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Abstract

We present a novel framework for analyzing cost minimizing production be-
havior in multi-output settings. Our specific focus is on dealing with joint inputs,
i.e. inputs that are simultaneously used for the production of multiple outputs.
Here, we distinguish between two possible approaches. The cooperative approach
takes a centralized perspective and assumes cost minimization at the aggregate
firm level. By contrast, the noncooperative approach adopts a decentralized view
and assumes cost minimization at the level of the individual output departments,
which implies the possibility of free riding behavior for the joint inputs. Our
framework is non-parametric in nature, which means that it allows for analyz-
ing production behavior while avoiding (nonverifiable) prior functional structure
for the production technology. We show that it naturally extends the existing
nonparametric framework for analyzing single output production. We establish
rationalizability conditions for cooperative as well as noncooperative production
behavior. In addition, we introduce goodness-of-fit measures for evaluating the
degree of violation of these conditions. An empirical application to the English
and Welsh drinking water and sewerage sector shows the practical usefulness of
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our framework. Specifically, we compare the empirical validity of the cooperative
and noncooperative models for describing the observed production behavior.
JEL Classification: C14, D21, D22, D24.
Keywords: cooperative behavior, noncooperative behavior, multi-output produc-
tion, joint inputs, nonparametric analysis, water sector.

1 Introduction
Whereas introductory economics textbooks usually focus on single output production,
most firms in real life simultaneously produce multiple outputs. To rationalize the
prevalence of such multi-output firms, economists typically invoke the possibility of joint
inputs, i.e. inputs that are simultaneously used for the production of multiple outputs.
Joint inputs explain the presence of scope economies, which form a natural economic
motivation for multi-output production. Essentially, these joint inputs have a ‘public
good’ character: they satisfy the properties of non-rivalry and non-exclusiveness in a
production setting. In the present context, non-rivalry means that using a joint input
for one output does not interfere with using the same input for another output, while
non-exclusiveness implies that no production process can be excluded from using the
joint inputs. In firm practice, examples of joint inputs are general management, brand
advertising, research and development, etc.

In what follows, we set up a framework to model multi-output production with
joint inputs. In doing so, we maintain two basic assumptions. Firstly, we assume
cost minimizing firm behavior. Cost minimization is a standard hypothesis in neo-
classical production theory. It prescribes that, for any desired level of outputs, the firm
always chooses the inputs that minimize the total cost. From a practical perspective,
the assumption of cost minimization has the advantage that it can be used even when
output prices are unavailable or of little interest to the workings of the firm (which is
the case for e.g. hospitals, non-profit organization, universities or colleges, government
agencies, etc). Secondly, we assume that the firm is organized in such a way that each
department is responsible for the production of a certain output. In principle, it is
possible to relax this assumption and, for example, to consider departments that are
individually responsible for more than one output. This would not affect our main
arguments, but it would substantially complicate our exposition without really adding
new insights.

Cooperative versus noncooperative cost minimization. Cost minimization usu-
ally constitutes an uncontested firm objective. However, realizing this objective might
be a daunting task, especially for multi-output production processes. Indeed, it is often
unrealistic to assume that the central firm management can consistently collect and ag-
gregate all the necessary information concerning the different production processes. In
addition, in many practical situations it can be difficult to reach the necessary agreement
in order to calculate and implement the optimal cost minimizing input allocation.

Given this, we distinguish between two possible approaches to model multi-output
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cost minimization. Each approach makes a different assumption regarding a firm’s input
decision process. The first approach takes a centralized perspective and assumes cost
minimization at the aggregate firm level. In this case, the central firm management
defines the input allocation that will be used for producing the target outputs. Implicitly,
this approach imposes that the different firm departments must cooperate and therefore
we will refer to it as the ‘cooperative’ approach.

The second approach adopts a decentralized view and assumes cost minimization at
the level of the different output departments. In this case, the central firm manage-
ment again imposes the output targets, but now each individual output department is
responsible for choosing the (cost minimizing) inputs that achieve its specific output
target. Clearly, such a set-up does not automatically imply cooperation between the
different departments and, therefore, we call this the ‘noncooperative’ approach. More
formally, we assume that output departments reach a Nash-type equilibrium allocation
of the inputs. As we will make explicit in our theoretical discussion, such a noncoop-
erative allocation can be characterized by an inefficient allocation of the joint inputs
(in contrast to the cooperative allocation). Essentially, such inefficiencies follow from
free-riding behavior that is typically associated with the provision of public goods (i.e.
the tragedy of the commons).

Nonparametric production analysis. In the following sections, we will develop a
methodology that allows for empirically analyzing firm behavior in terms of the cooper-
ative (centralized) and noncooperative (decentralized) multi-output production models.
In practical applications, this enables checking which of the two models best describes
the observed firm behavior. A specific feature of our analysis is that it is nonparametric
in nature. The term nonparametric here refers to the fact that our methodology abstains
from imposing any functional form on the production technology. By contrast, it solely
uses information on observed input-output combinations and associated prices in com-
bination with some basic regularity conditions (in casu continuity and quasi-concavity).
This is particularly attractive from a practical point of view, as a priori imposed para-
metric/functional structure is typically non-verifiable from observational data. From
this perspective, a nonparametric analysis allows us to draw more robust conclusions
regarding the empirical validity of particular behavioral (cooperative or noncooperative)
assumptions.

The nonparametric approach to analyzing production behavior was originally devel-
oped by Hanoch and Rothschild (1972), Afriat (1972), Diewert and Parkan (1983) and
Varian (1984). These authors focused on cost minimization in the case of single-output
production. We here complement these earlier studies by introducing a methodology to
analyze cost minimization in multi-output settings. The fact that our framework pro-
vides a natural extension of the existing nonparametric framework will clearly appear
from our following exposition: all our theoretical sections will start by briefly recapturing
the single-output case, to subsequently introduce our generalizations that apply under
multi-output production.
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Related literature. To conclude this Introduction, we indicate two active strands
of literature that are related to the work we present here. First, the nonparametric
approach to production analysis bears a close relation to the (nonparametric) efficiency
measurement methodology that is often referred to as Data Envelopment Analysis (DEA;
see, for example, Fried, Lovell, and Schmidt (2008) and Cook and Seiford (2009) for
recent reviews).1 DEA typically focuses on measuring production inefficiencies while
imposing minimal consistency conditions on the available production technology. The
main aim of our research is to provide a structural approach to modeling cost minimizing
behavior in multi-output settings. In addition, we introduce goodness-of-fit measures
for evaluating the degree of violation of cost minimization. From a DEA perspective,
these goodness-of-fit measures can also be interpreted as efficiency measures.2

Next, our following treatment of multi-output production is partly inspired on recent
work regarding the modeling of multi-person household consumption. Specifically, our
nonparametric methodology for production analysis is formally related to the methodol-
ogy for consumption analysis that was presented by Cherchye, De Rock, and Vermeulen
(2007, 2011b), for the cooperative case, and Cherchye, Demuynck, and De Rock (2011c),
for the noncooperative case.3 Here, it is also worth indicating that parametric method-
ology has been developed for modeling such multi-person household consumption. See
Chiappori (1988), Browning and Chiappori (1998) and Chiappori and Ekeland (2009),
for cooperative behavior, and Lechene and Preston (2010) and Browning, Chiappori, and
Lechène (2010), for noncooperative behavior. For example, this may provide a useful
basis for assessing multi-output cost minimization through parametric efficiency mea-
surement (also referred to as Stochastic Frontier Analysis (SFA); see Kumbhakar and
Lovell (2000)). Generally, we believe a further exploration of the link with the litera-
ture on multi-person household consumption may open up interesting new avenues for
analyzing multi-output production behavior.

Structure. The remainder of this paper is organized as follows. Section 2 states the
cost minimization concepts that we will use further on. Section 3 provides nonparametric
characterizations of (cooperative and noncooperative) cost minimization in multi-output
production. Section 4 presents operational methods for assessing the empirical validity
of the different multi-output production models that we study. Specifically, it introduces
goodness-of-fit measures that allow for measuring the degree to which observed behavior

1See also Banker and Maindiratta (1988) for an early study on the relationship between the non-
parametric approach to production analysis and DEA.

2Here, it is particularly useful to refer to recent work of Cherchye, De Rock, and Vermeulen (2008)
and Cherchye, De Rock, Dierynck, Roodhooft, and Sabbe (2011a). These authors present method-
ology for DEA-type efficiency measurement that is formally close to the methodology for analyzing
cooperative multi-output production that we present in the current paper. From this perspective, our
following exposition can also provide a fruitful basis for developing complementary DEA-type methods
for efficiency analysis that focus on noncooperative multi-output production.

3This formal link is analogous to the one between the nonparametric methodologies for single-output
production analysis (discussed above) and single-person consumption analysis (see, for example, Afriat
(1967) and Varian (1982)).
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is effectively consistent with a particular model specification. Section 5 demonstrates
the empirical usefulness of our methodology through an application to the English and
Welsh drinking water and sewerage sector. As we will explain, the issue of multi-output
production, with jointly used inputs (and possible scope economies), is particularly
relevant for this sector. We will compare the empirical validity of the cooperative and
noncooperative models for describing the observed multi-output production behavior.
Finally, Section 6 summarizes and offers a concluding discussion.

2 Cost minimization: definitions
This section introduces some necessary notation and definitions. We first define the pro-
duction technology, which characterizes the feasible input-output combinations. Next,
we present the different notions of cost minimization that will return in our following
exposition. To set the stage, we begin by considering cost minimization in the simplest
case, with single-output firms. Subsequently, we consider multi-output cost minimiza-
tion. Here, we distinguish between cooperative and noncooperative input use.

Production technology. We consider firms that produce J outputs by using N
output-specific inputs and M joint inputs. As indicated in the Introduction, joint inputs
are simultaneously used for the production of multiple outputs. By contrast, output-
specific inputs can only benefit individual outputs; these inputs need to be distributed
over the J outputs. Formally, the vector q ∈ RN

+ represents the output-specific inputs,
Q ∈ RM

+ denotes the joint inputs and y ∈ RJ
+ the outputs. Each vector q can be

split into J separate vectors q1, . . . ,qJ (i.e. q =
∑

j
qj), with every qj capturing the

output-specific inputs that are used for the production of output j. Further, we denote
by p the price (row) vector for the output-specific inputs and by P ∈ RM

++ the price
(row) vector for the joint inputs. Finally, for any vector x, we denote the kth element by
(x)k. For example, the price for the mth joint input will be denoted by (P)m. For con-
venience, however, we also use the notation yj to represent the level of the jth output,
i.e. yj not

= (y)j.
We assume that a firm’s production technology can be represented by J continuous,

strictly increasing and quasi-concave production functions f j (j ≤ J), where f j(qj,Q)
gives the maximal level of output j that can be produced with the input vector (qj,Q) ∈
RN+M

+ . For a given production function f j and output quantity yj, we can define the
input requirement set

V j(yj) =
{
(qj,Q) ∈ RN+M

+

∣∣ f j(qj,Q) ≥ yj
}
.

This set contains all combinations of inputs that can produce at least the amount yj of
output j. As f j is continuous and quasi-concave, we have that every set V j is closed
and convex.

In empirical applications, we typically do not observe the production functions f j

(or the sets V j). Nonparametric production analysis (only) uses technology information
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that is revealed by a finite set of observed input-output combinations. In our setting,
we assume that this data set contains information on the input prices, input quantities
and output quantities. Formally, we denote this data set by S = {pt, Pt, qt, Qt, yt}t∈T .
Here, T is the (finite) set of production observations. For each observation t ∈ T ,
(pt,Pt) ∈ RN+M

++ gives the input prices, (qt,Qt) ∈ RN+M
+ the input quantities, and

yt ∈ RJ
+ the output quantities. In practice, the production observations pertain to a

single firm that is observed over time (under a constant production technology) or to a
cross-section of firms facing the same production technology at a given point of time.

In what follows, we will introduce a framework for analyzing cost minimization of
individual production observations t (rather than of the full set of observations S). This
focus is motivated by the fact that individual cost minimization is usually the most
relevant concept in practical applications. For example, this is the case in a cross-
section setting where different observations pertain to different firms (as in our own
application in Section 5). Clearly, our following cost minimization analysis can be easily
extended to apply to the full set S: essentially, for this set S to be consistent with
cost minimization it is required that all observations t in S are simultaneously cost
minimizing. For compactness, however, we will not explicitly consider such extensions
in the sequel.

Single-output production. We first define cost minimization for the single-output
case, i.e. J = 1. This is the situation that was originally considered by Hanoch and
Rothschild (1972), Afriat (1972), Diewert and Parkan (1983) and Varian (1984). It will
provide a useful starting point for our following discussion of the multi-output case.
Admittedly, when firms produce only one output the distinction between output-specific
and joint inputs becomes artificial. Still, we choose to maintain the distinction here to
ease our exposition and to avoid an overload of notation.

Consider a firm that produces the (single) output quantity y, and let f and V rep-
resent the relevant production function and corresponding input requirement set. The
firm is then said to be cost minimizing if, for input prices (p,P), it chooses the inputs
(q,Q) that solve the optimization problem (OP-S)

{q,Q} ∈ argmin
(x,X)∈RN+M

+

px+PX s.t. (x,X) ∈ V (y).

As indicated above, nonparametric production analysis starts from a finite set of
production observations. In this case, we have a data set S = {pt, Pt, qt,Qt, yt}t∈T , with
yt the (one-dimensional) output quantity produced at t. Then, a production observation
t is rationalizable if its behavior is consistent with (single-output) cost minimization.

Definition 1 (S-rationalizability). Consider a data set S = {pt, Pt, qt, Qt, yt}t∈T .
We say that the observation t ∈ T is single-output (S) rationalizable if there exists a
continuous, strictly increasing and quasi-concave production function f such that

1. for all v ∈ T , (qv,Qv) ∈ V (yv),
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2. (qt,Qt) solves OP-S given the input prices pt,Pt, the production function f and
the output level yt.

In this definition, the first condition requires that the function f (and set V ) is
such that every observed input-output combination is also technologically feasible. The
second condition then imposes cost minimizing behavior at the production observation
t.

Cooperative multi-output production. Let us then consider cost minimization
under multi-output production, where the distinction between output-specific and joint
inputs becomes relevant. We first focus on the situation with outputs produced in a
cooperative way (or, production decisions are centralized).

Specifically, we assume a firm that is divided in J departments, where each depart-
ment j is responsible for the production of the jth output. Cooperative multi-output
production then means that the input quantities are chosen such that the firm as a
whole is cost minimizing. In other words, the inputs (q1, . . . ,qJ ,Q) ∈ RJ ·N+M

+ must
solve (OP-CM)

{q1, . . . ,qJ ,Q} ∈ argmin
(x1,...,xJ ,X)∈RJ·N+M

+

∑
j

pxj +PX s.t. (xj,X) ∈ V j(yj) (∀j ≤ J).

We can now introduce our rationalizability concept for cooperative multi-output
production.

Definition 2 (CM-rationalizability). Consider a data set S = {pt, Pt, qt, Qt, yt}t∈T .
We say that the observation t ∈ T is cooperative multi-output (CM) rationalizable if
there exist J continuous, strictly increasing and quasi-concave production functions f j

such that

1. for all v ∈ T , there exist output-specific input vectors qj
v, with

∑
j q

j
v = qv, such

that (qj
v,Qv) ∈ V j(yjv) for all j ≤ J ,

2. (q1
t , . . . ,q

J
t ,Qt) solves OP-CM given the input prices pt,Pt, the production func-

tions f j (j ≤ J) and the output vector yt.

Just like for the single-output case, the first condition imposes technological feasibil-
ity of all observed input-output combinations, while the second condition requires cost
minimization (under cooperation) at the observation t.

Noncooperative multi-output production. To conclude this section, we consider
the case in which the multiple outputs are produced in a noncooperative way. As dis-
cussed in the Introduction, this can be interpreted in terms of a firm that decentralizes
the cost minimization decisions, such that each individual department j is responsible
for its own expenses on both the output-specific and the joint inputs. In this case, we
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assume Nash-type equilibrium behavior where each department minimizes the cost of
producing its own output given the input decisions of the other departments.

Formally, to distinguish between the joint input purchases of the different depart-
ments, we use the vectors Qj ∈ RM

+ (j ≤ J) to represent the joint inputs purchased by
every department j. The total amount of joint inputs at the aggregate firm level then
equals

∑
j Q

j = Q. Noncooperative (Nash-type) production behavior requires that, for
each department j, the inputs (qj,Qj) solve (OP-NM)

{qj,Qj} = argmin
(xj ,Xj)∈RN+M

+

pxj +PXj s.t.
(
xj,Xj +

∑
k ̸=j

Qk

)
∈ V j(yj),

i.e. each output department j purchases output-specific inputs qj and joint inputs Qj

that imply cost minimization given the joint inputs
∑

k ̸=j Q
k purchased by the other

departments k.
This leads to the following rationalizability condition for noncooperative multi-output

production.

Definition 3 (NM-rationalizability). Consider a data set S = {pt, Pt, qt, Qt, yt}t∈T .
We say that the observation t ∈ T is noncooperative multi-output (NM) rationalizable if
there exist J continuous, strictly increasing and quasi-concave production functions f j

such that

1. for all v ∈ T there exist output-specific input vectors qj
v, with

∑
j q

j
v = qv, such

that (qj
v,Qv) ∈ V j(yjv) for all j ≤ J ,

2. there exist joint input vectors Qj
t , with

∑
j Q

j
t = Qt such that each (qj

t ,Q
j
t) (j ≤ J)

solves OP-NM given the input prices pt,Pt, the production functions f j, the
output vector yt and the joint input vectors Qk

t (k ̸= j).

3 Cost minimization: characterizations
We are now in a position to define the nonparametric conditions for cost minimizing
behavior as defined in the previous section. Essentially, these characterizations allow
us to check rationalizability while avoiding the specification of the production functions
f j (or the sets V j). We can test cost minimizing behavior by only using the observed
information in the data set S. This is particularly convenient from a practical point of
view because, as argued above, the exact production technology (and thus the production
functions) are typically not observed in empirical applications. In Section 4, we will
show that our following characterizations of cost minimization are easily implemented
in practical analysis.

Single-output production. We first concentrate on the single-output conditions in
Definition 1. We recall that in this case the empirical analyst can use a data set S = {pt,
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Pt, qt, Qt, yt}t∈T , where each yt represents the (one-dimensional) output produced at
the observation t.

We will need the following definition.

Definition 4 (SACM). Consider a data set S = {pt, Pt, qt, Qt, yt}t∈T . We say that
the observation t ∈ T satisfies the Strong Axiom of Cost Minimization (SACM) if, for
all v ∈ T ,

ptqv +PtQv ≥ ptqt +PtQt whenever yv ≥ yt and (sacm.1)
ptqv +PtQv > ptqt +PtQt whenever yv > yt. (sacm.2)

This SACM condition has two components. The first component (sacm.1) implies
consistency with the so-called Weak Axiom of Cost Minimization (WACM; see Varian
(1984)). The additional component (sacm.2) is a technical requirement that guarantees
continuity of the production function (for S-rationalizability). The SACM condition has
a clear interpretation in terms of cost minimizing behavior. For a given observation t,
it imposes that if we observe a higher output at observation v (i.e. yv ≥ (>) yt), then
the cost of producing this higher output must be above the one of producing yt (i.e.
ptqv + PtQv ≥ (>) ptqt + PtQt). Obviously, if it were cheaper to produce a higher
output yv, then the firm could not be cost minimizing by choosing (qt,Qt): purchasing
the inputs (qv,Qv) would have produced at least the same output at a lower cost.

The following result states that data consistency with SACM is necessary and suffi-
cient for cost minimization in the single-output case (see Varian (1984) for a proof).

Theorem 1. Consider a data set S = {pt, Pt, qt, Qt, yt}t∈T . The observation t is then
S-rationalizable if and only if it satisfies SACM.

This theorem provides an easy way to nonparametrically verify whether a particular
firm observation is cost minimizing: checking the SACM condition in Definition 4 only
requires checking linear inequalities that use information captured by the observed set
S.

Cooperative multi-output production. Using the SACM concept in Definition 4,
we can next characterize cost minimizing behavior in the case of multi-output production
(in casu with S = {pt, Pt, qt, Qt, yt}t∈T ). Specifically, we will obtain that cost mini-
mization again requires data consistency with SACM, but now we get a separate SACM
condition for each of the J outputs. As we will indicate, the specificity of these output-
specific SACM conditions is that they require using output-specific prices for evaluating
the joint inputs. The essential difference between the cooperative and noncooperative
case then pertains to the definition of these output-specific prices.

Let us first consider the nonparametric condition for cost minimization that applies
to the cooperative case. (The Appendix contains the proofs of our main theorems.)

Theorem 2. Consider a data set S = {pt, Pt, qt, Qt, yt}t∈T . Then, the observation
t is CM-rationalizable if and only if, for all v ∈ T and j ≤ J , there exist input vectors
qj
v ∈ RN

+ and price vectors Pj
t ∈ RM

++ such that
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1. for all v ∈ T :
∑

j q
j
v = qv,

2.
∑

j P
j
t = Pt,

3. for all v ∈ T and j ≤ J :

ptq
j
v +Pj

tQv ≥ ptq
j
t +Pj

tQt whenever yjv ≥ yjt and
ptq

j
v +Pj

tQv > ptq
j
t +Pj

tQt whenever yjv > yjt .

The third condition of Theorem 2 shows that CM-rationalizability of a production
observation t requires single-output rationalizability (or S-rationalizability) for each in-
dividual output separately (i.e. SACM). However, the crucial difference with the charac-
terization in Theorem 1 pertains to the costs that are allocated to the different outputs.
First of all, the cost of output-specific inputs is distributed over the output departments
according to the vectors qj

v defined in the first condition of Theorem 2. Next, for the
joint inputs, we should account for output-specific prices. In the cooperative case that we
consider here, these output-specific prices Pj

t must sum to the observed input prices Pt;
this is guaranteed by the second condition of Theorem 2. As such, the output-specific
prices have a similar interpretation as Lindahl prices in the case of efficient public goods
provision (which equally requires that Lindahl prices sum to the market prices of the
public goods). This directly complies with the public good interpretation of the joint
inputs that we discussed in the Introduction. Like Lindahl prices, the output-specific
prices Pj

t correspond to the marginal production of output j (expressed in monetary
terms) that follows from an additional unit of the joint inputs.

Given all this, we can also provide a decentralized representation of cost minimization
under cooperative behavior (which parallels the decentralized representation of efficient
public goods provision under Lindahl prices). In this representation, the central firm
management first sets out the output target for each output department, which defines
the quantities yjt . In a following step, it then requires every department to produce this
output at a minimal cost (i.e. each department separately solves OP-S) given the prices
pt for the output-specific inputs and the prices Pj

t for the joint inputs (i.e. department
j pays its marginal valuation (Pj

t)m if it uses an additional unit of the joint input m).
The sum contraint

∑
j P

j
t = Pt then effectively implies an efficient allocation of the

joint inputs: it imposes that the total marginal valuation to the purchase (=
∑

j P
j
t)

just equals its expense (= Pt). This sum constraint will imply a main difference with
our characterization of cost minimizing production behavior in the noncooperative case.
As a consequence, we will obtain that noncooperative behavior can lead to inefficient
purchases of the joint inputs.

Noncooperative multi-output production. Let us then regard the noncooperative
situation. Here, we get a characterization that looks very similar to the one for the
cooperative situation. But, as indicated above, an important difference pertains to the
output-specific prices for the joint inputs.
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We obtain the following nonparametric characterization of cost minimization under
noncooperative production.

Theorem 3. Consider a data set S = {pt, Pt, qt, Qt, yt}t∈T . Then, the observation
t is NM-rationalizable if and only if, for all v ∈ T and j ≤ J , there exist input vectors
qj
v ∈ RN

+ and price vectors Pj
t ∈ RM

++ such that

1. for all v ∈ T :
∑

j q
j
v = qv,

2. for all m ≤ M : maxj{(Pj
t)m} = (Pt)m,

3. for all v ∈ T and j ≤ J :

ptq
j
v +Pj

tQv ≥ ptq
j
t +Pj

tQt whenever yjv ≥ yjt and
ptq

j
v +Pj

tQv > ptq
j
t +Pj

tQt whenever yjv > yjt .

Thus, the characterization of NM-rationalizability is almost identical to the one of
CM-rationalizability. The only difference is that the output-specific prices Pj

t are now
replaced by the vectors Pj

t , which are subject to the max constraints embedded in the
second condition of Theorem 3. In words, such a max constraint imposes, for each joint
input m, that the highest output-specific price (defined over all outputs j) must equal
the observed price of the input. As a result, it may well be the case that

∑
j P

j
t > Pt

(which contrasts with the second condition of Theorem 2).
Similar to before, we can interpret the output-specific prices Pj

t as representing the
marginal production of output j (in monetary terms) associated with one additional unit
of the joint inputs. Then,

∑
j(P

j
t)m > (P)m implies that the total value added (summed

over all outputs j) associated with a one unit increase of the mth joint input exceeds
the corresponding input price. In turn, this means that the purchased amount of this
joint input is below its efficiency level. The reason for this inefficiency is the free-riders
problem that is intrinsic to noncooperative (Nash-type) equilibrium behavior.

In fact, it can be shown that every output department j for which the output-
specific input price (Pj

t)m is below the actual price (Pt)m will abstain from contributing
to this joint input (i.e. (Qj

t)m = 0). In other words, this department is effectively
free-riding on the other departments k (̸= j) that do contribute to the joint input
(because (Pk

t )m = (Pt)m). Intuitively, in a (decentralized) noncooperative setting, a
cost minimizing output department j has every incentive not to contribute to the joint
input m (i.e. (Qj

t)m = 0) if some other department k already purchased the input
amount (i.e. (Qk

t )m = (Qt)m for k ̸= m) that is necessary for producing the targeted
output yjt .

Non-nestedness. To conclude this section, we show that CM-rationalizability is non-
nested with (or independent from) NM-rationability: a data set S that satisfies the
nonparametric conditions for the cooperative model does not necessarily satisfy the ones
for the noncooperative model, and vice versa. In particular, Examples 1 and 2 show that
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there is neither any inclusion nor any exclusion relation between the collection of data
sets that satisfy the conditions in Theorem 2 and the collection of data sets that satisfy
the conditions in Theorem 3.

This non-nestedness/independence conclusion is particularly interesting from an em-
pirical point of view. It directly follows that we will not have ‘by construction’ that
one model obtains a better empirical fit than the other, simply because it has weaker
empirical implications. In our opinion, this effectively makes that we can meaningfully
compare the empirical validity of the two model specifications by using our nonparamet-
ric conditions. It may actually well be that the appropriate model specification varies
depending on the particular firm observation at hand.

Two final observations pertain to the data sets we use in Examples 1 and 2. Firstly,
these examples show that we can meaningfully test data consistency with a specific
model (and compare the empirical validity of different models) even if only a few ob-
servations are available. Secondly, because all inputs are joint in both examples, such
an empirical analysis in principle does not require output-specific inputs. In fact, using
similar arguments as in Examples 1 and 2, we can show that non-nestedness also applies
in the case with (only) a single joint input, provided there is at least one output-specific
input.4 Our application in Section 5 actually considers such a situation with a single
joint input.

Example 1. We first construct a data set S that is NM-rationalizable but not CM-
rationalizable. This data set includes 2 observations ( |T | = 2), 2 outputs (J = 2), and
3 joint inputs (M = 3):

P1 =

22
2

′

,P2 =

23
3

′

,Q1 =

31
1

 ,Q2 =

12
2

 ,y1 =

[
2
2

]
,y2 =

[
1
1

]
.

For this set S we have that P2Q2 = 14, which is greater than P2Q1 = 12. If we combine
this with the fact that production observation 1 produces more of both outputs than
observation 2, we conclude from Theorem 2 that this data set is not CM-rationalizable:
any possible specification of the output-specific prices P1

2 and P2
2 gives either P1

2Q1 <
P1

2Q2 (while y11 > y12) or P2
2Q1 < P2

1Q2 (while y21 > y22).
Next, we can easily verify that the following specification of the vectors Pj

t (j = 1, 2;
t = 1, 2) makes the set S satisfy the conditions in Theorem 3:

P1
1 =

21
1

′

,P2
1 =

12
2

′

,P1
2 =

 2
3
0.5

′

,P2
2 =

 2
0.5
3

′

.

Thus, we conclude that the data set is NM-rationalizable.

4These example are available from the authors upon request. For compactness, we do not include
them here.
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Example 2. We next present a data set S that is CM-rationalizable but not NM-
rationalizable. This data set includes 3 observations ( |T | = 3), 2 outputs (J = 2), and
3 joint inputs (M = 3):

P1 =

149
9

′

,P2 =

 9
14
9

′

,P3 =

 9
9
14

′

,Q1 =

51
1

 ,Q2 =

15
1

 ,Q3 =

11
5

 ,

y1 =

[
3
1

]
,y2 =

[
2
2

]
,y3 =

[
1
3

]
.

This set S does not satisfy the conditions in Theorem 3. The reason is that, for any
possible specification of the output-specific prices associated with observation 2, we have
either (P1

2)2 = 14 or (P2
2)2 = 14. Then, for (P1

2)2 = 14 we get P1
2Q1 < P1

2Q2 (while
y11 > y12) and, similarly, for (P2

2)2 = 14 we get P2
2Q3 < P2

2Q2 (while y23 > y22).
Next, we can easily verify that the following specification of the vectors Pj

t (j = 1, 2;
t = 1, 2, 3) makes the set S satisfy the conditions in Theorem 2:

P1
1 =

137
7

′

,P2
1 =

12
2

′

,P1
2 =

87
1

′

,P2
2 =

17
8

′

,P1
3 =

22
1

′

,P2
3 =

 7
7
13

′

.

Thus, we conclude that the data set is CM-rationalizable.

4 Goodness-of-fit measures
The rationalizability conditions presented in the previous section are ‘sharp’ ones: they
(only) tell us whether or not observed behavior is exactly consistent with cost minimiza-
tion. In practice, however, it may well be that a certain firm is close to cost minimization
while it is not exactly cost minimizing. As noted by Varian (1990), for most purposes
nearly optimizing behavior is just as good as exactly optimizing behavior. This calls
for a goodness-of-fit measure that tells us how close observed firm behavior is to cost
minimization if it fails the (exact) rationalizability conditions presented above. Such a
goodness-of-fit measure then captures the degree of optimization (also referred to as the
degree of efficiency) in terms of the behavioral model that is subject to study.

Varian (1990) (based on Afriat (1972)) proposed a nonparametric goodness-of-fit
measure for cost minimization in a single-output setting. In what follows, we will ex-
tend this idea to our multi-output setting. In this respect, it is also useful to refer
to Färe and Grosskopf (1995), who make explicit the relationship between Varian’s
goodness-of-fit approach and the Data Envelopment Analysis (DEA) literature that we
also mentioned in the Introduction. Building on these authors’ analysis, our following
discussion may provide a useful starting point for exploring new directions of DEA-type
efficiency measurement in multi-output settings.
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Single-output production. As an introduction to the type of nonparametric goodness-
of-fit analysis that we consider here, we briefly recapture Varian (1990)’s original idea
and adapt it to our set-up. We start by defining the concept of θ-S-rationalizability.
Definition 5 (θ-S-Rationalizability). Consider a data set S = {pt, Pt, qt,Qt, yt}t∈T and
a number θ ∈ [0, 1]. We say that the observation t ∈ T is single-output θ-rationalizable
(θ-S-rationalizable) if there exists a c ∈ R+ that solves (for all v ∈ T )

ptqv +PtQv ≥ c whenever yv ≥ yt, (fp-s)
ptqv +PtQv > c whenever yv > yt,

θ(ptqt +PtQt) ≤ c.

According to this definition, the observation t is θ-S-rationalizable if there exists a
number c that meets a number of linear constraints. The first two constraints imply
that c does not exceed the (minimal) cost level associated with any observation v that
produces at least the output of observation t (i.e. yv ≥ (>) yt). Next, the last constraint
imposes a lower bound an c, stating that it cannot lie below θ times the cost level of
observation t. Taken together, θ-S-rationalizability requires that the production cost of
observation t is not greater than 1/θ (≥ 1) times the minimal cost for producing the
output yt as defined over the set of observations T .

The condition for θ-S-rationalizability in Definition 5 bears a direct relation to the
S-rationalizability condition in Theorem 1. For θ = 1 we have that θ-S-rationalizability
exactly coincides with S-rationalizability (i.e. the constraints in Definition 5 boil down
to requiring that observation t satisfies SACM). More generally, the higher θ, the ‘closer’
the (θ-S-rationalizable) observation t will be to S-rationalizability.

For any given value of θ, θ-S-rationalizability basically requires feasibility of a set of
linear constraints. Using this, we can introduce an easily implementable nonparametric
goodness-of-fit measure for cost minimization in the single-output case. Specifically,
consider the linear programming problem that maximizes c subject to the constraint
(fp-s). For c∗ the optimal solution value of this problem, we define the goodness-of-fit
measure

θSt =
c∗

ptqt +PtQt

.

By construction, for any θ < θSt it holds that the observation t is θ-S-rationalizable.
In addition, the goodness-of-fit measure θSt never exceeds one, and it is equal to unity
only if the observation t exactly satisfies the SACM condition. As such, this measure
effectively captures how close the firm observation is to cost minimization.

Cooperative multi-output production. We next extend this goodness-of-fit idea
to a cooperative multi-output setting. To this end, we focus on the decentralized in-
terpretation of the cooperative production model, which makes use of output-specific
quantities qj

t and output-specific prices Pj
t for the joint inputs. Specifically, at the co-

operative equilibrium, each output department acts as if it chooses the inputs qj
t and Qt

that solve the cost minimization problem OP-S for given output yjt and prices pt, Pj
t .

This motivates the following definition.
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Definition 6 (θ-CM-rationalizability). Consider a data set S = {pt, Pt, qt, Qt, yt}t∈T
and a number θ ∈ [0, 1]. We say that the observation t ∈ T is cooperative multi-output
θ-rationalizable (θ-CM-rationalizable) if there exist cj ∈ R+, Pj

t ∈ RM
++ and qj

v ∈ RN
+

that solve (for all v ∈ T and j ≤ J)

∑
j
qj
v = qv, (cm-1)∑

j
Pj

t = Pt, (cm-2)

ptq
j
v +Pj

tQv ≥ cj whenever yjv ≥ yjt , (cm-3)
ptq

j
v +Pj

tQv > cj whenever yjv > yjt ,
θ(ptqt +PtQt) ≤

∑
j
cj.

The interpretation is analogous to the one of Definition 5. The specificity of Defini-
tion 6 reflects the decentralized representation of cooperative multi-output production.
In particular, for θ-CM-rationalizability we need for each output j that there exists a
number cj satisfying a number of constraints. The first two constraints in Definition
6 put restrictions on the quantities (qj

v) and the output-specific prices (Pj
t), which are

specific to the cooperative model. The next two constraints require that no cj exceeds
the cost level (for output j) for any observation v that produces at least the same amount
of output j as observation t (i.e. yjv ≥ (>) yjt ). Finally, the last constraint imposes that
the total production cost of observation t must not exceed 1/θ times the minimal cost of
producing the (multi-dimensional) output associated with observation t, where the ref-
erence (minimal) cost

∑
j c

j is defined over the set of observations T . Like before, we get
that the condition for θ-CM-rationalizability reduces to the one for CM-rationalizability
(in Theorem 2) if θ = 1; and, more generally, lower values for θ imply less stringent
rationalizability requirements.

Similar to the single-output case, we can check θ-CM-rationalizability by verifying
feasibility of a set of linear constraints, which actually suggests an easy-to-use goodness-
of-fit measure. Specifically, we solve the linear programming problem that maximizes∑

j c
j subject to (cm-1), (cm-2) and (cm-3). For

∑
j c

j∗ the optimal value of the problem,
we define the goodness-of-fit measure

θCM
t =

∑
j c

j∗

ptqt +PtQt

.

Once more, this measure is situated between zero and one. And we have that the
observation t will be θ-CM-rationalizable whenever θ < θCM

t . In effect, θCM
t measures

the degree to which the firm under study is cost minimizing at the observation t under
the assumption of cooperative multi-output production.

Noncooperative multi-output production. For the noncooperative multi-output
production setting, we construct a similar goodness-of-fit measure as for the cooperative
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case. In the noncooperative equilibrium, each output department chooses the inputs qj
t

and Qt that solve the cost minimization problem OP-S for given output yjt and prices
pt, Pj

t . We recall that an important difference with the cooperative scenario is that the
output-specific prices for the joint inputs (Pj

t) need not sum to the observed market
prices. Specifically, we now get the following definition.

Definition 7 (θ-NM-rationalizability). Consider a data set S = {pt, Pt, qt, Qt, yt}t∈T
and a number θ ∈ [0, 1]. We say that the observation t ∈ T is noncooperative multi-
output θ-rationalizable (θ-NM-rationalizable) if there exist cj ∈ R+, Pj

t ∈ RM
++ and

qj
v ∈ RN

+ that solve (for all v ∈ T and j ≤ J)∑
j
qj
v = qv, (nm-1)

maxj{(Pj
t)m} = (Pt)m for all m ≤ M , (nm-2)

ptq
j
v +Pj

tQv ≥ cj whenever yjv ≥ yjt , (nm-3)
ptq

j
v +Pj

tQv > cj whenever yjv > yjt ,

θ
(
ptqt +

∑
j
Pj

tQt

)
≤
∑

j
cjt .

This definition has exactly the same interpretation as Definition 6, except for one
subtle (but important) difference. As indicated above, in the noncooperative case the
output-specific pricesPj

t are no longer subject to a sum constraint (i.e. cm-2 in Definition
6). Instead, we now get the max constraint (nm-2).

Given Definition 7, we can define a goodness-of-fit measure in an analogous way as
for the cooperative case. Specifically, we let

∑
j c

j∗ represent the outcome of maximizing∑
j c

j subject to the constraints (nm-1), (nm-2) and (nm-3), and let P∗j
t be the optimal

value of Pj
t for this optimization problem. Then, define

θNM
t =

∑
j c

j∗

ptqt +
∑

j P
∗j
t Qt

.

Once more, we have θNM
t ∈ [0, 1] by construction. Generally, the value of this goodness-

of-fit measure reveals the degree to which the observed production behavior is θ-NM-
rationalizable.5

As a final remark, we note that the constraint (nm-2) is nonlinear, which means
that feasibility of the constraints in Definition 7 cannot be verified through linear pro-
gramming methods. However, we can check feasibility by using standard mixed integer
programming methods. Specifically, the max constraint (nm-2) is equivalent to the re-
quirement that there exist binary variables zjm ∈ {0, 1} such that, for all m ≤ M and

5We have to note though that there is a subtle difference between the denominators of θCM
t and

θNM
t . By construction the optimal values for the Pj

t add up to the observed price Pt, which makes
that the denominator of θCM

t is equal to the observed cost ptqt +PtQt. Because of constraint (nm-2),
this does not need to hold for the denominator of θNM

t .
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j ≤ J ,

(Pj
t)m − (Pt)m ≤ 0,

(Pt)m − (Pj
t)m ≤ (1− zjm)(Pt)m,∑
j
zjm ≥ 1.

It is easily verified that, for every joint input m, these constraints guarantee (Pj
t)m ≤

(Pt)m for all j, while (Pt)m = (Pj
t)m for at least one j (with zjm = 1). Thus, re-

placing constraint (nm-2) by these mixed integer linear constraints effectively obtains
a mixed integer programming problem. In turn, this provides an easy way to compute
the goodness-of-fit measure θNM

t .

5 Empirical Application
We apply our newly proposed methodology to the English and Welsh (E&W) drinking
water and sewerage sector. We will start by briefly introducing the sector. Here, it
is indicated that multi-output production and joint input use (with, correspondingly,
possible scope economies) form important issues in modeling the production behavior.
Next, we present the data (including the input and output selection) that are used in
the application. After that, we discuss our empirical results. First, we assess whether
the cooperative model or the noncooperative model does the better job in explaining the
observed behavior in our sample. Subsequently, we conduct an explanatory analysis that
correlates the goodness-of-fit (or efficiency) measures that we obtain for the two models
with alternative contextual variables that have been studied in the relevant literature.

The E&W drinking and sewerage sector. Multi-output production has recently
become an important issue in the privatized E&W drinking water and sewerage sec-
tor (see Ofwat (2008)). In 1974, the majority of municipal drinking water companies
were merged and nationalized into 10 ‘Regional Water Authorities’ (RWAs), which were
responsible for water quality, drinking water production, distribution and sanitation.
These water and sewerage companies (WSCs) account for about 80% of the water pro-
vision.6 The Water Act, issued under the Tatcher government, privatized the RWAs in
1989.

To avoid monopoly profits in a privatized environment, a strong economic regulator
has been established: the Office of Water Services (Ofwat). Ofwat applies a price-cap
regulation which limits the annual growth rate of the water price for every company
by a factor K (RPI-X). The variable K is calculated as the growth rate of the Retail
Prices Index (RPI) minus a productivity factor X, which is determined by comparing
the performances of the water utilities. The firm-specific maximum price is determined

6Besides the RWAs, about 30 ‘Water only Companies’ (WoCs) produced and distributed (only)
drinking water. For simplicity we do not focus on WoCs in our analysis below.

17



once in each regulatory cycle, which consists of five years (although initially intended to
last for 10 years).

Besides setting tariffs, Ofwat determines the industry structure. Recently, it consid-
ered the benefits of increased competition by separated companies (see Ofwat (2008)) as
a response to the so-called ‘Cave report’ (see Cave (2009)). Both vertical separation of
elements in the supply chain (e.g. separating abstraction, treatment and distribution)
and horizontal unbundling of WSCs could create a more competitive environment. As
a drawback, existing scope economies would be lost. Despite the fact that joint water
and sewerage companies service about 80% of the E&W population, the literature is in-
conclusive on the existence of scope economies. Some studies find diseconomies of scope
(Hunt and Lynk (1995) and Saal and Parker (2000) for E&W; Marques and De Witte
(2010) for the Portuguese water sector) while other studies conclude the opposite (Lynk
(1993) and Stone and Webster (2004) in E&W but only if water quality is accounted
for).

Importantly, our methodology does not require us to take a prior stance to whether
or not scope economies are effectively present. Instead, it allows us to focus upon the
cooperative versus noncooperative nature of joint input use. Our specific interest is in
identifying which model best describes the observed production behavior. Clearly, a
better understanding of the behavioral model that underlies the observed multi-output
production can only benefit the regulatory policy (in casu by Ofwat).

Data. Our selection of the output-specific inputs falls in line with the existing lit-
erature (see, for example, Stone and Webster (2004)). First, for water production we
include the number of employees assigned to drinking water production, distribution
and purification, as well as the total length of the network. Similarly, for sewerage the
output-specific inputs consist of the number of employees in sewerage collection and pu-
rification, as well as the length of the sewerage network, which is considered as a proxy
for capital use.

Next, we use the number of employees that produce both water and sewerage as a
joint input. Although this input is not directly observed from the annual accounts, we
can deduce it from the financial statements. In particular, the Ofwat June returns report
the ‘Water direct costs to employment’, the ‘Sewerage direct costs to employment’ as
well as the ‘Total manpower costs’. This allows us to retrieve the employment shares
that are specific to water and sewerage production as well as the share of employment
that is simultaneously used for both outputs.

As outputs, we consider the measured volume of water and sewerage. Here, we
can reasonably argue that companies effectively aim at producing these (exogenously
defined) outputs at a minimal cost. In other words, our behavioral assumption of cost
minimization is a plausible one for the setting at hand.

The data we use arise from the Ofwat June returns, which is a public database with
detailed information on the water and sewerage companies. Our data cover the period
from 1991 (two years after privatization) to 2009. This obtains data on 4 regulatory
cycles: we have 40 production observations in 1991-1994 and 50 observations in the sub-
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sequent regulatory cycles 1995-1999, 2000-2004, and 2005-2009. Our sample comprises
190 WSC production observations in total. Table 1 provides summary statistics for our
selection of inputs and outputs.

Table 1: Summary statistics
Mean Std. Min Max

Joint input Employees 2058.11 1086.31 596.98 5048.93
Private input W. Employees 578.61 447.84 65.81 2758.78

Sew. Employees 545.94 336.52 180.54 2104.31
W. Mains (km) 26290.67 11240.20 7658.44 46573.69
Sew. Mains (km) 30454.65 19627.19 7498.03 83791.43

Output water W. volume (Ml/d) 1253.40 748.96 345.68 2874.31
Sew. volume (Ml/d) 935.92 662.79 229.23 2909.09

Control Service area 12918.93 5824.22 3850.00 22090.00
Leakage 328.56 256.07 72.12 1108.69
River water 0.65 3.43 0.00 45.00
Ground water 0.36 0.74 0.03 9.40
Impound water 0.54 3.49 0.00 45.70
Bulk supply imports 49.00 110.42 0.00 404.49
Bulk supply exports 55.71 98.20 0.00 373.52
Connected water properties 1849.09 1051.34 448.10 3736.40
Connected sewerage properties 2228.86 1358.57 585.00 5737.00

Goodness-of-fit results. Before presenting the results of our goodness-of-fit analysis,
we briefly recall the non-nestedness result that we demonstrated at the end of Section
3. In particular, we showed that CM-rationalizability does not necessarily imply NM-
rationalizability, and vice versa. As such, there is no a priori reason why one model
should have weaker empirical implications (or less discriminatory power) than the other.
In our opinion, this provides a strong motivation for our following exercise, where we
investigate which model effectively does provide the better empirical fit of the production
behavior in the sector under study.

Figure 1 displays the empirical decumulative distribution for our goodness-of-fit (or
efficiency) measures introduced in Section 4: it gives the percentage of production obser-
vations t (vertical axis) of which the value of the goodness-of-fit measures θCM

t (coopera-
tive model) and θNM

t (noncooperative model) equals at least the value on the horizontal
axis. To account for technological shifts, over different regulatory cycles, we evaluate a
particular company by (only) comparing it to companies in the same regulatory cycle.
For a given goodness-of-fit value, a better performing model corresponds to a higher per-
centage of firms that can be rationalized. The overall picture that emerges from Figure
1 is that the noncooperative model outperforms the cooperative model. The difference is
actually rather pronounced: the distribution for the noncooperative model stochastically
dominates the one for the cooperative model. Interestingly, the difference also appears

19



to be statistically significant: if we conduct a two-sided Kolmogorov-Smirnov test, then
we reject the null hypothesis that the two distributions coincide at a significance level of
10% (Kolmogorov-Smirnov test statistic amounts to 0.1316, and the associated p-value
equals 0.075).

Table 2 summarizes the same information in tabulated form; but here we distinguish
between the 4 regulatory cycles captured by our data set. The results in this table
allow for a more detailed analysis. We obtain a median goodness-of-fit value above 93%
for each model specification in every regulatory cycle. This shows that, on average,
both models provide a reasonably good fit of the observed production behavior in every
different time period. But, again, the noncooperative model systematically dominates
the cooperative model. Even though the difference is not very substantial in many cases,
it turns out to be quite pronounced in some instances (see, for example, the difference
between the minimum and first quartile values for the two model specifications). Overall,
the results in Table 2 support the same conclusions as the results in Figure 1.

Generally, our results suggest a better empirical support for the noncooperative model
than for the cooperative model. But the difference between the goodness-of-fit of the
two models seems to depend on the company (environment) at hand. This directly
brings us to our next exercise, where we relate the (cooperative and noncooperative)
goodness-of-fit values to particular variables describing the production context of every
company that we studied.

Table 2: Goodness-of-fit estimations for each regulatory cycle

period number of min 1st quart median 3rd quart max
observations

1991-1994
cooperative 40 0.632 0.864 0.949 0.998 1.000

noncooperative 0.704 0.934 0.987 1.000 1.000
1995-1999

cooperative 50 0.722 0.886 0.971 1.000 1.000
noncooperative 0.736 0.919 0.979 1.000 1.000
2000-2004

cooperative 50 0.726 0.869 0.937 0.986 1.000
noncooperative 0.767 0.873 0.957 0.991 1.000
2005-2009

cooperative 50 0.666 0.862 0.932 0.999 1.000
noncooperative 0.702 0.878 0.958 1.000 1.000
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Figure 1: Empirical decumulative distribution function of goodness of fit
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Explanatory analysis. To examine the influence of background factors, we make use
of a two-step approach in which our goodness-of-fit measures are regressed on a num-
ber of observable contextual variables by using both ordinary least squares (OLS) and
tobit (because of the truncated nature of our goodness-of-fit measures). The appro-
priateness of this two-step approach for the type of questions we want to address here
has been advocated in particular by Banker and Natarajan (2008), McDonald (2009)
and Banker (2011) (in a DEA context). Essentially, our following analysis will evaluate
which environmental factors explain the validity of a particular behavioral (coopera-
tive/noncooperative) model for describing the observed production behavior.

As a preliminary note, we emphasize that our following analysis is mainly meant
to be illustrative and should be interpreted as explorative rather than conclusive. This
also explains why we opt for a most simple methodological set-up. In this respect, two
remarks are in order. First, Simar and Wilson (2007) suggested an alternative two-stage
approach for assessing the impact of contextual variables on goodness-of-fit (or efficiency)
measures, claiming that this other approach more adequately deals with a number of
statistical issues associated with explanatory analysis such as the one we consider here.
See, for example, Banker and Natarajan (2008), Banker (2011) and Simar and Wilson
(2011) for a comparison between this approach and the one we follow here. At this
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point, we restrict to indicating that our methodology for assessing the goodness-of-fit
of cooperative and noncooperative production models can also easily be combined with
the two-step approach proposed by Simar and Wilson. Second, our following regression
results must be interpreted with sufficient care as we do not explicitly correct for possible
endogeneity bias. From this perspective, while we will not always explicitly indicate
this in what follows, our results below actually reveal correlations rather than causal
relationships.

We draw on the existing literature to select our contextual variables (see, for ex-
ample, Stone and Webster (2004)). We consider three specifications of the regression
model. Our first specification (model 1) is our base model and includes four explanatory
variables. First, service area figures as a proxy for the scale of operations. Second,
the percentage of leakage captures the geographical relief (i.e. more hilly landscape re-
quires more pressure on the network of pipes, which could cause leakages more easily)
and the extent of maintenance (i.e. more leakages correspond to less expenses with
maintenance). Third, we assessed water quality information as a potentially important
contextual factor. It is defined in terms of the source of water production: ground wa-
ter has a higher quality and therefore lower purification costs than river and impound
water.7

Our second specification (model 2) adds water imports and exports to the control
variables. The underlying idea is that companies which import or export water might
be structurally different from other companies. A high export of water might indicate
the presence of relatively cheap water or, alternatively, cost disadvantages (especially as
the transportation of water is very expensive). Our third specification (model 3) adds
the number of connections as an explanatory variable; this variable can be conceived as
an alternative output measure and figures as a proxy for the size of the operations. Note
that we allow for cycle fixed effects in our different model specifications, as maximum
prices vary over regulatory cycles. Our main qualitative conclusions are, however, robust
to this fixed effect assumption.8

Table 3 presents the results of our OLS second stage regressions for the three model
specifications under study. In line with the findings of Banker and Natarajan (2008)
and McDonald (2009), the estimates for the truncated tobit model are very similar
and therefore omitted (but available upon request). We observe that the sign of the
regression coefficients are generally the same for the cooperative and noncooperative
model specifications, although the significance levels differ for some variables.

If we look at Table 3 in more detail, we find for all three model specifications that
service area is significantly negatively correlated with goodness-of-fit: the larger the sup-
ply area, the less rationalizable the production behavior of water utilities (on average).
This negative impact is about the same for the noncooperative model and the coop-
erative model. Furthermore, we observe for the three models that volume of leakage
is positively but (almost always) insignificantly correlated to cost minimization. The
proportion of river water also seems to have a positive correlation with the (cooperative

7In the regression analysis, we consider impound water as the reference category.
8We note that year fixed effects also deliver robust outcomes.
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and noncooperative) goodness-of-fit. One possible interpretation is that, because it is
more expensive to purify this type of water, a higher dependence on river water urges
utilities to effectively behave efficiently (i.e. in a cost minimizing way). An alternative
explanation is that companies save on employee costs if the share of water purification in
the price gets higher. Analogous interpretations can explain the negative effect for the
share of ground water. We observe that the source of water explains better goodness-
of-fit for the cooperative model than for the noncooperative model (where it has lower
significance, if significant at all). This may indicate that companies with a larger propor-
tion of river water act more cooperatively than noncooperatively. This actually seems
intuitive given the higher purification costs and, consequently, the higher incentives for
public benefits; in such a case, the costs for these benefits are more easily shared by
both water and sewerage customers.

Let us then consider the specific variables that have been included in regression mod-
els 2 and 3. First, looking at our results for model 2, which captures water export and
import, we find that import does not seem to have a significant influence on goodness-
of-fit (for any model specification), whereas export apparently does have a significantly
positive effect for the noncooperative model: water utilities with a large volume of water
export produce the volume of water and sewerage with proportionally fewer employees
and capital (mains). Finally, we consider our results for model 3. Here we find that, in
contrast to the number of sewerage connections (which has a positive but insignificant
correlation with cost minimization), the number of connected properties for water pro-
vision does appear to have a significantly negative impact on cost minimization, which
suggests that smaller scale companies suffer less from inefficiencies (i.e. behavior incon-
sistent with cost minimization). This last finding falls in line with the existing literature,
which indeed suggests diseconomies of scale for water utilities that have about the same
size as the E&W companies that we study here (see Berg and Marques (2010) for a
literature review of the water sector).

From these results, we can draw the overall conclusion that some of the variables
we selected seem particularly related with the cooperative or noncooperative model.
For example, the proportion of river water correlates significantly with goodness-of-fit
only for the cooperative model, and the proportion of ground water shows a stronger
correlation for the cooperative model than for the noncooperative model. Our final
regression exercise allows us to investigate these patterns a little bit further. Specifically,
we now take the difference between the cooperative and noncooperative goodness-of-fit
measures as the dependent variable, while using the same contextual factors (and related
model specifications) as before.

The results are presented in Table 4. For models 1 and 2, we find that in particular the
proportion of river and ground water abstraction explains the difference in goodness-
of-fit between the cooperative and noncooperative models. The larger the proportion
of the more costly river water abstraction, the better the observed production behav-
ior is explained by the cooperative (centralized) model (relative to the noncooperative
model). Intuitively, this can be explained by cross-subsidies between the departments
that are necessary to compensate the more expensive water source, or by an exchange
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of know-how on water purification. The larger the proportion of the cheaper (in terms
of purification) ground water, the more noncooperatively (i.e. decentralized) companies
seem to act. Intuitively, in this case the water source is already relatively pure, and
so there is less need for cooperation. In Model 2, the service area explains the coop-
erative model: the larger the service area, the more companies cooperate. The volume
of bulk supply exports rationalizes the non-cooperative model better than the cooper-
ative model. The more water exports, the better the observed production behavior is
explained by the noncooperative model. The other specific variables of model 3 seem
to have roughly the same effect on the goodness-of-fit for the two specifications under
study. The assumption of fixed effects associated with the different regulatory cycles
does not change this conclusion.

Summarizing, we believe this application clearly illustrates the kind of questions
that can be addressed by using the newly proposed methodology. First, our nonpara-
metric toolkit allows for checking whether the noncooperative or cooperative model best
describes the observed multi-output production behavior. A second stage regression
analysis may then investigate which environmental factors drive the appropriateness of
a specific behavioral (cooperative/noncooperative) model. In our application, we did
identify a number of such contextual factors that seem to significantly impact on the
goodness-of-fit of both the cooperative and noncooperative models. Moreover, we were
able to distinguish factors that specifically drive the better fit of one particular model.

Table 3: Regressing goodness-of-fit on contextual variables for cooperative and nonco-
operative models

Model 1 Model 2 Model 3
Dependent variable coop noncoop coop noncoop coop noncoop

Constant 9.671E-01*** 1.009E+00*** 9.666E-01*** 1.014E+00*** 9.613E-01*** 1.003E+00***
2.756E-02 2.359E-02 2.834E-02 2.372E-02 2.771E-02 2.351E-02

Service area -3.452E-06** -3.893E-06*** -4.047E-06** -5.131E-06*** -2.128E-06 -2.450E-06*
1.131E-06 9.683E-07 1.348E-06 1.128E-06 1.283E-06 1.089E-06

Leakage 2.569E-05 3.649E-05 2.966E-05 3.813E-05 1.068E-04 1.227E-04*
2.667E-05 2.283E-05 2.686E-05 2.248E-05 6.493E-05 5.508E-05

Proportion river water 1.502E-02** 7.087E-03 1.230E-02* 3.799E-03 1.684E-02* 9.207E-03
5.308E-03 4.544E-03 5.375E-03 4.497E-03 6.471E-03 5.489E-03

Proportion ground water -9.230E-02*** -5.333E-02* -7.866E-02** -3.663E-02 -1.018E-01** -6.437E-02*
2.506E-02 2.146E-02 2.545E-02 2.129E-02 3.090E-02 2.621E-02

Bulk supply imports -6.401E-05 -4.176E-05
6.185E-05 5.176E-05

Bulk supply exports 1.418E-04 2.098E-04**
7.536E-05 6.306E-05

Connected water properties -3.996E-05* -4.370E-05*
2.021E-05 1.714E-05

Connected sewerage properties 1.194E-05 1.353E-05
1.587E-05 1.347E-05

Regulatory cycle fixed effects Yes Yes Yes Yes Yes Yes
Note: Standard errors below. ***, **, and * denote significance at, respectively, 1, 5 and 10%-level.
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Table 4: Regressing the difference in goodness-of-fit (cooperative - noncooperative) on
contextual variables

Model 1 Model 2 Model 3
Dependent variable coop-noncoop coop-noncoop coop-noncoop

Constant -4.170E-02*** -4.699E-02*** -4.136E-02***
1.082E-02 1.114E-02 1.104E-02

Service area 4.412E-07 1.084E-06* 3.222E-07
4.443E-07 5.299E-07 5.113E-07

Leakage -1.080E-05 -8.475E-06 -1.593E-05
1.048E-05 1.056E-05 2.587E-05

Proportion river water 7.932E-03*** 8.501E-03*** 7.636E-03**
2.085E-03 2.112E-03 2.578E-03

Proportion ground water -3.897E-02*** -4.203E-02*** -3.748E-02**
9.845E-03 1.000E-02 1.231E-02

Bulk supply imports -2.226E-05
2.431E-05

Bulk supply exports -6.801E-05*
2.962E-05

Connected water properties 3.742E-06
8.052E-06

Connected sewerage properties -1.589E-06
6.324E-06

Regulatory cycle fixed effects Yes Yes Yes
Note: Standard errors below. ***, **, and * denote significance at, respectively, 1, 5 and 10%-level.
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6 Conclusion
We have presented a novel framework for analyzing multi-output production behavior.
Such behavior typically involves jointly used inputs, which raises the issue of whether
these joint inputs are allocated in a cooperative (centralized) or noncooperative (de-
centralized) way. We introduced a methodology to empirically analyze multi-output
production behavior in terms of the cooperative model and the noncooperative model.
A distinguishing feature of our methodology is that it is nonparametric in nature, which
means that it avoids imposing prior (nonverifiable) functional structure on the produc-
tion technology.

An empirical application to the English and Welsh drinking water and sewerage sec-
tor demonstrated the practical usefulness of our framework. Here, a specific focus was
on assessing (and comparing) the goodness-of-fit of the two model specifications for this
particular sector. We found that the noncooperative model systematically provided a
better description of the production behavior in our sample. Subsequently, an explana-
tory analysis allowed us to identify a number of company-specific contextual factors that
significantly correlate with our goodness-of-fit measures for both models. Moreover, our
data did enable us to distinguish particular factors that specifically seem to drive the
better fit of one model (but not the other). In particular, we found that the behavior of
companies with a higher proportion of river water abstraction, which is a more expen-
sive resource to purify, is better explained by the cooperative model. On the contrary,
companies with a higher proportion of ground water act more in line with the nonco-
operative model. Moreover, we observed that a larger service area explains cooperative
behavior, while an increasing volume of bulk supply exports explains the noncooperative
model.

We see different avenues for follow-up research. First, to focus our analysis we
have only considered characterizing multi-output production under (cooperative and
noncooperative) cost minimization, and empirically assessing the goodness-of-fit of al-
ternative model specifications. If observed production behavior is found consistent with
a particular model (i.e. can be rationalized), then interesting next questions pertain
to recovering/identifying the decision model (including the production technology) that
underlies the (rationalizable) production behavior, and to forecasting/simulating produc-
tion behavior in new situations (e.g. characterized by new input prices and/or output
levels). Nonparametric recovery and forecasting issues have been addressed in the case
of single-output production (see, for example, the original contributions of Hanoch and
Rothschild (1972), Afriat (1972), Diewert and Parkan (1983) and Varian (1984)). As
indicated above, our newly proposed methodology naturally extends existing tools for
assessing single-output production. Given this, it provides a useful basis for develop-
ing the multi-output generalizations of recovery and forecasting tools that apply to the
single output case.

Second, referring to our discussion in the Introduction, we believe it is interesting to
further exploit the formal link with models for multi-person household consumption, to
develop novel tools for analyzing multi-output production. Specifically, existing contri-
butions on parametric analysis of multi-person consumption can provide a fruitful basis
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for developing the parametric counterpart of the nonparametric framework we set out
here. In turn, this may imply useful multi-output extensions of the parametric efficiency
measurement literature commonly referred to as Stochastic Frontier Analysis (SFA).
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Appendix
Proof of Theorem 2
(necessity) In order to demonstrate necessity we begin by introducing some notation.
We denote the input vector, which solves OP-CM, as an element of RJ ·N+M

+ = Ω+, by
stacking all the output-specific inputs qj

t on top of each other and ending with the joint
inputs Qt. We denote this vector by Qt:

Qt = [q1′
t . . . qj′

t . . . qJ ′
t Q′

t]
′.

Similarly, any other vector X ∈ Ω+ is decomposed as

X = [x1′ . . . xj′ . . . xJ ′ X′]′.

Likewise, we denote price vectors by elements in the set RJ ·N+M
++ = Ω++, which are

obtained by replicating the price vectors pt (J times) and ending with the vector Pt.
Let Pt represent this vector

Pt = [pt . . . pt Pt].

Consider a convex set S and an element a ∈ S. The normal cone of S at the point
a is denoted by C(a|S) and is defined as

C(a|S) = {w|∀x ∈ S,w(x− a) ≤ 0}.
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Now, consider an output j and the input requirement set V j(yj). We define the set
Ṽ j(yj) by

Ṽ j(yjt ) = {X ∈ Ω+|(xj,X) ∈ V j(yjt )}.
Fact 1. The set Ṽ j(yjt ) is convex.
Proof. Assume that X and Y are in Ṽ j(yjt ) and let α ∈ [0, 1]. Let Z = αX + (1− α)Y .
Then (xj,X) ∈ V j(yjt ), (yj,Y) ∈ V j(yjt ), zj = αxj +(1−α)yj and Z = αX+(1−α)Y.
By convexity of the set V j(yjt ), we obtain that (zj,Z) ∈ V j(yjt ) and we can conclude
that Z ∈ Ṽ j(yjt ).
Fact 2. Let Uj ∈ C(Qt|Ṽ j(yjt )) (i.e. Uj is in the normal cone of Ṽ j(yjt ) at Qt), where

Uj = [u1
j . . . uj

j . . . uJ
j Uj].

Then, it must be that
• for all k ̸= j, uk

j = 0,

• uj
j ≤ 0,

• Uj ≤ 0.
Proof. Let X ∈ Ṽ j(yjt ) be equal to Qt except for (xk)m (k ̸= j,m ≤ N), where

(xk)m = (qj
t)m + δ,

We consider values of δ ∈]− ε, ε[ for a small number ε > 0. Clearly, X ∈ Ṽ j(yjt ) for all
possible values of δ. Then, if Uj is normal to Ṽ j(yjt ) at Qt, it must be that

UjX ≤ UjQt

⇔ (uk
j )m(x

k)m ≤ (uk
j )m(q

k
t )m

= (uk
j )m

(
(xk)m − δ

)
.

Setting δ > 0 shows that (uk
j )m ≤ 0. On the other hand, if δ < 0, then (uk

j )m ≥ 0.
As such, if the condition must hold for all δ in the interval, it must be that (uk

j )m = 0.
Given that m and k were arbitrarily chosen (except for the fact that k ̸= j), it follows
that for all k ̸= j, uk

j = 0.
Now, consider a vector X which equals Qt except for the element (xj)m, where

(xj)m = (qj
t)m + δ.

Here, we have to assume δ > 0, since otherwise we can no longer guarantee that X ∈
Ṽ j(yjt ). By monotonicity of the set V j(yjt ), we see that (xj,X) ∈ V j(yjt ). As such,
X ∈ Ṽ j(yjt ). Now, if Uj is normal to Ṽ j(yjt ) at Qt, it must be that

(uj
j)m(x

j)m ≤ (uj
j)m(q

j
t)m

= (uj
j)m
(
(xj)m − δ

)
.

This shows that (uj
j)m ≤ 0. As m was arbitrarily chosen, we see that uj

j ≤ 0. Straight-
forwardly, we can conduct a similar reasoning with respect to the vector Qt in order to
show that that the vector Uj ≤ 0.
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Given the definition of the sets Ṽ j(yjt ), we see that the cost minimization program
OP-CM can be rewritten as:

min
X∈Ω+

PtX s.t. X ∈ Ṽ j(yjt ) (∀j ≤ J).

The sets Ṽ j(yjt ) are convex. Hence, a necessary and sufficient condition for Qt to be a
solution to this problem is that there exist vectors Uj in C(Qt|Ṽ j(yjt )) such that9

0 = Pt +
∑
j

Uj.

By Fact 2, we have that Uj is of the form

Uj = [0 . . . uj
j . . . 0 Uj],

where uj
j ≤ 0 and Uj ≤ 0. Then, we can rewrite the equilibrium conditions as

pt = −uj
j,

Pt = −
∑
j

Uj.

Further, given that Uj is a normal vector for the set Ṽ j(yjt ), we must have that for all
X ∈ Ṽ j(yjt ):

Uj(X −Qt) ≤ 0.

Let us define Pj
t = −Uj, which gives a solution for condition 2 of Theorem 2. Given the

above, we obtain that, for all (xj,X) ∈ V j(yjt ),

−pt(x
j − qj

t)−Pj
t(X−Q) ≤ 0.

Now, consider an observation v such that yjv ≥ yjt . As t is rationalizable, we have
that (qj

v,Qv) ∈ V j(yjt ). As such, we obtain

ptq
j
v +Pj

tQv ≥ ptq
j
t +Pj

tQt whenever yjv ≥ yjt .

This shows the first part of condition 3 of Theorem 2 (or equivalently the first condition
of SACM).

The second condition part of condition 3 of Theorem 2 can be established by using
continuity of f j (the proof is similar to the one of Theorem 2 in Varian (1984)). In
particular, let yjv > yjt , which implies that (qj

v,Qv) ∈ V j(yjt ). By continuity and strict
monotonicity of f j, there exists a θ < 1, such that (θqj

v, θQv) ∈ V j(yjt ), and therefore

ptq
j
t +PtQt ≤ ptθq

j
v +PtθQv < ptq

j
v +PtQv.

(sufficiency) Let us fix the observation t. We proceed by constructing for every output
j, a production function f j which will rationalize the data.

Towards this end, consider the output j. For every observation v ∈ T − {t}, let Cj
v

be the convex hull of all vectors (qj
s,Qs) with yjs ≥ yjv. We denote by Rj the collection

of all observations v ∈ T − {t} for which (qj
v,Qv) is not in the interior of Cj

v .
9See, for example Rockafellar (1970, p. 283)

31



Fact 3. For each of the elements v ∈ Rj, there exist vectors wj ∈ RN
++ and Wj ∈ RM

++

such that

wj
vq

j
v +Wj

vQv ≤ wj
vq

j
z +Wj

vQz (∀z ∈ T with yjz ≥ yjv),

wj
vq

j
v +Wj

vQv < wj
vq

j
z +Wj

vQz (∀z ∈ T with yjz > yjv).

Proof. This follows from the separating hyperplane theorem and the fact that the pro-
duction functions are strictly increasing and continuous.

Now, we construct an artificial data set Kj such that

• the observation {pt,P
j
t ,q

j
t ,Qt} is in Kj,

• for all v ∈ Rj, the observation {wj
v,W

j
v,q

j
v,Qv} is in Kj.

Fact 4. The data set Kj satisfies the generalized axiom of revealed preference (GARP).10

Proof. This follows from the fact that Kj satisfies SACM for all observations (if t is
rationalizable) and the fact that this is a stronger condition than GARP.

By Afriat’s Theorem (Afriat, 1967), we have that there exist nonnegative numbers
U j
t , U j

v (v ∈ Rj) and strict positive numbers λj
t , λj

v (v ∈ Rj) such that, for all v, s ∈ Rj,

U j
v − U j

s ≤ λj
s

[
wj

s(q
j
v − qj

s) +Wj
s(Qv −Qs)

]
,

U j
t − U j

v ≤ λj
v

[
wj

v(q
j
t − qj

v) +Wj
v(Qt −Qv)

]
,

U j
v − U j

t ≤ λt
t

[
pt(q

j
v − qj

t) +Pj
t(Qv −Qt)

]
.

Furthermore, it is possible to impose that yjv < yjs if and only if U j
v < U j

s (for all
v, s ∈ Rj ∪ {t}). As such, we can plot the values of U j

s against the corresponding values
of yjs (s ∈ Rj ∪ {t}) in a graph, and connect the dots. We call this function gj (i.e. for
all s ∈ Rt ∪ {t}, yjs = gj(U j

s )). The function gj is strictly increasing and, therefore, one
to one and invertible. Let hj be the inverse of gj.

Now, we construct the function U j(xj,X) defined by

U j(xj,X) = min

{
minv∈Rj {U j

v + λj
v [wv(x

j − qj
v) +Wj

v(X−Qv)]} ;
U j
t + λj

t

[
pt(x

j − qj
t) +Pj

t(X−Qt)
] }

.

This function is concave (as it is the minimum of a finite set of linear functions),
strictly increasing, and satisfies U j(qj

s,Qs) = U j
s (for all s ∈ Rj ∪ {t}). Given the

function U j(.), we define the production function f j(.) by

f j(xj,X) = gj(U j(xj,X)).

Observe that for all s ∈ Rj∪{t}, f j(qj
s,Qs) = yjs, and that the function f j is continuous,

strictly monotonic, and quasi-concave (as it is a strictly monotonic transformation of a
strictly monotonic and concave function).

10See, for example, Varian (1982) for a discussion of GARP.
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We can repeat the above procedure for every output j = 1, . . . , J , creating the functions
f 1, . . . , fJ . Let us show that observation t solves OP-CM for these production functions.
We do this ad absurdum. Specifically, we assume that there exist inputs xj and X such
that

∑
j ptx

j +PtX <
∑

j ptq
j
t +PtQt and, for all j ≤ J , f j(xj,X) ≥ yjt . Then,∑

j

1

λj
t

hj
(
f j(xj,X)

)
=
∑
j

1

λj
t

U j(xj,X)

≤
∑
j

1

λj
t

U j
t +

∑
j

[
pt(x

j − qj
t) +Pj

t(X−Qt)
]

<
∑
j

1

λj
t

U j
t .

By the pigeonhole principle, we see that for at least one j ≤ J , it must be the case that
U j(xj,X) < U j

t . This implies f j(xj,X) < yjt , which gives the desired contradiction.
The only thing we still need to establish is that, for all v ∈ T , f j(qj

v,Qv) ≥ yjv. If
v ∈ Rj ∪ {t}, we have that f j(qj

v,Qv) = yjv, by construction. On the other hand, if
v /∈ Rj ∪{t}, then (qj

v,Qv) can be written as the convex combination of vectors (qj
s,Qs)

for which yjs ≥ yjv. In fact, we can restrict ourselves to observations s in Rj. As such, we
have that for all these observations s, f j(qj

s,Qs) = yjs ≥ yjv. The result f j(qj
v,Qv) ≥ yjv

follows from quasi-concavity of the function f j.

Proof of Theorem 3
(necessity) As a preliminary step, we note that the problem OP-NM can be rewritten
as

min
xj ,Xj

ptx
j +PjX s.t. (xj,X) ∈ V (yjt ), and X ≥

∑
k ̸=j

Qk
t .

Analogous to the proof of Theorem 2, consider the space Ω+ = RN+M+ , with typical
element X given as

X = [xj′ X′]′.

We denote by Qj
t , which contains the solutions of OP-NM, the vector

Qj
t = [qj′

t Q′
t]
′.

and by P the vector
P = [p P].

As before, let C(a|S) be the normal cone of a convex set S at the point a ∈ S.
Consider, then, the following set:

W̃ j =

{
X ∈ Ω+

∣∣∣∣∣X ≥
∑
k ̸=j

Qk
t

}
.
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Fact 5. The set W̃ j is convex.

Now, consider the normal cone C(Qt|W̃ j). We obtain the following fact about its
elements:

Fact 6. Let Rj ∈ C(Qt|W̃ j), with

Rj = [rjj Rj].

Then

• rjj = 0,

• if (Qt)m >
∑

k ̸=j(Q
k
t )m, then (Rj)m = 0,

• if (Qt)m =
∑

k ̸=j(Q
k
t )m, then (Rj)m ≤ 0.

Proof. Let X be the vector in Ω+ which equals Qj
t except for the element (xj)m with

(xj)m = (qj
t)m + δ.

Here we take δ ∈]− ε, ε[ for some small ε > 0. We see that X ∈ W̃ j. Then, if Rj is in
the normal cone of W̃ j at Qj

t , it follows that

RjX ≤ RjQj
t

⇔ (rjj)(x
j)m ≤ (rjj)m(q

j
t)m

= (rjj)m
(
(xj)m − δ

)
.

This must hold for all δ in the interval, and hence, (uj
j)m = 0. As m was arbitrarily

chosen, we must have that rjj = 0. If (Qt)m >
∑

k ̸=j(Q
k
t )m, we can use a similar

reasoning to show that (Rj)m = 0.
Then, consider the case where (Qt)m =

∑
k ̸=j(Q

k
t )m and assume that the vector X

equals Qj
t except for the element (X)m, which is given by

(X)m = (Qt)m + δ.

Here, we have to take δ > 0 to guarantee that the vector X is in W̃ j. Then, if Rj is in
the normal cone of W̃ j at Qj

t , it follows that

(Rj)m(X)m ≤ (Rj)m(Qt)m = (Rj)m ((X)m − δ) .

This can only be the case when (Rj)m ≤ 0.

Fact 7. Let Uj ∈ C(Qt|V j(yjt ), with

Uj = [uj
j,Uj].

Then
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• uj
j ≤ 0,

• Uj ≤ 0.

Proof. The proof of this is very similar to the proof of Fact 6.

The optimization problem can be written as

min
X∈Ω+

PX s.t. X ∈ V j(yjt ) and X ∈ W̃ j.

Again using Rockafellar (1970), we have that a necessary and sufficient condition
for a solution of this problem is that there exist vectors Uj ∈ C(Qj

t |V j(yjt )) and Rj ∈
C(Qj

t |W̃ j) such that
0 = P + Uj +Rj.

Thus, we get

−uj
j = pt,

−Uj = Pt +Rj.

Let us define Pj
t = −Uj ≥ 0, which gives a solution for condition 2 of Theorem 3. As

Uj is in the normal cone of V j(yjt ) at Qj
t , it must be that, for all (xj,X) ∈ V (yjt ),

pt(x
j − qj

t) +Pj
t(X−Qt) ≥ 0.

Now, if yjv ≥ yjt , it must be that (qj
v,Qv) ∈ V j(yjt ) and, therefore,

pt(q
j
v − qj

t) +Pj
t(Qv −Qt) ≥ 0.

This shows the first part of condition 3 of Theorem 3 (or equivalently the first condition
of SACM). The second part of condition 3 of Theorem 3 can be established by using
continuity of f j (just like for Theorem 2).

Also, because (Qt)m > 0 for all m, it must be that there is at least one j such that
(Qt)m >

∑
j ̸=k(Q

k
t )m, i.e, there must be at least one j such that (Qj

t)m > 0. For this j
it follows that (Rj)m = 0 and therefore (Pj

t)m = (Pt)m. Else, if
∑

j ̸=k(Q
k
t )m = (Qt)m,

we have that (Rj)m ≤ 0 and therefore, (Pj
t)m ≤ (Pt)m. From this, it follows that

max
j

(Pj
t)m = (Pt)m.

(sufficiency) Fix an observation t. As in the proof of Theorem 3, we construct the set Rj

of observations such that, for all v ∈ Rj, there exist vectors wj ∈ RN
++ and Wj ∈ RM

++

that yield

wj
vq

j
v +Wj

vQv ≤ wj
vq

j
z +Wj

vQz (∀z ∈ T |yjz ≥ yjv),

wj
vq

j
v +Wj

vQv < wj
vq

j
z +Wj

vQz (∀z ∈ T |yjz > yjv).

Next, we construct the artificial data set Kj such that
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• {pt,Pt,q
j
t , Qt} is in Kj,

• for all v ∈ Rj, {wv,Wv,qv,Qv} is in Kj.

Fact 8. The data set Kj satisfies GARP.
Next, we can apply Afriat’s Theorem to obtain that there exist nonnegative numbers

U j
t , U j

v (v ∈ Rj) and strict positive numbers λj
t , λj

v (v ∈ Rj) such that, for all v, s ∈ Rj,

U j
v − U j

s ≤ λj
s

[
ws(q

j
v − qj

s) +Wj
s(Qv −Qs)

]
,

U j
t − U j

v ≤ λj
v

[
wv(q

j
t − qj

v) +Wj
v(Qt −Qv)

]
,

U j
v − U j

t ≤ λt
t

[
pt(q

j
v − qj

t) +Pj
t(Qv −Qt)

]
.

We can plot the corresponding values of U j
s against yjs (s ∈ Rj ∪ {t}) in a graph and

connect the dots, calling this function gj (i.e. for all s ∈ Rj ∪ {t}, yjs = gj(U j
s )). This

function is strictly increasing and, therefore, one to one and invertible. Let hj be the
inverse of gj.

Now, for each j ≤ J consider the function U j(qj,Q) defined by

U j(qj,Q) = min

{
minv∈Rj {U j

v + λj
v [wv(q

j − qj
v) +Wj

v(Q−Qv)]} ;
U j
t + λj

t

[
pt(q

j − qj
t) +Pj

t(Q−Qt)
] }

.

This functions is concave, strictly increasing, and satisfies U j(qj
s,Qs) = U j

s for all
s ∈ T j ∪ {t}. Then, define f j(qj,Q) = gj(U j(qj,Q))). For all s ∈ T j ∪ {t} we
have f j(qj

s,Qs) = yjs, and the function f j is continuous, strictly monotonic, and quasi-
concave. We can repeat this procedure for all outputs j, so obtaining the functions
f 1, . . . , fJ .

Next, let us show that observation t solves OP-NM. For all j ≤ J , if (Pj
t)m < (Pt)m,

we set (Qj
t)m = 0 and if (Pj

t)m = (Pt)m we set (Qj
t)m arbitrarily under the restriction

that
∑

j(Q
j
t)m = (Qt)m.

We prove the wanted result ad absurdum. Specifically, we assume that there exist
inputs xj and Xj such that ptx

j +PtX
j < ptq

j
t +PtQ

j
t and f j(xj,Xj +

∑
k ̸=j Q

k
t ) ≥ yjt .

Observe that our construction is such that Pj
t(X

j −Qj
t) ≤ Pt(X

j −Qj
t). We have

that:
1

λj
t

hj

(
f j

(
xj,Xj +

∑
k ̸=j

Qk
t

))
=

1

λj
t

U j

(
xj,Xj +

∑
k ̸=j

Qk
t

)

≤ 1

λj
t

U j
t +

[
pt(x

j − qj
t) +Pj

t

(
Xj +

∑
k ̸=j

Qk
t −Qt

)]

=
1

λj
t

U j
t + pt(x

j − qj
t) +Pt(X

j −Qj
t)

≤ 1

λj
t

U j
t + pt(x

j − qj
t) +Pt(X

j −Qj
t)

<
1

λj
t

U j
t .
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This implies f j(xj,Xj +
∑

k ̸=j Q
k
t ) < yjt , a contradiction.

The only thing we still need to establish is that, for all v ∈ T , f j(qj
v,Qv) ≥ yjv. If

v ∈ Rj∪{t}, we have f j(qj
v,Qv) = yjv by construction. On the other hand, if v /∈ Rj∪{t},

then (qj
v,Qv) can be written as the convex combination of vectors (qj

s,Qs) in Rj (for
which f j(qj

s,Qs) = yjs ≥ yjv). The result f j(qj
v,Qv) ≥ yjv follows from quasi-concavity of

the function f j.
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