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Abstract

This paper presents a robust approach for the design of macro-, micro-, or nano-
structures by means of topology optimization, accounting for spatially varying
manufacturing errors. The focus is on structures produced by milling or etching;
in this case over- or under-etching may cause parts of the structure to become
thinner or thicker than intended. This type of errors is modeled by means of
a projection technique: a density filter is applied, followed by a Heaviside pro-
jection, using a low projection threshold to simulate under-etching and a high
projection threshold to simulate over-etching. In order to simulate the spatial
variation of the manufacturing error, the projection threshold is represented by
a (non-Gaussian) random field. The random field is obtained as a memoryless
transformation of an underlying Gaussian field, which is discretized by means of
an EOLE expansion. The robust optimization problem is formulated in a prob-
abilistic way: the objective function is defined as a weighted sum of the mean
value and the standard deviation of the structural performance. The optimiza-
tion problem is solved by means of a Monte Carlo method: in each iteration of
the optimization scheme, a Monte Carlo simulation is performed, considering
100 random realizations of the manufacturing error. A more thorough Monte
Carlo simulation with 10000 realizations is performed to verify the results ob-
tained for the final design. The proposed methodology is successfully applied to
two test problems: the design of a compliant mechanism and a heat conduction
problem.

Keywords: Topology optimization, robust design optimization, manufacturing
errors, Monte Carlo method

1. Introduction

The use of numerical optimization as a design tool has become widely spread
in many areas of engineering. It supports the designer in finding the best com-
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promise between cost and performance. Usually, a distinction is made between
size, shape, and topology optimization. Size optimization is the most basic and
widely used approach: the layout of the structure is fixed by the designer and
the member dimensions (bar thicknesses) are determined by means of optimiza-
tion. In shape optimization, the geometry is described by means of a number
of parameters and the optimal parameter values are determined. The number
of parameters can be very low (e.g. a single parameter describing the height of
a truss) or very high (e.g. all node coordinates of a finite element model repre-
senting a shell structure). In the first case, the designer has a large degree of
control, and the design space (i.e. the search space for the optimizer) is limited;
in the second case, the opposite holds. Topology optimization does not require
parameterization: the designer specifies the design domain (in physical space),
the loads and support conditions, and the amount of available material, and
the optimal distribution of material is determined [4, 5]. Compared to shape
optimization, this approach implies a much larger design space, as the type of
structure is not fixed a priori. For this reason, topology optimization has a large
potential as a design tool in the early design phase.

The performance of a structure is almost always subject to a number of
uncertain parameters, such as variations of the material properties, unknown
loading and support conditions, and geometric imperfections. The effect of
these uncertainties may be significant, resulting in a large deviation between the
performance of the optimized design and the actual structure. In a recent paper,
Schüeller and Jensen give an overview of methods to account for uncertainties
in optimization [33].

One of the most popular strategies to account for uncertainties is robust
design optimization. The aim of robust design optimization is to maximize
the design’s performance while simultaneously minimizing its sensitivity with
respect to uncertainties. A robust design optimization problem can be formu-
lated in various ways - see reference [6] for a comprehensive overview. A worst
case approach is often followed, where the uncertain parameters are allowed
to vary in a specified interval and the structure with the worst performance is
considered in the optimization. Alternatively, a probabilistic approach can be
followed, where the uncertain parameters are assigned a probability distribution
and the objective function is defined as a weighted average of the mean value
and the standard deviation of the structural performance.

While the use of a robust approach for size and shape optimization has
been extensively studied, publications on robust topology optimization are still
relatively scarce. The earliest publications in this field address the design of truss
structures. Ben-Tal and Nemirovski [3] propose a method based on semi-definite
programming for robust truss topology optimization accounting for uncertain
load conditions. Sandgren and Cameron [31] address robust truss topology
optimization considering uncertain variations of the load, the geometry, and the
material properties. Seepersad et al. [34] propose a robust design method for
cellular materials on a mesoscopic scale. The problem is formulated by means of
a ground structure, in a similar way as in truss topology design problems. The
aim is to achieve robustness with respect to topological imperfections (errors
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in cellular connectivity) and dimensional imperfections (variations of cell wall
thickness).

In later publications, optimal material distribution problems are considered.
Kogiso et al. [23] focus on the design of compliant mechanisms, accounting for
uncertain variations of the direction of the driving force. De Gournay et al.
[10] use the level set method for the design of robust structures with minimum
compliance considering uncertain loads. Chen et al. [9] also use the level set
method for the design of robust structures with minimum compliance and for
the design of robust compliant mechanisms. They consider uncertainties in
the loading pattern and the material properties. The uncertain parameters are
assumed to vary in space and modeled as random fields.

Other authors follow a reliability based approach to topology optimization
[21, 29, 39]. In reliability based design optimization, the focus is on the failure
probability of the structure rather than its sensitivity with respect to uncertain-
ties. The optimization problem is usually formulated as a maximum (expected)
performance problem with a probabilistic constraint in order to ensure that the
failure probability of the structure remains below an acceptable level.

Sigmund [37] and Wang et al. [43] present a robust topology optimization
scheme accounting for uniform manufacturing errors. This method is developed
for the design of structures produced by milling or etching, such as Micro-
Electro-Mechanical Systems (MEMS). The focus is on errors caused by uniform
over-etching (all parts of the structure are thinner than intended) or underetch-
ing (all parts are thicker than intended). The effect of over- and underetching is
simulated by means of a projection method [17, 36, 45]: the design is smoothed
by means of a density filter, and a Heaviside projection is applied, using a high
projection threshold to simulate over-etching and a low projection threshold to
simulate under-etching. The application of this method to the design of pho-
tonic crystal waveguides is elaborated in reference [42]. A similar approach is
followed for the design of large-displacement compliant mechanisms in reference
[25].

Depending on the production process, it may be more realistic to assume
that the manufacturing error is non-uniform, i.e. that the magnitude of the
over- or under-etching error varies randomly throughout the design domain.
The present paper therefore extends the method proposed by Sigmund [37] and
Wang et al. [43] to the case of non-uniform manufacturing errors. To this end,
the Heaviside projection threshold is modeled as a random field. The method is
applied to two example problems: the design of a compliant gripper mechanism
(figure 1) and the design of a heat sink (figure 3).

The paper is organized as follows. Section 2 focuses on the deterministic
topology optimization problem. The SIMP method and the use of a Heaviside
projection technique are briefly reviewed, and the example problems are intro-
duced. Section 3 addresses the method proposed by Sigmund [37] to model
the effect of uniform over- and under-etching and extends this method to the
non-uniform case, i.e. the case where the manufacturing error varies randomly
in space. In section 4, the robust topology optimization problem is formulated
and solved for the two example problems. The designs obtained by robust op-
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timization (assuming either uniform or non-uniform manufacturing errors) are
compared with the designs obtained by deterministic optimization. Finally, in
section 5, the conclusions of the paper are summarized.

2. Deterministic topology optimization

2.1. SIMP with Heaviside projection filtering

A widely used method for topology optimization is the SIMP method, which
is based on the use of a Solid Isotropic Material with Penalization [5]: the design
domain is subdivided using finite elements, and each element e is assigned a
density ¯̃ρe representing the presence of material (zero density for void, unit
density for solid elements). Intermediate densities are also allowed in order to
obtain a continuous optimization problem, but they are penalized in order to
avoid intermediate densities in the final design. The penalization is realized by
means of a nonlinear relation between an element’s density ¯̃ρe and its stiffness
or conductivity Ee:

Ee(¯̃ρe) = Emin + ¯̃ρpe(E0 − Emin) (1)

E0 and Emin are the stiffness/conductivity of the solid phase and the void phase,
respectively, and p is a penalization factor used to ensure black-and-white solu-
tions.

Using the element densities ¯̃ρe as design variables in the optimization prob-
lem would lead to a mesh dependent solution and to the formation of checker-
board patterns [11, 19, 38]. A common technique to avoid these problems is the
use of a density filter [7, 8]: the density of an element is defined as a weighted
average of the design variables corresponding to the elements in its neighbor-
hood. The neighborhood is defined as a circle in 2D or a sphere in 3D with a
specified radius R. The filter radius R determines the minimum length scale
in the optimized design. The application of a density filter can be interpreted
as a smoothing operation and leads to gray transition zones between solid and
void regions. Projection techniques have been proposed to transform the filtered
design into a black-and-white solution [17, 20, 36, 45].

The design variables are denoted as ρe. The application of a density filter
leads to the variables ρ̃e:

ρ̃e =

∑Q
i=1

weiviρi
∑Q

i=1
weivi

(2)

where Q is the number of elements, rei is the center-to-center distance between
elements e and i, and and wei is a weighting factor defined as:

wei = max(0, R− rei) (3)

The filtered variables ρ̃e are further transformed into element densities ¯̃ρe by
means of a Heaviside step function: values smaller than a threshold value η are
projected to 0; values larger than η are projected to 1. In order to allow for
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the use of a gradient-based optimization scheme, the Heaviside step function is
replaced with a smooth approximation. The function proposed by Wang et al.
[43] is used:

¯̃ρe =
tanh(βη) + tanh

(

β(ρ̃e − η)
)

tanh(βη) + tanh
(

β(1− η)
) (4)

The parameter β controls the smoothness of the approximation: for β tending
to zero, the element densities ¯̃ρe are equal to the filtered variables ρ̃e; for β
approaching infinity, the approximation approaches a true Heaviside step func-
tion. In order to avoid local minima in the optimization, a continuation scheme
is used: the parameter β starts from a low value and is gradually increased
during the optimization process.

In the following sections, the design variables ρe, the filtered variables ρ̃e, and
the element densities are collected in vectors denoted as ρ, ρ̃, and ¯̃ρ, respectively.
The dependencies between these vectors and the relation with the Heaviside
projection threshold η are made explicit by means of the notations ρ̃(ρ) and
¯̃ρ(ρ̃|η).

2.2. Formulation of the optimization problem

The optimization problem is formulated as follows:

min
ρ

: f(ρ) = lTu(ρ)

s.t. : K(ρ)u(ρ) = f

: g(ρ) = V (ρ) ≤ V ∗

: 0 ≤ ρ ≤ 1 (5)

where Ku = f is the discrete version of the state problem, i.e. the discrete
Navier-Cauchy partial differential equation for the mechanism design problem
and the discrete Poisson equation for the heat conduction problem. The vectors
f and u are discrete representations of the load and the solution, respectively.
The matrixK is obtained by finite element discretization of the differential oper-
ator. It is assembled from the element stiffness matrices Ke = EeK0, where K0

is the element stiffness matrix for an element with unit stiffness/conductivity.
The objective function f(ρ) is expressed in terms of the elements of the vec-
tor u by means of a problem dependent selection vector l. For the compliant
mechanism problem, the elements of the selection vector l corresponding to the
upper and lower output degrees of freedom are −1 and 1, respectively, and all
other elements are equal to zero. For the heat conduction problem, the selec-
tion vector l is equal to the load vector f , which is an evenly distributed heat
generation load. The design variables ρe are collected in a vector ρ and must
take a value between 0 and 1. The volume fraction V (ρ) of the design domain
occupied by material is given by:

V (ρ) =

∑Q
e=1

¯̃ρeve
∑Q

e=1
ve

(6)
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where ve is the volume of element e. The maximum volume fraction is V ∗.
The sensitivity ∂f

∂ ¯̃ρe
of the objective function f with respect to the element

densities ¯̃ρe is computed by means of the adjoint variable method:

∂f

∂ ¯̃ρe
= −λT

∂K

∂ ¯̃ρe
u (7)

where the adjoint vector λ is obtained by solving Kλ = l. For the heat conduc-
tion problem, the adjoint vector λ is equal to the state vector u.

The sensitivity ∂g

∂ ¯̃ρe
of the constraint function g with respect to the element

densities ¯̃ρe is given by:
∂g

∂ ¯̃ρe
=

ve
∑Q

i=1
vi

(8)

The sensitivity ∂f
∂ρk

of the objective function f with respect to the design
variables ρk is obtained by applying the chain rule twice:

∂f

∂ρk
=

Q
∑

e=1

∂f

∂ρ̃e

∂ρ̃e
∂ρk

=

Q
∑

e=1

∂f

∂ ¯̃ρe

∂ ¯̃ρe
∂ρ̃e

∂ρ̃e
∂ρk

(9)

where:
∂ρ̃e
∂ρk

=
wekvk

∑Q
i=1

weivi
(10)

and:
∂ ¯̃ρe
∂ρ̃e

=
β
(

sech
(

β(ρ̃e − η)
))2

tanh(βη) + tanh
(

β(1 − η)
) (11)

The sensitivity ∂g
∂ρk

of the constraint function g with respect to the design
variables ρk is obtained in a similar way.

2.3. Compliant mechanism design

The design domain and the boundary conditions for the compliant gripper
mechanism are given in figure 1. The objective is to find a symmetric design
(with respect to the horizontal axis) that maximizes the sum of the displace-
ments uout1 and uout2 at the output points for a unit force fin = 1 applied at
the input point. The width and height of the design domain is L = 200. The
spring stiffness coefficients are kin = 1 and kout = 0.005. The Young’s moduli
for the solid and the void phases are E0 = 1 and Emin = 10−9, respectively.
The Poisson’s ratio is ν = 0.3. The maximum volume fraction is V ∗ = 0.3. A
finite element mesh consisting of 200× 200 linear elements is used.

The SIMP penalization factor is p = 3. The filter radius of the density filter
is R = 8.4. Following Xu et al. [45] and Kawamoto et al. [20], a Heaviside
projection threshold η equal to 0.5 is used. The initial value for the smoothness
parameter β is 1; this value is doubled every 50 iterations up to a maximum
value of 32. The Method of Moving Asymptotes (MMA) developed by Svanberg
[41] is used to solve the optimization problem. The optimization algorithm is
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Figure 1: Design domain and boundary conditions for the compliant gripper mechanism.

terminated after 300 iterations. This termination criterion (with a fixed number
of iterations) is used to keep the computational time limited and predictable,
which is especially useful in the (computationally demanding) robust approach
addressed in the following sections. For all optimization runs discussed in this
paper, the relative change of the objective function in the final iteration is
smaller than 0.0002. While the l∞ norm of the change of the design variables
remains relatively large (up to 0.17 for one of the optimization runs), we have the
experience that increasing the number of iterations only has a minor influence
on the design and practically no influence on the objective function.

Figure 2 shows the optimized design. The design variables ρ, the inter-
mediate variables ρ̃ obtained by density filtering, and the element densities ¯̃ρ
obtained by a (smoothed) Heaviside projection are shown. It is important to
note that only the element densities ¯̃ρ have a physical meaning, as they deter-
mine the stiffness taken into account in the finite element analysis. The value
of the objective function for the optimized design is f(ρ) = −2.023.

While the application of the density filter introduces a length scale in the
design, this length scale is not preserved by the Heaviside projection: very
narrow hinges occur between different parts of the mechanism. As explained by
Wang et al. [43], this is caused by the use of a projection threshold β different
from 0 or 1. Due to these hinges, the design is very sensitive to manufacturing
errors, as they may cause the parts of the mechanism to disconnect in the case
of over-etching.

2.4. Heat sink design

Figure 3 shows the design domain and boundary conditions for the heat sink.
The heat generation load is an evenly distributed unit load, and the objective
is to maximize the heat transfer. The width and height of the design domain is
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(a) Design variables ρ. (b) Filtered variables ρ̃(ρ). (c) Element densities ¯̃ρ(ρ̃|η).

Figure 2: Optimized design for a compliant gripper mechanism obtained with a deterministic
approach.

L = 200. The conductivity of the solid phase is E0 = 1, while the conductivity
of the void phase is Emin = 10−3. The maximum volume fraction is V ∗ = 0.5.
A finite element mesh with 200× 200 elements is used.

L

L0.10L

Figure 3: Design domain and boundary conditions for the heat sink. A zero temperature is
imposed at the hashed area, while a zero heat flux is imposed elsewhere.

As in the previous example, the SIMP penalization factor is p = 3, the
filter radius is R = 8.4, the Heaviside projection threshold is η = 0.5, and the
smoothness parameter β is increased from 1 to 32 by doubling its value every
50 iterations. MMA is used, and the optimization algorithm is stopped after
300 iterations.

The optimized design is shown in figure 4. The value of the objective function
for this design is f(ρ) = 1.179. As stated by Wang et al. [43], the use of a
Heaviside projection filter with a threshold η = 0.5 does not lead to a design
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with a minimum length scale, neither for the solid phase, nor for the void phase.

(a) Design variables ρ. (b) Filtered variables ρ̃(ρ). (c) Element densities ¯̃ρ(ρ̃|η).

Figure 4: Optimized design for a heat sink obtained with a deterministic approach.

It should be noted that the design in figure 4c exhibits a relatively large
amount of gray elements; as a consequence, this design is not immediately usable
as input to the manufacturing process. It is possible to suppress these elements
by increasing the smoothness parameter β to a higher value, e.g. 128 or 256.
However, this leads to a structure with very fine features (a single element wide,
see e.g. reference [43]), which is impossible to produce.

3. Modeling manufacturing errors

3.1. Uniform errors

Sigmund [37] and Wang et al. [43] propose a method to model the effect
of over-etching (erosion) and under-etching (dilation) by varying the Heaviside
projection threshold η. The basis of this idea is illustrated in figure 5. The figure
shows a design consisting of vertical bars. The design variables ρ are smoothed
by means of a density filter. The filtered design ρ̃ exhibits gray transition zones
between the solid and void regions. The application of a Heaviside projection
leads to a black-and-white design. The reference design (i.e. the design to be
used as input to the manufacturing process) is obtained with a projection thresh-
old η0 = 0.5. Varying the projection threshold η results in an erosion or dilation
effect: for high values of η, only dark gray elements are projected to the solid
phase, resulting in thinner bars. For low values of η, light gray elements are also
projected to the solid phase, and the bars become thicker. The effect is shown
for three different projection thresholds represented as a shade of gray.

While Sigmund [37] and Wang et al. [43] follow a worst case approach to
account for the effect of manufacturing errors in the optimization, a probabilistic
approach is followed in this paper: the projection threshold is modeled as a
random variable, characterized by a probability distribution. The motivation to
switch from a worst case approach to a probabilistic approach is that the latter
allows for a relatively straightforward extension of the method to non-uniform
manufacturing errors by using a random field instead of a random variable.

9



ρ

ρ̃(ρ)

η(θ1) ¯̃ρ(ρ̃|η(θ1))

η(θ2) ¯̃ρ(ρ̃|η(θ2))

η(θ3) ¯̃ρ(ρ̃|η(θ3))

Figure 5: Uniform manufacturing errors modeled by means of a random Heaviside projection
threshold η(θ). The design variables ρ, the intermediate variables ρ̃(ρ), and the element den-
sities ¯̃ρ(ρ̃|η(θ)) obtained for three random realizations η(θ1), η(θ2), and η(θ3) of the projection
threshold are shown.

In Kolmogorov’s probability theory [13, 24], a random variable η is repre-
sented as a function η(θ), where θ stands for an elementary event. The ele-
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mentary event determines the state of the random problem: every elementary
event corresponds to a single possible state. Within each state, all random vari-
ables considered assume a fixed, deterministic value. The random projection
threshold η(θ) is characterized by a probability density function pη(η).

The Gaussian probability distribution is frequently adopted to characterize
the uncertainty in mechanical models as this leads to tractable numerical formu-
lations and allows for the use of relatively simple simulation models, especially
when random fields are involved. This choice is often motivated by the central
limit theorem: the uncertainties are assumed to originate from a large number
of (independent) sources, and the sum of a large number of independent ran-
dom variables tends to a Gaussian variable. However, the use of a Gaussian
probability distribution is not always appropriate. In many publications, the
stiffness of a mechanical system is modeled by means of a Gaussian random
variable or field. This is clearly unrealistic, as in this case the stiffness takes
a negative value with non-zero probability. Moreover, it can easily be shown
that the variance of the response of such a system due to a static load becomes
infinite, which is not physically sound [32]. Similarly, the Heaviside projection
threshold η(θ) must take a value between 0 and 1 in order to be meaningful.
It can therefore not be modeled as a Gaussian random variable. The probabil-
ity density function pη(η) shown in figure 6 is used: the projection threshold
η(θ) is assumed to be uniformly distributed in the interval from 0.4 to 0.6. As
the reference design is the design corresponding to η0 = 0.5, the choice of this
probability density function implies that erosion and dilation errors are equally
likely to occur, since the probability density function pη(η) is symmetric with
respect to η0.

0 0.2 0.4 0.6 0.8 1

0

5

η

pη

Figure 6: Probability density function pη(η) of the projection threshold η(θ).

In order to obtain a similar formulation for uniform and non-uniform manu-
facturing errors (treated in the next subsection), the projection threshold η(θ)
is expressed as a nonlinear transformation of an underlying standard Gaussian
variable ξ(θ):

η(θ) = γ
(

ξ(θ)
)

= F−1

η

(

Fξ

(

ξ(θ)
)

)

(12)

The transformation γ is defined in terms of the cumulative distribution func-
tion Fη(η) of the random variable η(θ) and the standard Gaussian cumulative
distribution function Fξ(ξ).
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The combination of the density filter radius R and the projection thresholds
η considered in the optimization determines the length scale of the solid and void
phases as well as the magnitude of the manufacturing errors taken into account.
The influence of R and η on the length scale b is studied in reference [43];
this study is not repeated in the present paper.1 In the following, the relation
between the projection threshold η and the ratio ε/R of the manufacturing error
magnitude ε and the filter radius R is investigated.

Figure 7 illustrates the simulation of a manufacturing error for a square
structure with a circular hole. The design variables ρ are shown in figure 7a.
The application of a density filter leads to the variables ρ̃(ρ) shown in figure
7b. The radius R of the filter determines the width of the gray transition
zone between the solid and void phases, which is equal to 2R. The element
densities ¯̃ρ(ρ̃|η(θ)) are computed for three realizations η(θ1), η(θ2), and η(θ3)
of the projection threshold, corresponding to an eroded, and intermediate, and
a dilated design. The results are shown in figure 7b. As can be observed, the
manufacturing errors are confined to the gray transition zone. If the projection
threshold η(θ) ranges from 0 to 1, the manufacturing errors cover the entire
transition zone. If the range of the projection threshold η(θ) is narrower, the
manufacturing error becomes smaller.

(a) (b)

Figure 7: (a) Design variables ρ for a square structure with a circular hole and (b) correspond-
ing filtered variables ρ̃(ρ). The element densities ¯̃ρ(ρ̃|η(θ)) are computed for three realizations
η(θ1), η(θ2), and η(θ3) of the projection threshold. For each realization, the boundary between
the solid and the void phase is indicated by means of a line.

Next, a quantitative study of the problem is performed. Figure 8 shows how
a variation of the projection threshold η leads to a shift of the boundary between
a solid and a void phase for a 1D problem (or a straight/planar boundary for

1Figures 12 and 21 in reference [43] show the normalized length scale as a function of the
projection threshold η. In these figures, the vertical axis is erroneously labeled as b/2R. The
correct label is b/R, where b is the length scale and R is the filter radius.
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2D/3D problems). Two cases are considered: in the first case, the dimension
of both the solid and the void phase is larger than 2R. In the second case,
the dimension of the solid phase is smaller than 2R. The figure shows that
increasing the projection threshold from η0 = 0.5 to η = 0.6 leads to an erosion
effect. It can be observed that the magnitude ε of the erosion is larger in the
case where the dimension of the solid phase is smaller than 2R. This is due to
the fact that the application of a density filter results in a curve with a smaller
slope. Analogously, a decrease of the projection threshold leads to a dilation
which is stronger in the case where the dimension of the void phase is smaller
than 2R. A similar phenomenon occurs if the design variables vary smoothly
between the solid and void phases: this also leads to a curve with a smaller
slope and, consequently, a stronger erosion/dilation effect.

0 1 2 3 4

0

1

x/R

ρ

(a)

0 1 2 3 4

0

1

x/R

ρ

(b)

0 1 2 3 4

0

1

x/R

η
η0ρ̃

(c)

0 1 2 3 4

0

1

x/R

η
η0ρ̃

(d)

Figure 8: Design variable field ρ (top) and density filtered field ρ̃ (bottom) at the transition
from solid to void in 1D space. On the left hand side, the dimension of both the solid and the
void phase is larger than 2 times the filter radius R. On the right hand side, a smaller solid
phase is considered. The solid phase obtained by means of a Heaviside projection is visualized
in the figures at the bottom: the gray zone (including both dark and light gray) is the solid
phase obtained with a projection threshold η0 = 0.5; the dark gray zone is what remains of
the solid phase when the projection threshold is increased up to η = 0.6.

Due to these phenomena, it is impossible to formulate a unique relationship
between the projection threshold η and the ratio ε/R. However, it is possible to
determine a lower bound for ε/R (which is exact for sharp boundaries between
solid and void phases with dimensions larger than 2R). This lower bound is
determined using figure 8c, assuming that the reference design is obtained using
η0 = 0.5. The result is shown in figure 9. Figure 9 allows for the selection of the
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appropriate values of η (or the appropriate probability distribution pη(η)) in
order to model manufacturing errors with a given magnitude in a conservative
way.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

η

ε/R

Figure 9: Relation between the Heaviside projection threshold η and the magnitude ε of
the manufacturing error (normalized to the filter radius R) assuming that the reference de-
sign is obtained using η0 = 0.5. A positive manufacturing error ε is a dilation; a negative
manufacturing error ε is an erosion.

In the present study (where R = 8.4 and η varies between 0.4 and 0.6),
the length scale b for the intermediate design is equal to 5.31 for both the
solid and the void phase (as long as the topology does not change due to the
manufacturing errors; see reference [43]) and the erosion/dilation magnitude ε
varies between -0.91 and 0.91.

3.2. Non-uniform errors

The strategy followed in the previous subsection can be modified to model
non-uniform manufacturing errors (i.e. not constant over the entire design do-
main) by using a random field instead of a random variable to represent the
projection threshold η. This approach is illustrated in figure 10: the spatially
varying erosion/dilation effect is shown for three different realizations of the
projection threshold.

Kolmogorov’s probability theory allows for a rigorous definition of a random
field (or a random process; a random field varies in space, a random process in
time, but both are essentially identical) [12]. A random field is represented as
a function η(x, θ) of the spatial coordinates x and the elementary event θ. The
random field η(x, θ) can be regarded as an infinite family of random variables
ηxi

(θ) = η(xi, θ) at all points xi in the domain where the random field is defined.
A complete stochastic characterization of the random field η(x, θ) requires the
joint probability density functions of all combinations of the random variables
ηxi

(θ) to be specified. As this is practically impossible, the characterization of
a random field is almost always incomplete.

It is common practice to characterize a random field by means of a marginal
probability density function pηx

(η), describing the behavior of the random field
η(x, θ) at a fixed position x, and a covariance function Cη(x1,x2), determining
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ρ

ρ̃(ρ)

η(x, θ1) ¯̃ρ
(

ρ̃|η(x, θ1)
)

η(x, θ2) ¯̃ρ
(

ρ̃|η(x, θ2)
)

η(x, θ3) ¯̃ρ
(

ρ̃|η(x, θ3)
)

Figure 10: Non-uniform manufacturing errors modeled by means of a random Heaviside pro-
jection threshold η(x, θ). The design variables ρ, the intermediate variables ρ̃(ρ), and the
element densities ¯̃ρ

(

ρ̃|η(x, θ)
)

obtained for three random realizations η(x, θ1), η(x, θ2), and
η(x, θ3) of the projection threshold are shown.

how the field varies in space. The covariance function Cη(x1,x2) is defined as:

Cη(x1,x2) = E

{

(

η(x1, θ)− E
{

η(x1, θ)
}

)(

η(x2, θ)− E
{

η(x2, θ)
}

)

}

(13)
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where E is the expectation operator. While the marginal probability den-
sity function pηx

(η) determines the magnitude of the manufacturing errors (as
discussed in the previous subsection), the covariance function Cη(x1,x2) de-
termines the variation of the manufacturing error in space. The choice of
the marginal probability density function pηx

(η) and the covariance function
Cη(x1,x2) depends on the properties of the production technique used.

Modeling a Gaussian random field (i.e. a random field with a Gaussian
marginal probability density function) is less complicated than a non-Gaussian
random field. Numerous methods for the discretization and simulation of Gaus-
sian random fields have been presented in the literature. Among the most pop-
ular are series expansion methods such as the spectral representation method
[35], the Karhunen-Loève expansion [46], and the Expansion Optimal Linear
Estimation (EOLE) method [27].

As indicated in the previous subsection, the projection threshold η(x, θ)
cannot be modeled as a Gaussian random field. A random field with a uniform
marginal probability density function pηx

(η) between 0.4 and 0.6 is used instead.
A non-Gaussian random field η(x, θ) with a prescribed marginal probability
density function pηx

(η) and a prescribed covariance function Cη(x1,x2) can be
modeled as a translation process [16]:

η(x, θ) = γ
(

ζ(x, θ)
)

= F−1

ηx

(

Fζ

(

ζ(x, θ)
)

)

(14)

where ζ(x, θ) is a standard Gaussian random field and γ is a memoryless trans-
formation defined in a similar way as in equation (12), using the marginal cumu-
lative distribution function Fηx

(η) of the random field η(x, θ) and the standard
Gaussian cumulative distribution function Fζ(ζ). Grigoriu [16] proposes a pro-
cedure similar to the Nataf transformation [28] to determine the covariance
function Cζ(x1,x2) of the underlying Gaussian random field ζ(x, θ) so that the
memoryless transformation γ leads to a random field η(x, θ) with the prescribed
covariance function Cη(x1,x2). However, this procedure does not always lead to
a valid solution (i.e. to a covariance function Cζ(x1,x2) that is positive definite).
In order to avoid such problems here, the covariance function Cζ(x1,x2) is cho-
sen directly instead of choosing a covariance function Cη(x1,x2) and attempting
to determine the corresponding covariance function Cζ(x1,x2).

A covariance function Cζ(x1,x2) must be positive definite in order to be
valid [46]. For multidimensional random fields, a covariance function depending
on the Euclidean distance ‖x2−x1‖ is often used. This approach allows for the
use of a 1D covariance function in a higher dimensional space. However, it is
important to realize that not all covariance functions that are positive definite in
1D space remain positive definite in higher dimensions, as explained by Weber
and Talkner [44].

In the present study, a squared exponential covariance function is used:

Cζ(x1,x2) = exp

(

−‖x2 − x1‖2
l2c

)

(15)

where lc is the correlation length. The correlation length determines the scale
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of variation of the random field ζ(x, θ): a random field with a small correlation
length will exhibit more fine scale variations than a random field with a large
correlation length. A correlation length lc = 0.3L is used. The covariance
function Cζ(x1,x2) is visualized in figure 11.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

‖x2 − x1‖/L

Cζ

Figure 11: Covariance function Cζ(x1,x2) of the underlying standard Gaussian random field
ζ(x, θ).

The squared exponential covariance function has certain advantages over the
exponential covariance function exp

(

−‖x2 − x1‖/lc
)

, which is also frequently
used: the former represents a differentiable random field [46], which is more
realistic for most physical properties, and can be modeled more accurately due
to its smoothness [40].

The underlying standard Gaussian random field ζ(x, θ) is modeled by means
of the EOLE method [27]. The EOLE method consists of two steps. In the first
step, a number N of nodal points x1, . . . ,xN in the domain of the random
field is selected. The values of the random field at these points are collected
in a vector Z = {ζ(x1, θ), . . . , ζ(xN , θ)}T. The value at any other location x is
approximated by means of the Optimal Linear Estimation (OLE) method:

ζ(x, θ) ≈ CT

Zζ(x)C
−1

Z
Z(θ) (16)

where CZ is the correlation matrix of the random vector Z(θ):

CZ =







Cζ(x1,x1) . . . Cζ(x1,xN )
...

. . .
...

Cζ(xN ,x1) . . . Cζ(xN ,xN )






(17)

and CZζ(x) is the cross-correlation matrix of the vector Z(θ) and the scalar
ζ(x, θ):

CZζ(x) =











Cζ(x1,x)
...

Cζ(xN ,x)











(18)

In the second step, the components of the random vector Z(θ) are decorre-
lated by means of principal component analysis [18]:

Z(θ) =

N
∑

k=1

ξk(θ)
√
λkvk (19)
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where ξk(θ) are uncorrelated random variables with unit variance and λk and
vk are the eigenvalues and eigenvectors of the covariance matrix CZ. Since
the vector Z(θ) follows a Gaussian distribution, the random variables ξk(θ) are
independent standard Gaussian variables.

Combining equations (16) and (19) gives the EOLE approximation of the
random field ζ(x, θ):

ζ(x, θ) ≈
N
∑

k=1

ξk(θ)
1√
λk

vT

k CZζ(x) (20)

where use is made of the properties C−1

Z
=

∑N
j=1

vjλ
−1

j vT
j and vT

j vk = δjk,
with δjk the Kronecker Delta. The series in equation (20) can be truncated after
M ≤ N terms in order to reduce the dimensionality of the problem (provided
that the eigenvalues λk are sorted in decreasing order).

Equation (20) is reformulated as:

ζ(x, θ) ≈
M
∑

k=1

ξk(θ)φk(x) (21)

where φk(x) = 1√
λk

vT

k CZζ(x). This equation makes clear that the EOLE ex-

pansion of the (standard Gaussian) random field ζ(x, θ) is a linear combination
of deterministic functions φk(x) with (independent standard Gaussian) random
coefficients ξk(θ), similar to the Karhunen-Loève expansion.

The Karhunen-Loève expansion requires the solution of an integral eigen-
value problem. For a random field with a squared exponential covariance func-
tion, this problem cannot be solved analytically, and only an approximate so-
lution based on interpolation functions can be obtained (e.g. by means of the
Galerkin type procedure proposed by Ghanem and Spanos [15]). Li and Der
Kiureghian [27] demonstrated that the EOLE expansion is more efficient than
the Karhunen-Loève expansion in such cases.

The locations of the nodal points used for the EOLE expansion are indicated
in figure 12. A regular EOLE mesh with equally spaced nodes is used, which is
possible in this case due to the square shape of the design domain. However,
the use of a regular mesh or equally spaced nodes is not a requirement, which
means that the EOLE method is equally applicable in cases where the design
domain has a more complex shape. The number N of nodal points is equal to
100; this number is chosen so that the size of each element in the EOLE mesh
is smaller than lc/3, as recommended by Sudret and Der Kiureghian [40] for
random fields with a squared exponential covariance function.

Figure 13 shows the first ten functions φk(x) in the EOLE expansion. These
functions are approximations to the modes in a Karhunen-Loève expansion and
can therefore be referred to as EOLE modes. It can be observed that the lowest
order modes represent the coarse scale variations in the random field ζ(x, θ),
while the higher order modes represent the fine scale variations. The magnitude
of the modes decreases with the mode number. As a result, the importance
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Figure 12: Locations of the EOLE nodal points in the design domain.

of the highest order modes in the EOLE expansion is limited, which justifies
a truncation of the expansion after a limited number of terms. In the present
analysis no truncation is performed, however, and all modes are retained in the
expansion (i.e. M = N = 100).
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Figure 13: First ten modes φk(x) in the EOLE expansion of the underlying Gaussian process
ζ(x, θ).

The random Heaviside projection threshold η(x, θ) is now simulated as fol-
lows: a random number generator is used to generate realizations of the standard
Gaussian variables ξk(θ). These realizations are introduced in equation (21) to
obtain a realization of the underlying Gaussian field ζ(x, θ). This realization
is finally transformed into a realization of the projection threshold η(x, θ) by
means of the memoryless transformation in equation (14).

Five realizations of the underlying Gaussian random field ζ(x, θ) as well as
the corresponding realizations of the random projection threshold η(x, θ) are
shown in figure 14. It can be observed that the realizations of both random
fields ζ(x, θ) and η(x, θ) vary in space in a similar way, which suggests that
the impact of prescribing the covariance function Cζ(x1,x2) of the underlying
Gaussian random field ζ(x, θ) instead of the covariance function Cη(x1,x2) of
the random field of interest η(x, θ) is relatively low.

Figure 15 shows the effect of an non-uniform manufacturing error for the
example structure with a circular hole introduced in subsection 3.1. As can be

19



−2

−2

−1.5

−1

−1−0.5

−0.5
0

0

0

0.5

1

1

−1

−1

−1

−0.5

−0.5

0

0

0

0.5

1

1

−1

−
1

−1

−0.5 −0
.5

0

0

0.5

0.
5

11.5
2 −1.5

−1
.5

−1

−1

−0
.5

−0.50

0

0.
5

0.
5

1

1

−1

−0.5

−0.5

0

0

0.5
1

0.425

0.45

0.45

0.45

0.475

0.4750.5

0.50.525

0.525

0.55

0.425

0.45

0.45

0.475

0.475

0.
5

0.525
0.55

0.425

0.425

0.
45

0.450.475

0.
47

5

0.5

0.
5

0.5250.55
0.425

0.
42

5

0.
45

0.45

0.
47

5

0.4750.
5

0.5

0.
52

5 0.
52

5

0.55

0.
55

0.425

0.45

0.45

0.475

0.475

0.5

0.5

0.525
0.55

Figure 14: Five realizations of the underlying Gaussian random field ζ(x, θ) (top) and the
random Heaviside projection threshold η(x, θ) (bottom).

observed, the result is a structure with a non-circular hole. The magnitude of
the manufacturing error ε is determined by the radius R of the density filter and
the variation of the projection threshold η(x, θ), in the same way as for uniform
manufacturing errors.

(a) (b)

Figure 15: (a) Design variables ρ for a square structure with a circular hole and (b) corre-
sponding filtered variables ρ̃(ρ). The element densities ¯̃ρ(ρ̃|η(x, θ)) are computed for three
realizations η(x, θ1), η(x, θ2), and η(x, θ3) of the projection threshold. For each realization,
the boundary between the solid and the void phase is indicated by means of a line.

4. Robust topology optimization

4.1. Formulation of the optimization problem

We now have expressed the manufacturing uncertainties in terms of a stan-
dard Gaussian vector ξ(θ). This vector ξ(θ) contains only a single random
variable ξ(θ) in the case of uniform errors and M random variables ξk(θ) in the
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case of non-uniform errors. The response f = lTu of the structure depends both
on the design variables ρ and on the uncertain parameters ξ(θ) and is therefore
denoted as f

(

ρ, ξ(θ)
)

. Similarly, the volume constraint function is denoted as

g
(

ρ, ξ(θ)
)

.
Robust design optimization implies that we aim for a low value of the re-

sponse that is not too sensitive to the uncertain parameters ξ(θ). Several ap-
proaches to the mathematical formulation of this objective have been followed
in the literature; an extensive overview is given in reference [6]. In the present
study, the robust optimization problem is formulated as follows:

min
ρ

: F (ρ) = mf (ρ) + κσf (ρ)

s.t. : K(ρ, ξ)u(ρ, ξ) = f

: G(ρ) = mg(ρ) ≤ V ∗

: 0 ≤ ρ ≤ 1 (22)

where mf (ρ) and σf (ρ) are the mean value and the standard deviation of the
response f

(

ρ, ξ(θ)
)

:

mf (ρ) = E

{

f
(

ρ, ξ(θ)
)

}

(23)

σf (ρ) =

√

E

{

[

f
(

ρ, ξ(θ)
)

]2

−
[

E

{

f
(

ρ, ξ(θ)
}]2

}

(24)

The factor κ in equation (22) is a weighting factor which is chosen equal to 1 in
the present study. It should be noted that this choice has an influence on the
result of the optimization: increasing κ leads to a design with a lower sensitivity
to manufacturing errors but a worse mean performance. The volume constraint
G(ρ) is formulated in terms of the mean value mg(ρ) of the constraint function
g
(

ρ, ξ(θ)
)

:

mg(ρ) = E

{

g
(

ρ, ξ(θ)
)

}

(25)

From a designer’s point of view, it may be more logical to express the vol-
ume constraint in terms of the reference or blueprint design, i.e. the design
obtained with a projection threshold η0 = 0.5. However, this would lead to
an ill-conditioned optimization problem and dilated designs with unrealistically
thick bars, as explained in reference [37].

Owing to the linearity of the expectation operator E, the sensitivity
∂mf

∂ρk
of

the mean response mf with respect to the design variables ρk is simply obtained
as the mean sensitivity of the random response f

(

ρ, ξ(θ)
)

:

∂mf

∂ρk
= E

{

∂f

∂ρk

}

(26)

The sensitivity
∂mg

∂ρk
of the mean volume constraintmg with respect to the design

variables ρk is obtained in a similar way. Using the chain rule, the sensitivity
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∂σf

∂ρk
of the standard deviation σf of the response with respect to the design

variables ρk is determined as:

∂σf

∂ρk
=

1

σf

E

{

(f −mf )
∂f

∂ρk

}

(27)

The robust optimization problem is solved with MMA, using the same pa-
rameters, the same continuation scheme, and the same number of iterations as
in the deterministic case. In each optimization iteration, the statistical mo-
ments mf (ρ), σf (ρ), and mg(ρ) and their sensitivities

∂mf

∂ρk
,

∂σf

∂ρk
, and

∂mg

∂ρk
are

estimated by means of a Monte Carlo method [30].
In each Monte Carlo simulation, 100 realizations ξ(θi) of the uncertain pa-

rameters are considered. The same realizations are used throughout the entire
iteration history in order to ensure smooth convergence of the optimization
scheme. The number of realizations is relatively low, so that the computational
cost of the optimization scheme remains reasonable. For the final design, a more
elaborate Monte Carlo simulation is performed in order to verify the accuracy
of the estimates of the mean value and the standard deviation of the response
f
(

ρ, ξ(θ)
)

. In the following, the estimates of these statistics obtained from the
simulation with 100 realizations (which are used for the optimization) are de-
noted as m̂f and σ̂f , while the estimates obtained from the simulation with
10000 realizations (which serve as reference values) are denoted as mf and σf .

As 100 designs are analyzed in each iteration of the optimization scheme, the
computational cost is 100 times as high as in the deterministic case. However,
the fact that all designs are relatively similar allows for the use of approximate
reanalysis techniques [1, 2], so that the cost can at least partially be alleviated.
A preliminary study has shown that a speedup by a factor of 5 is possible. For
low dimensional problems (in stochastic space; i.e. problems where the number
of modes in the EOLE expansion is limited), alternative probabilistic techniques
such as the perturbation method [15, 22], polynomial chaos expansion [15], and
sparse grid quadrature [14] have proven to be more efficient than a Monte Carlo
method [26].

4.2. Compliant mechanism design

Figure 16 shows the optimized compliant mechanism design obtained with
a robust approach considering uniform and non-uniform manufacturing errors.
The figure shows the design variables ρ, the filtered variables ρ̃(ρ), and the
element densities ¯̃ρ(ρ̃|η0) for the reference design (obtained with a projection
threshold η0 = 0.5). The designs obtained for uniform and non-uniform man-
ufacturing errors are very similar. Compared with the design obtained by de-
terministic optimization (figure 2), the most obvious difference is the absence
of narrow hinges. As a consequence, the risk of failure due to over-etching is
eliminated.

In the case of uniform manufacturing errors, the performance of the reference
design is f0 = −1.851, which is slightly worse than the value f0 = −2.023 for
the deterministic design. The mean response m̂f = −1.818 is very close to
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(a) Design variables ρ. (b) Filtered variables ρ̃(ρ). (c) Element densities ¯̃ρ(ρ̃|η0).

Figure 16: Optimized design for a compliant gripper mechanism obtained by robust optimiza-
tion considering uniform (top) and non-uniform (bottom) manufacturing errors.

the response f0 of the reference design, and the standard deviation σ̂f = 0.035
is very small, which means that a high degree of robustness is achieved: the
optimized design is almost insensitive with respect to uniform manufacturing
errors. The estimates m̂f and σ̂f of the response statistics are very close to the
reference values mf = −1.817 and σf = 0.035 obtained by means of a more
elaborate Monte Carlo simulation. It can therefore be concluded that using 100
samples in the optimization process is sufficient for this particular problem.

Very similar results are obtained in the case of non-uniform manufacturing
errors: the response of the reference design is f0 = −1.866, the estimates of the
mean response and standard deviation are m̂f = −1.825 and σ̂f = 0.037, and
the reference values obtained with a more thorough Monte Carlo simulation are
mf = −1.821 and σf = 0.036.

The impact of uniform and non-uniform manufacturing errors on the three
designs (the design obtained by deterministic optimization and both designs
obtained by robust optimization) is studied by means of additional Monte Carlo
simulations. Figure 17 shows the effect for three realizations of the random
manufacturing error. The target length scale b for the reference design and
the target range of the manufacturing error magnitude ε are also indicated in
the figure. It can be observed that the magnitude of the errors in the design
corresponds well with the target.
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(a) mf = −1.310, σf = 0.824. (b) mf = −0.846, σf = 0.843.

(c) mf = −1.817, σf = 0.035. (d) mf = −1.815, σf = 0.035.

(e) mf = −1.822, σf = 0.050. (f) mf = −1.821, σf = 0.036.

Figure 17: The effect of uniform (left) and non-uniform (right) manufacturing errors on the
optimized gripper mechanism design obtained assuming no manufacturing errors (top), uni-
form manufacturing errors (middle), and non-uniform manufacturing errors (bottom). The
top circle in the bottom right corner represents the target length scale b (in the reference
design) of both solid and void regions. The difference between the top circle and the bottom
circles represents the target magnitude ε of the erosion/dilation errors.
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The deterministic design (figures 17a and 17b) is very sensitive to manu-
facturing errors due to the occurrence of narrow hinges. The mechanism re-
mains intact for some realizations of the manufacturing error, but it fails for
others. As a consequence, the mean performance of the mechanism degrades
(mf = −1.310 for uniform errors; mf = −0.846 for non-uniform errors) and the
standard deviation increases strongly (σf = 0.824 for uniform errors; σf = 0.843
for non-uniform errors).

The designs obtained assuming uniform manufacturing errors (figures 17c
and 17d) and assuming non-uniform manufacturing errors (figures 17e and 17f)
are very similar. Both designs remain intact for both types of the manufacturing
error. Moreover, the mean value mf and the standard deviation σf of the
response (specified in the figure) are almost identical for both designs and both
types of error. It can therefore be concluded that, for this particular problem,
the design obtained assuming uniform manufacturing errors is equally robust
with respect to non-uniform errors, and vice versa.

4.3. Heat sink design

Figure 18 shows the optimized heat sink design obtained by means of a
robust approach assuming uniform and non-uniform manufacturing errors. The
clearest difference with the design obtained by deterministic optimization (figure
4) is the presence of a length scale in both the solid and the void phase.

(a) Design variables ρ. (b) Filtered variables ρ̃(ρ). (c) Element densities ¯̃ρ(ρ̃|η0).

Figure 18: Optimized design for a heat sink obtained by robust optimization considering
uniform (top) and non-uniform (bottom) manufacturing errors.
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Both designs in figure 18 are quite similar, except that the one obtained for
uniform errors is symmetric, while the other one is asymmetric. The asymmetry
may be due to the fact that only a limited number of (asymmetric) manufactur-
ing errors is considered in the optimization. However, this is probably not the
only reason, as the deterministic optimization scheme also leads to an asym-
metric design (figure 4). A possible explanation is that the formation of an
asymmetric pattern allows for a more even distribution of conductive material
along the axis of symmetry of the design domain.

In the case where uniform errors are considered, the response of the reference
design is f0 = 1.277, which is slightly worse than the value f0 = 1.179 obtained
in the deterministic case. The mean response and the standard deviation are
estimated as m̂f = 1.303 and σ̂f = 0.099. These estimates are very close
to the reference values mf = 1.299 and σf = 0.098 obtained with a more
thorough Monte Carlo simulation, which suggests that using 100 samples for
the optimization is sufficient.

In the case of non-uniform manufacturing errors, the response of the ref-
erence design is f0 = 1.268, the mean response and the standard deviation
are estimated as m̂f = 1.291 and σ̂f = 0.042, and the reference values are
mf = 1.296 and σf = 0.050. These results are similar to the values obtained
for uniform errors, except for the standard deviation σf , which is two times
smaller. This can be explained by the monotonic behavior of the objective
function with respect to the element densities: a dilation (increasing element
densities) will always lead to a larger heat transfer, while an erosion (decreasing
element densities) will always lead to a smaller heat transfer. In the case of
non-uniform manufacturing errors, dilations occur in some regions of the design
domain, while erosions occur in other regions. The total amount of material
does not change as strongly as in the case of uniform manufacturing errors, and
the variation of the objective function remains limited.

As in the previous subsection, the effect of the two different types of man-
ufacturing errors on the three designs is studied by means of additional Monte
Carlo simulations. Figure 19 shows this effect for three realizations of the man-
ufacturing error. The target length scale in the intermediate design and the
target range of erosion/dilation errors are also indicated.

For the design obtained by deterministic optimization (figures 19a and 19b),
the manufacturing errors are much larger than intended. This is due to the
absence of a length scale in the design: as explained in subsection 3.1, the
relationship between the Heaviside projection threshold η and the magnitude
of the manufacturing errors ε shown in figure 9 only holds for sharp boundaries
between solid and void phases with dimensions larger than 2R. In this case,
the dimensions of the phases are much smaller, and this results in a stronger
(unrealistically strong) erosion/dilation effect. As a consequence, the statistics
mf and σf given in figures 19a and 19b are meaningless. Nevertheless, it is clear
that a design without a length scale cannot be robust with respect to (uniform
or non-uniform) manufacturing errors.

For the robust designs (figures 19c to 19f), the magnitude of the manufactur-
ing errors agrees with the target. The effect of uniform manufacting errors on

26



(a) mf = 2.142, σf = 1.641. (b) mf = 1.953, σf = 0.643.

(c) mf = 1.299, σf = 0.098. (d) mf = 1.295, σf = 0.042.

(e) mf = 1.301, σf = 0.120. (f) mf = 1.296, σf = 0.050.

Figure 19: The effect of uniform (left) and non-uniform (right) manufacturing errors on the
optimized heat sink design obtained assuming no manufacturing errors (top), uniform manu-
facturing errors (middle), and non-uniform manufacturing errors (bottom). The top circle in
the bottom right corner represents the target length scale b (in the reference design) of both
solid and void regions. The difference between the top circle and the bottom circles represents
the target magnitude ε of the erosion/dilation errors.
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both designs is very similar (the mean response mf and the standard deviation
σf are almost identical). The same holds for the effect of non-uniform man-
ufacturing errors. It can be concluded that also for this problem, the design
obtained assuming uniform errors is also robust with respect to non-uniform
errors, and vice versa.

The objective function F (ρ) = mf + κσf in the case of non-uniform man-
ufacturing errors is (slightly) better for the design obtained assuming that the
manufacturing errors are uniform (figure 19d) instead of non-uniform (figure
19f). This is explained by the fact that the optimization scheme does not gen-
erally yield the exact global minimum.

5. Conclusion

Topology optimization is a valuable tool for the design of efficient macro-,
micro-, and nano-structures. However, in classical deterministic topology op-
timization, the effect of uncertain parameters such as manufacturing errors on
the performance of the structure is not taken into account. This may lead to
a design that is very sensitive to manufacturing errors. As a consequence, the
performance of the actual structure may be far from optimal.

Sigmund [37] and Wang et al. [43] propose a robust approach to topology
optimization where the effect of manufacturing errors is taken into account.
Erosion and dilation effects are simulated by means of a projection method: a
density filter is applied, followed by a Heaviside projection using a high projec-
tion threshold to simulate an erosion and a low projection threshold to simulate
a dilation. Only uniform manufacturing errors are considered (i.e. constant in
magnitude over the entire design domain). The optimization problem is formu-
lated as a worst case design problem, where an eroded, an intermediate, and a
dilated design are considered simultaneously.

The present paper extends this method in order to account for non-uniform
manufacturing errors (i.e. with spatially varying magnitude). A probabilistic
approach is followed: the Heaviside projection threshold is modeled as a ran-
dom field. This random field is characterized by a marginal probability density
function and a covariance function. The marginal probability density function
represents the magnitude of the manufacturing error, while the covariance func-
tion determines the variation of the manufacturing error in space. The random
field is modeled as a translation process [16]: it is expressed as a nonlinear
transformation of a Gaussian field, which is modeled by means of an EOLE
expansion [27]. The optimization problem is formulated in a probabilistic way:
the objective function is defined as a weighted average of the mean value and
the standard deviation of the structural performance. In each iteration of the
optimization scheme, these statistics are estimated by means of a Monte Carlo
simulation, considering 100 realizations of the manufacturing error. Afterwards,
a more elaborate Monte Carlo simulation is performed (using 10000 realizations)
to verify the results for the optimized design.

The proposed approach is applied to two test problems: the design of a
compliant gripper mechanism and the design of a heat sink. In both cases,
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a robust design with respect to non-uniform manufacturing errors is obtained.
Moreover, the robust topology optimization approaches discussed provide better
minimum feature size control than deterministic topology optimization. Finally,
it is observed that a design obtained assuming uniform manufacturing errors also
performs well if the manufacturing error is actually non-uniform (for the test
problems considered in this paper).
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