chapter involve user interaction events
that are generated by input devices within the context of a specific application
(Figure 6.1). When a user performs a physical action with an input device, an
event is generated. This event is typically presented to a UI toolkit for further
processing. Given that a computer system is typically providing one single UI
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Figure 6.1: Simultaneous device interaction
Clockwise from upper left: display, speakers, planar braille display, linear braille display,

mouse, keyboard, microphone.

representation (usually a GUI) to the user, the graphical toolkit can assert total
control over the event handling. In Java1 (similar to most GUI environments) all
events are associated with a specific widget, either explicitly (e.g. the position of
a mouse pointer) or implicitly (e.g. by the focus manager). Results from the user
interaction event are rendered graphically, and notification events are dispatched
to any interested parts of the application.

With the introduction of concurrent representations as provided for by the Parallel
User Interface Rendering framework presented in this dissertation, handling user
input events at the toolkit level is no longer appropriate. When one representation
retains its position in being the sole handler of user interaction events, it takes on
the role of primary rendering, making all other representations derivatives. This is
the situation with the majority of currently available assistive technology solutions
for GUI accessibility, where user interaction remains the responsibility of the GUI
environment, and the alternative representation is limited to providing a derivative
presentation of the output.

1The experimental implementation described in chapter 7 is developed in Java. Unless otherwise
noted, all references in this chapter to implementation details relate to Java, the Abstract Widget
Toolkit, and JFC/Swing.
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When instead multiple representations are tasked with handling user interaction
events, as a possible alternative to the sole handler scenario, concurrent
modifications to a specific abstract UI element could take place, leading to
possible synchronisation issues between the representations. Techniques for
implementing atomic updates in distributed systems [54] can be used to resolve
the concurrent update issue, however the overall system would still render
representations where the user interaction did not originate as derivatives in
violation of the design principles of the PUIR framework (see section 5.2).

Instead, the design presented in section 5.3 introduces a single central com-
ponent that is tasked with handling user interaction events: the AUI engine,
described in section 5.3.3.

When all user input is routed to the AUI engine for processing, another issue
arises: most input events are modality-dependent. This observation is based on
event capture data presented in Table 6.2, discussed further on page 175.

Legacy GUI systems operate in a very stable and predictable context of user
interaction modalities, providing a single representation that is known to all
components in the system. A pointer device event can be passed from the
low level device driver component, through various other parts of the operating
system, up to the graphical toolkit implementation of the widget it operates on
without any modification because at all levels the exact context relative to the
representation modality is known.

The introduction of centralised user interaction event handling in PUIR presents a
complication here also because the AUI engine is by design independent of any
modality. How can an event that depends on a modality-specific context, such as
coordinates in a graphical environment, be processed by the AUI engine?

Various devices that relate to specific modalities and the issues addressed in this
chapter are presented in section 6.2. The role of the AUI engine as central user
interaction event handler is discussed in section 6.3. Section 6.4 addresses the
issue of modality-specific events and introduces the PUIR approach to resolving it.
The chapter concludes with section 6.5, providing a summary of the contributions
related to input processing.

6.2 Devices and events

Devices for user interaction are typically managed by the operating system rather
than directly by a toolkit. As the user performs physical actions with the device,
information about the interaction is collected from the device by a device driver
at the OS level [139]. The device driver (possibly with the assistance of other
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system components) presents the user interaction as an event, and it gets added
to an application-specific event queue for processing by the toolkit that handles
the modality that the device relates to.

Some devices are not supported by the OS directly, and require specialised
support in either a toolkit or at the application level. These devices are still
handled at the OS level for low-level communication, but the information they
provide is interpreted at a higher level. A good example is a braille keyboard
that communicates with the computer by means of a USB connection, but
that is handled by the OS as a game controller. Specialised software at the
application level receives the game controller events from the OS device driver
and translates the events into keyboard input events. Those translated events are
then presented for placement on the application specific event queue.

The list of user interaction devices is virtually unlimited, and technologies to
provide users with novel ways to interact with systems and applications continue
to be developed. For the purpose of this work, a limited list of common devices
is sufficient to discuss issues and their solutions. In terms of user interaction
events, it is important to note that often even non-UI events are posted to the
application event queue. This is usually related to a need to perform processing
that is somehow synchronised with UI event processing. These non-UI events
are not discussed in this chapter.

The following list of devices covers a reasonable subset of device types that are
common in computing environments:

Keyboard This is an input modality that is not directly related to any representa-
tion. Keyboard input is interpreted in terms of focus on a specific UI element,
with fall back to its ancestors (container elements). In PUIR, focus tracking
is handled at the level of the AUI object model, because it is directly related
to the user interaction model. Therefore, keyboard events can be passed
on to the AUI engine unchanged.

Mouse A computer mouse is a form of pointer device. Mouse operations are
inherently graphical in nature, operating in a two dimensional space with
high resolution. This input modality provides an additional dimension of
information in terms of mouse button state.

Because mouse operations are explicitly related to the position of the mouse
pointer in the graphical environment, all user interaction events from this
input modality will require additional processing before the AUI engine can
handle them.

Haptic pointer device Like a mouse pointer device, haptic devices operate in an
inherently graphical environment, in this case based on a three dimensional
space with high resolution.
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Operations from a haptic device are directly related to the 3D position of
the pointer of the device. Additional processing will be required before the
events can be handled by the AUI engine.

Braille keyboard While this input modality is quite different from a standard
keyboard at the physical level, it is mostly equivalent to a keyboard in terms
of user interaction. The most notable difference is the common existence of
cell selection keys that present the user with a form of cursor addressable
input. This still provides an abstract form of input that can be handled at the
AUI object model level.

Microphone Voice input is a modality that largely depends on higher level
processing. While it is technically possible for voice input to operate on
the graphical level, it is not usually practical. For the purpose of this paper,
we’ll consider all voice input equivalent to keyboard input, and input events
that are generated in response to voice input will be presented as keyboard
input.

Braille pad This input modality provides a two dimensional grid with a fairly
coarse resolution. The data displayed on the grid often has an immediate
relevance to the interpretation of input events [115]. If the grid is used
to provide information about the visual placement of UI elements, user
interaction must be interpreted in terms of the visual rendering agent. If
instead the grid is used to provide a non-visual rendering of data, user
interaction is likely to be aimed at the abstract level.

Note that it is perfectly possible for a non-visual rendering agent to use
the Braille pad to provide a coarse dot matrix presentation of a graphical
element. User interaction may therefore operate on both levels at the same
time (e.g. the user may be able to use selection keys at the edges to scroll
through some graphical data, while the more central selection keys are
available for selecting specific UI elements).

Regardless of the mode, additional processing will be required before
positional events can be handled by the AUI engine.

Touch screen This device is also meant to cover multi-touch displays. User
interactions are inherently graphical in nature, operating in a two dimension
space with relatively coarse resolution. Due to the interaction model that
is typically used for this device, events are commonly pre-processed by a
higher level software component that in turn generates events for further
processing [13, 104]. Alternatively, native device events can usually be
made available for application level handling as well.

Regardless of whether pre-processing is used or not, both context-free
and modality-dependent events are generated by touch screen devices and
multi-touch displays.
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1 → MOUSE_MOVED(12, 14) on button
. . .

2 → MOUSE_EXITED on . . .
3 → MOUSE_ENTERED(26, 22) on button
4 → MOUSE_MOVED(25, 21) on button

. . .
5 → MOUSE_PRESSED(22, 13) on button
6 → FOCUS_LOST on . . .
7 → FOCUS_GAINED on button
8 → MOUSE_RELEASED(22, 13) on button
9 → MOUSE_CLICKED(22, 13) on button

10 → ACTION_PERFORMED on button

Figure 6.2: Example AWT event sequence

6.2.1 Events

The presentation of various devices in the previous section might give the
impression that a physical action with an input device results in a single event
that captures the essence of the user interaction. Reality shows a very different
picture. Although a user may consider his or her action a single user interaction
event, at the device level a large amount of events may be generated throughout
the course of completing the action. After all, the device has no knowledge
about UI semantics and it can therefore only report on very low level aspects
of the interaction. E.g. this means that when a pointer device is used to move
the pointer from position (x0, y0) to position (x1, y1), events will be generated for
many positions along that track. As these events are interpreted by higher level
components, additional events may be generated to provide information about the
action at a specific level of interpretation.

What events are posted to the event queue?

Consider the basic operation of a user using a pointer device to push a button
in a GUI screen2. First the user will move the on-screen cursor to the button by
means of the pointer device. Once the cursor is shown within the boundaries
of the graphical representation of the button, the user presses the mouse button.
Finally, the user releases the mouse button, and the operation has completed.

2The example discussed here uses implementation details of the Java AWT and JFC/Swing toolkits
for typical Java GUI applications.
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Figure 6.2 shows a sample event sequence3 posted to the AWT event queue for
this basic scenario. The meaning of the various pointer device events that are
involved in this user interaction is as follows:

1. MOUSE_MOVED
These events are posted whenever the mouse pointer is moved. Due
to implementation details in AWT, multiple events may be combined into
a single event. Each event specifies the current position of the mouse
pointer. The events have no meaning outside the context of the visual
presentation. Note that the movement events shown in Figure 6.2 indicate
an association with a specific widget (“button” in this case). This is based
on an interpretation of the position of the mouse pointer.

2. MOUSE_EXITED
This event is posted when the mouse pointer leaves the area where the
widget is rendered on the screen. While it specifies the location within the
widget where the mouse pointer exited, this information is generally not
used.

3. MOUSE_ENTERED
This event is posted when the mouse pointer first enters the area of a widget.
While it specifies the location within the widget where the mouse pointer
entered, this information is generally not used.

4. MOUSE_MOVED
See above.

5. MOUSE_PRESSED
This event is posted when a mouse button has been pressed. It specifies
the location of the mouse pointer. The event indicates a mouse device state
change that may be relevant in the context of user interaction although this
is not common.

6. FOCUS_LOST
This event is posted when a widget has lost focus. In this case, the reason
is that the widget where the mouse press took place is gaining focus, and
only one widget can have focus at any given time.

7. FOCUS_GAINED
This event is posted when a widget receives focus. The button widget
receives focus because a mouse button was pressed while the mouse
pointer was located in the window area where the button is located.

3The event sequence was captured using a custom event queue. This technique ensured that all
events posted to the event queue could be captured, along with higher level event capture techniques
that were implemented using the Java Observer pattern [49].
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Level Events

Lexical Device specific events (pointer device move-
ment, key presses, or pointer device button
presses) that are essentially independent of
any specific widget.

Syntactic Widget specific events that indicate some
kind of operation on the widget, independent
of the underlying functionality.

Semantic UI specific events that provide notification for
functional operations.

Table 6.1: Levels on which events operate

8. MOUSE_RELEASED
This event is posted when a previously pressed mouse button has been
released. It specifies the location of the mouse pointer. The event indicates
a mouse device state change that may be relevant in the context of user
interaction although this is not common.

9. MOUSE_CLICKED
This event is posted to signal the completion of a mouse button “click”
operation (sequence of pressed/released pairs). It specifies the location
of the mouse pointer. Although some applications may associate meaning
to the actual position of the mouse pointer when a mouse click occurs, this
meaning is irrelevant outside the context of the visual presentation.

10. ACTION_PERFORMED
This event is posted to inform subscribers that the action associated with
the button has been performed.

Based on this sample event sequence, and interpretation of the captured events,
it is obvious that not all events relate to the same level of UI implementation detail.

The MOUSE_MOVED events are clearly low level device events, reporting on the
location of the mouse pointer. While the reported position is already the result
of an interpretation of raw (relative) positional data, it lacks any relation to UI
elements. Granted, the event itself indicates an association with a widget but this
is purely an artefact of standard higher level interpretation of the pointer location.
It carries no meaning.

The MOUSE_EXITED event cannot be issued as a low level device event
because it depends on knowledge about the positioning of widgets in the focused
window. It is generated as a result of processing a MOUSE_MOVED event with a
pointer position outside the area used to render the widget. If the pointer position
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falls within the area for another widget in the window, a MOUSE_ENTERED event
will be generated immediately after the MOUSE_EXITED event.

The FOCUS_LOST event cannot be generated at the device level nor can it be
generated solely based on mouse pointer position vs positioning of widgets. It
relates to an even higher level concept: focus tracking. The same applies for the
ACTION_PERFORMED event that is generated when the functionality associated
with the button has been executed,

Event classification

Similar to the identification of four distinct layers of UI design by Jacob [69], events
can be categorised as relating to one of three layers (see Table 6.1).

Events like MOUSE_MOVED, MOUSE_PRESSED, and MOUSE_RELEASED
can be classified as lexical events. These events relate directly to device specific
aspects of user interaction at the lowest level. Often, these events will not be
acted upon at the application level. Instead, the graphical toolkit depends on
these events in order to generate higher level events that carry meaning for the
application.

Events such as MOUSE_EXITED, MOUSE_ENTERED and MOUSE_CLICKED
can be classified as syntactic events. They either depend on a specific
interpretation of modality-dependent information such as pointer position, or they
are the synthesis of a sequence of low level events, where a combination of lexical
events has meaning at the syntactic level.

The FOCUS_LOST, FOCUS_GAINED, and ACTION_PERFORMED events can
be classified as semantic events. These high level events relate directly to the
semantics of the UI and user interaction as it relates to the conceptual model.

Finally, some events are posted to the AWT event queue for the purpose of
providing notification about modality-specific changes such as UI elements being
moved (at the perceptual level), or being resized. If the hierarchy of UI elements
changes, events are also dispatched to notify interested parties.

Event classification distribution

The classification of events across the lexical, syntactic, and semantics layers is
important is terms of making a determination concerning the specific processing
that an event requires. Obviously, lexical events are handled quite different from
semantic events.
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Lexical events

11760 MOUSE_MOVED
175 MOUSE_RELEASED
175 MOUSE_PRESSED
38 KEY_RELEASED
38 KEY_PRESSED

12186 Total

Syntactic events

158 MOUSE_CLICKED
104 COMPONENT_RESIZED
79 COMPONENT_MOVED
73 MOUSE_ENTERED
57 MOUSE_EXITED
34 KEY_TYPED

505 Total

Semantic events

116 FOCUS_LOST
70 FOCUS_GAINED
69 WINDOW_LOST_FOCUS
69 WINDOW_GAINED_FOCUS
69 WINDOW_DEACTIVATED
69 WINDOW_ACTIVATED
34 COMPONENT_SHOWN
34 COMPONENT_HIDDEN
7 WINDOW_OPENED
2 WINDOW_CLOSED

539 Total

13230 TOTAL

Table 6.2: Distribution of AWT events by event level
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In order to better understand the importance of event classification, and the
demands placed on event processing on all three levels, a more extensive event
data collection experiment was conducted. During a five minute user interaction
session with the Java implementation of the game “Risk”4 [91] with the FlashGUI
interface5 all events were captured and written to disk. Only events that were
actually posted to the AWT event queue were considered because events that
were being delivered by means of the Observer design pattern either originated
as events from the event queue anyway, or they were entirely synthetic and
therefore not a reflection of direct user interaction. The tabulated results are
presented in Table 6.2.

It is clear that lexical events comprise the vast majority of all captured events
(12186 out of 13230 events, 92%), with 97% of all lexical events being accounted
for as mouse pointer movement events. Interestingly, the application does
not require specific mouse pointer movements in any aspect of its UI, i.e any
movement events are related to positioning the mouse pointer onto specific UI
elements prior to performing some action. These events are important however
because they constitute the only events that are generated as a direct response
to the physical user interaction with the input device they relate to. This was
further confirmed through analysis of the implementation details of Java AWT
and Swing, revealing that all captured syntactic and semantic events are in fact
synthetic events that are generated either as a derivative of one or more lexical
events, or in response to a toolkit-specific action.

The analysis also revealed that the majority of semantic events (462 out of
539 events, 86%) are actually generated as a derivative of a syntactic event,
establishing an event derivation chain from lexical, through syntactic, and yielding
a semantic event.

In view of the PUIR framework design where all events are to be handled at the
AUI engine level, the classification of events is significant because only the final
derivatives6 of an event chain are relevant at the AUI level.

In the introduction, it was stated that “most input events are modality-dependent.”
The event data captured during the five minute user interaction session discussed
in this section provides definite proof for this statement. The input events are
classified as lexical events, and of all 12186 input events, only key press and
key release events are independent of any modality because all other events are
mouse pointer events with a direct dependency on the graphical context they

4This application was chosen because it is freely available and it is implemented with a complex
visual interface, requiring a combination of pointer device input and keyboard input.

5The Java implementation of the game “Risk” allows the user to choose between four different UIs:
FlashGUI, Increment1GUI, SimpleGUI, and SwingGUI. Although SwingGUI was the more obvious
choice, its implementation made event capturing quite complicated compared to using FlashGUI.

6As can be expected, a lexical event may be the origin of multiple event derivation chains, because
a seemingly minor event as a result of direct user interaction can have an extensive ripple effect.
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relate to due to the importance of the mouse pointer position in the interpretation
of the events. Therefore, less than 1% of all input events captured during the
experiment are independent of any modality.

While it is potentially dangerous to draw conclusions from a single experiment,
less formal data capturing throughout the course of the doctoral work that this
dissertation reports on indicates that while the distribution of input events between
modality dependence and independence varies slightly, the vast majority of input
events consistently falls within the category of depending on a specific modality.

6.3 Synchronising user interaction

In most GUI environments, user input events for mouse and keyboard interaction
are supported in full. Events from more specialised devices such as a braille
keyboard or a haptic pointer device usually require external support because
the default toolkits do not incorporate support for these devices. While it is
certainly possible to add device support for additional input modalities directly at
the level of the graphical toolkit, this technique is not viable due to the complexity
of adding functionality to the low level implementation of various graphical toolkits.
In addition, the support for the new devices would have to be re-implemented for
every new platform because this kind of code is by its very nature not portable.

Java’s AWT is a fair representative for graphical toolkits, and it is also the
underlying technology used for the experimental implementation of the PUIR
concept described in chapter 7. The remainder of this section will discuss the
proposed solution within this context. The technique described here is generic
enough that it can certainly be ported to other graphical toolkits.

User interaction events from devices that are natively supported by the toolkit
are posted directly to a system event queue, from where they are processed by
a dedicated event dispatcher thread. As such, all event processing is strictly
single-threaded. This ensures that in the general case of a single (graphical)
representation, all event processing takes place in a strict sequential fashion.

When user interaction takes place with devices that are not supported by the
toolkit, events are not automatically posted to the system event queue. The
obvious solution is of course to enable the external device support components to
post device events to the system event queue. Early experiments with Java AWT
demonstrated that due to specific design choices reflected in the implementation
of the AWT event dispatcher, this approach was not viable. Further research into
alternative graphical toolkits has shown that it is not feasible to merely inject user
interaction events for specialised devices at a sufficiently low level without the
intervention of a device driver.
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Deeper analysis into the inner workings of the AWT event system indicated that
it is possible to install a custom event queue. Doing so ensures total control
over what events can be posted to the queue, and over the functionality of the
event dispatcher. With a custom event queue in place, it is possible to enforce a
strict sequential event ordering across multiple representations by ensuring that
all representations guarantee that user interaction events are posted to the single
custom event queue. Doing so does require the custom dispatcher to be aware
of the various representations, and it requires events to carry information about
the representation they are associated with.

Figure 6.3 shows a schematic overview of the event processing design in the
PUIR framework. The processing of an event passes through four distinct stages:

1. An event E is generated by a physical device in response to an action taken
by the user, and the event is posted to the central AUI event queue.

2. The dispatcher component of the AUI engine polls the event queue, and
processes events in strict sequential order. The dispatcher processing
involves a transformation of event E in modality-specific context to an event
E’ in AUI model context. This is a transformation that results in abstracting
the concrete event.

3. Once event E’ has been handled at the AUI layer, event notifications are
dispatched to all rendering agents concerning the event that was handled,
and resulting changes in the UI state.

4. Each rendering agent presents the completed event processing, and any
associated UI state changes in the modality-appropriate manner. This
amounts to a reification of the results of the event handling.

The discussion in this section shows that the event synchronisation problem in the
presence of multiple parallel UI representations can be resolved with a central
multiplexing event queue. In order to make it possible for all event handling to
take place at the AUI engine level, an abstraction transformation step is added to
the event dispatcher component. This ensures that the concrete events related to
modality-specific widgets in the final UI are presented to the AUI engine as events
that operate on abstract widgets. The next section (6.4) provides further details
concerning this important transformation.

6.4 Modality-dependent user interaction events

Having ensured that all user interaction events can and should be handled at
the AUI engine level, the remaining problem lies with the transformation from
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Figure 6.3: Schematic design for synchronised event handling
(1) devices post events to the AUI event queue, (2) AUI engine processes events

sequentially, (3) rendering agents receive notification that an event was handled, (4)

rendering agents present the effects of event processing.
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"Action triggered"

"Mouse move
 and click"

Figure 6.4: Transforming concrete events into abstract events – 1

concrete event to abstract event. Modality-independent input events do not
require this transformation because they do not relate to any specific context in
and of themselves. Rather, their context is determined by the assignment of focus
which is already designed as a function of the AUI engine.

Figure 6.4 provides a schematic illustration of the problem at hand. At the GUI
representation level, the user moves the mouse pointer to the button labelled
“Button 1”, and then presses and releases the mouse button, thereby performing
a “mouse click” operation. This multi-step action effectively amounts to a single
semantic operation: activating the button labelled “Button 1”. At the AUI engine
level, this multi-step action is implemented as a single semantic operation: trigger
the action associated with button “Button 1”. The sequence of multiple lexical
events at the GUI level must be transformed into the single semantic event at the
AUI level.

Mouse pointer events have been discussed quite a bit in this chapter already,
which might give the impression that they are the primary concern for the problem
at hand. It is important to note that the solution presented here is in fact aimed
at being a generic solution that can be applied to any form of user interaction
that generates modality-dependent events. The mouse pointer device is however
not only the most commonly used form of user interaction in GUI environments.
It is also a good representative for this class of input devices. Haptic devices,
touch screens, and multi-touch devices all have in common that they generate
events that are associated with a particular position in two- or three-dimensional
space, as is the case for mouse pointer devices. Planar braille displays may pose
a complication because the limited resolution (in comparison to the graphical
screen) necessitates showing only part of the two-dimensional screen space.
Sometimes multiple disjunct screen areas are displayed simultaneously, requiring
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a mapping between the planar display content and the graphical screen content.
As shown in this section, the techniques used for the mouse pointer device (and
related devices) is generic, and can therefore easily be implemented for other
devices.

At the AUI engine level, all user interaction operates on the semantic level, and
therefore only semantic events need to be transformed from their concrete form to
an abstract form in the context of the AUI object model. As such, in addition to the
event transformation process, an event selection mechanism must be introduced
to ensure that only semantic events are processed.

The analysis of events presented in this chapter, specific to the Java AWT
and Swing toolkits, strongly suggests that the classification of events and the
interpretation of modality specific information is very dependent upon the actual
implementation, because the vast majority of all but lexical events are synthetic
events, i.e. events generated by the toolkit while processing a lexical event or in
response to system state changes. This complexity was also identified (albeit
in a rather informal manner) throughout the eight years of research underlying
this dissertation. With various Java releases (both minor update releases, and
major new version releases) inconsistencies in experiment results were observed.
Analysis into the cause for these inconsistencies led to the observation that
even between minor releases some implementation details changed sufficiently to
render foregone conclusions about event classification and interpretation invalid.
It is therefore fair to conclude that establishing a generic mechanism for the
classification of events, and with that an event selection mechanism, is an
unrealistic goal.

It is clear that intimate knowledge concerning the internal workings of the
modality-dependent toolkit is required. Under the assumption that necessary
support functionality could be made available by the rendering agent7, it is
important to determine exactly what functionality will be required.

Consider the user interaction shown in Figure 6.4, where the user first moves
the mouse pointer to a button, to then perform a “mouse click” operation.
This particular interaction by means of a mouse pointer device generates the
sequence of lexical events shown at the top of Figure 6.5.

For the purpose of this discussion, the following relations exist between pointer
coordinates and toolkit-specific widgets:

• (x0, y0) specifies a point within the screen area of the “Name” text field.

• (x1, y1) specifies the first point along the path from (x0, y0) to (x2, y2) that
falls within the screen area of the “Button 1” button.

7The rendering agent for a specific modality provides controlled access to its underlying toolkit.
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MOUSE_MOVED (x0, y0)
. . .
MOUSE_MOVED (x1, y1)
. . .
MOUSE_MOVED (x2, y2)
MOUSE_PRESSED (x2, y2)
MOUSE_RELEASED (x2, y2)

↓

Context resolving

↓
MOUSE_MOVED on Swing(Name)
. . .
MOUSE_MOVED on Swing(Button 1)
MOUSE_ENTERED on Swing(Button 1)
. . .
MOUSE_MOVED on Swing(Button 1)
MOUSE_PRESSED on Swing(Button 1)
MOUSE_RELEASED on Swing(Button 1)

↓

Event selection

↓
MOUSE_ENTERED on Swing(Button 1)
MOUSE_RELEASED on Swing(Button 1)

↓

Event transformation

↓
Focus.GAINED on AUI(Button 1)
Action.TRIGGERED on AUI(Button 1)

Figure 6.5: Transforming concrete events into abstract events – 2

• (x2, y2) specifies a point within the screen area of the “Button 1” button.

Any number of MOUSE_MOVED events will be generated along the path from
(x0, y0) via (x1, y1) to (x2, y2), and the “mouse click” operation will be represented
by a MOUSE_PRESSED event, followed by a MOUSE_RELEASED event. The
pointer positions must first be translated into toolkit-specific widgets in order for
further processing to be independent of modality-specific position information.
This is accomplished by the context resolving phase, yielding the second
sequence of events.

Note the newly inserted MOUSE_ENTERED event. This synthetic event is
generated as a result of the mouse pointer entering the screen area for the



182 CONTEXT-BASED INTERACTION

“Button 1” button for the first time along its path. It signals the crossing of a
widget boundary.

The sequence of context-specific events can then be filtered by the event
selection phase. As discussed earlier in this section, the ability to select only
specific events is a requirement for being able to ensure that only semantic events
are passed to the AUI engine for processing. For the scenario discussed here,
only the MOUSE_ENTERED and MOUSE_RELEASED events are retained (third
sequence of events in Figure 6.5).

Observe that based on earlier analysis of events in Java (see Table 6.2), these
events are respectively syntactic and lexical rather than semantic. This appears
to be contradictory to the requirement that only semantic events are to be passed
to the AUI engine. Consider however that the information in Table 6.2 is based
on capturing events as they occur in a Java AWT and Swing GUI rather than in
the context of the PUIR framework. In the current analysis of the user interaction
scenario presented in Figure 6.4, the creation of event derivation chains does not
take place at the AWT/Swing level. Instead, it occurs in the event transformation
process. Rather than selecting semantic event, the event selection phase must
select events that will be transformed into abstract semantic events8.

Why is MOUSE_RELEASED retained whereas MOUSE_PRESSED is not9?
Experiments with various different GUI environments led to the observation that
the activation of functionality is typically triggered by the completion of the “click”
operation, i.e. the moment when the mouse button has been released. This
behaviour is applied consistently throughout most GUI environments, possibly
to be consistent with the well known “drag-and-drop” operation, where the start
of the action is marked by the mouse button being pressed, and the end by the
mouse button being released. Also note that many GUI environments invalidate
the “click” operation if the mouse pointer was moved into another widget prior to
the mouse button being released. Therefore, the MOUSE_RELEASED event is
used as trigger for a “click” operation. The event selection process is responsible
for ensuring that the MOUSE_PRESSED and MOUSE_RELEASED events are
associated with the same widget.

The final phase is the actual transformation of the selected events:

1. Consider concrete event E on widget W (in the context of a toolkit).

8The only way to know whether an event would be transformed is to perform a partial transformation
during the selection phase. This is quite inefficient. Implementations will combine the selection and
transformation phases to work around this dependency

9For “drag-and-drop” operations, the MOUSE_PRESSED event is relevant. If a widget can be
dragged, the first MOUSE_MOVED event that occurs while the mouse button is pressed will cause a
Drag.SELECTED semantic event to be created.
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2. Determine abstract widget W’ in the AUI object model for which widget W is
the representation in the rendering agent.

3. Map concrete event E onto abstract event E’ within the context of widget W’.

4. Present abstract event E’ on widget W’ to the AUI engine for processing..

It is important to determine the AUI widget prior to mapping the event, because
any given concrete event may map to different semantic events depending on
the widget it relates to. E.g. in the context of a button a mouse “click” triggers
activation, whereas in the context of a text field a mouse “click” positions the in-
text cursor.

Based on the foregoing analysis, user interaction events that are associated with
modality-dependent information for a specific rendering agent require functionality
in that rendering agent to:

• Resolve modality-specific information about the target of an event into a
specific widget within the context of the rendering agent.

• Identify for each widget in the UI representation what AUI widget it is
providing a rendering for.

• For each AUI widget type, provide a mapping of concrete events onto the
semantic events it supports.

6.5 Conclusions

This chapter addresses the complications imposed on user interaction handling
by the introduction of concurrent representations as provided for by the Parallel
User Interface Rendering framework. Two specific problems need to be handled:

• Synchronising user interaction events, generated by devices that each
operate within the context of a specific modality.

• Delegating all user interaction event processing to the AUI engine.

Through analysis of graphical toolkit implementations, a determination was made
that it is possible to provide a single event queue where all user interaction events
shall be posted. This enables the AUI engine to process all events in a strict
sequential order. This solution does require the second problem to be resolved in
order for the AUI engine to actually handle the events.
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Input devices that are associated with a specific rendering agent generate low
level lexical events that include modality-dependent information about the target
for the event. It is not possible (in a generic manner) to provide for interpretation
of this information at the AUI engine level. It is therefore crucial that rendering
agents provide functionality to map the modality-dependent information onto a
specific widget within their UI representation.

Once it is known what widget an event relates to, a selection and transformation
process takes place, making a determination as to what semantic operation is
being performed (if any), and what AUI widget the operation is being performed on.
For events that indeed indicate a semantic operation, the AUI engine is provided
with the transformed event.

The solutions presented in this chapter make it possible for all user interaction
to be handled by the AUI engine rather than directly by one or more rendering
agents. This ensures consistent semantics for UI elements across all represen-
tations, and it also reinforces the principle of providing parallel first-generation
representations rather than derivatives.



Chapter 7

Implementation

“Science is knowledge
which we understand so well

that we can teach it to a computer;
and if we don’t fully understand it,

it is an art to deal with it.”
(Donald Knuth, “Turing Award Lecture”, 1974)

The design of the PUIR framework has been substantiated in an experimental
implementation to test and demonstrate this novel approach to providing
alternative representations of graphical user interfaces. This chapter provides
a description of various aspects of the implementation. It is not meant to
be exhaustive documentation on its development and operation, but rather a
discussion of the methods used to implement Parallel User Interface Rendering.
Notable problem areas that were encountered during the implementation are
identified and discussed as well.

7.1 Introduction

The experimental implementation for the PUIR framework is written in the
Java programming language, using the Abstract Widget Toolkit (AWT) and
JFC/Swing1 as underlying technology for all things graphical. Wherever specific

1For the remainder of this work, when Swing is mentioned, it is meant to refer to the combination
of AWT and JFC/Swing.

185



186 IMPLEMENTATION

implementation details of Java are referenced in this work, they are based on
Java SE 62 and the Java Platform Standard Edition 6 API Specification [109].

While Java provides a convenient and well-known programming language and
runtime environment, it also poses some complications due to some unexpected
tight coupling between low-level OS mechanics, AWT, and the Swing toolkit.
The reason for this tight coupling is rooted in the fact that although Swing is
commonly believed to have been designed based on a Model-View-Controller
(MVC) architecture [20], it actually implements a modified MVC architecture
where the view and controller parts of each UI element are combined into a
single entity [48]: a separable model architecture. In order for user interaction
semantics to be implemented in a true modality-independent manner, separation
of concerns must be enforced. As such, the experimental implementation
required the coupling between the view and controller functions in Swing UI
elements to be broken3. Section 7.4.3 provides more detailed information on
this topic.

A schematic overview of the experimental implementation can be seen in
Figure 7.1. This design constitutes a specialisation of the PUIR framework
overview shown in Figure 5.7 (page 143). Within the context of providing
alternative representations of graphical user interfaces, two specific rendering
agents have been developed:

• GUI rendering agent ("GUI Agent"): This component provides the represen-
tation of the UI in graphical form. It makes use of the AWT/Swing toolkit
as basis for the visualisation. The look of the UI in its graphical rendering
is therefore virtually identical to a pure Swing-based UI, while the feel is
defined by the AUI engine design. More details on the implementation of
this rendering agent can be found in section 7.4.3.

• Assistive technology rendering agent ("AT Agent"): This component pro-
vides the non-visual representation of the UI. Given that it is not within the
scope of this work to implement the equivalent of a screen reader, a generic
assistive technology solution has been implemented. Observing that most
AT solutions operate as stand alone programs on the computer system, the
experimental implementation provides support for remote rendering agents,
i.e. rendering agents that are not part of the executable process that they
represent the UI for. See section 7.4.4 for details on the implementation.

The choice of rendering agents for the experimental implementation also serves
as a test bed for the two flavours of rendering agents that are likely to be required

2Also known as Java 6, or Java Standard Edition 6.
3Modifications to the Swing source code were not deemed acceptable. Instead, rather than

decoupling view and controller, the controller functionality was essentially prevented from being
activated.
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Figure 7.1: Schematic overview of the experimentalconcept implementation

in any general purpose implementation: as part of the application, or as an
external process. It is important to note that true to the design of the PUIR
framework, the external AT solution (e.g. a screen reader) must interface with
the AUI engine rather than hooking into the GUI representation and/or querying
the application4.

Throughout this chapter, the UI visualised in Figure 7.2 will be referenced. It
was created as a programmatic implementation of the AUI description listed in
Appendix E. The UI is written in Java using the Swing toolkit, and the program
code can be found in Appendix D.

The discussion of the concept implementation starts of with one of the core
elements of the design: events. Section 7.2 expands upon the analysis presented
in chapter 6. The AUI engine implementation is presented in section 7.3, and

4An interesting future experiment would be to use an existing screen reader to access the UI
through an OSM derived from the GUI representation, and to compare the user experience with
operating the UI by means of an AT rendering agent.
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Figure 7.2: GUI representation of the example UI

rendering agents are discussed in section 7.4. In closing, the conclusions are
presented in section 7.5.

7.2 Events

By design, AWT/Swing distinguishes between two types of events [157]:

• Low-level events: This is defined as events that are related to the windowing
system and user interaction events.

• Semantic events: Everything else.

This somewhat vague definition is reflected in the implementation of AWT and
Swing by a distinct lack of actual differentiation between the two types of
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events. On the other hand, AWT and Swing provide two different event delivery
mechanisms:

• AWT event queue: Events are associated with one specific recipient,
thereby establishing a strict one-to-one relationship between the event and
the recipient. The events are placed in a FIFO queue, from where they
are retrieved by a dispatcher thread. As such, event delivery from the AWT
event queue occurs asynchronously. This mechanism is primarily used for
events that originate at the OS level, e.g. mouse and keyboard interaction
as they are processed by their respective device drivers, but occasionally
AWT components post events to the queue as well.

• Observer pattern: With this mechanism, objects can register themselves as
listeners (“observers”) for specific events, or groups of events [49]. Delivery
of events is synchronous, and the observer design pattern establishes
a one-to-many relationship between the event source and the listeners.
The vast majority of events that are delivered by means of the observer
pattern mechanism are notification events, posted at the completion of the
operation they relate to.

To complicate matters, most events that are posted to the AWT event queue are
also sent to listeners by the event recipient. Capturing events directly from the
AWT event queue and by means of listeners will therefore often yield duplicate
events in the capture stream. In fact, analysis of captured event logs for both
the AWT event queue and all available listener interfaces for components in a UI
shows that the vast majority of events on the queue get duplicated, sometimes
even more than once because often an event might satisfy the scope of multiple
listeners.

In the interest of being able to reuse the user interaction device handling provided
by the Java runtime environment, it is important to determine what events
are to be captured and transformed for processing by the AUI engine in the
PUIR experimental implementation. This analysis is a continuation of the work
presented in sections 6.2.1 and 6.4. In order to ensure that all events get
captured, custom code has been written to capture events on the AWT event
queue and events that are available for delivery to specific listeners. The example
UI (see Figure 7.2) was used as test bed for this data collection.

Events were captured from the initial invocation of the program, throughout the
creation of the GUI representation, and continuing during some sample user
interaction. A total of 12334 events were captured, of which 923 were found
to be related to asynchronous processing requests, and they therefore are not
at all related to the GUI representation or the semantics of the application. They
are not included in the data presented in this section. Another 531 events are
object state change notifications that are dispatched according to the Java beans
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Queue Observer Event

Semantic Events
0 2 FocusEvent[FOCUS_GAINED]
2 2 WindowEvent[WINDOW_ACTIVATED]
2 2 WindowEvent[WINDOW_GAINED_FOCUS]
1 1 ComponentEvent[COMPONENT_SHOWN]
1 1 FocusEvent[FOCUS_LOST]
1 1 WindowEvent[WINDOW_DEACTIVATED]
1 1 WindowEvent[WINDOW_LOST_FOCUS]
1 1 WindowEvent[WINDOW_OPENED]

Structural Events
10 10 ComponentEvent[COMPONENT_RESIZED]

6 6 ComponentEvent[COMPONENT_MOVED]
0 1 ContainerEvent[COMPONENT_REMOVED]
0 1 ContainerEvent[COMPONENT_ADDED]

Notification Events
0 231 HierarchyEvent[ANCESTOR_RESIZED]
0 120 HierarchyEvent[ANCESTOR_MOVED]
0 110 AncestorEvent[ANCESTOR_MOVED]
0 2 AncestorEvent[ANCESTOR_ADDED]
0 2 HierarchyEvent[HIERARCHY_CHANGED]

Table 7.1: AWT/Swing events during UI creation
For each event, a count is given for how many times the event occurred in the captured

data from the AWT event queue (“Queue”) and how often it was made available to

listeners (“Observer”).

specification, and they effectively duplicate functionality that is already covered
by other events. Therefore, they are also not included in the data presented here.
This leaves a total of 10880 events that remain to be considered.

Somewhat surprisingly, 519 events were logged prior to any user interaction
taking place. These events are therefore related to the creation of the GUI
representation in Swing. Section 7.2.1 presents a further analysis of these events,
while section 7.2.2 takes a look at the remainder of the events (10361) that were
captured during user interaction.
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7.2.1 UI creation events

Given the quite large amount of events that were captured prior to any user
interaction, a determination must be made whether any of these events are
actually relevant within the context of the PUIR framework.

Table 7.1 shows a breakdown of the UI creation-time events that were captured.
The discussion in section 6.2.1 suggests that events can be classified across
three levels: lexical, syntactic, and semantic. Yet, this classification does not
appear to be appropriate for the events that occur during the creation of the
GUI representation of the UI. The reason for this apparent mismatch is that the
discussion in section 6.2.1 concerned user interaction events, while the events
discussed here are not related to any user activity. Therefore, an alternative
classification is used here to guide the discussion.

Notification events account for 90% of all events, with ancestor events being de-
scribed in documentation as notification-only events that predate the introduction
of hierarchy events, and those are also classified as notification events. Structural
events account for only about 6%, and these are primarily (32 out of 34) synthetic
events that drive internal processing of changes in the overall dimensions of the
window.

It is important to note that there are no actual events being posted about the
creation of the object hierarchy of the UI (aside from two ancestor events, and
they are certainly not representative of actual UI creation because many more
components are added to the hierarchy for the example GUI shown in Figure 7.2).

The remaining 20 events (4%) are dispatched by the windowing system and/or
the low-level widget implementations. These can be considered semantic events
by their very nature, because they indicate important aspects of the UI within the
context of the system: determination of focus5, and determination of visibility6.
Several of these events seem to occur in predefined sequences, establishing
chains of events. E.g. when the windowing system indicates that the application
receives focus, the WINDOW_GAINED_FOCUS event is dispatched, which in
turn triggers the WINDOW_ACTIVATED event, and also the FOCUS_GAINED
event on the component that is to receive in-window focus within the window that
gained focus. The reverse is also true (when losing focus), and together they
account for 16 out of 20 events. The remaining four events relate to the window
becoming visible to the user when it is opened.

In consideration of the observations discussed in this section, it is clear that the

5Focus refers to the designated recipient of otherwise context-free user interaction events. Most
commonly, it is used to indicate what component should receive keyboard input.

6In the context of this work, a more appropriate term would be “noticeability”. Vision-based idioms
are commonplace in language, however, and they are generally accepted by the blind.
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AWT event queue can be used to determine when a window becomes visible, and
when the window gains or loses focus. It does not provide any information about
the UI component hierarchy being constructed. Within the PUIR framework that is
acceptable because the UI construction is entirely driven by the AUI engine. The
event capturing process could be limited to just looking for window focus events at
UI creation time while all other events can be discarded. However, the X Window
System allows an application to request focus, and therefore the PUIR framework
can automatically assign focus to its UI at application startup. This means that
there is no need to capture any of the events that occur during the creation of the
GUI representation in Swing.

7.2.2 User interaction events

Once the UI has been presented to the user, interaction can take place. During
the sample session 10361 events were recorded while the user was using
keyboard and pointer devices to interact with the user interface (see Table 7.2).
Based on the observations concerning events at UI creation time, several groups
of events are known to be irrelevant to the discussion presented here and they
are therefore not included in the table:

• Focus events (FocusEvent and most cases of WindowEvent) are semantic
events that provide notification of focus changes, and in the PUIR framework
those will be generated by the AUI engine. This accounts for 148 events.
Note that the WINDOW_CLOSING event on the AWT event queue should
not be ignored because it indicates that a request was made from outside
the application context to close the window and terminate execution. No
alternative way has been identified to determine this state. Therefore, this
event must be captured, and after transformation, be presented to the AUI
engine for processing.

• Structural events (ComponentEvent and ContainerEvent) are used inter-
nally in Swing, and carry no meaning within the context of the PUIR
framework. This accounts for another 322 events.

• Some notification events (AncestorEvent and HierarchyEvent) are not at all
relevant within the context of the PUIR framework, and can therefore be
discarded. This accounts for 2982 events.

This leaves 6909 events to consider. As shown in Table 7.2, these events can be
categorised in three groups: semantic events, syntactic events, and lexical events.
Each of these groups will be discussed in the remainder of this section.
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Queue Observer Event

Semantic Events
8 267 MouseEvent[MOUSE_ENTERED]
8 241 MouseEvent[MOUSE_EXITED]
0 180 ItemEvent[ITEM_STATE_CHANGED]
0 160 MenuEvent[]
0 37 ActionEvent[ACTION_PERFORMED]
0 32 JTextComponent$MutableCaretEvent[dot=]
0 6 ListSelectionEvent[firstIndex=]
0 4 PopupMenuEvent[]
1 1 WindowEvent[WINDOW_CLOSING]

Syntactic Events
25 50 KeyEvent[KEY_TYPED]
35 33 MouseEvent[MOUSE_DRAGGED]
27 12 MouseEvent[MOUSE_CLICKED]
0 32 MenuDragMouseEvent[MOUSE_RELEASED]

31 0 InputMethodEvent[. . . ]
0 8 MenuDragMouseEvent[MOUSE_DRAGGED]

Lexical Events
1787 3428 MouseEvent[MOUSE_MOVED]

46 92 KeyEvent[KEY_RELEASED]
46 92 KeyEvent[KEY_PRESSED]
43 93 MouseEvent[MOUSE_PRESSED]
43 41 MouseEvent[MOUSE_RELEASED]

Table 7.2: AWT/Swing events during user interaction
For each event, a count is given for how many times the event occurred in the captured

data from the AWT event queue (“Queue”) and how often it was made available to

listeners (“Observer”).
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Semantic events

The majority of semantic events are not relevant within the context of the
PUIR framework because they provide notification of semantic operations after
they took place (and usually after they have been rendered visually). The
PopupMenuEvent should be pointed out as a very implementation-dependent
event, because it reflects the fact that in Swing, pull down menus are represented
as pop-up windows with the menu content. The event itself is not relevant in the
context of the experimental implementation.

The PUIR approach handles the execution of semantic operations at the AUI
engine level, which then dispatches events to the rendering agents to indicate
that rendering of the operation should take place.

Some semantic events are important within the context of this work. The
aforementioned WINDOW_CLOSING event illustrates this quite well. In addition,
analysis and experimentation with Swing has shown that only the windowing
system provides accurate notification when the pointer device cursor enters or
leaves the window representation on the graphical screen. This information can
be important for focus tracking, and therefore all instances of these events on the
AWT event queue must be retained (17 events).

In conclusion, 928 out of 945 semantic events can be discarded. Note however
that in section 6.4 a conclusion was reached that semantic events are what
matters, because the AUI engine handles semantic events. Why then discard
the vast majority of the captured semantic events? The answers lies in that very
section. . . What matters are events that will be transformed into semantic events.

Syntactic events

The syntactic events cover two cases. First, the InputMethodEvent is an internal
mechanism in Swing to support alternative text input methods. While this is an
interesting feature in Swing, support for the input method framework is beyond
the scope of this work. Second, the remaining notification events are essentially
synthetic events that are posted as an interpretation of device-specific lexical
events. E.g. the KEY_TYPED events are generated whenever a KEY_PRESSED
event is posted for a key or key/modifier combination that represents a valid key,
and MOUSE_DRAGGED events are generated when a pointer device cursor is
being moved while one of its buttons are pressed (and held). None of these
events are of importance to the PUIR framework because they are derivative
events that reflect user interaction semantics at the GUI representation level. The
PUIR framework handles semantics at the AUI engine level.

Therefore, another 253 events should be discarded.
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Lexical events

The remaining 5711 events are all lexical events. Pointer device movement events
account for 91% and they are mostly irrelevant. Given that the PUIR framework
operates on semantic events, and in view of the discussions on user interaction
events in chapter 6, it is clear that the position of the pointer device cursor can
be relevant when a semantic event is triggered, but that the movement towards
that position is meaningless7. For the purpose of this discussion, most of the
movement events can be ignored.

Keyboard input events for key presses and releases are important because they
carry direct user input information. Likewise, events for pointer device button
presses and releases are important because they often indicate the activation
of a specific function. As mentioned with semantic events, only those that were
captured from the AWT event queue are important. This amounts to 178 device
events.

7.2.3 Reuse and reduce

In total 195 out of 10361 events (about 2%) are deemed relevant to the PUIR
framework, all related either to external circumstances that are not communicated
to the system in any other way, or to actual user interaction. All other events are
discarded. This has the immediate side effect that the controller part of Swing
widgets will not be presented with any events, thereby essentially rendering it null
and void. In a roundabout way, this effectively accomplishes the equivalent of
the decoupling of view and controller mentioned in section 7.1. All relevant user
interaction events must be passed to the AUI engine, where the operation will be
processed.

7.3 AUI engine

The AUI engine provides the conceptual layer of the PUIR framework. From an
implementation perspective, it is one of the least complex components because it
is modality-independent by design and it has no direct dependencies on system
level functionality.

For the experimental implementation, the AUI engine was chosen as the first
component to be implemented. The rationale behind this decision was simple:

7One potential exception could be observed with a drag-and-drop operation, but upon closer
examination it is clear that even for that operation only the starting position and the ending position
are relevant, and those are provided with the mouse button events.
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if it is to be truly independent of any specific rendering, it must be possible to
develop the AUI engine prior to any other component, and the implementation of
any other component shall not require any changes in the AUI engine.

The design of the AUI engine, presented in section 5.3.3, identifies three areas of
functionality:

• Translation of the AUI description from its textual UIDL form into the UI
object model.
Although the design of the Parallel User Interface Rendering approach
requires the UI to be specified by means of a UIDL-based AUI description,
no specific UIDL is identified. Several existing UIDLs were evaluated,
yet in the end a custom language was deemed the best option for
the experimental implementation. More information about the UIDL,
AUI descriptions, and translating the AUI description can be found in
section 7.3.1.

• Focus management
While the choice to provide just two rendering agents could avoid the
concept of focus management altogether by conveniently excluding any
form of user interaction that is not explicitly related to a UI element
context, doing so would undermine the validity of the experiment. The
implementation of the focus management component of the AUI engine is
presented in section 7.3.4.

• Implementation of the user interaction semantics of UI elements
This function of the AUI engine defines the very core of the Parallel User
Interface Rendering approach. It ensures consistency in user interaction,
and it also makes it possible to provide multiple coherent concurrently
accessible representations (section 5.2.4) that are all created as first-
generation renderings. The UI elements of the AUI object model are
presented in section 7.3.3.

In addition to these three core functions, some additional components of the
AUI engine warrant further discussion. As shown in Figure 7.1, all interaction
between the application and the PUIR framework takes place via the AUI engine.
Therefore, an API is to be defined to allow this interaction to take place in a well-
defined manner. The API is presented in section 7.3.2.

The last component to be discussed is crucial as a test for the focus management
functionality: keyboard-based user interaction. Section 7.3.5 provides more
information on this important topic.
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7.3.1 PUIR UI Description Language

The design of the PUIR framework is largely based on the ability to describe a
UI in abstract form. While many user interface description languages have been
developed in recent years (see section 4.3.2), none were found to be useable
for describing user interfaces at an abstract level within the PUIR framework
without significant modifications. Rather than spending a significant amount of
time trying to make two somewhat mismatched pieces fit together, the decision
was made to define a specific UI description language for the PUIR framework:
PUDL. The development of PUDL occurred primarily in an on-demand fashion
throughout the implementation of the Unified User Interface (U2I) widget toolkit
(see section 7.3.3). As such, the specification is quite minimal, albeit sufficient
to support the needs of the experimental implementation and to ensure that all
aspects of the PUIR design can be exercised based on a PUDL-specified UI.
Future development towards production level implementations should definitely
include efforts to unify the requirements for UI descriptions for the PUIR
framework with a well established UIDL (see section 9.2).

The Document Type Definition (DTD) for PUDL can be found in Appendix C, and
an example UI description is listed in Appendix E.

The PUDL description of a user interface contains all information needed to create
an AUI object model in the AUI engine, representing all semantic information
and functionality. A UI description can (and often will) contain multiple windows.
Typically, only one is marked visible at application startup, but any window can be
shown or hidden at any time.

As stated in section 5.3.2, the PUIR framework allows for rendering agent
specific annotations to be added to the specification of UI elements. Support
for this feature is included in PUDL by means of the “agentInfo” element that
can be added to any UI element. The annotation must refer to a specific
rendering agent, and it can contain an arbitrary number of (key, value) pairs
that contain implementation specific information that can be used to enhance
the representation of the UI element. Typical uses include adding an image as
button label, specifying foreground and background colours, selecting specific
visualisation options, . . .

It is important to note that the UI description file is the single source for the
creation of an application UI. It is not associated with a source code file, or
any other dependency. This makes it possible for non-structural UI changes to
be applied without needing to update the application. One potential use for this
feature is enhanced accessibility support. Although the PUIR framework is aimed
at promoting accessible and useable user interfaces, many developers are likely
to still label UI elements with essentially obscure names. It is feasible to include
functionality in an assistive technology rendering agent that allows users to assign
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labels of their own choice to UI elements. The new assignments can be applied
to the UI description file, and from thereon the application will provide the UI with
the new labels in place.

7.3.2 AUI engine API

One of the main functions of the AUI engine is to shield the inner workings of the
PUIR framework from the application. All interactions must be performed using
the API that the AUI engine provides. This section lists the main functions that
are provided by this API. Note that path identifiers are used to reference widgets
and attributes in widgets. The general structure is:

• widget

This references a specific widget as child of the current root widget. Note
that for various API functions, a specific widget can be supplied as root.
Supplied id arguments are always relative to that root widget.

• widgetA.widgetB

This references a widget as a child of another widget.

• widget.attr

This references an attribute in a widget.

The main API functions are:

• public static void init(String fileName)

This function is called to initialise the user interface based on the UI
description file passed as parameter. The UI description will be loaded and
the AUI object model will be created. Depending on the implementation of
the rendering agents, some representations are likely to also get created at
this point.

• public static void show(String id)

This function can be called to request that the window with the given id be
made visible.

• public static Component resolve(Component w, String id)

This function can be used to gain access to specific widgets within the AUI
object model. It resolves the given id within the context of the given widget
w, i.e. it looks for a widget with the given id in the sub-tree rooted at the
given widget.

• public static Object getAttribute(String id)

This function can be used to retrieve the value of an attribute in a widget,
referenced by the given id.
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• public static void setAttribute(String id, Object val)

This function is used to set the value of an attribute in a widget.

The provided API is sufficient for the experimental implementation, but it is unlikely
to satisfy the requirements for more sophisticated use of the PUIR framework.

7.3.3 Unified UI widgets

Section 7.3 refers to the implementation of user interaction semantics for UI
elements as the very core of the PUIR approach. Although this seems to be
a rather bold statement, it is quite accurate. The user interface of any application
is primarily defined by its functionality and the data it encapsulates. Those two
core features are provided by the Unified User Interface (U2I) widget toolkit.

The design of the Parallel User Interface Rendering framework is based on the
very notion that the traditional conceptual models that form the basis for UI
representations are appropriate for both sighted and blind users as discussed
in section 5.3.1. The target user survey presented in chapter 3 indicated that
elements of graphical user interfaces, although often considered visual, are easily
understood by the blind. After all, blind individuals do operate in a predominantly
sighted world, and many aspects of e.g. manipulating controls are not related to
vision. Therefore, the design of the U2I widget toolkit incorporates UI elements
that all users are known to be familiar with at a conceptual level. Figure 7.3
presents the class inheritance diagram for the widget toolkit provided in the
experimental implementation.

It is important to note that the inheritance relations between widgets are generally
not captured in the conceptual model. They are merely an artefact of the
implementation at the code level. While interviewing some of the participants in
the target user survey, it was noted that however that given the explanation that an
editSelectListwidget is essentially a textFieldwith a list of default options
that one can choose from, the respondents appeared to grasp this concept
without much thought. Furthermore, this understanding was observed regardless
of the respondent’s level of experience with computer systems.

The experimental implementation provides the user interaction semantics pre-
sented in section 5.3.3, specifically in function of the operations listed in Table 5.3.
Semantic operations are implemented as events (or sub-functions of events), and
they are handled according to the work flow presented in Figure 5.8:

1. User interaction causes a semantic event to be dispatched to the U2I widget

2. The semantic event is handled, performing a specific operation on the
widget
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Figure 7.3: Class inheritance tree for U2I widgets
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3. A notification event is dispatched to all rendering agents (and the application
if it is registered as an observer)

This very simple 3-step algorithm is ultimately one of the most powerful concepts
in the PUIR approach because it is applied consistently throughout the entire
system. It also ensures that every representation and every modality of
user interaction provide the exact same semantics for any given UI element.
The perceptual context of interaction may differ greatly, but conceptually all
representations operate the same.

7.3.4 Focus management

Focus management is arguably one of the least complicated components of the
AUI engine. Focus is maintained at two levels: window and widget.

Window focus is on most computer systems a windowing environment feature,
providing a mechanism for application code to request focus to be given to a
specific window, and also providing for notification events to be passed to an
application when one of its windows receives focus. The AUI engine maintains
a reference to the application window that holds focus (if any). If focus lies with
another application, this reference will be empty.

Widget focus is maintained by the AUI engine per application window, i.e. in every
window there will be a widget that holds focus whenever that window holds focus.
When a focus traversal operation takes place (as discussed in section 5.3.3),
widget focus moves to the next (or previous) widget according to the focus
traversal order. Where many graphical toolkits provide functionality to redefine
the focus traversal order, PUIR does not. Moving focus between UI elements
is a semantic operation, and allowing application code to change UI semantics
violates the design principles that the PUIR framework is based on.

7.3.5 Keyboard-based user interaction

Keyboard-based user interaction covers multiple possible devices. A regular
keyboard is certainly the most common device, but e.g. section 6.2 lists additional
devices that offer interaction that is equivalent to a regular keyboard. Another
commonality between these devices is that the interaction with the device is not
explicitly associated with any UI element. From the user’s perspective, there is a
definite association at a mental level, where the user e.g. types text and he or she
“knows” what text field the characters should appear in8.

8An all too common complaint from users related to GUIs has been that the mouse pointer device
is often too sensitive, and while operating the keyboard to enter text, focus might suddenly shift to
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It is clear that keyboard input is closely coupled with focus management, although
it is certainly not a exclusive binding. Focus can change as a result of most
semantic operations9, and it is therefore affected by most forms of user interaction.
Keyboard interaction is merely a special case by virtue of being both a producer
and a consumer of focus changes.

Keyboard interaction is a very powerful concept, as exemplified by the fact
that many experienced computer users tend to favour keyboard navigation over
mouse pointer navigation. In part, this may be because switching between
user interaction by mouse and by keyboard requires a mental “context switch”
which is known to impose a minimal delay. Also, in contrast with other forms of
user interaction, it is very specific in how it can interact with a specific widget
type. Pointer devices offer movement, and press/release actions on a limited
number of buttons, whereas keyboard interaction can provide a large number of
key combinations to perform sometimes complex operations on a widget. The
navigation, selection, and input operations that can be performed on a text
field offer a good example. On the other hand, keyboard interaction is not
directly related to any specific representation. Early on in the development of the
experimental system, the unfortunate choice was made to implement keyboard
actions at the level of the AUI engine. This is obviously a flawed design given that
the AUI engine is designed to only handle semantic events. Future development
should ensure that the keyboard interaction logic is decoupled from the U2I widget
implementation.

7.4 Rendering agents

The perceptual layer of the PUIR framework is implemented by the rendering
agents. Theoretically, any number of rendering agents is supported by the system
design, although it is not common for more than two or three to be in use at any
given time. A rendering agent is responsible for:

• A representation of the UI within the context of a specific modality
This function is described in section 5.3.4. It is a reification process that
transforms the conceptual UI at the AUI engine level into a concrete UI, to
be presented to the user as the final UI based on a modality-specific toolkit.
All interaction from the AUI engine to the rendering agent is event-based, by
means of the Observer pattern.

another UI element. This causes frustration because the user maintains a concept of focus in their
mental model, and involuntary focus changes render that notion invalid.

9In general, when a semantic operation is performed on an unfocused widget, focus will shift to
that widget prior to the semantic operation being performed.
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Figure 7.4: Event abstraction vs presentation reification

• A user interaction event selection and transformation process within the
context of a specific modality
This function has been discussed in section 6.4. It handles the fact that
some input modalities are tightly coupled with an output modality, and
it is therefore not possible to handle user interaction events from those
modalities without transforming them into modality-independent semantic
events (if appropriate). The process involves making a determination on
whether the event is relevant (i.e. whether it carries semantic meaning),
and if so, it needs to be transformed into the abstract user interaction it
represents.
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This section first discusses the reification function provided by a rendering
agent in section 7.4.1, followed by a short recap of the abstraction function in
section 7.4.2. In-process rendering agents are presented in section 7.4.3, and
section 7.4.4 discusses external rendering agents.

7.4.1 Reification

Conceptually, the rendering agent performs a reification of the conceptual UI,
yielding a concrete UI that is presented to the user as final UI through a
modality-specific toolkit. On the implementation side, two distinct cases are to
be considered: structural and perceptual.

Structural reification

The AUI engine provides notification to all rendering agents by means of the
UIEvent class when the UI is being created, and when it is getting destroyed.

• CREATED: This event is dispatched when the UI is first created.

• ADD_WINDOW: This event is dispatched when a new window is being added
to the user interface of the application. The U2I window object is provided
as a parameter to the event. Note that at this point, the window has not yet
been populated with widgets.

• REMOVE_WINDOW: This event is dispatched when a window has been
removed from the user interface. The U2I window object is provided as
a parameter to the event. The event indicates that the window is set to
be destroyed at the AUI engine level, and no further operations should be
attempted in relation to the window once this event has been received.

• DESTROYED: This event is dispatched to provide notification that the user
interface is about to be destroyed. This is typically used to indicate that the
application is terminating.

The ADD_WINDOW event is the entry point for the construction of the concrete
user interface. Upon receiving the event, an incremental process commences
that ultimately results in creating the representation of the UI. The presentation
object for a U2I window widget is a root container, i.e. it is a container widget that
does not have a parent. Upon receipt of the ADD_WINDOW event for a specific U2I
window widget, the following algorithm is applied:

1. Determine the appropriate presentation class for the U2I widget.
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2. Create the presentation widget.

3. Register the presentation widget as a child of its parent (if any).

4. Associate the U2I widget as peer with the presentation widget.

5. Register the presentation widget as listener for U2I widget events.

If the U2I widget is a container, its presentation widget in the concrete UI will
receive ADD_COMPONENT events, which will trigger the algorithm above once
again. This tree growth process continues until the UI has been populated on
the concrete UI side.

Modifications to the user interface can propagate from the conceptual UI to the
concrete UI by means of ADD_COMPONENT and REMOVE_COMPONENT events.

Perceptual reification

The process of creating the concrete UI results in all widgets in the concrete
UI having registered themselves with their U2I peer. This enables the widgets
at the AUI engine level to dispatch notification events whenever a semantic
operation has taken place at the conceptual level. Presentation widgets will
provide implementations for all supported notifications. Since events dispatched
from the AUI engine are PUIR-specific there is no risk that such event would
inadvertedly trigger non-perceptual functionality in the final widget.

7.4.2 Abstraction

The process of user interaction event handling, and the associated abstraction
transformation, is discussed in section 6.4.

7.4.3 In-process rendering agents

The experimental implementation provides an in-process rendering agent based
on AWT/Swing. Due to the fact that Swing is designed based on a separable
model architecture [48], the view and controller parts of the traditional MVC
architecture are tightly coupled into a user interface object. In order to ensure
that all user interaction semantics are handled by the AUI engine, as is required
in the PUIR framework, various levels of functionality had to be bypassed in
the Swing-based rendering agent. This was accomplished programmatically by
implementing the presentation classes as derivatives of their Swing counterparts.
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The event delivery mechanisms used in AWT and Swing allow events to be
intercepted, which also happens to be needed in order to provide for the
synchronised event handling within the PUIR framework. Unfortunately, it was
not possible to accomplish this cleanly in all cases, because of presumably
unintentional dependencies between the user interface object and the model
component.

An additional complication that was uncovered in the course of implementing the
Swing-based rendering agent relates to the implementation of pull-down menus
and single select lists (implemented in Swing as the JomboBox class). Swing
does not provide any functionality to determine the owner of a pop up window
(which is used to render the pull down menu content, and the selection list for
the combo box). Analysis of the inner workings of these components led to the
discovery that both the widget and the associated pop up retained references to
a shared model.

Complexities similar to those mentioned in this section are to be expected when
implementing a sophisticated novel framework on top of an existing toolkit.

7.4.4 External rendering agents

The framework for assistive technology support has been developed as well as
part of the experimental implementation. Given that the majority of AT solutions
(screen readers, . . . ) are implemented as stand alone programs, the design
was extended to include support for remote rendering agents. The overall
design of the Parallel User Interface Rendering framework lends itself well to this
extension because there is no actual expectation that a rendering agent provides
a representation10.

Figure 7.5 shows a schematic overview of the remote rendering agent support.
Rather than implementing a specific rendering agent to provide AT support, a
Remote User interface (RUI) stub rendering agent (RUI) was developed. This
stub behaves exactly the same as any actual rendering agent, though it’s purpose
is merely to capture events, and broadcast them to a message bus daemon
outside the application process. Assistive technology solutions can connect to
this message bus daemon, and register to receive the PUIR events. Furthermore,
because the events are passed through the message bus in such way that it is
possible to reconstruct them upon receipt, a rendering agent can be implemented
as an external process, and act upon the events in a manner that is identical to
an in-process rendering agent. From the application side, it is not known that one
or more rendering agents are external.

10This fact has actually been used quite extensively during the development of the framework, as a
mechanism for capturing events in a running system.
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Figure 7.5: Schematic overview of remote rendering agent support

7.5 Conclusions

In this chapter, the experimental implementation was presented. Based on the
design of the Parallel User Interface Rendering framework, various aspects of
the implementation were given special attention because during the course of the
development, several important pitfalls were encountered that are likely to prove
common complications when trying to implement this novel approach on existing
representation toolkits.

An analysis of the Java AWT/Swing event system was discussed extensively.
Based on captured data from various experiments, it was possible to determine
that while AWT and Swing generate (and process) a very large amount of events
during user interaction, most of these events are actually not relevant to the user
interaction semantics. The design of the PUIR framework makes it possible to
select only those specific events that can be transformed into semantic events
that the AUI engine will handle.
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While the description of the experimental implementation is not providing all detail,
it is sufficient to show that:

• The separation of perceptual and conceptual functionality in the PUIR
framework poses extra complications when implementing a rendering agent
because this separation is often not present or incomplete in existing
representation toolkits.

• Handling user interaction semantics at the conceptual level ensures that the
behaviour of UI elements is consistent across representations.

• Handling user interaction semantics at the conceptual level increases
efficiency in the overall system because event handling can be limited to
only those events that actually matter in terms of semantics.

• The Parallel User Interface Rendering approach is feasible for providing
alternative representations of graphical user interfaces.



Chapter 8

Evaluations

“The truth is rarely pure
and never simple.”

(Oscar Wilde, “The Importance of Being Earnest”, 1895)

The Parallel User Interface Rendering approach introduced in chapter 5, and
further specified in terms of its handling of user interaction in chapter 6 and the
implementation in chapter 7 is a novel approach to providing multimodal user
interfaces. The framework implements the concepts expressed in the thesis
statement introduced in section 1.3, yet the design remains to be validated.

8.1 Introduction

This chapter discusses the evaluation of the framework at two levels: internal and
external. The internal validation evaluates the work in terms of the requirements
derived from the state of the art as presented in section 4.6.2 and the criteria used
to evaluate the related works, introduced in section 4.2. A detailed description of
the evaluation and its results are presented in section 8.2.

The external validation involves testing with participants from the target user
group; in the case of the experimental implementation this would involve blind
users. The goal is to validate the approach in real-life testing scenarios, and to
conduct testing aimed at comparing the operation of the PUIR framework against
other works. A plan for external testing is presented in section 8.3.

209
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8.2 Internal validation

The internal validation of the Parallel User Interface Rendering consists of two
related validation components:

• An assessment of the design against a well defined set of requirements.
The requirements for the design have been elicited from the analysis of the
state of the art in chapter 4. Each of the requirements will be discussed in
section 8.2.1.

• An evaluation of the approach according to a set of criteria.
The state of the art analysis also evaluated each approach based on a set of
criteria to allow comparison between the various works. These criteria are
presented in section 4.2, and the PUIR framework will be evaluated based
on each of these criteria in section 8.2.2.

8.2.1 Assessment of the design against requirements

The requirements discussed in this section have been formulated based on the
identified shortcomings in the state of the art (section 4.6.1). The requirements
(section 4.6.2) come from two related groups of works: approaches towards GUI
accessibility, and multimodal user interface systems. The approach described in
the thesis statement (section 1.3) draws from both groups, e.g. concurrency from
existing accessibility solutions and specification of the UI at the abstract level from
multimodal UI systems.

Multimodal input and output

The Parallel User Interface Rendering approach is based on the notion of
concurrent representations of the user interface at the perceptual level. One of
the fundamental design principles for PUIR is providing concurrent presentation
of the user interface (section 5.2.4). Each presentation is provided by a rendering
agent that provides AUI reification within the context of one or more modalities
(section 5.3.4).

This requirement has been achieved.
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Separation of concerns

The design of the PUIR framework incorporates the separation of concerns
requirement in the separation between UI and application logic, which is
accomplished by means of abstract UI descriptions because such separation
is a technical requirement for abstract UIDLs (section 2.5.1). A second level
of separation is attained by implementing the user interaction semantics at
the AUI engine level, while delegating the presentation of the UI to rendering
agents (section 5.3.3). As such, separation of concerns is provided for with a
strict separation between application logic, user interaction semantics, and UI
presentation.

This requirement has been achieved.

Equivalent representations

Equivalence between the representations can be broken down as a combination
of static and dynamic coherence. The PUIR framework provides presentations
of the user interface based on an abstract UI description by means of a runtime
reification process (section 5.3.4). Every presentation for a given UI is created
based on the same abstract UI description, mapping elements in the AUI model
onto a CUI model whereby an abstract widget may be mapped onto one or more
concrete widgets, or alternatively multiple abstract widgets may be combined into
a single concrete widget. Regardless of the actual mapping, every abstract widget
will be represented in the concrete UI, and therefore also in the final UI. This
applies to all representations, and therefore static coherence is upheld between
them.

Per section 5.3.3, the AUI engine provides the implementation for all user
semantics, and therefore dynamic coherence is guaranteed. When user
interaction is modality-dependent (e.g. pointer devices in a 2D spatial field), the
rendering agent will translate the event into a semantic event that is passed to the
AUI engine for processing.

This requirement has been achieved.

User interface design that is independent of any modality

The design of the Parallel User Interface Rendering framework calls for the
specification of the user interface in abstract form, expressed in a UIDL
(section 5.3). The abstract UI description is by definition modality-independent.

This requirement has been achieved.
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Use of abstract user interface descriptions

The design of the Parallel User Interface Rendering framework calls for the
specification of the user interface in abstract form, expressed in a UIDL
(section 5.3).

This requirement has been achieved.

Runtime reification

In the PUIR framework, a user interface representation is provided by a rendering
agent that provides AUI reification within the context of one or more modalities
(section 5.3.4). The reification is done at runtime in order to be able to
support runtime selection of a rendering agent. The framework provides runtime
selection of rendering agents in recognition of the need to support assistive
technology solutions that are commonly implemented as standalone programs
(section 7.4.4).

This requirement has been achieved.

Concurrent representations

One of the fundamental design principles for the PUIR framework is the provision
of concurrent representations in support of closer collaboration between users,
especially those from different backgrounds in terms of abilities and/or needs
(sections 5.2.4 and 5.2.3).

This requirement has been achieved.

8.2.2 Evaluation of the work against state of the art criteria

The state of the art discussion presented in chapter 4 evaluated major projects
in the research field of HCI against a set of criteria presented in section 4.2. It is
only fair that the novel Parallel User Interface Rendering framework be evaluated
against the same set of criteria, in comparison with the related works. This section
provides the analysis of PUIR in function of those criteria.

The comparison of PUIR against four representative related works in terms of the
criteria is summarised in Table 8.1.
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Figure 8.1: URF diagram for PUIR

URF diagram

In the Parallel User Interface Rendering framework, the user interface design
yields an abstract UI description that provides the specification of the UI at
the abstract UI level. The AUI engine operates at this level, handling the user
interaction semantics in a modality-independent manner. The user interface
development model used in PUIR follows the Unified Reference Framework
diagram in Figure 8.1.

The presentation of the UI is handled by rendering agents that render the UI for
one or more specific modalities, using presentation toolkits to present the actual
renderings to the user. The process of creating the UI at runtime is an adaptation
process from the abstract level to the concrete level in the context of use for the
rendering agent. During the adaptation, modality-specific annotation information
may be used to assist the rendering agent in presenting the UI. Runtime reification
transforms the AUI description into a concrete UI representation, and the actual
rendering is presented to the user as a final UI by means of a modality-specific
presentation toolkit.

As shown in Figure 8.1, the reification process from AUI to FUI can take place
simultaneously in two different contexts of use, or in fact in any arbitrary number
of contexts of use. Contrary to other approaches, the PUIR framework keeps
operating at multiple levels of abstraction in the URF diagram throughout its life
cycle. While the presentation of the UI is handled at the final UI level, along
with possible transformation of modality-dependent user interaction events, the
processing of user interaction at the semantic level is handled at the abstract UI
level.
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Static and dynamic coherence

The assessment of the “Equivalent representations” requirement discussed in
section 8.2.1 provides the necessary evaluation of the PUIR framework in terms
of static and dynamic coherence. PUIR maintains static and dynamic coherence,
and in general equivalence between all representations.

Exploration in a non-visual interface

One of the most important requirements for a non-visual interface is the ability to
explore the user interface without interference with the application. The PUIR
framework provides rendering agents with the ability to request that the AUI
engine diverts all user interaction events to the agent (section 5.3.3, Re-routing
user interaction events). This effectively suspends all user interaction with the
application because the AUI engine simply forwards events to the requesting
rendering agent. For all intents and purposes, the AUI engine stops processing
user interaction until the rendering agent relinquishes control.

This mode is used to implement safe exploration because while the rendering
agent can act upon user interaction based on its own interpretation of the events,
no interaction with the application is possible. Rendering agents have access to
the actual UI representation and can therefore provide accurate information at all
times.

A second form of exploration is possible for rendering agents that provide context-
specific user interaction, i.e. agents that provide modality-dependent input. As
discussed in section 5.3.4 (User interaction), rendering agents can implement
an exploration mode based on context-specific user interaction, where the user
explores the user interface without suspending operations at the AUI engine level.
The exploration is still guaranteed to not cause any interaction with the UI.

Conveying semantic information in a non-visual interface

All semantic information and processing takes place at the level of the AUI engine,
which is the central source for rendering agents in presenting the user interface.
It is therefore guaranteed that rendering agents can convey semantic information.

Interaction in a non-visual interface

User interaction can be modality-independent (e.g. keyboard) or modality-
dependent (e.g. pointer device). Modality-independent user interaction events are



INTERNAL VALIDATION 215

transformed into semantic events at the AUI engine level and processed. Modality-
dependent events are pre-processed by the rendering agent that controls the
corresponding input device, filtering out any events that are not relevant in a
semantic context. Those events that are relevant are then transformed into
semantic events and passed on to the AUI engine for processing.

Rendering agents can therefore provide modality-specific forms of interaction
without the AUI engine needing to be aware. E.g. a rendering agent could
implement camera-based hand-gesture detection, translating the gestures into
equivalent operations, e.g. arrow key strokes, or for more complex gestures, text
input by means of sign language.

The rendering agent can in a similar fashion combine output and input modalities
to provide the user with specific modes of interaction. In the context of non-visual
representations, an example would be support for haptic devices.

CARE properties for input modalities

All user interaction processing is (eventually) handled at the level of the AUI
engine as semantic events, although some filtering and pre-processing may take
place at the rendering agent level for modality-dependent input. In this model,
“Equivalence” is provided for by virtue of the mapping of user interaction onto
a distinct set of semantic events. As a result of the user interaction event
processing that takes place for modality-dependent events, and the support for
context-specific interaction, the “Assignment” property is also supported.

At the current time, there is no specific support for “Redundancy” and “Comple-
mentarity” for input processing.

CARE properties for output modalities

All concurrent representations are equivalent by design, which ensures support
for “Equivalence”, and depending on the mode of operation, “Redundancy” is
provided for as would be the case when the visual representation is augmented
with an auditory representation as an assist.

The very design of the PUIR framework goes against the notion of “Assignment”
and “Complementarity” at the output level.
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Conceptual model

Because the PUIR framework operates based on a single abstract UI description
that is developed as the UI specification, it represents a single conceptual
model that is the basis for all representations. The chosen model in the PUIR
implementation is the metaphor of the physical office which is also the model for
the original GUI design. The target user survey discussed in chapter 3 has shown
that blind users tend to understand the conceptual model of the GUI rather well,
even if the interaction metaphors are not always appropriate. Since collaboration
depends quite heavily on the ability of participants to articulate concepts and
interactions on those concepts, it is important that the conceptual models
used by participants are reasonable consistent. Recognising the importance
of collaboration, the choice was made to implement a conceptual model that
everyone was reasonably familiar with.

It is important to note however that the overall design of the Parallel User Interface
Rendering framework could be used to implement a system based on other
conceptual models. The implementation of the AUI engine defines the actual
model that is used, and rendering agents must have matching concrete widgets
defined to represent the perceptual level of the UI based on the abstract widgets
in the AUI engine.

Concurrency

The assessment of the “Concurrent representations” requirement discussed in
section 8.2.1 provides the necessary evaluation of the PUIR framework in terms
of whether concurrency is provided for. The PUIR framework is designed to
provide concurrent representations.

Cost factors

The Parallel User Interface Rendering approach is based on abstract UI
descriptions that are processed at runtime. It provides a user interface
management component for applications. As such, in order for an application to
be able to benefit from the advantages that PUIR presents, it must be developed
specifically with PUIR as its UI component. It is therefore a specialised software
component, and carries the implied cost factors associated with specialised
toolkits.

The Parallel User Interface Rendering framework will be made available as free
software to all interested parties upon completion of the doctoral work presented
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in this dissertation, to facilitate contunuing development and in order for the cost
factors to be kept at a minimum.

8.3 External validation

Aside from the internal validation of the PUIR framework design, presented in
section 8.2, a practical evaluation is important as well. Only through real-world
testing can the approach truly be assessed in comparison to other approaches
and by itself in terms of functionality and usability.

The external validation comprises three different test scenarios, presented in the
following three sections.

8.3.1 Test scenario 1: Basic functionality

The basic functionality test evaluates the functionality of the PUIR framework as
an accessibility solution for non-visual operation of a user interface. It is intended
to be conducted with test subjects who are totally blind, who have at least 5
years of experience operating a computer system with the help of a screen reader,
and who do not have any experience working with the PUIR framework. For
the purpose of this test, all test subjects are expected to perform the test on a
similar computing environment, be it MS Windows, Linux, MacOS, . . . to rule out
any influences of the underlying system. The current implementation of PUIR is
written in Java, and all systems should have the same version of Java installed.

The test is conducted in two parts:

• Subjects do not have any prior knowledge working with PUIR.

• Subjects have been given 15 minutes to freely explore the test application,
during which time they may ask questions to learn more about navigation
and operation of UI elements in PUIR. Then repeat the entire test.

Three categories of measures will be collected in this test for both parts
separately:

• Quantitative: Time to completion and error count

• Qualitative: Workload, by means of the NASA-Task Load Index (TLX) [62,
61]
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Figure 8.2: User interface of the PUIRDemo application

• Qualitative: Usability, by means of the IBM Post-Study System Usability
Questionnaire (PSSUQ) [88]

The test consists of the sample PUIRDemo application included in the PUIR
dsitribution. Figure 8.2 shows the user interface presented by this application.

The following tasks are to be performed, in order. The tasks should be given,
one at a time, not moving on to the next until the current task has either been
completed, or the test subject indicates that he or she is unable to perform the
task.

1. Activate “Button 2”

2. Activate “Button 3”

3. Activate “Button 1”

4. Select “20” in edit select list “list2”
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5. Write in “45” in edit select list “list2”

6. Type your name in the “name” text field

7. Open the “View” menu from the menu bar

8. Open the “Toolbars” submenu

9. Toggle the “Navigation” menu item

10. Select “Exit” from the “File” menu

8.3.2 Test scenario 2: Basic comparison

The basic comparison test compares the performance of the PUIR framework
as an accessibility solution for non-visual operation of a user interface with an
established commmercial screen reader. It is intended to be conducted with
test subjects who are totally blind, who have at least 5 years of experience
operating a computer system with the help of the screen reader used for this
comparison. Experience with PUIR is not required, although it is recommended
that inexperienced subjects be provided with ample time to learn navigation prior
to the testing. For the purpose of this test, all test subjects are expected to perform
the test on a similar computing environment, be it MS Windows, Linux, MacOS, . . .
to rule out any influences of the underlying system. The current implementation
of PUIR is written in Java, and all systems should have the same version of Java
installed.

The test is conducted with two groups of subjects of equal size:

• Subjects who will perform the test using PUIR

• Subjects who will perform the test using JAWS for Windows

Three categories of measures will be collected in this test:

• Quantitative: Time to completion and error count

• Qualitative: Workload, by means of the NASA-Task Load Index (TLX) [62,
61]

• Qualitative: Usability, by means of the IBM Post-Study System Usability
Questionnaire (PSSUQ) [88]
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The test consists of the sample PUIRDemo application included in the PUIR
dsitribution. Figure 8.2 shows the user interface presented by this application.

The following tasks are to be performed, in order. The tasks should be given,
one at a time, not moving on to the next until the current task has either been
completed, or the test subject indicates that he or she is unable to perform the
task.

1. Open the “Test” menu from the menu bar

2. Select the “6th” menu item

3. Select “apa” from select list “list1”

4. Activate “Button 1”

5. Move “slider” to value 18

6. Activate “Button 3”

7. Open the “View” menu from the menu bar

8. Toggle the “Print view” menu item

9. Open the “File” menu

10. Select “Exit” from the “File” menu

8.3.3 Test scenario 3: Accessibility API

The accessibility API test evaluates the functionality of an application developed
using the PUIR framework against an equivalent application developed with
a conventional toolkit that provides an accessibility API. It is intended to
be conducted with test subjects who are totally blind, who have at least 5
years of experience operating a computer system with the help of a screen
reader. Experience with PUIR is not required, although it is recommended that
inexperienced subjects be provided with ample time to learn navigation prior to
the testing. For the purpose of this test, all test subjects are expected to perform
the test on a similar computing environment, be it MS Windows, Linux, MacOS, . . .
to rule out any influences of the underlying system. The current implementation
of PUIR is written in Java, and all systems should have the same version of Java
installed.

The test is conducted with two groups of subjects of equal size:

• Subjects who will perform the test using the PUIRDemo application
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• Subjects who will perform the test using the PUIRJavaDemo application and
JAWS for Windows as screen reader

Three categories of measures will be collected in this test for both parts
separately:

• Quantitative: Time to completion and error count

• Qualitative: Workload, by means of the NASA-Task Load Index (TLX) [62,
61]

• Qualitative: Usability, by means of the IBM Post-Study System Usability
Questionnaire (PSSUQ) [88]

The test consists of the sample PUIRDemo and PUIRJavaDemo applications
included in the PUIR dsitribution. The PUIRDemo application implements its
UI based on the PUIR framework, whereas PUIRJavaDemo implements the
equivalent UI using Java Swing1. Figure 8.2 shows the user interface presented
by this application.

The following tasks are to be performed, in order. The tasks should be given,
one at a time, not moving on to the next until the current task has either been
completed, or the test subject indicates that he or she is unable to perform the
task.

1. Activate “Button 2”

2. Activate “Button 3”

3. Activate “Button 1”

4. Select “20” in edit select list “list2”

5. Write in “45” in edit select list “list2”

6. Type your name in the “name” text field

7. Open the “View” menu from the menu bar

8. Open the “Toolbars” submenu

9. Toggle the “Print view” menu item

10. Select “Exit” from the “File” menu
1No special accessibility API calls are made in the PUIRJavaDemo implementation, so any

accessibility features observed are provided by the Java classes or the system.
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8.4 Conclusions

Validation of the Parallel User Interface Rendering framework is a very important
part of this work, and in this chapter both internal and external validation were
presented.

The internal validation (section 8.2) comprises two components: assessment
against the established requirements, and evaluation according to the state
of the art criteria. Analysis of the design presented in this work shows that
all requirements were met. The Parallel User Interface Rendering framework
provides the functionality proposed in the thesis statement in section 1.3, further
motivated in section 1.3.1, specifically:

• Multiple representations

• Parallel presentation

• Functionally equivalent representations

The PUIR framework is able to provide the functionality needed to engage in
meaningful collaboration where all participants can observe the user interface
with an equivalent representation, and with equivalent user interaction semantics.
In comparison with existing approaches to accessibility and multimodal user
interfaces, as evaluated based on the criteria used for the state of the art analysis,
the PUIR framework is capable of offering a dimension to accessibility that is
mostly lacking.

The external validation portion of this chapter provides a plan for conducting
practical tests in order to compare the PUIR framework to other approaches, and
to assess its overall usability. Given that the external validation could not be
performed within the scope of this work, its implementation is left as an important
future work.





Chapter 9

Conclusion

“When it comes to the future,
there are three kinds of people:

those who let it happen,
those who make it happen,

and those who wonder what happened.”
(John M. Richardson, Jr.)

The main objective of the research presented in this doctoral dissertation was to
provide equivalent representations of multimodal user interfaces through parallel
rendering. Specifically, the underlying goal was to introduce a novel approach to
making GUIs accessible to the blind.

Several contributions were developed throughout the work towards completing
the main objective. Section 9.1 evaluates each contribution, and presents the
main objective based on the individual contributions. The chapter concludes in
section 9.2 with thoughts and insights towards future work.

9.1 Contributions

Underlying all research into GUI accessibility is the very definition of the graphical
user interface. The very first objective was to re-interpret the Graphical User
Interface concept in light of many years of continuing research. Researchers
have come to disagree on what constitutes a GUI, and what components should
be retained lest one abandon the concept altogether. Especially the “Desktop”
metaphor that has long been synonymous with GUI has come under attack
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due to accessibility concerns, and some have deemed it inappropriate for blind
individuals. The research presented in chapter 2 revives the original design
principles behind the GUI concept, and shows that those principles are not only
still valid, but there is no basis for deeming them inappropriate for blind individuals.
While the original target groups may not have included the blind, the concept has
certainly become commonplace. David Smith wrote in personal communication
[129]:

“We realized at the start that it would be impossible (and in any case
undesirable) to bring [executives and their staffs] into the computer’s
world and teach them computer concepts and computer ways of doing
things. Instead we would have to bring the computer into their world
and teach it office concepts and ways of working. We wanted the
users to be able to continue with their familiar methodologies. The
computer should augment and facilitate those methodologies, not
replace them.”

The first objective was achieved through research and analysis, presented in
chapter 2.

The second objective was to provide validation for the “access to GUIs – not
graphical screens” argument phrased by Edwards, Mynatt, and Stockton in
their 1994 paper [45]. While the authors did not provide research-based validation
for their claim, re-analysis of their position in view of the revived design principles
behind the GUI concept and continued research does in fact provide clear support
for the insight that the screen image is merely a visual representation of a powerful
underlying model, and that accessibility should be focused on developing off
screen models based on the UI structure rather than its visualisation.

The second objective was achieved through research and analysis, presented in
chapter 2.

The third objective was to provide an updated statement of focus for providing
access to GUIs: provide access to the underlying conceptual user interface,

not its visual representation. By applying established research on the principle
of separation of concerns and the various layers of user interface design to the
problem of providing access to GUIs for blind individuals, it is possible to further
refine the Edwards/Mynatt/Stockton paradigm shift. Research in UI design and
development indicates that the accessibility problem should shift focus from the
perceptual layer to the conceptual layer.

The third objective was achieved through research and analysis, presented in
chapter 2.

The fourth objective was to conduct a survey to determine familiarity of WIMP-

based user interface elements, and the accuracy of mental models for blind
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users. Although an extensive amount of research in past years has been based
on the assumption that the underlying metaphor for the original GUI design is not
appropriate for blind users, this has mostly been based on opinion rather than
analysis of user feedback. The survey presented in chapter 3 augments a study
by Kurniawan, et al. concerning the use of mental models [80, 81], and shows that
blind users are certainly familiar with commonly used user interface elements, and
the metaphors they are based on. The study also shows that the accuracy of the
mental model is very dependent upon the information the blind user is able to
obtain. Descriptions by sighted peers do not necessarily improve the accuracy of
the mental model.

The fourth objective was achieved through analysis of survey results, presented
in chapter 3.

The fifth objective was to design a framework for concurrent representations

of the same conceptual model in different modalities. Based on the
earlier objectives and extensive research, a novel approach to provide UI
representations was developed. By introducing quite revolutionary approaches to
how representations are created, and by shifting the user interaction semantics
to the level of the conceptual model rather than a concrete user interface that is
dependent upon a specific modality, it is shown that concurrent representations
can be provided that are all a reification of the same underlying conceptual model.

The fifth objective was achieved through research and novel design, presented in
chapter 5.

The sixth objective aimed to unify processing of user interaction at a semantic

level. The goal of the objective was to centralise all user interaction processing
in order to ensure consistent semantics across all representations. Novel
techniques to approach this problem were introduced in chapter 6, and based
on important insights concerning separation of concerns, and context-based
selection and transformation of user interaction events, unified processing has
been shown to be feasible.

The sixth objective was achieved through research and design, presented in
chapter 6.

The seventh objective was to develop an experimental implementation to val-

idate the designs underlying the PUIR framework. While an implementation of
the overall design has been developed, it is possibly too early to conclude that the
Parallel User Interface Rendering approach works in general. The experiment has
certainly provided invaluable information concerning the complexities surrounding
implementing the PUIR framework on top of existing representation toolkits.

The seventh objective was in part achieved through research and development,
presented in chapter 7.
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The final objective consisted of a validation of the approach, by means of both
internal and external validation. The evaluation of the Parallel User Interface
Rendering framework shows that all requirements are met, and it compares well
to the state of the art based on the criteria used in chapter 4. External validation
was not performed within the scope of this work, but a test plan comprising three
test scenarios has been presented in chapter 8.

The internal validation component of the final objective was achieved through
analysis of the work presented in this dissertation as discussed in chapter 8. The
external validation plan is presented in chapter 8 as well, although its execution
is left as future work.

9.2 Future work

As a first and important future work, the external validation outlined in section 8.3
is to be conducted, and its results analyzed. The real user validation testing
is crucial because it will provide important information about the usability and
perceived workload impact.

As mentioned in chapter 3, the survey scoring was done solely by the author and
while care was taken to avoid introducing bias, there is no objective measurement
on the accuracy of the scoring. In order for the survey to be more reliable, and
be a more valuable contribution, the scoring should be conducted with multiple
scorers (not including the author). The survey results should include the tabulated
scores of all scorers, and inter-scorer reliability measurements.

The Parallel User Interface Rendering approach can contribute to the field of
accessibility well beyond the immediate goal of providing non-visual access to
GUIs [150, 149]. The generic approach behind the design of the PUIR framework
lends itself well to developing alternative rendering agents in support of other
contexts of use. It is however important to note that the design principle of a
consistent conceptual model (see section 5.2.1) implies that all users must be
able to understand the concepts that it is based upon.

Especially individuals with cognitive impairments may have difficulties mastering
the interaction semantics as they relate to the metaphor of the physical
office1. Sutcliffe et al. describe the need for quite individual customisation of
user interfaces for individuals with cognitive impairments [138], which means
that although the underlying conceptual model may remain appropriate, the
metaphorical user interface will almost certainly require changes. The PUIR
approach can still be used in this case, as a means to provide alternative UI

1As discussed in section 2.2.3, the “physical office” metaphor was found to be most appropriate as
the underlying concept of the Graphical User Interface.
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representations of the customised MUI. Doing so will offer the important benefit
of collaboration between groups of users with different abilities (see section 5.2.3).

It should be noted that although the intent of the design implies that a rendering
agent provide a truly equivalent representation of the user interface, nothing
actually prevents the development of a partial rendering agent. One potential
use could be the implementation of a rendering agent that visualises text through
computer generated sign language. Alternatively, a rendering agent can be
developed to manage the input modality of camera-based runtime translation
from sign language to text, which is then posted to the AUI engine as the
equivalent of keyboard input.

Another area where the PUIR framework can contribute is automated testing of
applications, by providing a way to interact with the application in a program-
matical way without any dependency on a specific GUI toolkit [150, 149]. This
is a significant advantage because all too often automated testing fails due
to cosmetic changes in the GUI or due to graphical toolkit changes2. Even
small incompatible changes can impact automated GUI testing tools significantly
because they tend to depend on details of the actual visual representation. The
PUIR framework may alleviate the impact of such changes altogether.

Going forward, the Parallel User Interface Rendering approach is unlikely to
progress towards any acceptance from the development community unless its
requirements for UI descriptions can be met with a well established UIDL.

An important area of UI design that has not been addressed in this work is
the inclusion of temporal relations within the UI. While no effort has been made
towards a formal design for this feature, it would likely take the shape of a SMIL-
alike specification of temporal relations [164]. Rendering agents could provide
the AUI engine with limitations in their rendering capabilities, based on the needs
of the users. One might envision a process where limitations from the rendering
agents are matched with constraints imposed by the UI.

Parallel user Interface Rendering is a very novel approach to implementing and
presenting user interfaces. As it is developed further, new horizons may open.

2While it is common practice in software development to perform compatibility testing for
components such as graphical toolkits, it is also common for this level of testing to be insufficient.





Appendix A

Target user survey

This appendix provides further details on the target user survey described in
Chapter 3. Section A.1 provides the questionnaire for the survey. This is followed
by a description of the scoring system in section A.2. The scored results are
presented in tables A.2 and A.3.

A.1 Questionnaire

The following list of questions was sent to each prospective respondent, along
with a short introductory note explaining that the survey was being conducted
in the context of completing a doctorate concerning accessibility of graphical
user interfaces. It also explained that the survey is targetted at any totally blind
individual. The only instruction provided stated that the objective was to collect
brief information on how totally blind users perceive elements of a graphical user
interface, and what they mean to them.

Demographics

A. Gender
B. Age
C. Years of experience with computers
D. Job (or equivalent)
E. Blind since (if since birth, write ’birth’)
F. Braille, Speech Synthesizer, or Both

Survey
1. Briefly explain what a ’window’ in a user interface is, from your

perspective?
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2. Briefly explain what a ’button’ in a user interface is, from your
perspective?

3. Briefly explain the ’desktop’ of a GUI environment, from your
perspective?

4. (a) Do you find yourself exploring the overall layout and content of a
user interface before you interact with it?

(b) If so, what kind of things do you look for?
5. (a) Do you find yourself creating a mental image of the user interface

as your explore it?
(b) If so, what does that mental image look like from a high level

perspective (not much detail)? What are the main components of
the mental image?

6. (a) Do you ever have a sighted person describe the user interface for
you?

(b) If so, what kinds of information do you ask for?
(c) If so, how well do you feel sighted people describe user interfaces

for you?
(d) What is your most common complaint about people describing

user interface to you?
(e) What stands out with the best descriptions of user interfaces that

sighted people have given you?
7. Does it help you to know what user interface elements look like

visually, i.e. as a way to make it easier for you to interact with the
user interface?

8. (a) Are there any user interface elements in graphical user interfaces
that you have found to be difficult to understand in terms of how
to interact with them?

(b) If so, please list the top three difficult elements, and briefly explain
why you felt each was difficult?

A.2 Scoring

In order to make analysis of the survey results easier, all survey responses are
scored numerically based on the written responses. In some cases, multiple
questionnaire items are combined into a single score. The remainder of this
section provides a description for each of the items and how they are scored.
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A.2.1 User interface elements/concepts: Window, Button, and
Desktop

These items are derived directly from questions 1 through 3 in the survey
questionnaire. The goal is to determine whether a specific GUI element/concept
is considered to be perceptual or conceptual in nature by the respondent. A score
is assigned to the response based on its textual content, interpreted in terms of
it being predominantly perceptual or conceptual. The following 5-point scoring
scale is used:

1. Very perceptual: The respondent desccribes the UI element or concept
entirely in terms of presentation characteristics such as shape, size,
location, layout, . . . The element or concept is described based on its ”Look
& Feel”.

2. Somewhat perceptual: The respondent describes the UI element or
concept mostly in terms of presentation characteristics.

3. Both perceptual and conceptual: The description of the UI element or
concept is a relatively even mix of presentation characteristics and user
interaction semantics.

4. Somewhat conceptual: The respondent describes the UI element or con-
cept mostly in terms of the user interaction semantics that are associated
with it.

5. Very conceptual: The respondent describes the UI element or concept
entirely in terms of semantics, i.e. in terms of the functionality associated
with the element or concept. The description is not concerned with the
outward appearance of the element or concept, but rather with how one
interacts with it and/or what it does.

It is important to consider that all participants in this survey are blind, and that
blindness in the context of this work implies a total lack of usable vision (see
section 1.2.2). It is therefore reasonable to conclude that respondents who
describe the UI element or concept with significant perceptual detail are not
drawing on information obtained from their own observations of the user interface
(except for participants who became blind later in life). Instead, their information
typically comes from another source, such as training they may have received, or
descriptions provided by sighted peers.
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A.2.2 The importance of knowing the UI layout

This item is derived from the responses to questions 4(a), 4(b), 5(b), and
6(b) in the questionnaire. The underlying statement for which agreement or
disagreement is scored here is:

”The (perceptual) layout of the user interface is important in terms of
accessibility and usability.”

The following 5-point scoring scale is used:

1. Strongly disagree

2. Disagree

3. Neither disagree or agree

4. Agree

5. Strongly agree

A.2.3 The significance of a mental model

This item is derived from the responses to questions 5(a), 5(b), 7, 8(a), and
8(b) in the questionnaire. The underlying statement for which agreement or
disagreement is scored here is:

”My interactions with the user interface are based on a mental model
of the UI that I created.”

The following 5-point scoring scale is used:

1. Strongly disagree

2. Disagree

3. Neither disagree or agree

4. Agree

5. Strongly agree



SCORING 235

A.2.4 The usefulness of descriptions by a sighted peer

This item is derived from the responses to questions 6(a), 6(b), 6(c), 6(d), and
6(e) in the questionnaire. The underlying statement for which agreement or
disagreement is scored is:

”A verbal description of the user interface by a sighted person is
important to gaining an understanding about how to interact with the
UI.”

The following 5-point scoring scale is used:

1. Strongly disagree

2. Disagree

3. Neither disagree or agree

4. Agree

5. Strongly agree

A.2.5 What type of mental model is used?

This item is derived from the responses to all questions in the questionnaire,
and is based on the perspective expressed in the responses. Kurniawan, et
al. surveyed visually impaired users in view of how they use mental models for
interacting in a graphical user environment, and identified three categories of
mental models [80, 81]:

• Structural: Models in this category are characterised by a strong emphasis
on how elements in the UI are arranged, i.e. the layout of the UI. In their
study, three out of five participants were identified as using a structural
mental model.

• Functional: These models are based on sequences of operations and
commands, independent from the on-screen configuration of the UI. One
participant was identified as using a functional mental model.

• Hybrid : Models in this category are based on both structural and functional
information. One participant was identified as using a hybrid model.
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Appendix B

AUI Widgets

This appendix provides a description of the AUI widgets that are part of the
Parallel User Interface Rendering framework as discussed in this dissertation.
For production development purposes, additional widgets would likely be needed
in support of more complex user interfaces.

The first section describes the container widgets, whereas the second section
provides information about regular component widgets.

B.1 Containers

Container widgets are components that contain other components, for the
purpose of logical grouping or to augment the functionality of the contained
components with some all-encompassing functionality (such as enforcing mutual
exclusion on a group of selectable components).

Group

The Group widget is the most basic of all containers. It is commonly used as
a logical encapsulation of a set of widgets. Grouping of widgets can be used
to enforce a specific focus traversal order, because the widgets inside a group
are traversed prior to the next sibling of the group, as required by the depth-first
traversal algorithm.

User interaction:
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• Container : Adding or removing components

Menu

The Menu widget is a container for menu items and sub-menus. It can contain any
combination of regular selectable menu items, toggles, sub-menus, and mutex
groups. Also, any part of the content can be encapsulated as a logical group.

A menu belongs either to the menu bar on a window, or to another menu (as a
sub-menu). When a menu has not been selected, a labelled placeholder is used
to represent the closed (hidden) menu. When a menu is selected, its content is
made visible.

User interaction:

• Container : Adding or removing menu items or sub-menus.

• Focus: Prerequisite for the Visibility operations, for user interaction that is
not explicitly associated with a specific widget.

• Visibility : When the menu is not visible, show a placeholder label; when the
menu is visible, display the menu content as well.

Menu bar

The Menu Bar widget is an optional component of a window, encapsulating a
group of menus. The menu bar and its content are not part of the regular focus
traversal chain for the window, and instead the menus form their own chain,
allowing for basic first, last, previous and next operations.

The Menu Bar widget is essentially a specialised Mutex widget, ensuring that
only one menu can be selected at any given time.

Only one Menu Bar widget can exist per window.

User interaction:

• Container : Adding or removing Menu widgets.
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Mutex

A Mutex widget is a special form of the Group widget, enforcing mutual exclusion
for Selection operations on its content widgets, i.e. ensuring that only one
component can be selected at any given time.

Only Toggle widgets can be added as components in a mutex group.

User interaction:

• Container : Adding or removing Toggle widgets.

Status bar

The Status Bar widget is an optional component of a window, commonly used to
communicate status information about the application to the user. In addition, it
can also contain non-container widgets. This functionality is sometimes used
to present additional information, or to provide convenient access to specific
functionality1 in the application.

Only one Status Bar widget can exist per window.

User interaction:

• Container : Adding or removing components.

• ValueChange: Modifying the status message for the widget. This is not
functionality that allows the user to modify the message, but rather for the
application to alert the user of the current status.

Tool bar

A Tool Bar widget is a logical group of components, that can only be added to a
Window widget. The content of a Tool Bar widget is not included in the regular
focus traversal chain for the window. Instead, each Tool Bar widget manages its
own focus traversal chain.

User interaction:

• Container : Adding or removing components.

1This is often referred to as ”shortcuts”, ”quicklinks”, or ”quick launch icons”.
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Window

A Window widget is the root of a self-contained portion of the user interface of an
application. It can optionally contain a menu bar, a status bar, and one or more
tool bars. More importantly, it must contain a Group widget. This group is the
container for all regular content in the window.

User interaction:

• Container : Adding or removing components. Note that this operation is
used for adding all components, including the optional menu bar, optional
status bar, optional tool bars, and the mandatory content group.

• Focus: Indicate whether the window should be presented with context-free
user input. Note that only one window can ever be the recipient for context-
free user input at any given time. When a window has focus, there will
always be a widget within that window that holds in-window focus. When
a window loses focus, the last focused widget is remembered so that when
window focus is regained, the same widget will be given focus. This ensures
that in-window focus is essentially dormant when the window does not have
focus.

• Visibility : Creation of the window (becoming visible), and destruction of the
window (being removed from view). Regardless of the implementation, the
semantics of these operations should be that hiding the window and then
showing it again is equivalent to destroying the window, and then recreating
it. Any existing state is expected to be lost.

B.2 Components

Components are widgets that allow the user to interact with the application.
They provider semantic operations and information. The functionality for the
widgets is implemented at the AUI engine level, to ensure coherence across all
representations.

Button

The Button widget is one of the most basic AUI elements. It provides the user
with a control that can be activated as a trigger. Unlike the Toggle widget, it does
not retain state. Instead, it resets immediately after being activated, ready to be
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activated once more. A representative real world example can be found in the
switch of a doorbell.

User interaction:

• Focus: Indicate whether user input that is not explicitly associated with a
specific widget should be directed to this widget.

• Action: This operation triggers the functionality that is associated with this
button.

Edit select list

An Edit Select List widget enables the user to select a single value from a
provided list of options, or to write in their own value. As a result of the combined
dual function provided by this widget, specific operational semantics apply. If,
after a value has been written in, the user selects any of the predefined values
in the associated list, the written in value will be replaced with the newly selected
value.

It is valid for the default written in value to be different from any of the predefined
values in the associated list.

Conceptually, the Edit Select List widget is a text entry field that offers the option
to select a predefined value from a list. The options list is envisioned to not be
presented to the user unless requested (using a Visibility operation), because it
has no use unless the user is selecting a value. For more information about the
operation of the text field portion, refer to the Text Field widget below.

The Edit Select List widget is a derivative of the Text Field widget.

User interaction:

• Focus: Indicate whether user input that is not explicitly associated with a
specific widget should be directed to this widget.

• Selection: Select a specific item from a predefined list of items.

• TextCaret: Indicate the position in the text that the user input is focusing on,
i.e. set the cursor position. This is the position where further user interaction
will be based on.

• TextSelection: Select part of the text for further operation(s), and use it as
a form of restricted focus. A text selection can be an entire line of text, a
specific word, or text between two specific character locations.
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• ValueChange: Any changes to the text constitute a value change operation.

• Action: This operation finalises the value of the widget, either as an item
selected from the list of options, or as a written in value, and triggers the
functionality that is associated with this widget.

• Visibility : The options list is hidden until it is needed. The visibility of the
options list is handled by this operation.

Menu item

The Menu Item widget is equivalent to the Button widget, aside from the fact that
the former widget can only occur in menus, whereas the latter is a content widget.

Menu items in a menu can be envisioned as a doorbell panel at an apartment
complex, where one selects a specific doorbell.

User interaction:

• Focus: Indicate whether user input that is not explicitly associated with a
specific widget should be directed to this widget.

• Action: This operation triggers the functionality that is associated with this
menu item.

Multi select list

A Multi Select List widget enables the user to select any number of values from
a predefined list of options. Through a series of manipulations, the user defines
a (possible non-contiguous) subset of the available values, and when completed,
an Action operation finalises the selection.

User interaction:

• Focus: Indicate whether user input that is not explicitly associated with a
specific widget should be directed to this widget.

• SetSelection: Define a possibly non-contiguous subset of values across the
predefined list of options.

• Action: This operation finalises the value set of the widget, and triggers the
functionality that is associated with this widget.
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Single select list

An Single Select List widget enables the user to select a single value from a
provided list of options.

Conceptually, the Single Select List widget is a button with a specific default
value as label text, chosen from the predefined list of values. The options list
is envisioned not to be presented to the user unless requested (using a Visibility
operation), because it has no use unless the user is selecting a value.

The Single Select List widget is a derivative of the Edit Select List widget.

User interaction:

• Focus: Indicate whether user input that is not explicitly associated with a
specific widget should be directed to this widget.

• Selection: Select a specific item from a predefined list of items.

• Action: This operation finalises the item selection from the list of options,
and triggers the functionality that is associated with this widget.

• Visibility : The options list is hidden until it is needed. The visibility of the
options list is handled by this operation.

Text

The Text widget is arguably not strictly a user interaction element because it’s
purpose is to display a predefined text without any user interaction taking place.
However, the content of the text can be updated by the application or authorised
entities. It is therefore prudent to provide support for alerting the user that the
value of the widget has changed.

User interaction:

• ValueChange: Indicate that the value of the widget has changed.

Text field

The Text Field widget provides the user with a text entry field that provides text
editing features for the user’s convenience. Text input operates with a more
localised notion of focus, known as the cursor position. This is the focal point
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of the user’s attention while interacting with the text in this widget. It indicates
where modifications and additions to the text will take place.

Aside from adding characters to and removing characters from the text entry field,
the widget also provides the ability to manipulate arbitrary contiguous subsection
of the text. This is done by first selecting the character range that will be involved
in the text editing operation, and then performing the text editing action on that
character range.

User interaction:

• Focus: Indicate whether user input that is not explicitly associated with a
specific widget should be directed to this widget.

• TextCaret: Indicate the position in the text that the user input is focusing on,
i.e. set the cursor position. This is the position where further user interaction
will be based on.

• TextSelection: Select part of the text for further operation(s), and use it as
a form of restricted focus. A text selection can be an entire line of text, a
specific word, or text between two specific character locations.

• ValueChange: Any changes to the text constitute a value change operation.

• Action: This operation finalises the value of the text field, and triggers the
functionality that is associated with this widget.

Toggle

The Toggle widget is one of the most basic AUI elements. It provides the user with
a control that alternates between two states with every activation. It is equivalent
to on/off controls on appliances, e.g. a speaker on/off selector on an amplifier.

User interaction:

• Focus: Indicate whether user input that is not explicitly associated with a
specific widget should be directed to this widget.

• Action: This operation triggers toggling the state of the widget between
enabled and disabled.

Valuator

The Valuator widget enables the user to select any integer numeric value within
a predefined (min, max) interval. The value range may be in either ascending or
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descending order, and support is provided for stepping through the value range
either using single steps, or by means of 10% steps.

User interaction:

• Focus: Indicate whether user input that is not explicitly associated with a
specific widget should be directed to this widget.

• ValueChange: Indicate that the value of the widget has changed.

• Action: This operation finalises the value of the valuator, and triggers the
functionality that is associated with this widget.





Appendix C

PUIR UI Description

Language DTD

This appendix contains the Document Type Definition (DTD) for the PUIR UI
Description Language (PUDL). It defines the structure and syntax of the UIDL
that is used to provide UI descriptions in the Parallel User Interface Rendering
framework.

< !−−
| F i l e : pudl . dtd
| Author : K r i s Van Hees <kr is@alchar . org>
|
| $ I d : pudl . dtd , v 1.2 2012/01/16 05 :18:21 aed i l Exp $
|
| This document prov ides the Document Type De f i n i t i o n
| (DTD) f o r UI desc r i p t i ons i n the PUIR framework .
|
| A PUIR UI desc r i p t i on i s an XML document , and i t must
| t he r e f o r e begin wi th a XML dec l a r a t i o n :
| <?xml version=" 1.0 " encoding="UTF=8 " ?>
| This i s to be fo l lowed by a document type dec l a r a t i o n :
| < !DOCTYPE PUIR SYSTEM

| " h t t p : / /www. a lchar . org / p u i r / d l / pudl . dtd ">
−−>

< !−−
| The ’named ’ e n t i t y def ines a t t r i b u t e s f o r elements
| t ha t are addressable by a s p e c i f i c ’ i d ’ and tha t have
| a d isp lay ’name ’ assoc iated wi th them .

249
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−−>
< ! ENTITY % named

" i d CDATA #REQUIRED
name CDATA #IMPLIED "

>

< !−−
| The ’PUIR ’ element encapsulates the en t i r e UI f o r the
| a pp l i c a t i o n . I t must conta in one or more window
| widgets .

−−>
< !ELEMENT PUIR ( window +) >

< !−−
| The ’ window ’ widget encapsulates a s p e c i f i c s e l f−
| conta ined po r t i on of the app l i c a t i o n UI . I t i s the
| roo t o f a UI ob jec t h ie ra r chy .
|
| A window can conta in an op t i ona l menu bar , zero or
| more too lbars , a group of content widgets , and an
| op t i ona l s ta tus bar .
|
| The ’ window ’ widget i s a named widget . I t a lso has
| an op t i ona l a t t r i b u t e ’ v i s i b l e ’ to i nd i c a t e whether
| the window should be presented to the user ( d e f a u l t :
| t r ue ) .

−−>
< !ELEMENT window ( menuBar ? , too lBa r * , group , s ta tusBar ? ,

agent In fo * ) >
< ! ATTLIST window

%named ;
v i s i b l e ( t r ue | f a l s e ) " t r ue "

>

< !−−
| The ’ menuBar ’ widget encapsulates a c o l l e c t i o n of one
| or more menus .

−−>
< !ELEMENT menuBar (menu+ , agent In fo * ) >

< !−−
| The ’menu ’ widget groups f u n c t i o n a l i t y together under
| a s i ng l e se lec tab le item . I t s content i s made v i s i b l e
| when the menu i s se lec ted .
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|
| The widget conta ins one or more o f :
| menu − sub−menu
| menuGroup − l o g i c a l grouping of menu items
| i tem − r egu la r se lec tab le menu item
| togg le − switch−s t y l e con t r o l ( on / o f f )
| mutex − mutual exc lus ive grouping of togg les
|
| The ’ window ’ widget i s a named widget . I t a lso has
| an op t i ona l a t t r i b u t e ’ key ’ to dec lare an op t i ona l
| key−s t roke t ha t can be used to ac t i v a t e the menu
| ( f o r keyboard nav iga t ion ) .

−−>
< !ELEMENT menu ( ( menu | menuGroup | i tem | togg le |

mutex )+ , agent In fo * ) >
< ! ATTLIST menu

%named ;
key CDATA #IMPLIED

>

< !−−
| The ’ menuGroup ’ widget groups f u n c t i o n a l i t y together
| w i t h i n a menu or an enc los ing group . The content i s
| t y p i c a l l y v i s i b l e i f the enc los ing menu i s v i s i b l e .
|
| The widget conta ins one or more o f :
| menu − sub−menu
| menuGroup − l o g i c a l grouping of menu items
| i tem − r egu la r se lec tab le menu item
| togg le − switch−s t y l e con t r o l ( on / o f f )
| mutex − mutual exc lus ive grouping of togg les

−−>
< !ELEMENT menuGroup ( ( menu | menuGroup | i tem | togg le |

mutex )+ , agent In fo * ) >

< !−−
| The ’ i tem ’ widget def ines a menu item tha t can be
| se lec ted to ac t i v a t e the assoc iated f u n c t i o n a l i t y .
|
| The ’ i tem ’ widget i s a named widget . I t a lso has an
| op t i ona l a t t r i b u t e ’ key ’ to dec lare an op t i ona l
| key−s t roke t ha t can be used to ac t i v a t e the menu
| i tem ( f o r keyboard nav iga t ion ) .

−−>
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< !ELEMENT i tem ( agent In fo * ) >
< ! ATTLIST i tem

%named ;
key CDATA #IMPLIED

>

< !−−
| The ’ togg le ’ widget def ines a UI element t ha t holds
| a boolean s t a t e t ha t can be togg led by se lec t i ng
| the widget .
|
| The ’ togg le ’ widget i s a named widget . I t a lso has
| an op t i ona l a t t r i b u t e ’ key ’ to dec lare an op t i ona l
| key−s t roke t ha t can be used to togg le the s t a t e o f
| the UI element ( f o r keyboard nav iga t ion ) .

−−>
< !ELEMENT togg le ( agent In fo * ) >
< ! ATTLIST togg le

%named ;
key CDATA #IMPLIED

>

< !−−
| The ’ mutex ’ widget encapsulates togg les together
| w i t h i n a grouping t ha t enforces mutual exc lus ion .
| Only one of the enclosed one or more togg les can be
| se t a t any given t ime .
|
| The widget has an op t i ona l a t t r i b u t e ’ o r i e n t a t i o n ’
| t ha t def ines whether the grouping i s considered to
| have a ho r i z on t a l o rder ing or a v e r t i c a l o rder ing .
| A ho r i z on t a l grouping i s considered to be more t i g h t
| than a v e r t i c a l grouping .

−−>
< !ELEMENT mutex ( togg le + , agent In fo * ) >
< ! ATTLIST mutex

o r i e n t a t i o n ( h o r i z o n t a l | v e r t i c a l ) #IMPLIED
>

< !−−
| The ’ t o o l b a r ’ widget i s ye t to be implemented in
| f u l l .

−−>
< !ELEMENT t oo lBa r ( agent In fo * ) >
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< !−−
| The ’ group ’ widget prov ides a con ta ine r f o r widgets
| t ha t can be grouped together . Log ica l groups can be
| used to enforce a s p e c i f i c focus t r a v e r s a l order i n a
| UI .
|
| The widget conta ins one or more o f :
| bu t ton − element t ha t can be ac t i v a t ed
| s i n g l eSe l e c t L i s t
| − s ing le−se lec t l i s t o f values
| e d i t S e l e c t L i s t
| − s ing le−se lec t l i s t o f value , w i th
| op t ion to w r i t e i n a value
| group − l o g i c a l grouping of widgets
| maskedTextField
| − t e x t en t r y f i e l d ( h id ing i npu t )
| mu l t i Se l e c t L i s t
| − mul t i−se lec t l i s t o f values
| mutex − mutual exc lus ive grouping of togg les
| s l i d e r − ranged se lec t o r
| t e x t − d isp lay t e x t
| t e x t F i e l d − t e x t en t r y f i e l d
| togg le − switch−s t y l e con t r o l ( on / o f f )

−−>
< !ELEMENT group ( ( but ton | s i n g l e S e l e c t L i s t |

e d i t S e l e c t L i s t | group | l i s t |
maskedTextField | mutex | s l i d e r |
t e x t | t e x t F i e l d | togg le )+ ,
agent In fo * ) >

< !−−
| The ’ bu t ton ’ widget represents a UI element t ha t can
| be ac t i v a t ed .
|
| The widget i s a named widget .

−−>
< !ELEMENT but ton ( agent In fo * ) >
< ! ATTLIST but ton

%named ;
>

< !−−
| The ’ s i n g l e S e l e c t L i s t ’ widget encapsulates a l i s t o f
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| values from which exac t l y one can be chosen .
|
| The widget i s a named widget .

−−>
< !ELEMENT s i n g l e S e l e c t L i s t ( value + , agent In fo * ) >
< ! ATTLIST s i n g l e S e l e c t L i s t

%named ;
>

< !−−
| The ’ value ’ element prov ides a data item f o r widgets
| t ha t prov ide a l i s t o f i tems . The content i s a s t r i n g
| o f charac ters .
|
| The widget a l lows f o r an op t i ona l ’ se lec ted ’ boolean
| a t t r i b u t e ( d e f a u l t : f a l s e ) .

−−>
< !ELEMENT value (#PCDATA) >
< ! ATTLIST value

se lec ted ( t r ue | f a l s e ) " f a l s e "
>

< !−−
| The ’ e d i t S e l e c t L i s t ’ widget encapsulates a l i s t o f
| values from which one can be chosen , or a l t e r n a t i v e l y
| a value can be entered as i f the widget were a t e x t
| en t r y f i e l d .
|
| The widget i s a named widget .

−−>
< !ELEMENT e d i t S e l e c t L i s t ( value + , agent In fo * ) >
< ! ATTLIST e d i t S e l e c t L i s t

%named ;
>

< !−−
| The ’ m u l t i S e l e c t L i s t ’ widget encapsulates a l i s t o f
| values from which one or more items can be chosen .
|
| The widget i s a named widget .

−−>
< !ELEMENT m u l t i S e l e c t L i s t ( value + , agent In fo * ) >
< ! ATTLIST m u l t i S e l e c t L i s t

%named ;
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>

< !−−
| The ’ maskedTextField ’ widget prov ides a t e x t en t r y
| f i e l d o f a given length i n which entered charac ters
| are hidden ( each charac ter appears as ’ * ’ ) .
|
| The widget i s a named widget . I t a lso prov ides f o r an
| op t i ona l ’ t e x t ’ a t t r i b u t e t ha t holds the i n i t i a l t e x t
| f o r the en t r y f i e l d , and a requ i red ’ s ize ’ a t t r i b u t e
| t ha t i nd i c a t es the amount o f charac ters the f i e l d can
| hold .

−−>
< !ELEMENT maskedTextField ( agent In fo * ) >
< ! ATTLIST maskedTextField

%named ;
t e x t CDATA " "
s ize CDATA #REQUIRED

>

< !−−
| The ’ s l i d e r ’ widget prov ides a con t r o l to se l ec t a
| d i s c r e t e numeric value from a s p e c i f i c [ min , max ]
| range . Opt iona l l abe l s can be spec i f i ed f o r t h i s
| widget .
|
| This widget i s a named widget . I t a lso requ i res ’ min ’
| and ’max ’ a t t r i b u t e s to def ine the range of l ega l
| values . Opt iona l a t t r i b u t e s ’ m a j o r I n t e r v a l ’ and
| ’ m i n o r I n t e r v a l ’ can be spec i f i ed to i nd i c a t e at which
| i n t e r v a l s major or minor t i c k s are to be def ined . The
| ’ s tdLabels ’ boolean can be spec i f i ed to i nd i c a t e t ha t
| i n the absence of e x p l i c i t l y de f ined labe ls , standard
| l abe l s should be generated f o r t h i s widget .

−−>
< !ELEMENT s l i d e r ( l a b e l * , agent In fo * ) >
< ! ATTLIST s l i d e r

%named ;
min CDATA #REQUIRED
max CDATA #REQUIRED

m a j o r I n t e r v a l CDATA #IMPLIED

m i n o r I n t e r v a l CDATA #IMPLIED
stdLabels ( t r ue | f a l s e ) " t r ue "

>
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< !−−
| The ’ l a b e l ’ element i s used to assoc ia te a t e x t u a l
| l abe l w i th a s p e c i f i c value , f o r use i n a s l i d e r
| widget .
|
| The widget requ i r es a ’ value ’ a t t r i b u t e and a ’name ’
| a t t r i b u t e .

−−>
< !ELEMENT l a b e l ( agent In fo * ) >
< ! ATTLIST l a b e l

value CDATA #REQUIRED

name CDATA #REQUIRED
>

< !−−
| The ’ t e x t ’ widget i s used to d isp lay t e x t i n a window .
|
| The widget requ i r es a ’ t e x t ’ a t t r i b u t e to spec i f y the
| t e x t to be d isp layed . An op t i ona l ’ i d ’ a t t r i b u t e can
| be spec i f i ed to a l low the widget to be addressable
| ( e . g . to change the t e x t ) . An op t i ona l ’ s ize ’
| a t t r i b u t e can be spec i f i ed to reserve space f o r l a t e r
| updates to the t e x t .

−−>
< !ELEMENT t e x t ( agent In fo * ) >
< ! ATTLIST t e x t

i d CDATA #IMPLIED

t e x t CDATA #REQUIRED
s ize CDATA #IMPLIED

>

< !−−
| The ’ t e x t F i e l d ’ widget prov ides a t e x t en t r y f i e l d o f
| a given length .
|
| The widget i s a named widget . I t a lso prov ides f o r an
| op t i ona l ’ t e x t ’ a t t r i b u t e t ha t holds the i n i t i a l t e x t
| f o r the en t r y f i e l d , and a requ i red ’ s ize ’ a t t r i b u t e
| t ha t i nd i c a t es the amount o f charac ters the f i e l d can
| hold .

−−>
< !ELEMENT t e x t F i e l d ( agent In fo * ) >
< ! ATTLIST t e x t F i e l d
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%named ;
t e x t CDATA " "
s ize CDATA #REQUIRED

>

< !−−
| The ’ s ta tusBar ’ widget i s used to communicate a s ta tus
| to the user . I t i s a spec ia l i sed d isp lay t e x t widget ,
| and ( i f used ) i t i s the l a s t focusable widget i n a
| window .
|
| The widget requ i r es a ’ message ’ a t t r i b u t e t ha t holds
| the t e x t to be d isp layed .

−−>
< !ELEMENT s ta tusBar ( agent In fo * ) >
< ! ATTLIST s ta tusBar

message CDATA #REQUIRED

>

< !−−
| The ’ agent In fo ’ element encapsulates render agent
| s p e c i f i c in fo rma t ion f o r the enc los ing widget .
|
| The element has a requ i red ’ agent ’ a t t r i b u t e to s t a t e
| what render ing agent the conta ined in fo rma t ion r e l a t es
| to .

−−>
< !ELEMENT agent In fo ( agen t In foPa i r +) >
< ! ATTLIST agent In fo

agent CDATA #REQUIRED

>

< !−−
| The ’ agen t In foPa i r ’ element prov ides a key / value pa i r
| t ha t encodes some a r b i t r a r y piece of in fo rma t ion f o r
| a render ing agent .
|
| The element has a requ i red ’ key ’ a t t r i b u t e t ha t can be
| used to i d e n t i f y the data item . An op t i ona l ’ v a l ’
| a t t r i b u t e can be prov ided to s t a t e a value f o r the
| data item . In the absence of a value , the element can
| be considered a boolean data item ( present means
| t r ue ) .

−−>
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< !ELEMENT agen t In foPa i r EMPTY >
< ! ATTLIST agen t In foPa i r

key CDATA #REQUIRED

va l CDATA #IMPLIED

>



Appendix D

Example: Programmatic UI

creation

This appendix provides the source code for a programmatic implementation of the
sample UI discussed in chapter 7. The implementation provided here uses Java
AWT and Swing. The visual representation is shown in Figure D.1.

import java . awt . * ;
import javax . swing . * ;
import java . u t i l . Hashtable ;

/ * *
* Example of a programmat ica l ly def ined user i n t e r f a c e

* using AWT and Swing . This c lass c reates a UI t ha t i s

* equ iva len t to the UI created using the PUIR framework

* based on the AUI desc r i p t i on i n Appendix E .

* /
class Example

extends JFrame {
/ * *
* Create the " F i l e " menu . This menu conta ins items

* f o r "New" , "Open " , and " Close " operat ions , then a

* sub−menu wi th the three more r ecen t l y used f i l e s ,

* and then f i n a l l y an item f o r the " Ex i t " opera t ion .

* /
pr ivate JMenu mkFileMenu ( ) {

JMenu menu ;
JMenu sub ;
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Figure D.1: GUI representation of the example UI using Java/Swing

sub = new JMenu( " Recent ly used f i l e " ) ;
sub . add (new JMenuItem ( " F i l e 1 " ) ) ;
sub . add (new JMenuItem ( " F i l e 2 " ) ) ;
sub . add (new JMenuItem ( " F i l e 3 " ) ) ;

menu = new JMenu( " F i l e " ) ;
menu . add (new JMenuItem ( "New" ) ) ;
menu . add (new JMenuItem ( "Open" ) ) ;
menu . add (new JMenuItem ( " Close " ) ) ;
menu . add ( sub ) ;
menu . add (new JMenuItem ( " E x i t " ) ) ;

return menu ;
}

/ * *
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* Create the "View " menu . This menu prov ides a demo

* of checkbox menu items , rad io but ton menu items ,

* and a few regu la r menu items .

* /
pr ivate JMenu mkViewMenu ( ) {

JMenu menu ;
JMenu sub ;
JRadioButtonMenuItem rb ;
ButtonGroup bg ;

sub = new JMenu( " Toolbars " ) ;
sub . add (

new JCheckBoxMenuItem ( " Nav iga t ion Toolbar " ) ) ;
sub . add (

new JCheckBoxMenuItem ( " Bookmarks Toolbar " ) ) ;
sub . add (

new JMenuItem ( " Customise . . . " ) ) ;

menu = new JMenu( " View " ) ;
menu . add ( sub ) ;

bg = new ButtonGroup ( ) ;
bg . add (menu . add (

new JRadioButtonMenuItem ( " F u l l page " ) ) ) ;
bg . add (menu . add (

new JRadioButtonMenuItem ( " P r i n t view " ) ) ) ;
bg . add (menu . add (

new JRadioButtonMenuItem ( " F i t window " ) ) ) ;

menu . add (new JMenuItem ( "Zoom" ) ) ;

return menu ;
}

/ * *
* Create the " Test " menu . This menu i s merely an

* equ iva len t o f the menu wi th the same name in the

* PUIR vers ion of the UI , which serves as a t e s t f o r

* groupings i n menus .

* /
pr ivate JMenu mkTestMenu ( ) {

JMenu menu ;

menu = new JMenu( " Test " ) ;
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menu . add (new JMenuItem ( " 1 s t " ) ) ;
menu . add (new JMenuItem ( " 2nd " ) ) ;
menu . addSeparator ( ) ;
menu . add (new JMenuItem ( " 3 rd " ) ) ;
menu . add (new JMenuItem ( " 4 th " ) ) ;
menu . addSeparator ( ) ;
menu . add (new JMenuItem ( " 5 th " ) ) ;
menu . addSeparator ( ) ;
menu . add (new JMenuItem ( " 6 th " ) ) ;
menu . addSeparator ( ) ;
menu . add (new JMenuItem ( " 7 th " ) ) ;
menu . add (new JMenuItem ( " 8 th " ) ) ;
menu . addSeparator ( ) ;
menu . add (new JMenuItem ( " 9 th " ) ) ;

return menu ;
}

/ * *
* Create the " Help " menu . This i s a bas ic menu

* wi th three regu la r menu items .

* /
pr ivate JMenu mkHelpMenu ( ) {

JMenu menu ;

menu = new JMenu( " Help " ) ;
menu . add (new JMenuItem ( " Help Contents " ) ) ;
menu . add (new JMenuItem ( " Release Notes " ) ) ;
menu . add (new JMenuItem ( " About PUIR" ) ) ;

return menu ;
}

/ * *
* Create the menu bar f o r the s ing le−window UI . I t

* conta ins fou r menus .

* /
pr ivate JMenuBar mkMenuBar ( ) {

JMenuBar menuBar ;

menuBar = new JMenuBar ( ) ;
menuBar . add ( mkFileMenu ( ) ) ;
menuBar . add (mkViewMenu ( ) ) ;
menuBar . add ( mkTestMenu ( ) ) ;
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menuBar . add (mkHelpMenu ( ) ) ;

return menuBar ;
}

public Example ( ) {
super ( ) ;

setJMenuBar (mkMenuBar ( ) ) ;

/ / Ove ra l l v e r t i c a l group
Box vBox

vBox = new Box ( BoxLayout . Y_AXIS ) ;

/ / Top ho r i z on t a l group (3 but tons )
Box hBox ;
JButton b ;

hBox = new Box ( BoxLayout . X_AXIS ) ;
b = new JButton ( " Button 1 " ) ;
b . setAl ignmentX ( Component .CENTER_ALIGNMENT) ;
hBox . add ( b ) ;
b = new JButton ( " Button 2 " ) ;
b . setAl ignmentX ( Component .CENTER_ALIGNMENT) ;
hBox . add ( b ) ;
b = new JButton ( " Button 3 " ) ;
b . setAl ignmentX ( Component .CENTER_ALIGNMENT) ;
hBox . add ( b ) ;

vBox . add ( hBox ) ;

/ / Text f i e l d (20 charac ters ) :
/ / h o r i z on t a l group ( l abe l + f i e l d )
JTex tF ie ld t f ;
JLabel l b l ;

t f = new JTex tF ie ld ( " This i s a t e s t " , 20 ) ;
l b l = new JLabel ( "Name" ) ;

hBox = new Box ( BoxLayout . X_AXIS ) ;
l b l . setLabelFor ( t f ) ;
hBox . add ( l b l ) ;
hBox . add ( hBox . c r e a t e H o r i z o n t a l S t r u t ( 5 ) ) ;
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hBox . add ( t f ) ;

vBox . add ( hBox ) ;

/ / Ho r i zon ta l group ( s i ng l e se l ec t l i s t and ed i t
/ / s e l ec t l i s t )
JComboBox cb ;

hBox = new Box ( BoxLayout . X_AXIS ) ;
cb = new JComboBox(

new S t r i n g [ ] { " foo " , " bar " ,
" baz " , " apa " } ) ;

cb . se tEd i tab le ( fa lse ) ;
hBox . add ( cb ) ;
cb = new JComboBox(

new I n tege r [ ] { 10 , 20 , 30 , 40 , 50 } ) ;
cb . se tEd i tab le ( true ) ;
hBox . add ( cb ) ;

vBox . add ( hBox ) ;

/ / Mu l t i s e l ec t l i s t
J L i s t l s t ;

l s t = new J L i s t (new S t r i n g [ ]
{ " F i r s t " , " Second " , " Th i rd " ,

" Fourth " , " F i f t h " } ) ;

vBox . add ( l s t ) ;

/ / Va lua tor
J S l i d e r s ld ;
Hashtable t b l ;

t b l = new Hashtable ( ) ;

s ld = new J S l i d e r (0 , 20 ) ;
s ld . setMajorT ickSpac ing ( 5 ) ;
s ld . setMinorT ickSpac ing ( 1 ) ;
s ld . se tPa in tT icks ( true ) ;
t b l . put (0 , new JLabel ( "Low" ) ) ;
t b l . put (10 , new JLabel ( " Mid " ) ) ;
t b l . put (20 , new JLabel ( " High " ) ) ;
s ld . setLabelTable ( t b l ) ;
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s ld . se tPa in tLabe ls ( true ) ;

vBox . add ( s ld ) ;

add ( vBox ) ;

/ / Status bar
JPanel pn l ;

pn l = new JPanel (new BorderLayout ( ) ) ;
l b l = new JLabel ( " Example 1 . . . " ) ;
l b l . setAl ignmentX ( JLabel .LEFT_ALIGNMENT) ;
l b l . setBorder (

BorderFactory . createLoweredBevelBorder ( ) ) ;
pn l . add ( l b l , " Center " ) ;

add ( pnl , " South " ) ;

pack ( ) ;
s e t V i s i b l e ( true ) ;

CaptureSwingEvents . addWindow ( th is ) ;
}

public s t a t i c void main ( S t r i n g [ ] argv ) {
T o o l k i t . g e t D e f a u l t T o o l k i t ( ) . getSystemEventQueue ( )

. push (new CaptureEventQueue ( ) ) ;

S w i n g U t i l i t i e s . invokeLater (new Runnable ( ) {
public void run ( ) {

new Example ( ) ;
}

} ) ;
}

} ;





Appendix E

Example: AUI description for

the PUIR framework

This appendix provides the PUDL description for the sample UI discussed in
chapter 7. The visual representation of this UI description, rendered using the
”Swing” rendering agent is shown in Figure E.1.

<?xml version=" 1.0 " encoding="UTF−8" ?>
< !DOCTYPE PUIR SYSTEM

" h t t p : / /www. a lchar . org / p u i r / d l / pudl . dtd ">
<PUIR>

<window i d =" example " v i s i b l e =" t r ue ">
<menuBar>

<menu i d =" F i l e " key=" f ">
< item i d ="New" key=" n " / >
< item i d ="Open" key=" o " / >
< item i d =" Close " key=" c " / >
<menu i d =" Recent " name=" Recently used f i l e s "

key=" r ">
< item i d = " F i l e 1 " / >
< item i d = " F i l e 2 " / >
< item i d = " F i l e 3 " / >

< / menu>
<item i d =" E x i t " key=" x " / >

< / menu>
<menu i d =" View " key=" v ">

<menu i d =" Toolbars " key=" t ">
< togg le i d =" Nav iga t ion " name=" Nav igat ion Toolbar "
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Figure E.1: Visual representation of the example UI using PUIR

key=" n " / >
< togg le i d =" Bookmarks " name=" Bookmarks Toolbar "

key=" b " / >
< item i d = " Customise " name=" Customise . . . "

key= " c " / >
< / menu>
<mutex>

< togg le i d =" F u l l " name=" F u l l page "
key=" f " / >

< togg le i d =" P r i n t " name=" P r i n t view "
key=" p " / >

< togg le i d ="Window" name=" F i t window "
key = "w" / >

< / mutex>
<item i d ="Zoom" name="Zoom . . . " key=" z " / >

< / menu>
<menu i d =" Test " key=" t ">
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<item i d =" 1 s t " / >
< item i d =" 2nd " / >
<group>

<group>
<group>

<item i d ="3 rd " / >
< item i d ="4 th " / >

< / group>
<item i d =" 5 th " / >

< / group>
<group>

<item i d =" 6 th " / >
<group>

<item i d ="7 th " / >
< item i d ="8 th " / >

< / group>
< / group>

< / group>
<item i d =" 9 th " / >

< / menu>
<menu i d =" Help " key=" h ">

<item i d =" Contents " name=" Help Contents "
key=" c " / >

< item i d =" Notes " name=" Release Notes "
key="n " / >

< item i d =" About " name=" About PUIR "
key="a " / >

< / menu>
< / menuBar>
<group o r i e n t a t i o n =" v e r t i c a l ">

<group o r i e n t a t i o n = " h o r i z o n t a l ">
<but ton i d = " but ton1 " name=" Button 1 " / >
<but ton i d = " but ton2 " name=" Button 2 " / >
<but ton i d = " but ton3 " name=" Button 3 " / >

< / group>
< t e x t F i e l d i d = " f i e l d 1 " name="Name"

t e x t = " This i s a t e s t " s ize =" 20 " / >
<group o r i e n t a t i o n = " h o r i z o n t a l ">

< s i n g l e S e l e c t L i s t i d =" l i s t 1 ">
<value >foo< / value >
<value >bar< / value >
<value >baz< / value >
<value >apa< / value >

< / s i n g l e S e l e c t L i s t >
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< e d i t S e l e c t L i s t i d =" l i s t 2 ">
<value >10< / value>
<value >20< / value>
<value >30< / value>
<value >40< / value>
<value >50< / value>

< / e d i t S e l e c t L i s t>
< / group>
< m u l t i S e l e c t L i s t i d =" l i s t 3 ">

<value> F i r s t < / value >
<value>Second< / value >
<value>Th i rd< / value >
<value>Fourth< / value >
<value> F i f t h < / value >

< / m u l t i S e l e c t L i s t >
<va lua to r i d = " s l i d e r " min=" 0 " max=" 20 "

m a j o r I n t e r v a l = " 5 " m i n o r I n t e r v a l = "1 "
s tandardLabels=" t r ue ">

< l a b e l value=" 0 " name="Low" / >
< l a b e l value=" 10 " name=" Mid " / >
< l a b e l value=" 20 " name=" High " / >

< / va lua to r >
< / group>
<s ta tusBar message=" Example 1 . . . " a t t r = " value " / >

< / window>
< / PUIR>
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accessibility as a multimodal design issue. Commun. ACM, 50(5):83–88,
May 2007.

[109] Oracle Corporation. GNOME 2.0 desktop: Developing with the accessibility
framework. Available online at http://download.oracle.com/javase/6/docs/
api/, 2011.

[110] Sharon Oviatt. Ten myths of multimodal interaction. Commun. ACM,
42(11):74–81, November 1999.

[111] Peter Parente and Brett Clippingdale. Linux screen reader: extensible
assistive technology. In Proceedings of the 8th international ACM
SIGACCESS conference on Computers and accessibility, Assets ’06,
pages 261–262. ACM, 2006.

[112] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Commun. ACM, 15(12):1053–1058, December 1972.

[113] Leonard H. D. Poll and Ronald P. Waterham. Graphical user interfaces and
visually disabled users. Rehabilitation Engineering, IEEE Transactions on,
3(1):65–69, Mar 1995.

http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/


BIBLIOGRAPHY 281

[114] E. Pontelli, D. Gillan, W. Xiong, E. Saad, G. Gupta, and A. I. Karshmer.
Navigation of HTML tables, frames, and XML fragments. In Proceedings
of the fifth international ACM conference on Assistive technologies, Assets
’02, pages 25–32. ACM, 2002.

[115] Denise Prescher, Gerhard Weber, and Martin Spindler. A tactile windowing
system for blind users. In Proceedings of the 12th international ACM
SIGACCESS conference on Computers and accessibility, ASSETS ’10,
pages 91–98. ACM, 2010.

[116] The Archimedes Project. Visual tas (VTAS). Available online at: http://
archimedes.hawaii.edu/Visual_TAS.htm.

[117] Morteza Amir Rahimi and John B. Eulenberg. A computing environment
for the blind. In Proceedings of the May 6-10, 1974, national computer
conference and exposition, AFIPS ’74, pages 121–124. ACM, 1974.

[118] D. Rose, S. Stegmaier, G. Reina, D. Weiskopf, and T. Ertl. Non-invasive
adaptation of black-box user interfaces. In Proceedings of the Fourth
Australasian user interface conference on User interfaces 2003 - Volume
18, AUIC ’03, pages 19–24. Australian Computer Society, Inc., 2003.

[119] Richard Rubinstein and Julian Feldman. A controller for a braille terminal.
Commun. ACM, 15(9):841–842, September 1972.

[120] Oliver Sacks. The mind’s eye: What the blind see. The New Yorker, pages
48–59, 28 July 2003.

[121] Norihiro Sadato, Alvaro Pascual-Leone, Jordan Grafman, Marie-Pierre
Deiber, Vicente Ibañez, and Mark Hallett. Neural networks for braille
reading by the blind. Brain, 121:1213–1229, July 1998.

[122] Norihiro Sadato, Alvaro Pascual-Leone, Jordan Grafman, Vicente Ibañez,
Marie-Pierre Deiber, George Dold, and Mark Hallett. Activation of
the primary visual cortex by braille reading in blind subjects. Nature,
380(6574):526–528, 11 April 1996.

[123] Anthony Savidis and Constantine Stephanidis. Building non-visual
interaction through the development of the rooms metaphor. In Conference
companion on Human factors in computing systems, CHI ’95, pages 244–
245. ACM, 1995.

[124] Anthony Savidis and Constantine Stephanidis. Developing dual user
interfaces for integrating blind and sighted users: the HOMER UIMS. In
Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI ’95, pages 106–113. ACM Press/Addison-Wesley Publishing
Co., 1995.

http://archimedes.hawaii.edu/Visual_TAS.htm
http://archimedes.hawaii.edu/Visual_TAS.htm


282 BIBLIOGRAPHY

[125] Anthony Savidis and Constantine Stephanidis. The HOMER UIMS for
dual user interface development: Fusing visual and non-visual interactions.
Interacting with Computers, 11(2):173–209, 1998.

[126] Richard S. Schwerdtfeger. Making the GUI talk. BYTE, pages 118–128,
December 1991. Available online at: ftp://service.boulder.ibm.com/sns/
sr-os2/sr2doc/guitalk.txt.

[127] Neil G. Scott and Isabelle Gingras. The total access system. In CHI ’01
extended abstracts on Human factors in computing systems, CHI EA ’01,
pages 13–14. ACM, 2001.

[128] Jonathan Seybold. Xerox’s ”star”. The Seybold Report, 10(16), 1981.

[129] David Canfield Smith. Personal communication (used with permission).

[130] David Canfield Smith, Eric F. Harslem, Charles H. Irby, Eric B. Kimball, and
William L. Verplank. Designing the Star User Interface. BYTE, pages 242–
282, April 1982.

[131] David Canfield Smith, Charles Irby, Ralph Kimball, and Eric Harslem. The
star user interface: an overview. In Proceedings of the June 7-10, 1982,
national computer conference, AFIPS ’82, pages 515–528. ACM, 1982.

[132] Nathalie Souchon and Jean Venderdonckt. A review of XML-compliant
user interface description languages. In Joaquim A. Jorge, Nuno
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