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Abstract
We consider the following class of nonlinear eigenvalue problems,(

m∑

i=1

Aipi(λ)

)
v = 0,

where A1, . . . , Am are given n × n matrices and the functions p1, . . . , pm are assumed to
be entire. This does not only include polynomial eigenvalue problems but also eigenvalue
problems arising from systems of delay differential equations. Our aim is to compute the
ε-pseudospectral abscissa, i.e. the real part of the rightmost point in the ε-pseudospectrum,
which is the complex set obtained by joining all solutions of the eigenvalue problem under
perturbations {δAi}mi=1, of norm at most ε, of the matrices {Ai}mi=1.

In analogy to the linear eigenvalue problem we prove that it is sufficient to restrict the
analysis to rank-1 perturbations of the form δAi = βiuv

∗ where u ∈ Cn and v ∈ Cn with βi ∈
C for all i. Using this main - and unexpected - result we present new iterative algorithms which
only require the computation of the spectral abscissa of a sequence of problems obtained by
adding rank one updates to the matrices Ai. These provide lower bounds to the pseudspectral
abscissa and in most cases converge to it. A detailed analysis of the convergence of the
algorithms is made.

The methods available for the standard eigenvalue problem in the literature provide a
robust and reliable computation but at the cost of full eigenvalue decompositions of order 2n
and singular value decompositions, making them unfeasible for large systems. Moreover, these
methods cannot be generalized to nonlinear eigenvalue problems, as we shall explain. There-
fore, the presented method is the first generally applicable method for nonlinear problems. In
order to be applied it simply requires a procedure to compute the rightmost eigenvalue and
the corresponding left and right eigenvectors. In addition, if the matrices Ai are large and
sparse then the computation of the rightmost eigenvalue can for many classes of nonlinear
eigenvalue problems be performed in an efficient way by iterative algorithms which only rely
on matrix vector multiplication and on solving systems of linear equations, where the struc-
ture of the matrices (original sparse matrices plus rank one updates) can be exploited. This
feature, as well other properties of the presented numerical methods, are illustrated by means
of the delay and polynomial eigenvalue problem.

Keywords : Pseudospectrum, nonlinear eigenvalue problem, pseudospectral
abscissa, stability of dynamical systems, sparse matrices
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1. Introduction. Characterizing and computing pseudospectra are well estab-
lished tools for analyzing the sensitivity of eigenvalues of a system [23]. Pseudospectra
are sets in the complex plane to which the eigenvalues can be shifted when the sys-
tem is subject to perturbations with a specified upper bound. For linear autonomous
dynamical systems the position of the spectrum associated with the differential equa-
tion or evolutionary operator gives valuable information about the dynamic behavior,
whenever the solutions satisfy a spectrum determined growth property. In particular,
in the continuous-time case the spectral abscissa determines the asymptotic growth
rate of the solutions as well as the stability properties of the equilibrium. Similarly,
if a system is subject to uncertainty, the pseudospectral abscissa constitutes a bound
on the asymptotic growth rate of the solutions of the perturbed system, which is
uniform over all possible perturbations under consideration, and it allows to assess
the stability robustness [11]. The pseudospectral abscissa (or its counter part in the
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discrete-time case, the pseudospectral radius) is hence closely related to the distance
to instability [7] and to the H∞ norm of appropriately defined transfer functions (see,
e.g., [26] for relations between H∞ norms and robust stability criteria). The position
of pseudospectra can also be used to predict the transient behavior of solutions of
differential or difference equations, and, in this way, it allows for instance to explain
the behavior of certain iterative methods [23].

In this article we consider the pseudospectral abscissa computation for a broad
class of nonlinear eigenvalue problems. This class includes polynomial eigenvalue
problems and nonlinear eigenvalue problems arising in the analysis of linear delay
differential equations as special cases. Although many of these problems can be re-
formulated as linear eigenvalue problems (for example, by a so-called linearization of
a polynomial eigenvalue problem or by a transformation to an equivalent operator
eigenvalue problem for the delay eigenvalue problem [18]) we will not consider the
unstructured pseudospectra of a particular type of linearization (note that the pseu-
dospectra strongly depend on the basis). Instead, as in [17, 21], we will explicitly take
the structure of the original nonlinear eigenvalue problem into account in the defini-
tion of pseudospectra, which we relate to the effect of perturbations on the individual
coefficient matrices. Mathematically, the general setting is the nonlinear eigenvalue
problem

(
m∑

i=1

Aipi(λ)

)
v = 0, λ ∈ C, v ∈ Cn, (1.1)

where Ai ∈ Cn×n, i = 1, . . . ,m and the functions pi : C→ C, i = 1, . . . ,m are entire
and satisfy pi(λ̄) = pi(λ), 1 ≤ i ≤ m. In what follows we call (

∑m
i=1 Aipi(λ)) the

characteristic matrix. We denote the spectrum by Λ, i.e.

Λ :=

{
λ ∈ C : det

(
m∑

i=1

Aipi(λ)

)
= 0

}
.

We are interested in the effect of bounded perturbations of the matrices Ai on the
spectrum, which leads to the perturbed eigenvalue problem,

(
m∑

i=1

(Ai + δAi)pi(λ)

)
v = 0, λ ∈ C, v ∈ Cn. (1.2)

The first step in the robustness analysis is to define the class of perturbations under
consideration, as well as a measure of the combined perturbation

∆ := (δA1, . . . , δAm).

In this work, in analogy to the classical definition of ε-pseudospectrum of a matrix
[23], we allow the perturbations δAi, i = 1, . . . ,m, to be complex matrices, i.e.,

∆ ∈ Cn×n×m.

Introducing weights wi ∈ R
+

0 , i = 1, . . . ,m, where R+

0 = R+\{0}∪{∞}, we define
the following global measure of the perturbations:

‖∆‖glob :=

∥∥∥∥∥∥∥




w1‖δA1‖2
...

wm‖δAm‖2




∥∥∥∥∥∥∥
∞

. (1.3)
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In this way the condition

‖∆‖glob ≤ ε

corresponds to the natural assumptions of taking perturbations satisfying

‖δAi‖2 ≤ ε/wi, i = 1, . . . ,m.

This uncertainty bound is also used in [21] and fits within the general class considered
in [17]. Taking a weight equal to infinity implies that the corresponding matrix is not
perturbed.

With the above class of allowable perturbations and with the measure (1.3) we
define the ε-pseudospectrum of (1.1) as the set

Λε =
⋃

‖∆‖glob≤ε

{
λ ∈ C : det

(
m∑

i=1

(Ai + δAi)pi(λ)

)
= 0

}
(1.4)

where ∆ = (δA1, . . . , δAm) ∈ Cn×n×m, and we define the corresponding pseudospec-
tral abscissa as

αε := sup {<(λ) : λ ∈ Λε} . (1.5)

Note that if a stability notion of a dynamical system is associated with the requirement
that the spectrum be located in the open left half plane and bounded away from the
imaginary axis, than the distance to instability of a stable system can be expressed
as

d := inf {ε > 0 : αε ≥ 0} .

In [17, Theorem 1] the following explicit expression for the ε-pseudospectrum was
stated.

Proposition 1.1. For the perturbation measure (1.3) the pseudospectrum Λε

satisfies

Λε =

{
λ ∈ C : σn

(
m∑

i=1

Aipi(λ)

)
≤ ε‖w(λ)‖1,

}
(1.6)

where

w(λ) =

[
p0(λ)

w0
· · · pm(λ)

wm

]T
. (1.7)

Observe that in (1.6) all information about the structure of the uncertainty on the
characteristic matrix is contained in the factor

‖w(λ)‖1 =
m∑

i=1

|pi(λ)|
wi

. (1.8)

For the linear eigenvalue problem level set methods are well established methods
for computing the distance to instability and related quantities such as H∞ norms and
pseudospectral abscissa. For the latter, the underlying idea is that the intersections in
the complex plane between an ε-pseudospectrum and the line <(λ) = c or =(λ) = c,
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with c an arbitrary real constant, can be directly computed from the solutions of a
structured eigenvalue problem. This idea lays at the basis of the quadratically converg-
ing algorithm for computing the pseudospectral abscissa in [6], where the rightmost
point on the pseudospectrum is located using a two-directional, crisscross search. This
algorithm resembles the algorithms for computing H∞ norms presented in [2, 4]. Al-
though level set methods have proven to be very robust, they require in each iteration
step the computation of all eigenvalues on the real or imaginary axis of a matrix of
twice the size of the original problem and additional singular value decompositions,
which makes them prohibitively expensive for large problems. A different approach
has recently been proposed in [11], which relies on the property that eigenvalues can
be shifted to the boundary of the pseudospectrum by rank-one perturbations of the
matrix and on the characterization of extrema of the pseudospectra as fixed points of
an iteration map. The main distinction with level set methods is that the algorithm
of [11] only requires the computation of the rightmost eigenvalue of matrices obtained
by adding rank-one perturbations to the original matrix, for which -in case of large
and sparse problems- efficient iterative solvers can be used. The computational cost
usually amounts to a constant times the cost of computing the spectral abscissa [11].

For nonlinear eigenvalue problems there are merely methods available in the lit-
erature (besides the brute-force approach of computing pseudospectra using a grid
on the complex plane). Two aspects are important in generalizing results for linear
eigenvalue problems. First, in most cases a direct generalization of level-set methods
is not possible. This can be explained by the presence of the extra factor (1.8) in
(1.6), which prevents the intersection of the pseudospectrum and horizontal /vertical
lines to be characterized by the solutions of an eigenvalue problem. An exception is
the delay eigenvalue problem as considered in [12], where the intersection of pseu-
dospectra with the line <(λ) = c can be found by solving a Hamiltonian eigenvalue
problem, following from the property that (1.8) is constant on the line <(λ) = c if
pi = exp(−λτi). However, since in the “horizontal direction” a similar argument is
not applicable, a (linearly converging) bisection search is needed to locate the right-
most point on the pseudospectrum. The large number of iteration steps, as well as
the fact that the Hamiltonian eigenvalue problem is infinite-dimensional and needs to
be discretized, makes the overall algorithm of [12] computationally demanding.

Second, a linearization of the nonlinear eigenvalue problem or an approximation
that results in a standard eigenvalue problem, followed by the pseudospectral ab-
scissa computation using the previously described methods, does in general not solve
the problem because the structure of the perturbations, inherited from the original
nonlinear equation, is not respected.

The algorithms presented in this paper build on a combination of results in [17]
and [11] (see also [10]). As a starting point we show in Proposition 3.1 that the
boundary of the pseudospectra, as defined by (1.4), remains invariant if the allowable
perturbations on the matrices Ai, 1 ≤ i ≤ m, are further restricted to be rank-one
matrices of the form δAi = βiuv

∗ where βi ∈ C for all i and u, v ∈ Cn not depending on
i. This means that all perturbations can be considered to be proportional to a common
rank-one matrix. This key and unexpected property allows us to generalize the ideas
of [11]. Similarly to the case of the standard eigenvalue problem, the application of
the proposed algorithm only requires the availability of a method for the computation
of the rightmost eigenvalue. For several classes of nonlinear eigenvalue problems,
methods and software are available. See for instance [22] and the references therein for
an overview on the quadratic eigenvalue problem and [3, 8, 14] for the delay eigenvalue
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problem. General purpose methods for solving nonlinear eigenvalue problems of the
form (1.1) are described in, e.g., [15, 24, 16, 25] and the references therein.

The structure of the paper is as follows. In Section 2 the generality of the setting is
illustrated and technical assumptions are made. Section 3 describes the algorithm for
the pseudospectral abscissa computation. In Sections 4 and 5 a convergence analysis
is presented, and improvements are discussed. Numerical experiments are described
in Section 6. The conclusions are presented in Section 7. In Appendix A the gen-
eralization of the results of the paper to other perturbation measures than (1.3) is
outlined.

Notation.
i : the imaginary unit
C,R : set of the complex and real numbers
N : set of natural numbers
R+,R+

0 : set of nonnegative and strictly positive real numbers
AT , A∗ : transpose, complex conjugate transpose of matrix A
ρ(A) : spectral radius of matrix A
σ1(A) ≥ σ2(A) ≥ · · · : singular values of matrix A
I, In : identity matrix of appropriate dimensions,

of dimensions n× n
α(M), M : C→ Cn×n : spectral abscissa,

α(M) = supλ∈C {<(λ) : detM(λ) = 0}
<(u),=(u), ū,with u ∈ C : real part, imaginary part, complex conjugate of u
∂S, with S ⊂ C : boundary of the set S

2. Examples and assumptions. Let us first illustrate how several classes of
perturbed eigenvalue problem fit within the framework of the paper. The perturbed
standard eigenvalue problem

(λI − (A+ δA))v = 0

is of the form (1.2) with m = 2, p1(λ) = λ, p2(λ) = −1, A0 = I, A1 = −A. To express
that the first term is not perturbed we can set w1 = ∞. The polynomial eigenvalue
problem

(
m∑

i=1

(Ai + δAi)λ
i−1

)
v = 0 (2.1)

is also of the form (1.2). With all weights equal to 1, expression (1.6) becomes

Λε =

{
λ ∈ C : σn

(
m∑

i=1

Aiλ
i−1

)
/

(
m∑

i=1

|λ|i−1

)
≤ ε

}
,

which is in accordance with [21]. As a final example the delay eigenvalue problem

(
λI − (B0 + δB0)−

∑̀

i=1

(Bi + δBi)e
−λτi

)
v = 0 (2.2)
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can be analyzed by takingm = `+2, p0(λ) = λ, p1(λ) = −1, pi(λ) = − exp(−λτi), 1 ≤
i ≤ `, and setting w1 = ∞. Taking weights w2 = · · · = wm = 1, expression (1.6)
becomes

Λε =

{
λ ∈ C : σn

(
λI −B0 −

∑̀

i=1

Bie
−λτi

)
/

(
1 +

∑̀

i=1

∣∣e−λτi
∣∣
)

≤ ε

}
.

For nonlinear eigenvalue problems in their most general form (1.1) the pseu-
dospectral abscissa may be equal to infinity, or a globally rightmost point of the
pseudospectrum may not exist. Since the algorithm presented in the next section re-
lies on the explicit computation of a globally rightmost point, we make the following
assumption throughout the paper, which guarantees its existence.

Assumption 2.1. For all r ∈ R the set Λε ∩ {λ ∈ C : <(λ) ≥ r} is bounded.
For linear eigenvalue problems and for eigenvalue problems inferred from linear

time-delay systems of retarded type, which includes (2.2), Assumption 2.1 is satisfied
for all values of ε > 0 (see [9, 18]). For polynomial eigenvalue problems the situation
is different, as illustrated with the following result.

Proposition 2.2. Consider eigenvalue problem (2.1). Assume that matrix Am

is invertible. If ε < wmσn(Am) then Λε is bounded. If ε > wmσn(Am) then Λε is
unbounded and, in addition, αε = +∞.

The bound on ε stems from the fact that eigenvalues are shifted to infinity if a
perturbation renders the leading coefficient matrix singular.

3. Computing the pseudospectral abscissa. Before presenting the algorithm
in §3.2 we first give the main theoretical results.

3.1. Theoretical foundation. The following proposition characterize points
lying on the boundary of pseudospectra contours.

Proposition 3.1. Let λε ∈ C and consider the statements:
(i) λε ∈ ∂Λε.
(ii) There exist normalized vectors u, v ∈ Cn such that

∑m
i=1(Ai + δAi)pi(λε)v = 0,

u∗ ∑m
i=1(Ai + δAi)pi(λε) = 0,

where

δAi = − pi(λε)

wi|pi(λε)|
uv∗ε, 1 ≤ i ≤ m. (3.1)

The following relations hold.
1. (i) implies (ii). Moreover, u and v in (ii) can be chosen as left and right

singular vectors corresponding to

σn

(
m∑

i=1

Aipi(λε)

)
= ε

(
m∑

i=1

|pi(λε)|
wi

)
.

2. If (ii) holds, then there exists an integer k ∈ {1, . . . n} such that

σk

(
m∑

i=1

Aipi(λε)

)
= ε

(
m∑

i=1

|pi(λε)|
wi

)
, (3.2)

with corresponding right singular vector v and left singular vector u. If, in
addition, k = n in (3.2), then λε ∈ ∂Λε.
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Proof. We start by proving 1. Since λ ∈ ∂Λε we have, by Theorem 1,

σn

(
m∑

i=1

Aipi(λε)

)
= ε‖w(λε)‖1. (3.3)

Let (u, v) be corresponding (normalized) right and left singular vectors. From (3.3)
we get

(
m∑

i=1

Aipi(λε)

)
v = ε‖w(λε)‖1u, u∗

(
m∑

i=1

Aipi(λε)

)
= ε‖w(λε)‖1v∗.

By using (1.7) and by the property u∗u = v∗v = 1, these equation can be rewritten
as

(
m∑

i=1

(
Ai − ε

|pi(λε)|
wipi(λε)

uv∗
)
pi(λε)

)
v = 0,

u∗
(

m∑

i=1

(
Ai − ε

|pi(λε)|
wipi(λε)

uv∗
)
pi(λε)

)
= 0.

This proves the assertion.

Next we prove 2.; since (ii) can be reformulated as
(

m∑

i=1

Aipi(λε)

)
v = ε‖w(λε)‖1u, u∗

(
m∑

i=1

Aipi(λε)

)
= ε‖w(λε)‖1v∗,

the result follows directly.

The following proposition addresses a property of rightmost points.
Proposition 3.2. Assume that λε ∈ ∂Λε. Let (u, v) be a pair of (normalized)

left and right singular vectors corresponding to

σn

(
m∑

i=1

Aipi(λε)

)
.

Assume further that pi(λε) 6= 0, i ∈ {1, . . . ,m}, whenever wi is finite.
If λε is a local maximizer of the optimization problem

max {<(λ) : λ ∈ Λε} , (3.4)

then the (first order optimality) conditions

=
(
u∗

(
m∑

i=1

Aip
′
i(λε)

)
v

)
− ε

m∑

i=1

=
(
pi(λε)p

′
i(λε)

)

wi|pi(λε)|
= 0, (3.5)

<
(
u∗

(
m∑

i=1

Aip
′
i(λε)

)
v

)
− ε

m∑

i=1

<
(
pi(λε)p

′
i(λε)

)

wi|pi(λε)|
> 0, (3.6)

hold. Moreover, if λε is a global optimizer then it is a rightmost eigenvalue of
(

m∑

i=1

(
Ai −

pi(λε)

wi|pi(λε)|
uv∗ε

)
pi(λ)

)
v = 0. (3.7)
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Proof. Letting λ = a+ ib, with a, b ∈ R, Problem (3.4) can be rewritten as

max
a,b∈R

a subject to σn

(
m∑

i=1

Aipi(a+ ib)

)
− ε‖w(a+ ib)‖1 ≤ 0. (3.8)

The fact that λε := aε + ibε is a maximizer implies that the constraint is active at the
maximum point. Since pi(λε) 6= 0 whenever wi is finite, the function in the left hand
side of (3.8) is differentiable in the neighborhood of (aε, bε). Therefore, there exists a
strictly positive Lagrange multiplier µ such that

0 =
∂L(a, b, µ)

∂a

∣∣∣∣
(a,b)=(aε,bε)

=
∂L(a, b, µ)

∂b

∣∣∣∣
(a,b)=(aε,bε)

, (3.9)

where

L(a, b, µ) = a− µ

(
σn

(
m∑

i=1

Aipi(a+ ib)

)
− ε‖w(a+ ib)‖1

)
,

see [20]. From (3.9) we get

∂

∂a

(
σn

(
m∑

i=1

Aipi(a+ ib)

)
− ε‖w(a+ ib)‖1

)∣∣∣∣∣
(a,b)=(aε,bε)

> 0,

∂

∂b

(
σn

(
m∑

i=1

Aipi(a+ ib)

)
− ε‖w(a+ ib)‖1

)∣∣∣∣∣
(a,b)=(aε,bε)

= 0.

Conditions (3.5)-(3.6) follow by noting that

∂

∂a

(
σn

(
m∑

i=1

Aipi(a+ ib)

))
= <

(
u∗

(
m∑

i=1

Aip
′
i(a+ ib)

)
v

)
,

∂

∂b

(
σn

(
m∑

i=1

Aipi(a+ ib)

))
= −=

(
u∗

(
m∑

i=1

Aip
′
i(a+ ib)

)
v

)
,

with (u, v) a pair of normalized left and right singular vectors corresponding to

σn

(
m∑

i=1

Aipi(a+ ib)

)
,

and by exploiting

∂

∂a
‖w(a+ ib)‖1 =

m∑

i=1

<
(
pi(a+ ib)p′i(a+ ib)

)

wi|pi(a+ ib)| ,

∂

∂b
‖w(a+ ib)‖1 = −

m∑

i=1

=
(
pi(a+ ib)p′i(a+ ib)

)

wi|pi(a+ ib)|

for all a, b ∈ R satisfying pi(a+ ib) 6= 0 whenever wi is finite.
From Proposition 3.1 it follows that λε is an eigenvalue of (3.7). Since the pertur-

bations in (3.7) have size ε and λε maximizes (3.4) it must correspond to a rightmost
eigenvalue.
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3.2. Algorithm. Define λε as a globally rightmost point of Λε, i.e.

<(λε) = αε,

and let (uε, vε) be a pair of (left, right) singular vectors corresponding to

σn

(
m∑

i=1

Aipi(λε)

)
,

uniquely defined by the normalization constraints

u∗
εuε = v∗ε vε = 1, c∗uε > 0,

where c ∈ Cn×1. By Propositions 3.1 and 3.2 the triple (λε, uε, vε) satisfies the
equations

(
m∑

i=1

(
Ai −

pi(λ)

wi|pi(λ)|
uv∗ε

)
pi(λ)

)
v = 0, (3.10)

u∗
(

m∑

i=1

(
Ai −

pi(λ)

wi|pi(λ)|
uv∗ε

)
pi(λ)

)
= 0, (3.11)

u∗u = v∗v = 1, c∗u > 0, (3.12)

=
(
u∗

(
m∑

i=1

Aip
′
i(λ)

)
v

)
− ε

m∑

i=1

=
(
pi(λ)p

′
i(λ)

)

wi|pi(λ)|
= 0, (3.13)

<
(
u∗

(
m∑

i=1

Aip
′
i(λ)

)
v

)
− ε

m∑

i=1

<
(
pi(λp

′
i(λ)

)

wi|pi(λ)|
> 0. (3.14)

Inspired by the algorithm in [11] for the linear eigenvalue problem, conditions (3.10)-
(3.14), along with the second assertion of Proposition 3.2, can be turned into a fixed-
point iteration, which is sketched in Algorithm 1.

Algorithm 1 (fixed-point iteration).
Initialize (λ0, u0, v0) and repeat for k = 1, 2, ...
1. Compute λk as the rightmost eigenvalue of

(
m∑

i=1

(Ai + δAi)pi(λ)

)
v = 0, δAi = − pi(λk−1)

wi|pi(λk−1)|
uk−1v

∗
k−1ε, 1 ≤ i ≤ m.

(3.15)
2. Define uk and vk as the left and right eigenvectors associated with λk, which

are scaled such that

u∗
kuk = v∗kvk = 1, c∗uk > 0, (3.16)

=
(
u∗
k

(
m∑

i=1

Aip
′
i(λk)

)
vk

)
− ε

m∑

i=1

=
(
pi(λk)p

′
i(λk)

)

wi|pi(λk)|
= 0, (3.17)

<
(
u∗
k

(
m∑

i=1

Aip
′
i(λk)

)
vk

)
− ε

m∑

i=1

<
(
pi(λk)p

′
i(λk)

)

wi|pi(λk)|
> 0. (3.18)
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By construction, constraints (3.16)-(3.18) in Algorithm 1 can always be satisfied
(i.e., a new iterate is well defined) if the previous iterate (λk−1, uk−1, vk−1) lies in
the neighborhood of the fixed point (λε, uε, vε). However, for an arbitrary value of
(λk−1, uk−1, vk−1) the constraints (3.16)-(3.18) may be too restrictive. First, if for a
given value of (λk−1, uk−1, vk−1) and corresponding rightmost eigenvalue λk of (3.15)
a pair of normalized eigenvector (u, v) is such that

∣∣∣∣∣u
∗
(

m∑

i=1

Aip
′
i(λk)

)
v

∣∣∣∣∣ < ε

∣∣∣∣∣∣

m∑

i=1

=
(
pi(λk)p

′
i(λk)

)

wi|pi(λk)|

∣∣∣∣∣∣
,

then (3.16)-(3.18) can never be satisfied simultaneously. In order to define the iter-
ation also in this case, we require that (3.17) is satisfied only in least squares sense.
Second, there are in general two sets of eigenvectors (uk, vk) satisfying the normal-
izing equations (3.16)-(3.17): one for which < (u∗

k (
∑m

i=1 Aip
′
i(λk)) vk) is positive and

one for which it is negative. Although we have never encountered this situation in
the experiments, it might occur that both solutions satisfy (3.18) or that none of the
solutions satisfies (3.18). In these cases, both solutions are initially considered in the
next iteration, but after the computation of the spectral abscissa, <(λk+1), the one
that leads to the smallest value is discarded. This brings us to the following algorithm.

Algorithm 2 (computation of the pseudospectral abscissa).
1. Set u0 = v0 = 0.
2. Repeat for k=1,2,. . . (until convergence):

Let λk be the rightmost eigenvalue1 of
(

m∑

i=1

(Ai + δAi)pi(λ)

)
v = 0, δAi = − pi(λk−1)

wi|pi(λk−1)|
uk−1v

∗
k−1ε, 1 ≤ i ≤ m.

(3.19)
Define uk and vk as the left and right eigenvectors associated with λk, which
are scaled such that

‖uk‖2 = ‖vk‖2 = 1, a∗uk > 0, (3.20)

the value of
∣∣∣∣∣∣
=
(
uk

∗
(

m∑

i=1

Aip
′
i(λk)

)
vk

)
− ε

m∑

i=1

=
(
pi(λk)p

′
i(λk)

)

wi|pi(λk)|

∣∣∣∣∣∣
(3.21)

is minimal and

<
(
uk

∗
(

m∑

i=1

Aip
′
i(λk)

)
vk

)
− ε

m∑

i=1

<
(
pi(λk)p

′
i(λk)

)

wi|pi(λk)|
≥ 0. (3.22)

If a pair (uk, vk) satisfying the conditions (3.20)-(3.22) does not exist or is
not unique, then select the eigenvector pair satisfying (3.20)-(3.21) for which

α

((
m∑

i=1

(Ai + δAi)pi(λ)

))
, δAi = − pi(λk)

wi|pi(λk)|
ukv

∗
kε, 1 ≤ i ≤ m,

(3.23)
is maximal.

1If the rightmost eigenvalue is not unique, select the one closest to λk−1.
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By construction the iterates generated by Algorithm 2 satisfy the following prop-
erty.

Proposition 3.3. Algorithm 2 generates a sequence {<(λk)}k≥0 of lower bounds
on the pseudospectral abscissa.

Proof. It is clear that <(λ1) ≤ αε. For all k ≥ 2, λk is a solution of the perturbed
eigenvalue problem (3.19), where the perturbations satisfy

‖(δA1, . . . , δAm)‖glob = ε,

implying <(λk) ≤ αε.

4. Convergence analysis. In this section we show that under mild conditions
both Algorithm 1 and Algorithm 2 have a unique fixed point for small ε, which is
attractive and corresponds to a globally rightmost point of the pseudospectrum. The
convergence rate as a function of ε is also discussed.

4.1. Characterization of fixed points. In §3.2 we have shown by construction
that a rightmost point of the pseudospectrum defines a fixed point of the iteration in
Algorithm 1. The following lemma presents a converse result.

Lemma 4.1. Assume that (λε, uε, vε) is a fixed point of the iteration in Algo-
rithm 1. Then there exists a number ` ∈ {1, . . . , n} such that

σ`

(
m∑

i=1

Aipi(λε)

)
= ε

(
m∑

i=1

|pi(λε)|
wi

)
. (4.1)

Moreover, the outward-pointing normal vector to the set

{
λ ∈ C : σ`

(
m∑

i=1

Aipi(λ)

)
− ε

(
m∑

i=1

|pi(λ)|
wi

)
≤ 0

}

at λ = λε lies in the direction of the positive real axis.
Proof. The conditions for a fixed point imply the first assertion, see Proposi-

tion 3.1. The outward-pointing normal has direction

(
∂f

∂a
(<(λε),=(λε)),

∂f

∂b
(<(λε),=(λε))

)
,

where

f(a, b) := σ`

(
m∑

i=1

Aipi(a+ ib)

)
− ε

(
m∑

i=1

|pi(a+ ib)|
wi

)
.

The expressions

∂f

∂a
(<(λε),=(λε)) = <

(
u∗
ε

(
m∑

i=1

Aip
′
i(λε)

)
vε

)
− ε

m∑

i=1

<
(
pi(λε)p

′
i(λε)

)

wi|pi(λε)|
,

∂f

∂b
(<(λε),=(λε)) = =

(
u∗
ε

(
m∑

i=1

Aip
′
i(λf )

)
vε

)
− ε

m∑

i=1

=
(
pi(λε)p

′
i(λε)

)

wi|pi(λε)|
,

along with the condition for a fixed point lead to the second assertion.
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In order to strengthen this result for small values of ε we need another technical
lemma, which describes the shape of the pseudospectral components.

Lemma 4.2. Assume λ̂ is an eigenvalue of (1.1) with multiplicity one such that

det

(
m∑

i=1

Aip
′
i

(
λ̂
))

6= 0. (4.2)

Then there exists a constant γ > 0 such that

σn (
∑m

i=1 Aipi(λ))

‖w(λ)‖1
= γ|λ− λ̂|+O(|λ− λ̂|2). (4.3)

Consequently, if ε tends to zero, then Nε(λ̂), the component of Λε containing λ̂, tends

to a disc centered at λ̂ with radius proportional to ε.
Proof. Without loosing generality we assume λ̂ = 0. We can now slightly adapt

the proof of Theorem 7.4 in [5], addressing pseudospectra of linear eigenvalue prob-
lems. First the expansion for the smallest singular value of a linear eigenvalue problem,
σn(A − λI), in [5] can be generalized to a pencil, σn(M + Nλ), where det(N) 6= 0.
Second, it is easy to see that expansion remains valid when considering higher order
terms, σn

(
M +Nλ+O(|λ|2)

)
. The lemma follows from

m∑

i=1

Aipi(λ) =

(
m∑

i=1

Aipi(0)

)
+

(
m∑

i=1

Aip
′
i(0)

)
λ+O(|λ|2)

and ‖w(λ)‖1 = ‖w(0)‖1 +O(|λ|).
By combining Lemma 4.1 and Lemma 4.2 we arrive at the following result.
Proposition 4.3. Assume that λ is a rightmost eigenvalue of (1.1) with multi-

plicity one and satisfying (4.2). Assume in addition that the rightmost eigenvalue is
unique2. Then for sufficiently small ε the iteration map defined by either Algorithm 1
or Algorithm 2 has a unique fixed point

(λε, uε, vε), (4.4)

which implies <(λε) = αε. Moreover, we have

lim
ε→0

uε = u, lim
ε→0

vε = v, (4.5)

where (u, v) is a pair of left and right eigenvectors corresponding to λ, normalized in
such a way that

u∗
(

m∑

i=1

Aip
′
i (λ)

)
v > 0. (4.6)

Proof. We first consider the fixed points of Algorithm 1. By the first assertion of
Proposition 4.1 all fixed points must belong to ∂Λε. By Lemma 4.2 and the fact that
the number of eigenvalues in any right half plane is finite, a fixed point must belong
to Nε(λ) for sufficiently small ε.

2If the spectrum is symmetric w.r.t. the real axis, then only the eigenvalues in the upper half
plane are considered
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For small ε condition (4.1) cannot be satisfied for ` 6= n since

σn−1

(
m∑

i=1

Aipi(λ)

)
> 0.

Moreover, the circular shape of Nε(λ), described by Lemma 4.2, is such is that there
is a unique point in Nε(λ), satisfying the properties described by Lemma 4.1, namely
the rightmost point.

The continuity of the function ε 7→ λε for small ε implies the continuity of the
functions ε 7→ uε and ε 7→ vε. From

=
(
u∗
ε

(
m∑

i=1

Aip
′
i(λε)

)
vε

)
− ε

m∑

i=1

=
(
pi(λε)p

′
i(λε)

)

wi|pi(λε)|
= 0,

<
(
u∗
ε

(
m∑

i=1

Aip
′
i(λε)

)
vε

)
− ε

m∑

i=1

<
(
pi(λε)p

′
i(λε)

)

wi|pi(λε)|
> 0,

a limit argument yields

u∗
(

m∑

i=1

Aip
′
i(λ)

)
v ≥ 0.

Because λ is a simple eigenvalue we have u∗ (
∑m

i=1 Aip
′
i(λ)) v 6= 0, as the equality

would imply the existence of a Jordan chain of length at least two [13]. Expression
(4.6) follows.

The above analysis carries over to Algorithm 2, since for small values of ε all
iterates lie in the vicinity of (4.4), where Algorithm 2 reduces to Algorithm 1.

4.2. Convergence of the fixed-point iteration. We analyze the convergence
of Algorithm 2 around the fixed point (4.4) for small values of ε. Note that under the
assumptions of Proposition 4.3 Algorithm 2 reduces to Algorithm 1 if ε is small.

We start with the observation that the dependence of the new iterate on the
previous one is via terms containing ε. Therefore, setting

xk :=
[
<(λk) =(λk) <(uk)

T =(uk)
T <(vk)T =(vk)T

]T
,

the iteration map defined by Algorithm 1 / Algorithm 2 can be written as a real
valued mapping of the form

xk = F (εG(xk−1), ε), (4.7)

where

G(xk−1) = vec




<
(

p1(λk−1)
w1p1(λk−1)

uk−1v
∗
k−1

)

=
(

p1(λk−1)
w1p1(λk−1)

uk−1v
∗
k−1

)

...

<
(

pm(λk−1)
wmpm(λk−1)

uk−1v
∗
k−1

)

=
(

pm(λk−1)
wmpm(λk−1)

uk−1v
∗
k−1

)




.
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Under the assumptions of Proposition 4.3 partial derivatives of G and F exist, the
latter following from the differentiability of an isolated eigenvalue with respect to
parameters on which the characteristic matrix affinity depends. Moreover, the point

xε := [<(λε) =(λε) <(uε)
T =(uε)

T <(vε)T =(vε)T ]T

is an isolated fixed point of (4.7). The Jacobian of F (εG(·), ε) at xε is given by

Jε := ε
dG

dx
(xε)

∂F (u, ε)

∂u

∣∣∣∣
u=εG(xε)

. (4.8)

It has the following properties.
Theorem 4.4. Assume that the conditions of Proposition 4.3 hold.
1. For sufficiently small ε we have

ρ(Jε) < 1, (4.9)

where Jε is the Jacobian (4.8) of the iteration map defined by Algorithm 2.
2. We have lim

ε→0+
ρ(Jε) = 0.

3. The first row of Jε is identically zero.
Proof. It is clear that

∥∥dG
dx (xε)

∥∥
2
can be uniformly bounded over ε ∈ (0, ε̄), where

ε̄ is sufficiently small. This is also the case for

∥∥∥∥∥
∂F (u, ε)

∂u

∣∣∣∣
u=G(xε)

∥∥∥∥∥
2

. (4.10)

Indeed, partial derivatives of F with respect to elements of u concern the sensitiv-
ity (derivative) of an isolated eigenvalue with respect to a parameter on which the
characteristic matrix depends. All derivatives can be expressed as fractions, whose
numerator is given by

g(ε) := u∗
ε

(
m∑

i=1

(
Ai −

pi(λε)

wi|pi(λε)|
uεv

∗
ε ε

)
p′i(λε)

)
vε.

We have (for λ the rightmost eigenvalue and u, v associated eigenvectors)

lim
ε→0+

g(ε) = u∗
(

m∑

i=1

Aip
′
i(λ)

)
v,

which is strictly positive by Proposition 4.3. This implies that (4.10) can be bounded
by a constant independent of ε. Assertion 1. and Assertion 2. follow from the structure
(4.8) of Jε.

For fixed ε the iteration, sufficiently close to the fixed point, is written as

∆xk = J(ε)∆xk−1 +O(‖∆xk−1‖2), (4.11)

where ∆xk = xk − xε. From the property that

[1 0 · · · 0]∆xk ≤ 0

for k ≥ 1 (see Proposition 3.3), we conclude that Assertion 3. must hold.
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The practical meaning of Theorem 4.4 can be summarized as follows. Expression
(4.9) implies that the fixed point is attractive. By Staement 2. in Proposition 4.4,
the rate of convergence tends to zero as ε tends to zero. The third assertion allows
to explain qualitatively the behavior of the algorithm in the neighborhood of the
fixed point. First, if [0 1 0 · · · 0]e1 6= 0, for some eigenvector e1 corresponding to a
dominant eigenvalue of Jε, then we generically obtain

lim
k→∞

<(λk)−<(λε)

=(λk)−=(λε)
= 0,

i.e., the rightmost point of the pseudospectrum is approached along the boundary.
This behavior is frequently observed in experiments. An exception is formed by the
case where λk ∈ R and uk, vk ∈ Rn for all values of k, which may occur if all matrices
Ai are real. Second, the third assertion of the proposition implies the expansion

<(λk)−<(λε) = ∆xT
k−1Hε∆xk−1 +O

(
‖∆xk−1‖32

)
,

where Hε is the Hessian of [1 0 · · · 0]F (εG(x), ε) at x = xε. If the dominant eigenvalue
of Jε is unique, real, and its corresponding eigenvector e1 satisfies eT1 Hεe1 6= 0 then
we have for almost all values for ∆x0,

lim
k→∞

|<(λk)−<(λε)|
|<(λk−1)−<(λε)|

= ρ(Jε)
2,

i.e., the convergence rate of the spectral abscissa is the square of the convergence rated
for the whole iteration. We conclude the section with an illustration of Theorem 4.4.

Example 1. Consider the delay eigenvalue problem
(
λI − (A1 + δA1)− (A2 + δA2)e

−λτ
)
v = 0, (4.12)

where

A1 =

[
−5 1
2 −6

]
, A2 =

[
−2 1
4 −1

]
, τ = 1, (4.13)

and the allowable perturbations satisfy

wi‖δA1‖ < ε, i = 1, 2. (4.14)

For ε = 0.5 and weights (w1, w2) = (2, 2) Algorithm 2 converges to a fixed point
corresponding to the pseudospectral abscissa αε = −0.51816262. The error between
the iterates and the fixed point is displayed in Figure 4.1. The results are consistent
with the above conclusions. In particular, the convergence is linear and the conver-
gence rate of the real part of the eigenvalue is twice the convergence rate for the
sequence {‖xk − xε‖2}k≥1. ¦

5. Behavior for large values of ε and algorithmic improvements. In Sec-
tion 4 we proved that Algorithm 2 converges to a fixed point corresponding to the
globally rightmost point of the pseudospectrum for sufficiently small values of ε. From
intensive experiments on a variety of problems we observe that in general the algo-
rithm works very well for large values of ε too. Exceptionally the following problems
were observed: i) convergence to an attractor different from a fixed point / an unsta-
ble fixed point, and, ii) convergence to a locally but not globally rightmost point of
the pseudospectrum contour. In what follows we show how these problems have been
solved by improvements of the algorithm.
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Fig. 4.1. Errors in the iterations of Algorithm 2 applied to Example 1.

5.1. Imposing monotone behavior and practical stability of fixed-points.
In rare cases convergence of Algorithm 2 to the fixed point corresponding to the pseu-
dospectral abscissa is not obtained, due to the fact that the initial iterate is included
in the attraction region of a different attractor of the nonlinear map We now present
an adaptation of the algorithm for which sequence

{<(λk)}k≥1 , (5.1)

is guaranteed to be increasing, and, as it is bounded from above, converging. Subse-
quently, we illustrate the benefits of the adapted algorithm.

Consider subsequent iterations of Algorithm 2 and define

Pi,k =
pi(λk)

|pi(λk)|
, k ≥ 0, 1 ≤ i ≤ m.

After iteration step `, with ` ≥ 2, we have that λ` is a solution of the perturbed
eigenvalue problem

m∑

i=1

(
Ai + δA

(`)
i

)
pi(λ) = 0, (5.2)

where

δA
(`)
i = Pi,`−1u`−1v

∗
`−1ε, 1 ≤ i ≤ m. (5.3)

Note that the perturbations (5.3) have size ε for ‖ · ‖glob. If a situation occurs where

<(λk) < <(λk−1), (5.4)

then monotonicity can be enforced by constructing new perturbations of size ε from
2 consecutive iterations, more precisely from (5.3) for ` = k − 1 and ` = k, which

eventually replace δA
(k)
i and for which the corresponding eigenvalue has real part

larger or equal to <(λk−1).
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Let t ∈ [0, 1] and consider the following homotopy:

δAi(t) = − 1

wi
P (t)U(t)V (t)∗ε, 1 ≤ i ≤ m, (5.5)

where

Pi(t) =
t2Pi,k−1 + (1− t2)Pi,k−2

|t2Pi,k−1 + (1− t2)Pi,k−2|
, 1 ≤ i ≤ m, (5.6)

U(t) =
tuk−1 + (1− t)uk−2

‖tuk−1 + (1− t)uk−2‖2
, V (t) =

tvk−1 + (1− t)vk−2

‖tvk−1 + (1− t)vk−2‖2
.

For all t ∈ [0, 1] we have

‖(δA1(t), . . . , δAm(t))‖glob = ε.

For t = 0 the eigenvalue problem
(

m∑

i=1

(Ai + δAi(t))pi(λ)

)
v = 0, (5.7)

has a solution λk−1, with right eigenvector vk−1 and left eigenvector uk−1. If this
eigenvalue is simple, then (5.7) locally defines a continuous function t 7→ λ(t), satis-
fying λ(0) = λk−1. A straightforward computation yields

λ̇(0) = ε

(
m∑

i=1

Pi,k−2pi(λk−1)

wi

)
·

(
u∗
k−1uk−2(1− v∗k−2vk−1<(v∗k−2vk−1)) + (1− u∗

k−1uk−2<(u∗
k−2uk−1))v

∗
k−2vk−1

)

u∗
k−1

(∑m
i=1(Ai − Pi,k−2

wi
uk−2v∗k−2ε)p

′
i(λk−1)

)
vk−1

(5.8)

where we note that the sign of (5.8) can be altered by changing the sign of uk−1 and
vk−1, however, such a sign change does not affect the perturbations (5.3), i.e. (5.5)
for t = 1. In other words, the sign change affects the path of the homotopy, but not
the initial and final perturbation. Assume now that such a sign change has possibly
been done and we are in a situation where

<(λ̇(0)) > 0.

Now we can start with t = 1 and decrease the value of t (back tracking) until the
perturbed eigenvalue problem (5.7) has a solution λ, satisfying <(λ) > <(λk−1).
This eigenvalue and the corresponding perturbation (5.5)-(5.6) can be used to replace

original results of the k-th iteration step, namely λk and δA
(k)
i , 1 ≤ i ≤ m.

In the implementation we relax the non-monotonicity condition (5.4) to

<(λk) < max
l≤k−1

<(λl)− tol, (5.9)

where tol > 0 is a small tolerance (default value 10−10). The reason is that if the
algorithm has converged, rounding errors may cause small fluctuations of {<(λk)}
which would otherwise trigger an inner iteration. In this way we arrive at the following
algorithm:

Algorithm 3. (computation of the pseudospectral abscissa, monotone variant)
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1. Set u0 = v0 = 0.
2. Repeat for k=1,2,. . . (until convergence):

Let λk be the rightmost eigenvalue of

(
m∑

i=1

(Ai + δAi)pi(λ)

)
v = 0, δAi = −Pi,k−1

wi
uk−1v

∗
k−1ε, 1 ≤ i ≤ m.

If k > 2, <(λk) < maxl≤k−1 <(λl)− tol and |<(λ̇(0))| 6= 0, (see (5.8)), then

If <(λ̇(0)) < 0, set uk−1 = −uk−1, vk−1 = −vk−1

Set t = 1.
While <(λk) < <(λk−1),

Set t = t
2 .

Recompute λk as the rightmost eigenvalue of

(
m∑

i=1

(Ai + δAi)pi(λ)

)
v = 0, δAi = −Pi(t)

wi
U(t)V (t)∗ε, 1 ≤ i ≤ m,

where U(t), V (t) and Pi(t), 1 ≤ i ≤ m, are given by (5.6).
End While
Set uk−1 = U(t), vk−1 = V (t) and Pi,k−1 = Pi(t), 1 ≤ i ≤ m.

End If

Set

Pi,k =
pi(λk)

|pi(λk)|
, 1 ≤ i ≤ m.

Let uk and vk be the left and right eigenvectors associated with λk, which are
scaled such that

‖uk‖2 = ‖vk‖2 = 1, a∗uk > 0, (5.10)

the value of

∣∣∣∣∣∣
=
(
uk

∗
(

m∑

i=1

Aip
′
i(λk)

)
vk

)
− ε

m∑

i=1

=
(
pi(λk)p

′
i(λk)

)

wi|pi(λk)|

∣∣∣∣∣∣
(5.11)

is minimal and

<
(
uk

∗
(

m∑

i=1

Aip
′
i(λk)

)
vk

)
− ε

m∑

i=1

<
(
pi(λk)p

′
i(λk)

)

wi|pi(λk)|
≥ 0. (5.12)

If an eigenvector pair (uk, vk) satisfying the conditions (5.10)-(5.12) does not
exist or is not unique, then select the eigenvector pair satisfying (5.10)-(5.11)
for which

α

((
m∑

i=1

(Ai + δAi)pi(λ)

))
, δAi = −Pi,k

wi
ukv

∗
kε, 1 ≤ i ≤ m,

is maximal.
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Fig. 5.1. Result of iterations of Algorithm 2 (green curves) and Algorithm 3 (blue curves) when
applied to Example 2. Iterations for which (5.9) is satisfied (tol = 10−10) are indicated with red
squares.
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Fig. 5.2. Convergence of Algorithm 3 applied to Example 2.

For any k ∈ N, Algorithm 3 shares the desired property with Algorithm 2 that at
the end of the k-th iteration, λk is an eigenvalue of (5.2) corresponding to the ε-sized
perturbations (5.3) but, if monotonicity needs to be forced at Iteration k, then Pi,k−1

looses its connection with λk−1 and the pair (uk−1, vk−1) can no longer be interpreted
in terms of eigenvectors corresponding to λk−1. For small ε the sequence of estimates
of the pseudospectral abscissa, generated by Algorithm 2, is always monotone close to
the fixed-point, hence, iterations of Algorithm 3 reduce to iterations of Algorithm 2.

In what follows we illustrate two benefits of the adaptation. With Example 2 we
illustrate how convergence to an attractor different from a fixed-point can be avoided.
With Example 3 we show that the fixed point corresponding to the pseudospectral
abscissa, may be unstable, but is still found using Algorithm 3.

Example 2. We reconsider eigenvalue problem (4.12)-(4.14) where we take ε = 5
and (w1, w2) = (1,+∞). In Figure 5.1 we show iterations of Algorithm 2 (green
curves) and Algorithm 3 (blue curves). While iterations of Algorithm 2 exhibit chaotic
behavior, iterations of Algorithm 3 converge to the correct fixed point, characterized
by αε = 1.2542565. In Figure 5.2 the convergence of Algorithm 3 is visualized. Note
that although ε is very large, the behavior of the error is similar to Example 1. ¦

19



0 50 100 150 200
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−5 tol=1.e−4 (blue)  tol=1.e−8 (green)

k

ℜ
(λ

k)−
α ε

0 50 100 150 200
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
x 10

−9

k

ℜ
(λ

k)−
α ε

tol=1.e−8
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Example 3. We consider eigenvalue problem (4.12)-(4.14) with ε = 4 and, once
again, (w1, w2) = (1,+∞). With the value tol = 10−8 in (5.9) Algorithm 3 seems to
converge to a fixed point corresponding to the pseudospectral abscissa αε = 0.1885197.
However, repeating the experiment with larger values of the tolelance tol reveals that
the fixed point is in fact locally unstable, yet Algorithm 3 converges to an attractor in
the neighborhood of the fixed point, whose size can be controlled by the choice of the
tolerance. Figure 5.3, which depicts the error <(λk)−αε as a function of the iteration
number, reveals the mechanism. As the fixed point is repulsive, iterations do not
converge even when starting sufficiently close to it, which explains why the fixed point
cannot be found by Algorithm 2. When using (the adapted) Algorithm 3 instead, the
non converging phase stops on the moment when condition (5.9) is satisfied (indicated
with the red boxes). At that point the mechanism to enforce an increase in the real
part becomes active. As a consequence <(λk) makes a jump, and the whole process
repeats itself.

The above stabilization mechanism has a parallel with the notion of practical
stabilization in the control literature (see, e.g. [19]): although the fixed point is not
stabilized, the iteration can be forced to converge to an attractor contained in an
arbitrarily small neighborhood of the fixed point. ¦

Remark 5.1. Recall that the basic Algorithm 1 is grounded in a mathematical
characterization of rightmost points of a pseudospectrum contour, while Algorithm 2
and Algorithm 3 are essentially adaptations, to make an iteration well defined in all
possible cases and to enforce global convergence to a fixed point, respectively. At
this moment we have no theoretical proof that the sequence {λk}k≥0 generated by
Algorithm 3 converges to a rightmost point of the pseudospectrum in all possible cases
(e.g., although we have never encountered the situation, it cannot a priori be excluded
that Algorithm 3 converges to a fixed-point where (5.11) is not zero). However, it
should be noted that the necessary conditions expressed by (3.10)-(3.14) can always
be tested, while for problems to which level set algorithms apply, global optimality
can be guaranteed by one iteration of such an algorithm.

5.2. Using different starting values. If there are several eigenvalues at the
right part of the spectrum with real parts close to each other, it might happen that,
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due to a difference in the sensitivity, the rightmost point of the ε-pseudospectrum is
not related to a perturbation of the rightmost eigenvalue. This may cause convergence
to a locally but not globally rightmost point. A way to avoid this consists of running
Algorithm 3 several times, initialized with several eigenvalues with a large real part
and/or a high sensitivity (instead of initialized with the rightmost eigenvalue only).
The modification consists of an alternative choice of λ1. As a measure of the local
sensitivity of an eigenvalue λ, with corresponding eigenpair (u, v), one can compute

(u∗ (
∑m

i=1 Aip
′
i(λ)) v)

−1
, which generalizes the notion of eigenvalue condition number.

Example 4. Consider system (4.12)-(4.14) with (w1, w1) = (1,∞) and ε = 3.5.
The red lines in Figure 5.4 connect eigenvalues with points on the pseudospectrum
contour, reached when initializing Algorithm 2 with the eigenvalue under considera-
tion. It this case, the globally rightmost point of the pseudospectrum is not reached
from the rightmost eigenvalue of the unperturbed system, but it is reached from an-
other dominant eigenvalue. ¦

ℜ (λ)

ℑ
(λ

)
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−6

−4
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0
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4

6

Fig. 5.4. Effect of an initialization with different eigenvalues.

6. Numerical experiments. We illustrate results of a MATLAB implementa-
tion of Algorithm 3 on polynomial and delay eigenvalue problems. For polynomial
eigenvalue problems the eigenvalue computations are done using the function polyeig

for small and medium-size problems and using eigs applied to a linearization in the
other case. For delay eigenvalue problems the rightmost eigenvalues are computed us-
ing the algorithm described in [14], which can be interpreted as the Arnoldi method
applied to an infinite-dimensional linear eigenvalue problem equivalent to the nonlin-
ear delay eigenvalue problems. In all cases sparsity in the matrices can be exploited.

For both type of eigenvalue problems, the left eigenvectors are computed from
the right eigenvectors of the dual system (obtained by replacing the system matrices
by their complex conjugate transpose). In case of sparse matrices linear system solves
are done using a sparse LU decomposition. In order to solve repeatedly a system of
equations of the form

(
A+ ε

pi(λ)

wi|pi(λ)|
uv∗

)
x = bi,
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ε α αε #it (10 digits)

10−3 9.472172578e-2 9.565077802e-2 3
10−2.8 9.619554161e-2 3
10−2.6 9.706100877e-2 3
10−2.4 9.843791771e-2 4
10−2.0 1.041467015e-1 4
10−1.8 1.098009209e-1 5
10−1.6 1.189844647e-1 5
10−1.4 2.046203606e-1 6
10−1.2 9.017386843e-1 7
10−1.0 2.303505709+00 8
10−0.8 9.258176653+00 10

Table 6.1
Example 4.1 of [21]. The second column displays the spectral abscissa, the third one the pseu-

dospectral abscissa and the last one the number of iterations needed for 10 digits accuracy.

ε α αε #it (10 digits) #it (3 digits)

10−4 2.116899507e4 2.117201634e+4 2

10−3 2.119925782e+4 3

10−2 2.147691138e+4 6 2

10−1 2.522301267e+4 122 6
Table 6.2

Quadratic eigenvalue problem of size n = 3627 from the NLEVP collection.

where only the rank-one term and the righthand side change, the Sherman-Morrison
formula is used.

In accordance with the phenomenon described in 5.2 the algorithm is repeatedly
run starting with three rightmost eigenvalues.

6.1. Polynomial eigenvalue problems. We consider Example 4.1 of [21],
which is a quadratic eigenvalue problem of the form (2.1) where m = 3,

A1 =




121 18.9 15.9
0 2.7 0.145

11.9 3.64 15.5


 , A2 =




7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658


 , A3 =




17.6 1.28 2.89
1.28 0.824 0.412
2.89 0.413 0.725


 .

When applying perturbations to all system matrices and taking unity weights, i.e.

(w1, w2, w2) = (1, 1, 1),

the results of the computations are displayed in Table 6.1. The results are in accor-
dance with the pseudospectra contours visualized in [21].

A second example has been taken from the NLEVP collection [1]. It corresponds
to the problem ’foundation’, which is also a quadratic eigenvalue problem. The system
matrices are sparse with dimension n = 3627. With weights chosen as (w1, w2, w3) =
(1/‖A1‖2, 1/‖A2‖2,∞), results of the pseudospectral abscissa computation are shown
in Table 6.2.

6.2. Delay eigenvalue problem. First, we have applied Algorithm 3 to the
benchmark collection3 used in [12] These consists of problems of the form (2.2). The

3the collection is available at the webpage http://twr.cs.kuleuven.be/research/software/delay-
control/benchmarks/
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Problem (n,#delays) α ε αε #it #it
(10 digits) (3 digits)

1 (3,1) -2.866038425e-02 1.e-4 -2.853917009e-2 3 2
1.e-2 -1.716339042e-2 4 2
1.e-1 5.607794107e-2 8 4

2 (1,1) -1.102659477+00 1.e-4 -1.102516288+00 3 1
1.e-2 -1.088390378+00 3 2
1.e-1 -9.641158746e-1 5 2

3 (3,3) -2.944578327e-01 1.e-4 -2.874841199e-1 3 2
1.e-2 3.591092039e-1 7 3
1.e-1 4.275010482+00 29 11

4 (4,9) 1.169539686+00 1.e-4 1.174506091+00 3 1
1.e-2 1.674277721+00 115 1
1.e-1 3.912462373+00 35 11

5 (8,20) 2.373606203+00 1.e-4 2.374682455+00 2 1
1.e-2 2.480435391+00 5 2
1.e-1 3.406557005+00 170 23

6 (10,7) -3.775473572e-01 1.e-4 -3.759673125e-1 3 2
1.e-2 -2.301342421e-1 7 3
1.e-1 1.046143337+00 123 40

7 (20,9) -3.446892131e-02 1.e-4 -3.290058652e-2 4 2
1.e-2 8.291146618e-2 18 6
1.e-1 1.182937400+00 60 9

8 (40,3) -1.044598769e-01 1.e-4 -1.027893926e-1 3 2
1.e-2 3.015727003e-2 13 5
1.e-1 8.398294386E-1 265 20

9 (5,1) -5.026086111e-01 1.e-4 -5.009786768e-1 3 2
1.e-2 -3.474748581e-1 7 4
1.e-1 7.743617965e-1 50 11

10 (4,3) -9.85848814e-02 1.e-4 -9.853953913e-2 2 2
1.e-2 -9.402496447e-2 7 2
1.e-1 -2.026579099e-2 26 10

Table 6.3
Pseudospectral abscissa computation for delay eigenvalue problems from the same benchmark

set used in [12].

weights are chosen as

wi = ‖Bi‖2−1
, 1 ≤ i ≤ m,

i.e. the value of ε refers to the maximal relative size of the perturbations. The re-
sults are displayed in Table 6.3 and they have been validated with the level method
described in [12].

To demonstrate the applicability to a large-scale problem we consider the PDE
with delay from [14],

∂v(x, t)

∂t
=

∂2v(x, t)

∂x2
+ a0(x)v(x, t) + a1(x)v(π − x, t− 1).

where a0(x) = −2 sin(x), a1(x) = 2 sin(x) and vx(0, t) = vx(π, t) = 0. The second
derivatives in space in are approximated with central differences. This gives rise to
a standard delay eigenvalue problem of the form (2.2), with one delay and sparse
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(n,#delays) α (w1, w2) ε αε #it

(5000,1) -3.312133337e-1 (1/2, 1/2) 1.e-3 -3.297978515e-1 2
1.e-2 -3.170982221e-1 3
1.e-1 -1.937166436e-1 4
1+00 8.647127140e-1 8

(1/4,∞) 1.e-3 -3.300292687e-1 2
1.e-2 -3.193270916e-1 3
1.e-1 -2.075848221e-1 4
1+00 +1.641134830e00 10

(∞,1/4) 1.e-3 -3.295667765e-1 2
1.e-2 -3.149018637e-1 3
1.e-1 -1.816328080e-1 4
1+00 +5.599912563e-1 7

Table 6.4
Pseudospectral abscissa for the delayed PDE problem described in [14].

matrices B0 and B1. The number of spatial discretization points is taken such that
n = 5000. The results are displayed in Table 6.4.

7. Concluding remarks. The presented Algorithms 2-3 for the pseudospectral
abscissa computationcan be applied to the broad class of nonlinear eigenvalue prob-
lems (1.1). The algorithms only require a procedure to compute selected (rightmost)
eigenvalues and corresponding eigenvectors. This makes them particularly well suited
to large-scale sparse problems whenever fast iterative eigensolvers are available. The
effectiveness of the proposed approach is further illustrated by the fact that for most
nonlinear eigenvalue problems standard level set methods like [6] are not applicable.

In many algorithms for solving nonlinear eigenvalue problems, the connection
with a linearization of the eigenvalue problem plays an important role. In this sense
the adopted approach for the pseudospectral abscissa computation fully exploits the
dual representation of the eigenvalue problem: on the one hand pseudospectra are
defined at the level of the nonlinear problem in such a way that the structure of the
problem and the perturbations are respected; on the other hand the corresponding
algorithm relies on the successive computation of selected eigenvalues, for which the
connection with the linearization may be very beneficial.

For small values of ε, the convergence of Algorithm 2 has been rigorously proved
and the convergence properties have been analyzed. For the special case of a linear
eigenvalue problem the same conclusions are reached as in [11], but using different
arguments. Algorithm 3 also performs very well for large values of ε. It includes
several modifications to handle situations where Algorithm 2 does not converge. It
should be noted, however, that such situations are rarely observed in experiments. For
the illustrative examples in Section 5 the parameters of the examples were carefully
chosen to ”trigger” the special situations, and the perturbations had norm at least
50% of the norm of the matrices.

Similarly to the case of the standard eigenvalue problem the algorithm can be
adapted to solve related problems such as the computation of the pseudospectral
radius, H∞ norms and complex stability radii. Future work also includes handling
(additional) structure on the perturbations of the individual coefficient matrices Ai

and using the algorithm in the context of stability optimization, with applications in
robust control.
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Appendix A. Other perturbation measure. In [17] also other measures of
the perturbation than (1.3) are considered. These include

‖∆‖glob :=

∥∥∥∥∥∥∥




w1δA1

...
wmδAm




∥∥∥∥∥∥∥
2

, ‖∆‖glob :=
∥∥[ w0δA0 · · · wmδAm

]∥∥
2
. (A.1)

For both measures (A.1) it was shown that the corresponding pseudospectra satisfy

Λε =

{
λ ∈ C : σn

(
m∑

i=1

Aipi(λ)

)
≤ ε‖w(λ)‖2

}
.

The results in the previous sections and the algorithms can be adapted accordingly.
In particular, the “critical perturbations” (3.1) become

δAi = − pi(λε)

w2
i

√∑m
k=1

|pk(λε)|2
w2

k

uv∗ε, 1 ≤ i ≤ m,

and the optimality conditions (3.5)-(3.6) are changed to

=
(
u∗

(
m∑

i=1

Aip
′
i(λε)

)
v

)
− ε√∑m

i=1
|pi(λε)|2

w2
i

m∑

k=1

=
(
pk(λε)p

′
k(λε)

)

w2
k

= 0,

<
(
u∗

(
m∑

i=1

Aip
′
i(λε)

)
v

)
− ε√∑m

i=1
|pi(λε)|2

w2
i

m∑

k=1

<
(
pk(λε)p

′
k(λε)

)

w2
k

> 0.
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