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Abstract

There are many different approaches to ma-
chine learning, and each approach has its
own characteristics and behavior. In or-
der to investigate the aspects of these ap-
proaches, large amounts of machine learning
experiments with high dimensionality(data
characteristics, algorithm characteristics, pa-
rameters settings, evaluation metrics, etc.)
are generated and collected within databases,
such as the Experiment Database. To en-
able the user to gain insight into this mass
of meta-data about machine learning algo-
rithms efficiently and effectively, different Di-
mensionality Reduction techniques are inves-
tigated. Based on this, a visualization tool
is built to help users analyze the behavior of
learning algorithms. The experiment results
of these techniques on different meta-datasets
are discussed in this paper.

1. Introduction

The Experiment Database (ExpDB) is a public
database designed to collect and organize large num-
bers of past experiments donated by many researchers
(Vanschoren et al., 2011). Each experiment may con-
tain different algorithms, different parameter settings
and different datasets, etc. We call the data that de-
scribe the details of the experiments meta-data. Unfor-
tunately, the high dimensionality of the meta-dataset
becomes a prohibiting factor for us to gain insights
in the algorithms. Indeed, many trends may occur in
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a (curved) low-dimensional subspace (or manifold) of
the data. In other words, the data points may lie close
to a manifold of much lower dimensionality than that
of the original data space (Bishop, 2006). As such,
we look into different Dimensionality Reduction (DR)
techniques which aim to map the data from a high di-
mensional space to a low dimensional one (typically
2D or 3D), so that an overview picture of the data
is presented to the researcher. As the saying goes:
a picture is worth a thousand words. Large amounts
of data can be imprinted on a single image that is
far more comprehensible. Furthermore, new knowl-
edge can be perceived and discovered through visual-
izations. Therefore the researcher should be able to
use the visualizations to analyse machine learning be-
havior efficiently.

Hence, we can summarize our research goal as two-
fold: First, we aim to investigate the relationships be-
tween datasets and machine learning algorithms. For
instance, which parameter setting of which algorithm
can achieve high performance (e.g. predictive accu-
racy) on what kind of datasets, or which type of learn-
ing algorithms (e.g. rule-based or decision trees or ker-
nel methods) are more robust on certain datasets. We
also hope that through visualizations, new relation-
ships can be discovered. Second, we want to evaluate
different state-of-the-art DR techniques in the context
of machine learning meta-datasets.

In the remainder of this paper, we discuss the key
implemented DR techniques in Section 2, and show
the results of the evaluations and visualizations of the
DR techniques on machine learning meta-dataset(s) in
Section 3. Finally, in Section 4, we conclude.
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2. Dimensionality Reduction

In this section, we discuss a few representative DR
techniques, including the traditional linear as well as
several state-of-the-art non-linear ones. Afterwards,
we give a brief overview of all implemented DR tech-
niques. Because of the scope of this paper, we try
to keep the mathematical equations to a minimum
throughout the text, and emphasize on the concepts
and intuitions behind these techniques.

A note on notations: given a dataset, we use N to de-
note the number of instances (rows), with i being the
index for each instance (i = 1, ..., N). In the original
high dimensional space, D denotes dimensionality, or
the number of attributes (columns), and Xi denotes
the ith instance (row) of the dataset. In the low di-
mensional space, M denotes the number of attributes
after mapping (M < D), and Yi denotes the ith in-
stance of the mapped dataset.

2.1. Linear DR Techniques

2.1.1. PCA

Principal Component Analysis (PCA) can be formu-
lated as the orthogonal projection of the original data
onto the (linear) principal subspace such that the
original variance in the data is maximally preserved.
The algorithm performs eigenvalue decomposition on
the D × D covariance matrix of the original dataset
(Bishop, 2006). The obtained M eigenvectors with
the largest eigenvalues are called the principal compo-

nents(PC’s) of the original dataset. The low dimen-
sional data is the projection of the original data onto
the PC’s. PCA has several limitations. First, it as-
sumes the linearity of data, whereas in real world, the
intrinsic structure of the data can be so “curvy” that
a “rigid” subspace (comprised of a set of orthogonal
PC’s) becomes an inadequate approximation. Second,
it assumes a single Gaussian distribution of the data.
Third, it focuses on preserving the largest variances,
which makes the approximation vulnerable towards
noise. Many variants of PCA have been proposed,
such as Principal Curves (Hastie & Stuetzle, 1989),
Probabilistic PCA (Tipping & Bishop, 1999), Kernel
PCA (Schölkopf et al., 1998), etc. From these vari-
ants, only Kernel PCA is currently implemented in
the visualization tool.

2.1.2. CLASSICAL SCALING

Classical Scaling (Cox & Cox, 1994) (CS) is a type of
MDS (MultiDimensional Scaling). The aim of MDS is
to preserve the pairwise distances as much as possible
in the mapping. The low dimensional data can be
derived via eigenvalue decomposition on the distance
matrix. It is shown that CS is intrinsically the same

Figure 1. An illustration of Markov random walks in Dif-
fusion Maps

as PCA (Van der Maaten et al., 2009). Like PCA, CS
also assumes the data to be linear. It also ignores the
neighborhood information of a data point and large
distances are preserved better than small ones causing
the detailed information among “close” data points
is overlooked. Other (non-linear) types of MDS are
proposed to address these weaknesses of CS, such as
Isomap and Sammon Maps, which will be discussed in
Section 2.2.3 and 2.2.6 respectively.

2.2. Non-Linear DR Techniques

In order to find the intrinsic, often non-linear mani-
fold embedded in the original data space, besides con-
structing a mixture of linear models (such as Proba-
bilistic PCA), we have an alternative: to consider a
single non-linear model. Many techniques have been
invented or adapted in this way, yielding distinctive
merits. We implemented the following representative
state-of-the-art non-linear DR techniques in the visu-
alization tool.

2.2.1. DIFFUSION MAPS

Diffusion Maps build a probabilistic model with pair-
wise transition probabilities to reflect the degree of
closeness between each pair of data points (e.g. points
A and B). The higher this probability is, the easier it
becomes to “walk” from A to B (Lafon & Lee, 2006).
As shown in Figure 1, the given set of data points
(green dots) form two clusters, data point A is in the
left cluster, B and C are in the right cluster. Since
there are more paths between B and C than between
B and A, it will be easier for B to “walk” to C than to
A. Based on the transition probabilities, diffusion dis-

tances (Lafon & Lee, 2006) are defined between pairs
of data points. Diffusion Maps aim to find a low di-
mensional representation in which the Euclidean dis-
tances between pairs of data points match the diffu-
sion distances as well as possible. This is achieved by
eigenvalue decomposition on the transition probability
matrix P(t) (Lafon & Lee, 2006).

2.2.2. KERNEL PCA

Kernel PCA(KPCA) is a non-linear extension of PCA,
which transforms the original data into a higher-
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dimensional feature space using a kernel function
(Schölkopf et al., 1998) and performs regular PCA in
the feature space to obtain “curved” principal com-
ponents. The low dimensional representation can be
found through the eigenvalue decomposition on the
kernel matrix of the original data. The main lim-
itation of KPCA is the selection of an appropriate
kernel and the parameter configuration of that ker-
nel. Different methods have been proposed to solve
the kernel-selection problem, e.g. hold-out testing
(Golub et al., 1979), semi-definite programming (Grae-
pel, 2002), etc. Still, these methods are computation-
ally expensive (Van der Maaten et al., 2009).

2.2.3. ISOMAP

Isometric Feature Mapping (Isomap) (Balasubrama-
nian & Schwartz, 2002) is similar to Classical Scaling,
but instead of a Euclidean distance matrix, Isomap
uses a geodesic distance matrix. The geodesic distance
between two data points is the accumulative distance
of the shortest path between the two points found
by Dijkstra’s Algorithm (Dijkstra, 1959) on a graph.
However, the geodesic distance is vulnerable towards
“short-circuiting”: where the data points that are far
away from each other are taken as neighbors.

The neighborhood graph is constructed as follows.
First, a Euclidean distance matrix is constructed as
in Classical Scaling. Second, a neighborhood graph
is constructed based on the Euclidean distances, in
which only data points considered to be neighbors are
connected, and each connection is assigned a weight.
There are two approaches to find a data point A’s
neighbors: (1) If the Euclidean distance between A
and a point B is smaller than a predefined threshold
ε, then B is A’s neighbor, and a connection is assigned
to A and B (this is called ε-Isomap); (2) Rank the Eu-
clidean distances between A and all the other data
points, select the K nearest points as A’s neighbors
(K < m− 1, this is called k-Isomap). We will call this
k-Isomap in further discussion.

2.2.4. LLE

Locally Linear Embedding (LLE) (Roweis & Saul,
2000) also constructs a (k-nearest neighbor) graph rep-
resentation of the manifold of the original data. But
in contrast to Isomap, which uses geodesic distances
to characterize the global geometry of the manifold,
LLE focuses on preserving the local geometry. We can
imagine that a data point and its k neighbors form a
local plane: the data point would become the plane’s
topological center, and the plane is unique to the data
point. A set of reconstruction weights is defined so
that each data point Xi can be represented as a linear
combination of its k neighbors (Eq.1).

Figure 2. Example sub-planes in LLE, the data points X1,
X2 and X3 are the topological centers for each plane

Xi ≈ wi,1X
(1)
i + wi,2X

(2)
i + ...+ wi,kX

(k)
i (1)

with K
∑

j=1

wi,j = 1. (2)

We call wi,j the reconstruction weights. An illustra-
tion is shown in Figure 2, in which three sub-planes
in the original data are identified by the three data
points X1, X2, X3 and their respective neighbors.
The reconstruction weights are then derived by solving
a linear system (Saul & Roweis, 2000) to minimize the
cost function:
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Because the reconstruction weights are invariant to
translation, rotation and rescaling, we have:
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The low dimensional representation is derived via the
eigenvalue decomposition on the sparse matrix (Roweis
& Saul, 2000): (I −W )T (I −W ) to minimize the cost
function (Eq.4), I is an N ×N identity matrix.

2.2.5. LAPLACIAN EIGENMAPS

Laplacian Eigenmaps are similar to LLE in the sense
that they both try to preserve the local geometrical
properties of the manifold of data and they both use
the sparse weight matrix based on a neighborhood
graph. After the neighborhood graph is constructed,
which is the same as that in Isomap and LLE, a weight
matrix is directly computed based on a kernel function
(E.g. a Gaussian kernel in Eq.5):

wi,j = { e−
|Xi−Xj |

2

2σ2 if neighbor(Xi, Xj)
0 else

(5)

A cost function (an sum of the weighted distances be-
tween a data point and its k nearest neighbors) is then
minimized:

φ (Y ) =

N
∑

i=1

N
∑

j=1

(

|Yi − Yj |
2
wi,j

)

(6)
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The Gaussian kernel function emphasizes the small
distances between data points more than the large dis-
tances. In other words, the closer neighbors contribute
more to the cost function than the farther ones. The
cost function can be minimized through a eigenvalue
decomposition on the matrix D−1L, with D being the
diagonal matrix Di,i =

∑N

j=1 wi,j , W being the sparse
weight matrix and L = D−W (Belkin & Niyogi, 2001).
The neighborhood graph-based approaches have sev-
eral limitations: the construction of the neighborhood
graph is susceptible to overfitting, and the local linear-
ity assumption is susceptible to discontinuities in the
manifold of data.

2.2.6. SAMMON MAPS

Sammon Maps is another type of MDS. In contrast
to the DR techniques discussed previously, Sammon
Maps (Sammon, 1969) do not perform eigenvalue de-
composition on a (transformed) proximity matrix to
minimize a cost function and find the low dimensional
coordinates of the original data. Instead, it tries to
find the low dimensional mapping through an itera-
tive process.

φ (Y ) =
1

∑

i<j
d (Xi, Xj)

∑

i<j

(d (Xi, Xj)− d (Yi, Yj))
2

d (Xi, Xj)

(7)
In each iteration, the error (Eq.8) is computed:

ei,j = γ
(d (Xi, Xj)− d (Yi, Yj))

d (Yi, Yj)
(Yi − Yj) (8)

The low dimensional coordinates are updated itera-
tively:

Y new
i = Yi + ei,j (9)

Y new
j = Yj − ei,j (10)

with γ > 0, i, j ∈ [1, N ], γ is the learning rate.

Being a non-spectral technique, Sammon Maps are less
susceptible to high dimensionality. The Sammon cost
function is shown in Eq.7, which is similar to that of
Classical Scaling. However, one possible limitation of
Sammon Maps is weight 1/d(Xi, Xj) can lead to over-
fitting.

2.3. An Overview of the DR techniques

As illustrated in Figure 3: from the eight DR tech-
niques we have discussed, PCA and Classical Scaling
are linear, the rest are non-linear. Among the non-
linear ones, Kernel PCA, Diffusion Maps and Lapla-
cian Eigenmaps (LE) utilize kernel functions. LE, LLE
and Isomap are all based on neighborhood graphs, in
which LE and LLE use a sparse proximity matrix,
while Isomap uses a full one. We can also distinguish
Sammon Maps from the others by its non-spectrality.

Figure 3. Categorization of DR techniques.

Table 1. The attribute description of bagging .
Name Description
1.nr iterations number of bagging iterations
2.baseLearner base learner used
3.dataset name of the dataset
4.classCount number of classes
5.nr attributes number of the attributes
6.nr sym attributes number of symbolic attributes
7.nr num attributes number of numeric attributes
8.lm naiveBayes performance of

naive bayes landmarker
9.lm 1nn performance of

1-nearest neighbor landmarker
10.lm 1rule performance of

1-rule landmarker
11.nr examples number of data points
12.nr missingValues number of missing values
13.class entropy entropy of the class attribute
14.default accuracy default accuracy of the dataset
15.evaluation predictive accuracy of bagging

3. Experiments

In this section, we apply the eight DR techniques with
different parameter settings to two machine learning
meta-datasets: bagging and algo-performance , and
discuss the results.

3.1. Datasets

bagging contains 1437 runs of the standard Bagging
algorithm, with different parameter settings and base-
learners, on different classification UCI1 datasets. The
attributes of the dataset are summarized in Table 1.
Note that landmarkers are simplified algorithms used
to characterize a dataset (Pfahringer et al., 2000). At-
tributes 2 and 3 are categorical, and are used as color
labels in the visualizations, the rest are numerical,
which serve as the input to DR techniques.

algo-performance contains the predictive accuracies
of 293 algorithm-parameter combinations on 83 differ-
ent UCI datasets (D=83). E.g. combination SVM-C-
1.0-Polynomial-E-3 is a support vector machine with
complexity constant 1.0 and a polynomial kernel with
power 3. Each row is a different algorithm-parameter
combination (all the algorithms are from Weka2) and
each column is the performance on a specific dataset.

1http://archive.ics.uci.edu/ml/
2http://www.cs.waikato.ac.nz/ml/weka/
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3.2. Evaluations

3.2.1. TRUSTWORTHINESS AND CONTINUITY

When we reduce the dimensionality of the data, the
topological properties of the data in the original space
will not be completely preserved, which leads to dis-
tortions. There are two types of distortions: (1) Data
points that are originally far away from each other
are mapped close to each other in the low dimensional
space. (2) Data points that are originally close to
each other are mapped far away instead. In order to
measure the quality of a dimensionality reduction, we
use Trustworthiness and Continuity (Venna & Kaski,
2006) to characterize the first and the second distor-
tion respectively. Trustworthiness is defined as follows:

Trustworthiness (k) = 1−A (k)

N
∑

i=1

∑

j∈Uk

(ri,j − k) (11)

with

A (k) = {
2

N ·K·(2N−3k−1) if k < N
2

2
N ·(N−k)·(N−k−1) if k ≥ N

2

(12)

In which N is the number of data points, k is the pre-
defined number of neighboring points, and ri,j is the
rank of the data point j according to the data point
i in the original space: the closer j is to i, the lower
ri,j will be. The ranks are natural numbers. Uk is the
set of data points that are within the k-nearest neigh-
bors of data point i in the low dimensional space but
do not appear in the original space. A(k) is a scaling
factor that scales the second term, i.e. the error term.
The more data points with high ranks (the data points
that are far away from each other) are wrongly mapped
close to each other in the low dimensional space, the
larger the error term will be. Thus, the trustworthiness
ranges from 0 to 1, 1 means completely trustworthy, 0
means completely untrustworthy. Similarly, Continu-
ity is defined as following:

Continuity (k) = 1−A (k)

N
∑

i=1

∑

j∈Vk

(r̂i,j − k) (13)

r̂i,j is the rank of data point j according to data point
i in the low dimensional space: the closer j is to i,
the lower r̂i,j will be. Vk is the set of data points
that are within the k-nearest neighbors of data point
i in the original space but do not appear in the low
dimensional space. When data points are neighbors in
the original space but not in the visualization, this will
increase the error. Continuity also ranges from 0 to 1,
a larger number means a better continuity.

3.2.2. RESULTS

For each dataset, the Trustworthiness(T) and Conti-
nuity(C) with 6 different k-values3 are measured for

3k is selected so that three are smaller than N/2 and
the other three are larger than N/2, N being the number

each DR technique. The T and C scores are then
computed for each dataset. The resulting graphs are
shown in Figure 4: the table on the right denotes
the indices of the DR techniques with their particu-
lar parameter settings. We use Gaussian kernels in
Diffusion Maps, Kernel PCA and Laplacian Eigen-
maps, and also use Sigmoid kernels in Kernel PCA
for comparison. As we can see in Fig.4, for bagging ,
DR No.12 has relatively high Continuity, though not
the best, and it has high Trustworthiness comparing
with other DR with high Continuity. Also note that
DR No.16, 21 and 22 are also very good visualization
candidates on bagging . For algo-performance , DR
No.22 achieves the highest Trustworthiness and Con-
tinuity. As such, we will discuss the visualizations of
DR12: Diffusion Maps (t = 1, σ = 1) and DR22: PCA,
i.e. 22 on the two datasets respectively. The visualiza-
tions of KPCA(gauss, σ = 1) on bagging and Sammon
Maps(i = 50) on algo-performance are also shown
in section 3.3.3 to give the reader an impression of
other DR techniques. Due to the space limitations, we
will not discuss the latter two visualizations in detail.

Figure 4. The experiment results of different DR tech-
niques on the machine learning meta-datasets.

3.3. Visualizations

3.3.1. ON THE BAGGING DATASET

First, we apply the diffusion maps technique on the
bagging dataset. The result is shown in Figure 5. In
each sub-figure, a different dimension is used to color
the data points. In Figure 5.2, we color the three base
learners IBk, J48 and Random Tree with red, green
and blue color respectively. For categorical values,
each category gets a unique color, and for numerical
values, points are colored ranging from red (high) to
blue (low).

It is interesting to see which attributes correlate with

of instances in the dataset.
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Figure 5. Diffusion Maps (σ = 1, t = 1) on the bagging
dataset, colored based on the 15 attributes. For categori-
cal values, same category has the same color which is dis-
tinguishable from other categories. For numerical values,
color range “red..orange..yellow..green..blue” indicate a se-
ries of values from being high to being low.

the dimensions generated by diffusion mapping. The
Y-axis correlates with the number of bagging itera-
tions (Figure 5.1), while the X-axis correlates with
the landmarking results (Figure 5.8-10). The latter
roughly indicate how easily the data can be modeled
with simple classifiers. Since the data can be most ac-
curately mapped to these two dimensions, they have a
large impact on the distribution of the data.

When looking at the actual clusters that formed, it is
clear that the data is clustered by dataset. This is not
surprising, since the data contains a lot of attributes
for dataset characteristics. Figure 6 shows these clus-
ters in more detail, with labels for several datasets.
Still, we also see more general clusters, which seem to
correlate with the class count (Figure 5.4) and class

entropy (Figure 5.13). For instance, there is one dense
cluster on the right for datasets with few classes.

Another interesting discovery is that the landmarkers
seem to correlate well with the final evaluation of the
experiment, but only on the generally ‘easier’ datasets
on the right. On the leftmost datasets, landmarkers
perform badly (the blue dots in Figure 5.8-10), while
the evaluation of the complete learning algorithms is
generally good. Especially the fact that these are
datasets with a low default accuracy, high class en-
tropy and higher class count leads us to believe that
the “simple” models generated by landmarkers are just
too simple to capture the structure in the data, even
if complete versions of the algorithm can do this. Also
note that the different landmarkers disagree on the
top-most datasets (Figure 5.8-10), which tend to have
many classes. Clearly, some landmarkers are more ro-
bust to many classes than others.

When looking at Figure 5.2, we see that diffusion map-
ping does not separate the different base learners. This
is not surprising as there are no numerical attributes
that describe the base-learning algorithm used. Mea-
surable numerical properties of the learning algorithms
should be added to the data so that they may be in-
cluded in the diffusion mapping.

The evaluations on the same datasets tend to have
similar scores: we can see them forming small clusters
in the plot as shown in Figure 6. Still, some clusters
(datasets) show a vertical gradient, indicating the ef-
fect of the number of iterations. The effect is not as
pronounced as we expected, but this is probably due to
the fact the results for different base-learners overlap
with each other. Also, on some datasets the Bagging
algorithms can achieve particularly high or low scores,
e.g. the dataset Sick always has high evaluations with
the Bagging algorithms, whereas the dataset Abalone
always has low evaluations.

Finally, all this shows that dimensionality reduction
techniques are extremely useful to study the perfor-
mance of algorithms under many different variables:
different parameter settings, different datasets, and

Figure 6. Diffusion Maps (σ = 1, t = 1) on the bagging
dataset, a detailed illustration.
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different properties of the algorithms and datasets.
The high number of attributes can successfully be re-
duced to a representation which retains most of the
information and immediately allows us to look for in-
teresting patterns on sight.

3.3.2. ON THE ALGO-PERFORMANCE DATASET

Second, we apply the PCA technique on the algo-

performance dataset.

The result is shown in Figure 7. In Figure 7.1, we can
find some outliers such as “’Raced-Incremental-Logit-
Boost-default” and “Bagging-I-1..25-ZeroR”, which
are far away from the “big cluster”. This indicates
that these algorithm-parameter combinations perform
very differently from their peers on the given datasets.
Also, when combining with Figure 7.2 and 7.3, we dis-
cover that the outliers perform poorly on the letter

and anneal datasets, since the dots representing them
are colored blue. On the other hand, the combinations
in the“big cluster” generally have a high performance
on the two datasets. One step further, when coloring
the algorithm-paramenter combinations based on their
general categorization (the combinations belonging to
SMO (Support Vector Machines) are blue, the ones be-
longing to Bagging are green and the others are red),
we can see that SMO methods mostly occupy the top
of the visualization, and looking back to Figure 7.2 and
7.3, we discover that SMO methods perform very well
on the letter dataset but very poorly on the anneal

dataset.

Finally, let’s look at the small clusters formed in the
outliers. With the help of the interactive function in
the visualization tool, we see that the Bagging algo-
rithms with the base learners HyperPipe and Conjunc-
tiveRule form their own small clusters in the outliers,
whose performance is poor on the given datasets. We
also discover that the Bagging algorithms with the
base learners Multi-layer Perceptron (MLP) and J48
have much better performance. Many more patterns
can be discovered in the visualization.

3.3.3. OTHER DR VISUALIZATIONS ON

BAGGING AND ALGO-PERFORMANCE

From Figure 8 we see a similar distribution of points
as Figure 5. The points are vertically aligned accord-
ing to the number of iterations of bagging algorithms,
and horizontally aligned according to the general ‘dif-
ficulty’ of the dataset.

From Figure 9 we see a similar distribution of points as
Figure 7. The major cluster as well as small peripheral
clusters can be identified.

Figure 8. KPCA (gauss, σ = 1) on the bagging dataset,
colored based on attributes 1, 3, 9 and 13.

Figure 9. Sammon Maps (i = 1) on the algo-performance
dataset, colored based on attributes ’anneal’ and ’letter’.

4. Conclusions

In this paper, we investigated different dimensional-
ity reduction (DR) techniques for visualizing high di-
mensional meta-data on machine learning algorithms,
retrieved from the Experiment Database (ExpDB).
First, we provided an overview of interesting DR tech-
niques. Next, we evaluated these DR techniques on
trustworthiness and continuity to select the adequate
techniques for visualizing two different sets of meta-
data.

We observed that the same DR techniques with dif-
ferent parameter settings can lead to significantly dif-
ferent results, such as Isomap with k = 6 and k =
36. Kernel and/or probabilistic techniques (such as
Kernel PCA and Diffusion Maps) achieve more sat-
isfying results than graph-based techniques (such as
LLE and Isomap) on the two meta-datasets. Espe-
cially sparse graph-based techniques, such as LLE, do
not perform well. Indeed, in order to achieve high
performance with kernel-based techniques, the type of
the kernel and the corresponding parameters have to
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Figure 7. PCA on the bagging dataset. The first three sub-figures are colored based on (1) the categorical attribute
“dataset”, the performance of all the algorithm-parameter combinations on (2) the letter dataset and (3) the anneal
dataset. The forth sub-figure is colored based on a general categorization of the algorithm-parameter combinations.

be adjusted several times manually, which is rather in-
convenient. Also, we find that linear DR techniques
have stable (and sometimes even better) performance
compared to their non-linear peers. Non-spectral tech-
niques (namely Sammon Maps) generally give good re-
sults. Furthermore, similar to kernel-based techniques,
the other nonlinear DR techniques require parameter
optimization.

Determining which technique is preferable depends not
only on parameter configuration, but also the given
datasets. Selecting or synthesizing appropriate tech-
niques based on a given dataset is an interesting di-
rection to look into in future work. For example,
one could build a model that selects an appropri-
ate DR technique with appropriate parameter(s) for
a given dataset based on Trustworthiness and Conti-
nuity. Furthermore, other DR techniques, especially
deep-structured ones are worth investigation. Next,
we could use DR techniques to compare how algo-
rithm performance on the UCI ‘benchmark datasets’
compare to performance results on real-world datasets.
We can also store the results of the experiments of
DR on machine learning meta-data (let’s call them DR
meta-data to distinguish with ML meta-data) into a
database (e.g. ExpDB) so that we can investigate their
performance in detail.
Finally, the produced DR visualization tools is of
course also applicable for any other high dimensional
data.
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