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1 Introduction

In recent years, Unmanned Aerial Vehicles (UAV), such as
quadcopters, have received increasing attention. In the re-
search world, they are an interesting platform for e.g. test-
ing new control algorithms. An interesting challenge is the
robust control of quadcopters. This presentation discusses
how the period lyapunov differential equations can be used
to obtain approximate robust control for a time-optimal pe-
riodic quadcopter flight task. The results are limited to com-
puter simulation for now, but the KU Leuven quadcopter
platform is available for demonstration in the future.

2 Quadcopter model

A quadcopter typically has 4 rotors, of which 2 rotate clock-
wise, and the other 2 rotate anti-clock-wise. The state vec-
tor of a quadcopter consists of the 3D postion, velocity, ori-
entation and rotation speeds of the body, and of the spin-
ning speeds of the 4 rotors. Orientation is parametrised by
quaternions. This amounts to a total of 17 states. The con-
trol inputs to the system are torques applied on the 4 rotos.
The aerdoynamic forces and torques are modelled according
to [4].

3 Problem formulation

3.1 Flight scenario

In the investigated flight scenario, the quadcopter must meet
two waypoints A and B in a periodic time-optimal fashion.
The system is free to choose at what time these waypoint
shall be met. A hard constraint is present in the form of an
impermeable vertical cylinder that prohibits a line-of-sight
connection between A and B.

3.2 Robust linear feedback control

To robustify the non-linear system in an approximate fash-
ion, a Lyapunov based approach is taken [1]. In this formal-
ism, the original system is augmented with extra states P that
satisfy the following linear Lyapunov differential equations:

P(t) = A(1).P(t) + P(t).AT (t) + B(r).BT (t) P(0) = P(T)
(1)

where A and B are linearisations of the system dynamics
with respect to states and disturbances respectively. P can
be interpreted as an uncertainty ellipsoid on the states of the
original system. Robustification is obtained by adding a P-
weighted term to constraints.

To obtain a linear feedback control, original controls of the
system are explicitized as u = it + K [(x — X) + w], where bar
quantities become parameters of the optimal control prob-
lem and w models measurement noise.

An invariant appears in the system due to the use of
quaternions, requiring modifications to the periodicity con-
straints [2].

4 Numerical approach

The resulting optimal control problem is treated numerically
by a direct approach, using a collocation scheme on fully im-
plicit model equations. A sparsity-exploiting interior point
method is used to solve the resulting non-linear problem.
The python interface of CasADi [3], is used as a develop-
ment framework.
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