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Abstract: This paper presents a newsvendor approach to determine optimal order-up-to levels in a two-item 

inventory system with one-way substitution, assuming that both items are managed according to a periodic base 

stock order policy. The objective is to minimize the expected total cost per period, which consists of expected 

purchasing costs, expected inventory holding costs, expected shortage costs and expected adjustment costs. It is 

shown that, for any arbitrary (bivariate) continuous demand distribution, the optimal solution is unique. Moreover, 

the model yields useful insights on the impact of substitution on service level, the optimality of a borderline case in 

which the order-up-to level of the inflexible item is reduced to zero, and the pivotal role of the purchasing cost. 

 

Keywords: inventory management, one-way substitution, newsvendor 

 

1 Introduction 

In many supply chains, mismatches between supply and demand are (at least partially) mitigated by 

keeping inventories, possibly at different levels of the supply chain (e.g., raw materials, components, 

semi-finished products and/or end items). The task of inventory management is to balance the benefits of 

inventory (i.e., reducing lost sales) with the associated cost (which is typically reflected in the inventory 

holding cost). 
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One way of reducing the cost associated with inventory is to pool the demands of multiple items on the 

same (flexible) inventory item: provided that demands are not perfectly positively correlated, this allows a 

reduction in the required amount of safety stock, and (hence) a reduction in inventory holding cost. This 

is referred to as “risk-pooling” or “statistical economies of scale” [13]. However, flexibility tends to come 

at a cost: this “flexibility cost” can boil down to a product cost premium (when the flexible item is 

inherently more expensive to manufacture or purchase) and/or an additional adjustment cost (when the 

item needs to undergo additional processing or transportation in order to make it “fit for use” when 

demand arises). 

This observation has spurred research on so-called substitution (or “tailored pooling”) systems, in which 

flexible (and hence, more expensive) stock is used as a substitute only when the regular (cheaper) item 

stocks out. Tailored pooling can be obtained in a variety of ways, a.o. through the use of manufacturer-

driven one-way substitution (e.g. [1], [10]), lateral transshipments (e.g. [9], [6]) and tailored 

postponement [11]. It offers a compromise between a setting with “full pooling” (implying that demand 

for a particular product type is always rerouted to the stock of the flexible product, and no product-

specific stock is held) and “no pooling” (only product-specific stock is held, and demand can never be 

rerouted to stock of a different item). 

In general, determining the optimal inventory control parameters in systems with substitution is complex: 

demands are only “partially pooled“ on the inventory of the flexible item, and the amount of demand that 

can be “rerouted” to the flexible item depends on the order policies of both the dedicated product and the 

substitute. The optimal inventory control parameters are influenced by many different factors, such as the 

replenishment lead time (deterministic -- zero or strictly positive -- or stochastic), and the demand 

structure (demand distributions and correlation between the demands). 

In this paper, we use a newsvendor approach to analyze the optimal order-up-to levels in a two-item 

inventory system with one-way substitution, assuming that both items are managed according to a 
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periodic base stock order policy1. Only one item can be used as a substitute for the other (hence the term 

one-way substitution). The objective is to minimize the expected total cost per period, which consists of 

expected purchasing costs, expected inventory holding costs, expected shortage costs and expected 

adjustment costs. We first consider a decision maker who aims to optimize the order-up-to levels for both 

items in a single-period setting; next, we extend the model to a multiperiod setting.  

 

Though our approach builds heavily on the work by Van Mieghem (see e.g. [12]), it differs in the sense 

that we consider the substitute (i.e., flexible item) to be an item in its own right, with its own demand to 

fulfill. Moreover, whereas the work by Van Mieghem studies flexible capacity, we apply the approach to 

an inventory setting, which yields useful insights a.o. on the effect of one-way substitution on customer 

service levels, and on the optimality conditions for the borderline case in which the order-up-to level of 

the inflexible product is reduced to zero. Throughout the analysis, we assume zero replenishment lead 

times (as common in the literature, see e.g. [8], [1] and [3]). 

 

In Section 2, the research problem is described in further detail. The single-period newsvendor model is 

explained in Section 3. Section 4 extends the newsvendor to a multiperiod setting. Finally, Section 5 

summarizes the main conclusions. 

2 Problem description  

Consider a setting with two different product types (Product 1 and Product 2) as in Figure 1.  

Demand ݀,௧ for a specific product type i in period t is preferably satisfied by means of its corresponding 

(product-specific or dedicated) inventory. The amount of demand that is fulfilled by dedicated inventory 

in period t is represented by	ݔ,௧ and indicated by the solid arrows in Figure 1. 

 

                                                 
1 Since we do not optimize the review period (commonly referred to by T or R in the literature) we prefer to denote 
our policy as a base stock policy instead of using the (more common) (R,S) notation. 
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Fig. 1: A two-product inventory system with one-way substitution 

 

Only when the dedicated inventory for product 1 is out of stock, demand can be satisfied by the substitute 

item (item 2). As such, part of the demand for item 1 can be “rerouted” to stock of item 2. This rerouted 

demand is indicated by the notation ݖ௧ (see the dashed arrow in Figure 1); each unit of rerouted demand 

incurs a unit adjustment cost a. 

Both inventories are managed according to a periodic base stock inventory policy. In a single-period 

setting, it is common to assume that the starting inventory position is zero (e.g., [7], [4], [8] and [12]) 

whereas in a multiperiod setting, the inventory position at the start of a period t is equal to the inventory 

position at the end of period t-1. At the start of every period t, the decision maker places an order such 

that the inventory position is raised to the order-up-to level ܵ (for i=1,2) [2]. Since the replenishment 

leadtime is assumed to be zero, orders are received immediately; consequently, the net inventory 

immediately rises to ܵ once an order for item i has been placed. The unit purchasing cost is represented 

by ci for i=1,2. At the end of every period t, the decision maker optimally allocates the observed demand 

to the different inventories, constrained by his earlier inventory investments (i.e., determine ݔଵ,௧, ݔଶ,௧ and 

 ௧). Any leftover inventory of product i at the end of the period incurs a unit holding cost hi. Demand ofݖ

product i that cannot be satisfied at the end of a period is penalized at a unit shortage cost pi and is 

backordered to the next period (in the multiperiod model) or lost (in the single-period model). 
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Fig. 2: Sequence of activities in an arbitrary period 

 

As shown in Figure 2, this type of problem is a two-stage stochastic program problem. In a first stage, 

before demand is known, the optimal order-up-to levels are determined. In a second stage, once demand 

has been observed, the optimal allocation decision is made. The aim is to determine the optimal order 

decisions such as to minimize the total expected cost (i.e., sum of expected purchasing costs, expected 

shortage costs, expected inventory holding costs and expected adjustment costs).  

 

A summary of the cost parameters, random variables and decision parameters is given in Table 1.  

 

Table 1: Notation 

Cost parameters 

ci Purchasing cost per unit of product i 

pi Shortage cost per unit of unsatisfied demand of product i at the end of the period  

hi Holding cost per unit of product i left over at the end of the period 

a Adjustment cost per unit of demand for product 1 satisfied by product 2 

Random variables 

݀,௧   Demand during period t of product i 

 ,௧  Amount of inventory of product i allocated to demand of product i in period tݔ

 ௧  Amount of inventory of product 2 allocated to demand of product 1 in period tݖ

Decision parameters 

ଵܵ  Order-up-to level of product 1 

ܵଶ	  Order-up-to level of product 2 
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The cost parameters and demand distributions are assumed to remain constant over time, implying that 

the optimal order-up-to levels will also remain constant over time. Throughout this paper, the notation 

E[X] refers to the expected value of X and ܧሾܺሿା ൌ ,ሺ0	ሾmaxܧ ܺሻሿ. 

 

For a meaningful analysis, the following assumptions need to hold: 

 

Assumption 1: 	ܿଶ െ ܿଵ  ܽ  0 

The flexibility cost, which can be decomposed in a product cost premium and an adjustment cost, is 

strictly positive. This ensures that demand of product 1 is preferably satisfied with its corresponding 

inventory.  

 

Assumption 2:  ଵ  ݄ଶ  ܽ  ܿଶ െ ܿଵ 

In case of a shortage of product 1 and leftover inventory of product 2, it is more expensive to do nothing 

and incur ଵ  ݄ଶ than to use product 2 as a substitute and incur the associated flexibility cost. This 

condition ensures that it is optimal to reroute unsatisfied demand of product 1 to remaining stock of 

product 2 (if any). 

 

Assumption 3:  ݄ଵ  ܽ  ݄ଶ  

Transforming leftover inventory of product 2 into inventory of product 1 is never cost beneficial. 

 

Assumption 4: ଶ  ܽ   ଵ

The inventory of product 2 is preferably used to cover demand for product 2. 

 

Assumption 5 (only required for the single-period newsvendor model):    ܿ  
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Purchasing product i is less expensive than incurring a penalty cost for that product. This assumption is 

needed in a single-period setting to avoid a solution in which it is preferable not to meet any demand2.  

 

3 Single-period newsvendor model 

Section 3.1 derives the newsvendor condition for the single-period system with one-way substitution. In 

Section 3.2, we derive a similar condition for the setting with S1 = 0. The results imply that a threshold 

purchasing cost exists for product 1: as long as the purchasing cost of product 1 stays below this 

threshold, one-way substitution is optimal. Note, that because of assumption 2, a setting that does not 

allow any demand of product 1 to be rerouted can never be optimal.  

3.1 One-way substitution 
 

As mentioned in Section 2, our objective is to determine the values of S1 and S2 in order to minimize the 

expected total cost during a single period ሺdenoted	by	ܧሾܶܥሿ	ሻ. This expected total cost can be calculated 

as3: 

ሿܥሾܶܧ ൌ ܿଵሺ ଵܵሻ  ܿଶሺܵଶሻ  ݄ଵܧሾ ଵܵ െ ݀ଵሿା  ݄ଶܧሾܵଶ െ ݀ଶ െ zሿା  ሾ݀ଵܧଵ െ ଵܵ െ zሿା   

ሾ݀ଶܧଶ െ ܵଶሿା   ሾzሿ         (1)ܧ	ܽ

Where z ൌ minሼmaxሺ0, ܵଶ െ ݀ଶሻ,maxሺ0, ݀ଵ െ ଵܵሻሽ 

 

Expression (1) can be reformulated in terms of the allocation variables ݔଵ, ݔଶ and ݖ: 

ሿܥሾܶܧ ൌ ܿଵሺ ଵܵሻ  ܿଶሺܵଶሻ  ݄ଵܧሾ ଵܵ െ ଵሿݔ  ݄ଶܧሾܵଶ െ ଶݔ െ ሿݖ  ሾ݀ଵܧଵ െ ଵݔ െ ሿݖ  ሾ݀ଶܧଶ െ ଶሿݔ 

 ሿ            (2)ݖሾܧܽ

 

                                                 
2 Note that this assumption is not needed in a multiperiod setting with backordering, since the amount of demand 
backordered is included in the replenishment order quantity, and fulfilled in the next period (if ܵ  0). 
3 As this section only considers a single period, subscript t is omitted. 
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The first two terms in expression (1) and (2) refer to the expected purchasing costs: as we assume that the 

starting inventory is zero, these are fully determined by the choice of ଵܵ and ܵଶ. The third and fourth term 

represent the expected holding costs of leftover inventory at the end of the period: note that the allocation 

variables (ݔଵ, ݔଶ and ݖ) vary with demand, and hence are random variables. The next two terms represent 

the expected penalty costs for lost sales, while the last term refers to the expected flexibility cost incurred 

by rerouting demand. 

 

Recall that the problem is a two-stage decision process. In the first stage, the order-up-to levels ( ଵܵ and 

ܵଶሻ are determined and in the second stage, inventory is allocated to the demands (ݔଵ, ݔଶ and ݖ).  

In fact, for given order-up-to levels and given demands, the optimal allocations in the second stage (ݔଵ
∗, 

ଶݔ
∗ and ݖ∗) coincide with the solution to the following linear programming model (LP1)4: 

Min  ܿଵሺ ଵܵሻ  ܿଶሺܵଶሻ  ݄ଵሺ ଵܵ െ ଵሻݔ  ݄ଶሺܵଶ െ ଶݔ െ ሻݖ  ଵሺ݀ଵ െ ଵݔ െ ሻݖ  ଶሺ݀ଶ െ ଶሻݔ    ݖܽ

s.t.      ݔଵ  ଵܵ  

ଶݔ  ݖ  ܵଶ 

ଵݔ  ݖ  ݀ଵ 

ଶݔ  ݀ଶ 

,ଵݔ ݖ	݀݊ܽ	ଶݔ  0 

 

Given the assumptions imposed on the cost parameters (see Section 2), the optimal allocation resulting 

from (LP1) coincides with the allocation structure discussed in Section 2: allocate as much as possible of 

the demand to the dedicated stock, and reroute (if possible) the remaining demand for product 1 to 

remaining stock of product 2 (rather than lose the sale). The optimal objective function of (LP1) then 

reflects the total cost for given demand observations and order-up-to levels and is denoted by 

                                                 
4A necessary condition for which a feasible solution exists is ଵܵ  0 and ܵଶ  0. 
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ሺܥܶ ଵܵ, ܵଶ, ݀ଵ, ݀ଶሻ. According to linear programming theory, ܶܥሺ ଵܵ, ܵଶ, ݀ଵ, ݀ଶሻ is convex in ଵܵ and ܵଶ for 

a given ݀ଵ and ݀ଶ (see Appendix A for a formal proof).  

Since the expected total cost ܧሾܶܥሿ is merely a weighted linear combination of ܶܥሺ ଵܵ, ܵଶ, ݀ଵ, ݀ଶሻ over all 

possible demand realizations with the demand probabilities as weights, it follows that ܧሾܶܥሿ is also 

convex in ଵܵ and ܵଶ. Therefore, the optimal ܵ
∗ are unique and can be found as the solution to the first 

order conditions ߲ܧሾܶܥሿ/߲ ܵ ൌ 0	ሺ݅ ൌ 1,2ሻ. 

Determining the first-order derivative of ܧሾܶܥሿ to ଵܵ and ܵଶ, is analogous to calculating the expected 

shadow price of the first two constraints of (LP1) (see [5]): ߲ܧሾܶܥሿ ߲ ܵ⁄ ൌ ሺ݅	ሿߣሾܧ ൌ 1,2ሻ. 

Consequently, the optimal ଵܵ
∗ and ܵଶ

∗ can be found by determining the expected shadow prices of these 

constraints, and requiring ܧሾߣଵሿ ൌ ଶሿߣሾܧ ൌ 0.  

The power of this result lies in its simplicity, as well as in its graphical interpretation: for any given 

combination of order-up-to levels ଵܵ and ܵଶ, the demand space can be divided into 5 domains  (with j = 

0 to 4) with constant shadow prices ߣ (i.e. the shadow price of constraint i for demand in domain j) as 

shown in Figure 3. Consequently, it is sufficient to calculate the shadow price for these 5 domains in 

order to find the expected shadow price. 

 

 

Fig. 3: Demand domains with constant gradients for the two-item inventory system with one-way 

substitution  
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Domain  indicates the domain in which the demand of both product types can be satisfied by dedicated 

inventory (0  ݀ଵ  ଵܵ and 0  ݀ଶ  ܵଶ). In domain ଵ, the demand of both product types is satisfied, 

but part of the demand of product 1 is rerouted to product 2 (0  ݀ଶ  ܵଶ and	 ଵܵ  ݀ଵ  ଵܵ  ܵଶ െ ݀ଶሻ. 

In domain ଶ, only the demand of product 1 is satisfied, part of the demand for product 2 is lost (0 

݀ଵ  ଵܵ and ݀ଶ  ܵଶ). In domain ଷ, both items incur lost sales (݀ଵ  ଵܵ and ݀ଶ  ܵଶ). In domain ସ, 

the demand of product 2 is satisfied, while product 1 incurs lost sales (݀ଵ  ଵܵ  ܵଶ െ ݀ଶ and 0  ݀ଶ 

ܵଶ). 

The shadow prices for each of these 5 domains are derived in Appendix B, and summarized in Table 2. 

 

Domain ࣅࣅ ܒ 

 ܿଵ  ݄ଵ ܿଶ  ݄ଶ 

ଵ ܿଵ െ ܽ  ݄ଶ ܿଶ  ݄ଶ 

ଶ ܿଵ  ݄ଵ ܿଶ െ  ଶ

ଷ ܿଵ െ ଵ ܿଶ െ  ଶ

ସ ܿଵ െ ଵ ܿଶ െ ଵ  ܽ 

 

Table 2: Shadow prices for the 5 domains for the one-way substitution strategy 

 

As, for any given ଵܵ and ܵଶ, the shadow prices are constant in each demand domain, the expected shadow 

price of constraint i can be calculated as: 

ሿߣሾܧ  ൌ ∑ ܲ൫Ω୨൯ߣ
ସ
ୀ   

with ܲ൫Ω୨൯ denoting the probability that the joint demand observation (d1,d2) falls in domain j5.  

 

                                                 
5 Note that ܲ൫Ω൯	in fact depends on S1 and S2. To avoid the complex notation ܲ൫Ωሺ ଵܵ, ܵଶሻ൯, we opt for the more 
compact notation ܲ൫Ω൯. 
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Consequently, the first order derivatives of the objective function can be expressed conveniently as: 

 

డாሾ்ሿ

డௌభ
ൌ ሺܿଵ 	݄ଵሻܲሺΩሻ  ሺܿଵ െ ܽ 	݄ଶሻܲሺΩଵሻ  ሺܿଵ 	݄ଵሻܲሺΩଶሻ  ሺܿଵ െ	ଵሻܲሺΩଷሻ 

ሺܿଵ െ	ଵሻܲሺΩସሻ  

 

డாሾ்ሿ

డௌమ
ൌ ሺܿଶ 	݄ଶሻܲሺΩሻ  ሺܿଶ 	݄ଶሻܲሺΩଵሻ  ሺܿଶ െ	ଶሻܲሺΩଶሻ  ሺܿଶ െ	ଶሻܲሺΩଷሻ  ሺܿଶ െ	ଵ 

ܽሻܲሺΩସሻ  

 

Since E[TC] is convex, we know that the optimal order-up-to levels ( ଵܵ
∗ and ܵଶ

∗) are unique. Setting both 

derivatives equal to zero yields (after some straightforward manipulations) the following set of optimal 

conditions:   

ܿଵ 	݄ଵܲ൫Ω
ௌை∗  Ωଶ

ௌை∗൯ ൌ ଵܲ൫Ωଷ
ௌை∗  Ωସ

ௌை∗൯  ሺܽ െ	݄ଶሻܲ൫Ωଵ
ௌை∗൯    (3) 

ܿଶ  ݄ଶܲ൫Ω
ௌை∗  Ωଵ

ௌை∗൯ ൌ ଶܲ൫Ωଶ
ௌை∗  Ωଷ

ௌை∗൯  ሺଵ െ ܽሻܲ൫Ωସ
ௌை∗൯    (4) 

With Ω
ௌை∗ (j=0,…,4) demand domain j that is determined by the optimal order up to levels ( ଵܵ

∗ and ܵଶ
∗) 

for the single period one-way substitution strategy. 

 

The interpretation of these optimal conditions is quite intuitive. The left-hand side refers to the expected 

cost of raising the order-up-to level of product 1 (expression 3) and product 2 (expression 4) with one 

unit: this expected cost consists of the purchasing cost and the holding cost, which is only incurred in case 

inventory remains at the end of the period. The right-hand side refers to the expected benefit of such an 

increase: for item 1, it consists of the penalty cost that is avoided in case of unsatisfied demand, plus the 

benefit incurred by avoiding to reroute demand to product 2 (expression 3). For item 2 (expression 4), it 

consists of the avoided penalty cost and the benefit incurred by the possibility to reroute an additional unit 

of product 1 demand to product 2 (instead of incurring a shortage ).  
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Combining expressions (3) and (4) with any continuous bivariate demand distribution (which can be 

mapped on Figure 3) enables us to derive the optimal order-up-to levels ( ଵܵ
∗ and ܵଶ

∗): i.e., the order-up-to 

levels need to be set in such a way that the resulting ܲ൫Ω୨൯′s	 cause expressions (3) and (4) to hold.  

 

The strength of this newsvendor approach lies in its simplicity, and its graphical interpretation. For 

instance, the effect of allowing one-way substitution on the customer service level (CSL) of both products 

can be derived graphically. As illustrated in Figure 4a, the CSL of product 1 (in case a one-way 

substitution strategy is applied) equals the sum of ܲሺΩሻ, 	ܲሺΩଵሻ and ܲሺΩଶሻ. Hence, the CSL of product 1 

benefits from an increase in ଵܵ as well as ܵଶ . As shown in Figure 4b, the CSL of product 2 equals the 

sum of ܲሺΩሻ, 	ܲሺΩଵሻ and ܲሺΩସሻ. Hence, the CSL of product 2 is only influenced by a change in ܵଶ. 

 

 

Fig. 4a: Customer service level of 

product 1 

 Fig. 4b: Customer service level of product 

2  

 

It is easily seen that for any given combination of order-up-to levels, allowing one-way substitution 

increases the CSL of product 1 by ܲሺΩଵሻ while the CSL of product 2 stays unchanged.  
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3.2 Borderline case: S1 = 0 
 

In this section, we derive the optimal condition for a ”borderline case” in which the order-up-to level of 

item 1 is reduced to zero. Note that this implies that all demand for item 1 is rerouted to the stock of item 

2, which in fact coincides with full pooling. The purchasing cost c1 turns out to play a pivotal role: we 

show that as long as the purchasing cost of product 1 stays below a threshold purchasing cost cଵഥ  the 

optimal order-up-to level of item 1 will be strictly positive; for purchasing costs above the threshold, the 

borderline case turns out to be optimal.  

 

As the borderline case is an extreme case of the one-way substitution strategy (with S1 = 0), this implies 

ܲሺΩሻ ൌ ܲሺΩଶሻ ൌ 0	, which reduces the demand space to only 3 domains j (j=1, 3 and 4) with constant 

shadow prices λij (as in Figure 5). 

 

 

Fig. 5: Demand domains with constant gradients for the two-item inventory system with S1 = 0 

 

Since ଵܵ ൌ 0 implies ݔଵ ൌ 0, the expected total cost can be reformulated as: 

ሿܥሾܶܧ ൌ ܿଶሺܵଶሻ  ݄ଶܧሾܵଶ െ ଶݔ െ ሿݖ  ሾ݀ଵܧଵ െ ሿݖ  ሾ݀ଶܧଶ െ ଶሿݔ   ሿ   (5)ݖሾܧܽ
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In order to derive the optimality condition, we need to calculate the expected shadow price. The shadow 

prices for the three demand domains can be derived from the following (second stage) linear 

programming model (LP2): 

 

Min  ܿଶሺܵଶሻ  ݄ଶሺܵଶ െ ଶݔ െ ሻݖ  ଵሺ݀ଵ െ ሻݖ  ଶሺ݀ଶ െ ଶሻݔ    ݖܽ

s.t.      ݔଶ  ݖ  ܵଶ 

ݖ  ݀ଵ 

ଶݔ  ݀ଶ 

ݖ	݀݊ܽ	ଶݔ	  0 

 

The resulting shadow prices for each of the three domains are shown in Table 3. 

 

Domain λ2j 

Ωଵ ܿଶ  ݄ଶ 

Ωଷ ܿଶ െ  ଶ

Ωସ ܿଶ െ ଵ  ܽ 

 

Table 3: Shadow prices for the 3 domains with full demand pooling  

 

Since the expected shadow price is equal to the first-order derivative of ܧሾܶܥሿ to S2 and ܧሾܶܥሿ is a 

convex function of S2, we know that the optimal order-up-to level (ܵଶ
∗) is unique, and is such that the 

following optimal condition holds:   

ܿଶ  ݄ଶܲ൫Ωଵ
ௌி∗൯ ൌ ଶܲ൫Ωଷ

ௌி∗൯  ሺଵ െ ܽሻܲ൫Ωସ
ௌி∗൯       (6) 
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With Ω
ௌி∗ (j=1,3 and 4) demand domain j that is determined by the optimal order up to level ܵଶ

∗ given 

that S1 = 0  6. Note, expression (6) can be derived from expression (4) with ܲሺΩሻ ൌ ܲሺΩଶሻ ൌ 0. 

 

Combining expression (6) with expression (3) and ܲሺΩሻ ൌ ܲሺΩଶሻ ൌ 0, we can obtain the following 

threshold purchasing cost cଵഥ 	for	item	1: 

cଵഥ ൌ
మభ
మ

 ቀܽ 
మభ
మ

െ ݄ଶቁܲ൫Ωଵ
ௌி∗൯  ቀభ

మ
െ

భమ

మ
 ଵቁܲ൫Ωସ

ௌி∗൯    (7) 

 

We can conclude that a strictly positive value for S1 is optimal as long as ܿଵ ൏ cଵഥ . When ܿଵ  cଵഥ , it is 

optimal to set S1 = 0, resulting in the borderline case. 

Strikingly, cଵഥ  is independent of ݄ଵ. As such, the value of the “penalty” for leftover stock of product 1 at 

the end of the season does not play any role when deriving the threshold purchasing cost. Note that, when 

ଵ ൌ  :ଶ, expression (7) reduces to

cଵഥ ൌ ܿଶ  ܽ ቀܲ൫Ωଵ
ௌி∗൯  ܲ൫Ωସ

ௌி∗൯ቁ ൌ ܿଶ  ܽܲሺ݀ଶ  ܵଶሻ     (8) 

As such, when the shortage costs for both products are equal, the borderline case can only be optimal 

when item 2 is actually cheaper than item 1. Indeed, note that (8) implies that 

ܿଵ െ ܿଶ  ܽܲሺ݀ଶ  ܵଶሻ 

where the right-hand side of the inequality is ≥ 0.  

 

4 Multiperiod newsvendor model 

4.1 One-way substitution 
 

The single period model can be extended to a multiperiod model7. The difference is that at the start of a 

period the amount ordered has to take into account the leftover inventory and backorders at the end of 

                                                 
6 The superscript F refers to “full rerouting”; indeed, all demand for item 1 will be routinely rerouted to stock of 
item 2. 
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previous period. For this reason, we introduce the subscripts t and t-1 to refer to the current period and 

previous period, respectively. By analogy with expression (2), the expected total cost per period in the 

multiperiod setting can be determined as: 

ሿܥሾܶܧ ൌ ܿଵ൫ ଵܵ െ ൣܧ ଵܵ െ ଵ,௧ିଵ൧ݔ  ଵ,௧ିଵ݀ൣܧ െ ଵ,௧ିଵݔ െ ௧ିଵ൧൯ݖ  ܿଶሺܵଶ െ  

ଶܵൣܧ െ ଶ,௧ିଵݔ െ ௧ିଵ൧ݖ  ଶ,௧ିଵ݀ൣܧ െ ଶ,௧ିଵ൧ሻݔ  ݄ଵൣܧ ଵܵ െ ଵ,௧൧ݔ  ݄ଶܵൣܧଶ െ ଶ,௧ݔ െ ௧൧ݖ   

ଵ,௧݀ൣܧଵ െ ଵ,௧ݔ െ ௧൧ݖ  ଶ,௧݀ൣܧଶ െ ଶ,௧൧ݔ   ௧ሿ      (9)ݖሾܧܽ

 

The difference between expressions (9) and (2) lies in the amount ordered for both products. The 

expected amount ordered of product i is equal to the order-up-to level minus the expected starting 

inventory plus the expected backorders. Additionally, the expected total cost depends on demand and 

allocation decisions of two periods (period t-1 and period t). As mentioned in Section 2, the fact that the 

cost parameters and demand distribution do not change over time implies that the optimal order up to 

levels will be time-invariant too. 

When determining the optimal allocation decision (second-stage decision) for period t (ݔଵ,௧
∗ ଶ,௧ݔ ,

∗  and ݖ௧
∗), 

given an order-up-to level	 ଵܵ and ܵଶ, the optimal allocation decisions of the previous period have been 

taken (ݔଵ,௧ିଵ
∗ ଶ,௧ିଵݔ ,

∗  and ݖ௧ିଵ
∗ ), and the demands of the previous and current periods are known (݀ଵ,௧ିଵ, 

݀ଶ,௧ିଵ, ݀ଵ,௧ and ݀ଶ,௧). The optimal allocation decision in period t corresponds to the solution of the 

following linear programming model (LP3): 

 

Min  ܿଵ൫݀ଵ,௧ିଵ െ ௧ିଵݖ
∗ ൯  ܿଶ൫݀ଶ,௧ିଵ  ௧ିଵݖ

∗ ൯  ݄ଵ൫ ଵܵ െ ଵ,௧൯ݔ  ݄ଶ൫ܵଶ െ ଶ,௧ݔ െ  ௧൯ݖ

ଵ൫݀ଵ,௧ െ ଵ,௧ݔ െ ௧൯ݖ  ଶ൫݀ଶ,௧ െ ଶ,௧൯ݔ  ܽሺݖ௧ሻ  

s.t.      ݔଵ,௧  ଵܵ   

ଶ,௧ݔ  ௧ݖ  ܵଶ 

ଵ,௧ݔ  ௧ݖ  ݀ଵ,௧ 

                                                                                                                                                             
7 As mentioned in section 2, Assumption 5 is not required in the multiperiod setting. 
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ଶ,௧ݔ  ݀ଶ,௧ 

,ଵ,௧ݔ ௧ݖ	݀݊ܽ	ଶ,௧ݔ  0 

 

Note that the value of ݖ௧ିଵ
∗  depends both on the order-up-to levels (S1 and S2) and on the demand of 

period t-1. Consequently, to determine the expected shadow prices of S1 and S2, we need to take into 

account the probability that demand falls in a demand domain Ω not only for the current period’s 

demand, but also for the previous period’s demand (as this impacts ݖ௧ିଵ
∗ ). Figure 6a illustrates the 

different demand domains for period t-1 with the associated ݖ௧ିଵ
∗  values. In Figure 6b the demand 

domains for period t are presented8. 

 

 

Fig. 6a: Demand domains and associated 

z*t-1 values for period t-1 

 Fig. 6b: Demand domains for period t

 

The optimal allocation decisions (ݔଵ,௧
∗ ଶ,௧ݔ ,

∗  and ݖ௧
∗) can now be determined, and shadow prices can be 

derived. Let λijk denote the shadow price of constraint i when the demand in the previous period falls in 

domain j and the demand of the current period falls in domain k. Table 4 summarizes λijk (i=1,2) for each 

combination of demand domains. 

 

                                                 
8 We assume that the demands in successive periods are independent. 
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Domain 

period t 
࢚,࢞
∗ ࢚,࢞ 

∗  ∗࢚ࢠ 
Domain 

period t-1 
ି࢚ࢠ
∗  λ1jk λ2jk 

Ω ݀ଵ,௧ ݀ଶ,௧ 0 

Ω 0 ݄ଵ ݄ଶ 

Ωଵ ݀ଵ,௧ିଵ െ ଵܵ ܿଵ െ ܿଶ  ݄ଵ ݄ଶ 

Ωଶ 0 ݄ଵ ݄ଶ 

Ωଷ 0 ݄ଵ ݄ଶ 

Ωସ ܵଶ െ ݀ଶ,௧ିଵ ݄ଵ െܿଵ  ܿଶ  ݄ଶ 

Ωଵ ଵܵ ݀ଶ,௧ 
݀ଵ,௧

െ ଵܵ 

Ω 0 ݄ଶ െ ܽ 	݄ଶ 

Ωଵ ݀ଵ,௧ିଵ െ ଵܵ ܿଵ െ ܿଶ  ݄ଶ െ ܽ 	݄ଶ 

Ωଶ 0 ݄ଶ െ ܽ 	݄ଶ 

Ωଷ 0 ݄ଶ െ ܽ 	݄ଶ 

Ωସ ܵଶ െ ݀ଶ,௧ିଵ ݄ଶ െ ܽ 	െܿଵ  ܿଶ  ݄ଶ 

Ωଶ ݀ଵ,௧ ܵଶ 0 

Ω 0 ݄ଵ െ	ଶ 

Ωଵ ݀ଵ,௧ିଵ െ ଵܵ ܿଵ െ ܿଶ  ݄ଵ െ	ଶ 

Ωଶ 0 ݄ଵ െ	ଶ 

Ωଷ 0 ݄ଵ െ	ଶ 

Ωସ ܵଶ െ ݀ଶ,௧ିଵ ݄ଵ െܿଵ  ܿଶ െ	ଶ 

Ωଷ ଵܵ ܵଶ 0 

Ω 0 െ  ଶ	ଵ െ

Ωଵ ݀ଵ,௧ିଵ െ ଵܵ ܿଵ െ ܿଶ െ  ଶ	ଵ െ

Ωଶ 0 െ  ଶ	ଵ െ

Ωଷ 0 െ  ଶ	ଵ െ

Ωସ ܵଶ െ ݀ଶ,௧ିଵ െ ଵ െܿଵ  ܿଶ െ	ଶ 

Ωସ ଵܵ ݀ଶ,௧ 
ܵଶ

െ ݀ଶ,௧ 

Ω 0 െ ଵ	ଵ െ  ܽ 

Ωଵ ݀ଵ,௧ିଵ െ ଵܵ ܿଵ െ ܿଶ െ ଵ	ଵ െ  ܽ 

Ωଶ 0 െ ଵ	ଵ െ  ܽ 

Ωଷ 0 െ ଵ	ଵ െ  ܽ 

Ωସ ܵଶ െ ݀ଶ,௧ିଵ െ ଵ െܿଵ  ܿଶ െ	ଵ  ܽ 

 

Table 4: Shadow prices for the multiperiod one-way substitution strategy 

 

For the single-period setting, we already proved that the objective function is convex in ଵܵ and ܵଶ. The 

objective function of (LP3) is similar to the one observed in (LP1), except for the ݖ௧ିଵ
∗  values appearing 

in the first two terms. However, as ݖ௧ିଵ
∗  is equal to 0, ݀ଵ,௧ିଵ െ ଵܵ or ܵଶ െ ݀ଶ,௧ିଵ (see Table 4: the actual 

value depends on the demand domain), the first two terms remain convex in ଵܵ and ܵଶ. Consequently, the 

objective function of (LP2) and (by extension) the function ܧሾܶܥሿ in expression (9) remain convex in ଵܵ 

and ܵଶ.  
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The expected shadow prices or first-order derivatives can be calculated as ߲ܧሾܶܥሿ ߲ ܵ⁄ ൌ ሿߣሾܧ ൌ

∑ ∑ ܲ൫Ω൯ߣ
ସ
ୀ

ସ
ୀ 	ܲሺΩሻሺ݅ ൌ 1,2ሻ: 

 

డாሾ்ሿ

డௌభ
ൌ ൣ݄ଵ൫1 െ ܲሺΩଵሻ൯  ሺܿଵ െ ܿଶ  ݄ଵሻܲሺΩଵሻ൧൫ܲሺΩሻ  ܲሺΩଶሻ൯  ൣሺ݄ଶ െ ܽሻ൫1 െ ܲሺΩଵሻ൯ 

ሺܿଵ െ ܿଶ  ݄ଶ െ ܽሻܲሺΩଵሻ൧ܲሺΩଵሻ 	ൣെଵ൫1 െ ܲሺΩଵሻ൯  ሺܿଵ െ ܿଶ െ ଵሻܲሺΩଵሻ൧൫ܲሺΩଷሻ  	ܲሺΩସሻ൯  

 

డாሾ்ሿ

డௌమ
ൌ ൣ݄ଶ൫1 െ ܲሺΩସሻ൯  ሺെܿଵ  ܿଶ  ݄ଶሻܲሺΩସሻ൧൫ܲሺΩሻ  ܲሺΩଵሻ൯  ൣെ	ଶ൫1 െ ܲሺΩସሻ൯ 

ሺെܿଵ  ܿଶ െ	ଶሻܲሺΩସሻ൧൫ܲሺΩଶሻ  ܲሺΩଷሻ൯  ൣሺെ	ଵ  ܽሻ൫1 െ ܲሺΩସሻ൯  ሺെܿଵ  ܿଶ െ	ଵ 

ܽሻܲሺΩସሻ൧ܲሺΩସሻ  

 

Since ܧሾܶܥሿ is convex in ଵܵ and ܵଶ, 
డாሾ்ሿ

డௌభ
ൌ

డாሾ்ሿ

డௌమ
ൌ 0 are 2 necessary and sufficient conditions to 

determine the optimal and unique order-up-to levels ( ଵܵ
∗ and ܵଶ

∗). The optimality conditions are: 

ሺܿଵ െ ܿଶሻܲ൫Ωଵ
ெை∗൯  ݄ଵܲ൫Ω

ெை∗  Ωଶ
ெை∗൯ ൌ ଵܲ൫Ωଷ

ெை∗  Ωସ
ெை∗൯  ሺܽ െ	݄ଶሻܲ൫Ωଵ

ெை∗൯  (10) 

ሺܿଶ െ ܿଵሻܲ൫Ωସ
ெை∗൯  ݄ଶܲ൫Ω

ெை∗  Ωଵ
ெை∗൯ ൌ ଶܲ൫Ωଶ

ெை∗  Ωଷ
ெை∗൯  ሺ	ଵ െ ܽሻܲ൫Ωସ

ெை∗൯  (11) 

with Ω
ெை∗ (j=0,…,4) demand domain j that is determined by the optimal order up to levels ( ଵܵ

∗ and ܵଶ
∗) 

for the multiperiod one-way substitution strategy. 

 

Note that, except for the first terms, expressions (10) and (11) equal the optimality conditions for the 

single-period setting (expressions (3) and (4)). The left-hand side refers to the expected cost of raising the 

order-up-to level of product 1 (expression 10) and product 2 (expression 11) with one unit, while the 

right-hand side refers to the expected benefit of such a change. The first term of expressions (10) and (11) 

can be explained by examining the order quantities in period t conditional on the prevailing demand 

domain in period t-1. These are shown in Table 5. 
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Domain in 

period t-1 
Order quantity in period t product 1 Order quantity in period t product 2 

Ω ݀ଵ,௧ିଵ ݀ଶ,௧ିଵ 

Ωଵ ݀ଵ,௧ିଵ െ ௧ିଵݖ ൌ ଵܵ ݀ଶ,௧ିଵ  ௧ିଵݖ ൌ ݀ଶ,௧ିଵ  ݀ଵ,௧ିଵ െ ଵܵ 

Ωଶ ݀ଵ,௧ିଵ ݀ଶ,௧ିଵ 

Ωଷ ݀ଵ,௧ିଵ ݀ଶ,௧ିଵ 

Ωସ ݀ଵ,௧ିଵ െ ௧ିଵݖ ൌ ݀ଵ,௧ିଵ െ ܵଶ  ݀ଶ,௧ିଵ ݀ଶ,௧ିଵ  ௧ିଵݖ ൌ ܵଶ 

 

Table 5: The order quantity for both products, conditional on the demand domain in period t-1   

 

From Table 5, we can derive that an increase in S1 only impacts the order quantities when the previous 

period’s demand falls in domain Ωଵ	: in this case, the order quantity of product 1 increases with one unit 

while the order quantity of product 2 decreases with one unit (explaining the ሺܿଵ െ ܿଶሻ factor in the first 

term of expression (10)). Similarly, an increase in S2 only impacts the order quantities when the previous 

period’s demand falls in domain Ωସ	, leading to a unit decrease in the order quantity of product 1 and a 

unit increase in the order quantity of product 2 (as evident from the first term in expression (11)).   

 

We can reformulate expressions (10) and (11) as: 

݄ଵܲ൫Ω
ெை∗  Ωଶ

ெை∗൯ ൌ ଵܲ൫Ωଷ
ெை∗  Ωସ

ெை∗൯  ሺܽ െ	݄ଶെܿଵ  ܿଶሻܲ൫Ωଵ
ெை∗൯  

݄ଶܲ൫Ω
ெை∗  Ωଵ

ெை∗൯ ൌ ଶܲ൫Ωଶ
ெை∗  Ωଷ

ெை∗൯  ሺ	ଵ െ ܽ െ ܿଶ  ܿଵሻܲ൫Ωସ
ெை∗൯  

 

From these expressions we can clearly see that changing purchasing costs and adjustment costs in such a 

way that the flexibility cost is kept unchanged does not affect the optimal order-up-to values, since the 

coefficients in both conditions will remain unchanged. 
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4.2 Borderline case: S1 = 0 
 

In this section, we derive the optimal condition for the multiperiod case with S1 = 0. Note that for the 

multiperiod case this implies that all demand for item 1 is rerouted to the stock of item 2; only when 

backorders are incurred for item 1, a replenishment order for item 1 is triggered. Though this borderline 

case is likely to be irrelevant in practice (it is rather counterintuitive to routinely satisfy demand for 

product 1 by means of type 2 items, while meeting backorders by means of type 1 items), it may turn out 

to be the mathematically optimal solution. In what follows, we determine the threshold purchasing cost 

cଵഥ : when c1 exceeds this threshold, the borderline case turns out to be mathematically optimal.  

 

As S1 = 0, which implies ܲሺΩሻ ൌ ܲሺΩଶሻ ൌ 0	, the demand space for period t-1 and period t reduces to 

only 3 domains j (j=1, 3 and 4). Figure 7a illustrates the different demand domains for period t-1 with 

the associated ݖ௧ିଵ
∗  values. In Figure 7b the demand domains for period t are presented. 

 

Fig. 7a: Demand domains and associated 

z*t-1 values for period t-1 

 Fig. 7b: Demand domains for period t

 

Since ଵܵ ൌ 0 implies ݔଵ,௧ିଵ ൌ ଵ,௧ݔ ൌ 0, the expected total cost can be reformulated as: 

ሿܥሾܶܧ ൌ ܿଵ൫݀ൣܧଵ,௧ିଵ െ ௧ିଵ൧൯ݖ  ܿଶ൫ܵଶ െ ଶܵൣܧ െ ଶ,௧ିଵݔ െ ௧ିଵ൧ݖ  ଶ,௧ିଵ݀ൣܧ െ   ଶ,௧ିଵ൧൯ݔ
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݄ଶܵൣܧଶ െ ଶ,௧ݔ െ ௧൧ݖ  ଵ,௧݀ൣܧଵ െ ௧൧ݖ  ଶ,௧݀ൣܧଶ െ ଶ,௧൧ݔ   ௧ሿ   (12)ݖሾܧܽ

 

The shadow prices in each of the three demand domains can be derived from the following (second stage) 

linear programming model (LP4): 

 

Min  ܿଵ൫݀ଵ,௧ିଵ െ ௧ିଵݖ
∗ ൯  ܿଶ൫݀ଶ,௧ିଵ  ௧ିଵݖ

∗ ൯  ݄ଶ൫ܵଶ െ ଶ,௧ݔ െ ௧൯ݖ  ଵ൫݀ଵ,௧ െ ௧൯ݖ  ଶ൫݀ଶ,௧ െ ଶ,௧൯ݔ 

ܽሺݖ௧ሻ 

 

s.t.      ݔଶ,௧  ௧ݖ  ܵଶ 

௧ݖ  ݀ଵ,௧ 

ଶ,௧ݔ  ݀ଶ,௧ 

௧ݖ	݀݊ܽ	ଶ,௧ݔ	  0 

 

The resulting shadow prices for each combination of demand domains in period t-1 and t are shown in 

Table 6. 

 

Domain 

period t 
࢚,࢞
∗  ∗࢚ࢠ 

Domain 

period t-1 
ି࢚ࢠ
∗  λ2jk 

Ωଵ ݀ଶ,௧ ݀ଵ,௧ 

Ωଵ ݀ଵ,௧ିଵ ݄ଶ 

Ωଷ 0 ݄ଶ 

Ωସ ܵଶ െ ݀ଶ,௧ିଵ െܿଵ  ܿଶ  ݄ଶ 

Ωଷ ܵଶ 0 

Ωଵ ݀ଵ,௧ିଵ െ	ଶ 

Ωଷ 0 െ	ଶ 

Ωସ ܵଶ െ ݀ଶ,௧ିଵ െܿଵ  ܿଶ െ	ଶ 

Ωସ ݀ଶ,௧ ܵଶ െ ݀ଶ,௧ 

Ωଵ ݀ଵ,௧ିଵ െ ଵ  ܽ 

Ωଷ 0 െ ଵ  ܽ 

Ωସ ܵଶ െ ݀ଶ,௧ିଵ െܿଵ  ܿଶ െ	ଵ  ܽ 

 

Table 6: Shadow prices for the 3 domains with S1 = 0  
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As in the single period setting, ܧሾܶܥሿ is a convex function of S2 and consequently the optimal order-up-to 

level (ܵଶ
∗) is unique and is determined by the first-order derivative of ܧሾܶܥሿ to S2. The optimality 

condition is:   

ሺܿଶ െ ܿଵሻܲሺΩସ
ெி∗ሻ  ݄ଶܲሺΩଵ

ெி∗ሻ ൌ ଶܲሺΩଷ
ெி∗ሻ  ሺ	ଵ െ ܽሻܲሺΩସ

ெி∗ሻ     (13) 

With Ω
ெி∗ (j=1,3 and 4) demand domain j as determined by the optimal order up to level ܵଶ

∗ for the 

multiperiod one-way substitution strategy with S1 = 0. 

 

Combining expression (10) with ܲሺΩሻ ൌ ܲሺΩଶሻ ൌ 0, we know that the borderline case will be optimal 

if: 

ܿଵ  ଵ ቀቀܲሺΩଷ
ெி∗ሻ  ܲሺΩସ

ெி∗ሻቁ ܲሺΩଵ
ெி∗ሻൗ ቁ  ܽ െ ݄ଶ  ܿଶ 

Using the information in expression (13), this can be rewritten as: 

ܿଵ 
ଵ
ଶ
ቈሺܿଶ െ ܿଵ  ܽ െ ଵ  ଶሻ

ܲሺΩସ
∗ሻ

ܲሺΩଵ
∗ሻ
 ݄ଶ  ܽ െ ݄ଶ  ܿଶ 

which results in the following threshold purchasing cost for product 1: 

cଵഥ ൌ ൬భ
మ
ሺܿଶ  ܽ െ ଵ  ଶሻ

൫Ωర
ಾಷ∗൯

൫Ωభ
ಾಷ∗൯

 ݄ଶ൨  ܽ െ ݄ଶ  ܿଶ൰ ൬1 
భ൫Ωర

ಾಷ∗൯

మ൫Ωభ
ಾಷ∗൯

൰൘    (14) 

 

As in the single period case, cଵഥ  is independent of ݄ଵ. Note that, when ଵ ൌ  :ଶ, expression (14) reduces to

cଵഥ ൌ ܿଶ  ܽ           (15) 

As such, when ଵ ൌ  ଶ, the borderline case can only be optimal when the flexibility cost is negative

(which violates our assumption 1). Consequently, when ଵ ൌ  ଶ, the borderline case can never be optimal

in our setting. In Appendix C, we show (by extension) that the same conclusion holds for all p1 values in 

the interval ଶ,
మ൫Ωభ

ಾಷ∗൯

൫Ωర
ಾಷ∗൯

൨. 
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5 Conclusion 
 

This paper discussed an intuitive and insightful approach to determine optimal order-up-to levels in 

inventory systems with one-way substitution. Optimality conditions can be derived both for a single 

period and a multi period setting: essentially, it is shown that order-up-to levels should be set in such a 

way that the two-dimensional demand distribution “maps” onto the demand domains in such a way that 

conditions (3)-(4) hold for the single period setting, and conditions (10)-(11) hold for the multiperiod 

setting. The optimal order-up-to levels are shown to be unique, in both settings. In addition, we have 

shown that (for both single-period and multiperiod settings) reducing the order-up-to level of the 

inflexible item to 0 can only be optimal when the purchasing cost of this item exceeds a given threshold. 
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Appendix A 

In this section we prove that the objective function of (LP1) (i.e. ܶܥሺ ଵܵ, ܵଶ, ݀ଵ, ݀ଶሻ) is convex in S1 and S2 

for a given d1 and d2. First, note that the objective function can be rewritten as follows:  

 

ሺܥܶ ଵܵ, ܵଶ, ݀ଵ, ݀ଶሻ ൌ ሺܿଵ  ݄ଵሻ ଵܵ  ሺܿଶ  ݄ଶሻܵଶ  ଵ݀ଵ  ଶ݀ଶ െ ሺ݄ଵ  ଵݔଵሻ െ ሺ݄ଶ  ଶሻݔଶሻሺ

 ሺܽ െ ݄ଶ െ  ݖଵሻ

 

 The first two terms boil down to linear functions of S1 and S2 while the third and fourth term are 

constants (independent of S1 and S2 ). Consequently, it remains to be proven that the sum of the last three 

terms is convex in S1 and S2. The proof is analogous to the one discussed in [14]. It is sufficient to prove 

that  

 

    ݇ሺ࢈ሻ ൌ 	 ൛minܡ ࢟ࢌ ห࢟  ,࢈ ࢟  	ൟ   (LPA.1) 

is convex in b with (in our case) 

ࢌ  ൌ ሾെ݄ଵ െ ଵ െ݄ଶ െ ଶ െ݄ଶ െ ଵ  ܽሿ, 	࢟ ൌ ቈ
ଵݔ
ଶݔ
ݖ
,  ൌ 

1 0 0
0 1 1
1 0 1
0 1 0

 and ࢈ ൌ ൦

ଵܵ
ܵଶ
݀ଵ
݀ଶ

൪ 

 

Consider b0, b1 and ࣂ࢈ ൌ ࢈ࣂ  ሺ െ  with 0࢈ሻࣂ  ߠ  1. 

Assume that ࢟, ࢟ and ࣂ࢟ are the optimal solutions of (LPA.1) for b0, b1 and ࣂ࢈ respectively, so  

࢟ࢌ ൌ ,ሻ࢈ሺ ࢟ࢌ ൌ ,ሻ࢈ሺ ࣂ࢟ࢌ ൌ  ሻࣂ࢈ሺ

ࣂഥ࢟ ൌ ࢟ࣂ	  ሺ െ ࢈  is then a feasible solution of (LPA.1) with࢟ሻࣂ ൌ  since ࣂ࢈

 

ࣂഥ࢟ ൌ ࢟ࣂ	  ሺ െ ࢟ሻࣂ ൌ ࢟ࣂ  ሺ െ ࢟ሻࣂ  ࢈ࣂ  ሺ െ ࢈ሻࣂ ൌ  ࣂ࢈

 

Note, however, that ࢟ഥࣂ is not necessary an optimal solution of (LPA.1) with ࢈ ൌ  	have	then	We .ࣂ࢈



27 
 

ࣂഥ࢟ࢌ  ࣂ࢟ࢌ ൌ ݇ሺࣂ࢈ሻ 

which implies  

ሻ࢈ሺ݇ࣂ  ሺ െ ሻ࢈ሻ݇ሺࣂ  ݇ሺ࢈ࣂ  ሺ െ  ሻ࢈ሻࣂ

 

This proves that ݇ሺ࢈ሻ is indeed convex in ࢈ . 
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Appendix B 

The shadow prices are calculated for each of the 5 domains separately. For a given d1, d2, S1 and S2 the 

optimal allocation decisions (ݔଵ
ଶݔ ,∗

∗ and ݖ∗) can be derived for each domain. Rewriting the resulting 

objective function allows to derive the shadow prices in a straightforward way. Table B.1 summarizes the 

results for each demand domain.  

 

Domain ࢞
∗ ࢞ 

∗  Objective function λ1j λ2j ∗ࢠ 

Ω ݀ଵ ݀ଶ 0 ܿଵሺ ଵܵሻ  ܿଶሺܵଶሻ  ݄ଵሺ ଵܵ െ ݀ଵሻ  ݄ଶሺܵଶ െ ݀ଶሻ  ܿଵ 	݄ଵ ܿଶ  ݄ଶ 

Ωଵ ଵܵ ݀ଶ ݀ଵ െ ଵܵ ܿଵሺ ଵܵሻ  ܿଶሺܵଶሻ  ݄ଶሺܵଶ െ ݀ଶ െ ሺ݀ଵ െ ଵܵሻሻ  ܽሺ݀ଵ െ ଵܵሻ ܿଵ െ ܽ 	݄ଶ ܿଶ  ݄ଶ 

Ωଶ ݀ଵ ܵଶ 0 ܿଵሺ ଵܵሻ  ܿଶሺܵଶሻ  ݄ଵሺ ଵܵ െ ݀ଵሻ  ଶሺ݀ଶ െ ܵଶሻ ܿଵ 	݄ଵ ܿଶ െ  ଶ

Ωଷ ଵܵ ܵଶ 0 ܿଵሺ ଵܵሻ  ܿଶሺܵଶሻ  ଵሺ݀ଵ െ ଵܵሻ  ଶሺ݀ଶ െ ܵଶሻ ܿଵ െ	ଵ ܿଶ െ  ଶ

Ωସ ଵܵ ݀ଶ ܵଶ െ ݀ଶ ܿଵሺ ଵܵሻ  ܿଶሺܵଶሻ  ଵሺ݀ଵ െ ଵܵ െ ሺܵଶ െ ݀ଶሻሻ  ܽሺܵଶ െ ݀ଶሻ ܿଵ െ	ଵ ܿଶ െ ଵ  ܽ 

 

Table B.1: Calculation of the shadow prices for each domain 
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Appendix C 

This appendix shows that, in a multiperiod setting with positive flexibility cost, the borderline case with 

S1 = 0 can never turn out to be optimal when p1 lies within the interval ଶ,
మ൫Ωభ

ಾಷ∗൯

൫Ωర
ಾಷ∗൯

൨  

Rewriting expression (14) with ଵ ൌ ߙ) ଶߙ  0ሻ yields: 

cଵഥ ൌ ܿଶ  ܽ  ሺߙ െ 1ሻ
݄ଶܲሺΩଵ

ெி∗ሻ

ܲሺΩଵ
ெி∗ሻ  ሺΩସܲߙ

ெி∗ሻ
 ሺ1ߙ െ ሻߙ

ଶܲሺΩସ
ெி∗ሻ

ܲሺΩଵ
ெி∗ሻ  ሺΩସܲߙ

ெி∗ሻ
 

The borderline case will never be optimal when cଵഥ  ܿଶ  ܽ (as this violates our assumption 1, which 

requires a positive flexibility cost). Note that cଵഥ  ܿଶ  ܽ is equivalent to ݂ሺߙሻ  0, with ݂ሺߙሻ ൌ

ሺߙ െ 1ሻ݄ଶܲሺΩଵ
ெி∗ሻ  ሺ1ߙ െ ଶܲሺΩସሻߙ

ெி∗ሻ. 

݂ሺߙሻ has two roots: ߙଵ ൌ 1 and ߙଶ ൌ ݄ଶܲሺΩଵ
ெி∗ሻ ଶܲሺΩସ

ெி∗ሻ⁄ . Note that ߙଵ can be larger or smaller then 

αଶ; in the remainder, we will assume (without loss of generality) that ߙଵ  αଶ.  

As we know that ݂ሺߙଵሻ ൌ ݂ሺߙଶሻ ൌ 0 and ݂ሺߙሻ has no other roots, it suffices to determine the sign of the 

function value in three arbitrary points, chosen in three different intervals (see Table C.1). We opted for 

the points α ൌ 0,	α ൌ
భାమ

ଶ
 and α ൌ αଵ  αଶ. Table C.1 shows the corresponding ݂ሺߙሻ. 

 

Interval ࢌ ࢻሺࢻሻ 

ߙ  ଵ 0 െ݄ଶܲሺΩଵߙ
ெி∗ሻ 

ଵߙ  ߙ   ଶߙ
ሺ1  ݄ଶܲሺΩଵ

ெி∗ሻ ଶܲሺΩସ
ெி∗ሻ⁄ ሻ

2
൫݄ଶܲሺΩଵ

ெி∗ሻ െ ଶܲሺΩସ
ெி∗ሻ൯

ଶ

ଶܲሺΩସ4
ெி∗ሻ

ߙ  ଶ 1ߙ 
݄ଶܲሺΩଵ

ெி∗ሻ

ଶܲሺΩସ
ெி∗ሻ

 െ݄ଶܲሺΩଵ
ெி∗ሻ 

 

Table C.1: Chosen ߙ values with corresponding ݂ሺߙሻ for the three different intervals 
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Clearly, ݂ሺߙሻ  0 only when ߙଵ  ߙ   ଶ. Consequently, we can conclude that the borderline case canߙ

never be optimal when p1 lies within the interval ଶ,
మ൫Ωభ

ಾಷ∗൯

൫Ωర
ಾಷ∗൯

൨. For p1 values outside this interval, the 

borderline case may turn out to be optimal. 
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