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A polytropic model for the solar wind

C. Jacobsa,b, S. Poedtsa,b

aCentrum voor Plasma-Astrofysica, Celestijnenlaan 200B, 3001 Leuven, Belgium
bLeuven Mathematical Modeling and Computational Science Centre, Leuven, Belgium

Abstract

The solar wind fills the heliosphere and is the background medium in which coronal

mass ejections propagate. A realistic modelling of the solar wind is therefore essen-

tial for space weather research and for reliable predictions. Although the solar wind is

highly anisotropic, magnetohydrodynamic (MHD) models are able to reproduce the

global, average solar wind characteristics rather well. The modern computer power

makes it possible to perform full three dimensional (3D) simulations in domains

extending beyond the Earth’s orbit, to include observationally driven boundary con-

ditions, and to implement even more realistic physics in the equations. In general,

MHD models for the solar wind often make use of additional source and sink

terms in order to mimic the observed solar wind parameters and/or they hide the

not-explicitly modelled physical processes in a reduced or variable adiabatic in-

dex. Even the models that try to take as much as possible physics into account, still

need additional source terms and fine tuning of the parameters in order to produce real-

istic results. In this paper we present a new and simple polytropic model for the solar

wind, incorporating data from the ACE spacecraft to set the model parameters.

This approach allows to reproduce the different types of solar wind, where the

simulated plasma variables are in good correspondence with the observed solar wind

plasma near 1AU.

Keywords: Solar wind, magnetohydrodynamics, numerical modelling

1. Introduction

The Sun’s outer atmosphere is so hot that gravity cannot prevent it from continu-

ously expanding. The continuous stream of high energetic particles emanating from
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the Sun is known as the solar wind. Parker (1958) was the first to realise that the

solar corona has to expand and he predicted a transonic outflow from the hot corona

into interplanetary space. Shortly after the first detections of a supersonic flow in

interplanetary space were made by a group of Russian scientists during the Luna 1

mission in 1959. The unequivocal existence of the solar wind was established by the

Mariner 2 spacecraft launched in 1962, when it became immersed in a continuous flow

once it crossed the Earth’s magnetopause.

The bulk of the solar wind consists of electrons and protons. The next most abun-

dant ion is He2+. Also traces of heavier ions in different ionisation stages are present.

In fact, the composition of the solar wind reflects the chemical composition of the

solar atmosphere. Space missions have revealed the existence of different types of so-

lar wind. The source regions and the properties of the different types of solar wind are

summarized by, for example, Schwenn (2006). There are two main types of solar wind:

a fast, tenuous, and almost uniform stream, and a slow, dense component. The sources

of the fast solar wind are the regions in the corona of “open” magnetic field or coro-

nal holes. The fast solar wind is originating from the inactive, quiet part of the Sun.

The slow wind is more turbulent than the fast wind and originates from the tips and

edges of temporarily open streamers or from opening loops and active regions. The

helium abundance in the slow solar wind increases from < 2% during minimum

to around 4% at times of solar maximum, indicating that the morphology of the

source regions of the slow solar wind are changing over the course of the solar

cycle (Schwenn 2006).

The main difference between the fast and slow solar wind is the flow velocity.

Using interplanetary scintillation, Breen et al. (2002) demonstrated that there is a dif-

ference in acceleration between the fast and slow wind. The main acceleration of the

fast solar wind happens low in the solar corona, with 50% of the asymptotic speed

reached by 4-5 R�. The fast wind is accelerated almost to its final flow velocity within

20 R� and a small but not neglegible acceleration exists beyond 30 R� (Kojima et al.

2004). In interplanetary space the fast wind has speeds exceeding 700 km s−1. The

acceleration of the slow solar wind is starting at higher radial distances than for the fast

wind and is more gradual. Most of the slow acceleration seems to take place between

5 and 10 R�, but the slow wind continues to accelerate out to 25-35 R� and its velocity

is only around 300 km s−1, on average.
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Spacecraft like the Advanced Composition Explorer (ACE) are continuously mea-

suring the solar wind properties near the Earth. From satellite observations it is known

that at the Earth the solar wind is highly variable. It can be as slow as 250 km s−1 and

faster than 750 km s−1, but typically it has a velocity of about 400 km s−1. The density

in the solar wind is more variable than the velocity, ranging from about 0.1 cm−3 to

100 cm−3. The Ulysses spacecraft, that was flying in a solar polar orbit between

1990 and 2009, has provided scientists for the first time with direct measurements of

the solar wind plasma and magnetic field at high-latitude positions. During its op-

erational time, the spacecraft completed almost three full orbits around the Sun

and almost two solar cycles of measurements are available, which led us learn that

the variation in solar wind properties changes with latitude during the course of the

solar cycle, in close correspondence with the changes in the source regions of the solar

wind in the lower corona (McComas et al. 2003, 2008). During solar minimum the fast

wind dominates the heliosphere from about 20◦ above and below the equatorial plane,

whereas during solar maximum a more complex pattern of alternating slow and fast

wind is observed. The heliocentric distance of the Ulysses spacecraft varied between

1.3AU and 5.4AU and it scanned the heliolatitudes between ±80.2◦. The unique orbit

of the Ulysses spacecraft makes it possible to quantify the radial and latitudinal vari-

ances in the solar wind, as has recently been published by Ebert et al. (2009). Their

main conclusions were: 1) the proton temperature in the slow wind falls less rapidly

with distance than in the fast wind; 2) the total interplanetary magnetic field (IMF)

strength drops slower with distance in the slow wind than in the fast wind, due to the

tighter Parker spiral structure in the slow wind; 3) the latitudinal variations are small,

both for the slow and fast wind. The first conclusion of Ebert et al. (2009) is in con-

tradiction with the specifications in Schwenn (2006). This might be due to the fact that

1) the observations used in Schwenn (2006) were limited to the ecliptic plane (Helios

and ACE data); 2) Ebert et al. (2009) did not distinguish between the two types of

slow solar wind; or 3) the radial dependence of the solar wind plasma is different for

large distances (>1AU) (other physical processes, like the effect of pickup ions, are

becoming important at larger heliocentric distances).

Numerical simulations of the solar wind are complementary to the observations

and necessary to develop a better understanding of the effect of the solar wind on the

propagation of interplanetary shocks and magnetic clouds. A realistic, time-dependent
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modelling of the solar wind is therefore essential for space weather modelling and

forecasting. Among the most important unanswered questions in solar physics are:

what are the mechanisms causing the heating of the solar corona to its million degree

temperature and what are the mechanisms accelerating the solar wind to its superfast

speed? Wave energy has been suggested as a possible driving mechanism for the

solar wind since a long time (e.g. Hollweg 1986). Recent observations prove that

Alfvén waves are the likely source of energy that drives the solar wind (McIntosh

et al. 2011). The wave pressure provides acceleration of the solar wind, while their

gradual dissipation causes heating of the plasma. A review of wave driven solar

wind models is found in Ofman (2010). Close to the solar surface, radiative cool-

ing and thermal conduction play an important role as well. From observations it

is clear that the solar wind temperature is highly anisotropic with respect to the mag-

netic field vector, electrons and ions are not in thermal equilibrium, and the plasma

is almost collisionless. This means that, theoretically, the classic model of magne-

tohydrodynamics (MHD) is not applicable for solar wind modelling. However, full

three dimensional (3D) kinetic modelling is still out of scope due to the high level of

complexity of the problem and the enormous amount of computer resources needed.

Therefore, MHD models for the solar corona are fairly popular, despite their shortcom-

ings, and are able to reproduce the global structure of the solar wind rather well (Parker

2007). One of the most sophisticated models currently available in the literature is

the two-temperature model of van der Holst et al. (2010). This 3D model considers

the protons and electrons to have different temperatures, it includes anisotropic

thermal heat conduction for the electrons, Alfvén waves to heat and accelerate

the protons, and it uses data-driven boundary conditions for the coronal magnetic

field, density, and temperature. Because of the increased computer power during the

last decade, 3D modelling of the solar wind is becoming more and more the standard

(e.g Linker et al. 1999; Roussev et al. 2003; Hayashi et al. 2006; Usmanov and Gold-

stein 2006; Cohen et al. 2007; Nakamizo et al. 2009). The current solar wind models

differ in the physics included in the equations and the treatment of the source terms.

The unknown physics is often counterbalanced by the inclusion of additional source

terms with some ad hoc description. In order to obtain realistic results, comparable to

the observations at 1AU, a long process of deriving suitable values for the free para-

meters in the model often precedes. In general, two main classes of MHD solar wind
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models can be distinguished: models adding extra source terms to the energy and

momentum equations of the classic MHD system to represent the missing physics,

and the models using a reduced/variable adiabatic index. A subset of the latter

are the polytropic models, which explicitly assume a relation of the form p ∼ ρα

between the pressure, p, and the density, ρ. The polytropic index is often assumed

close to unity in order to represent the nearly isothermal corona of the Sun and

to obtain the acceleration of the solar wind. A recent observationally based esti-

mate of the effective adiabatic index in the solar corona by Van Doorsselaere et al.

(2011) yields a value of γ = 1.1 ± 0.02. Since the relation between the pressure

and the density is explicitly known under the polytropic assumption, the energy

equation can be omitted, simplifying the set of equations to solve. In this paper a

model for the solar wind is presented, that starts from the polytropic assumption

and that includes the observational data of the solar wind plasma near 1AU. A

detailed description of this new approach for a polytropic model is described in

Sect. 2. The results of our model runs are presented in Section 3. We end this paper

with a concluding Section 4.

2. A new polytropic model for the solar wind

In astrophysics, a polytropic relation between the pressure p and density ρ (i.e.

p ∼ ρα) is commonly used. A well known example is the Lane-Emden equation,

describing the mass and pressure inside a star (Chandrasekhar 1939). By consid-

ering a polytropic relation between pressure and density, the energy equation can be

omitted from the set of equations to solve. This approach is used in many numerical

studies of the solar wind and propagation of coronal mass ejections (CMEs) (e.g.

Linker and Mikić (1995); Linker et al. (2003); Riley et al. (2006), but also Wang et al.

(1995); Wu et al. (1999); Keppens and Goedbloed (1999, 2000); Hu et al. (2008)).

Such simplified polytropic models yield surprisingly good approximations and can re-

produce many qualitative features of the observed solar corona (Hayashi et al. 2006).

Because of its simplicity, the polytropic wind model is still fairly popular, in spite of

its clear shortcomings. This kind of wind model is for example not able to reproduce

the fast solar wind speed in regions of open magnetic field. This artifact is the result of

assuming both polytropic and adiabatic flow, and as such isentropic flow.

To derive the ideal MHD equations, the ideal gas assumptions are explicitly used.
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In an ideal gas the internal energy is assumed to be solely dependent on the temperature,

and the ratio of the specific heats γ = cp/cv is assumed to be constant. In case of an

adiabatic process, the relation

Dp
Dt
− γp

ρ

Dρ
Dt

= 0

between the pressure and density holds, yielding

D
Dt

p
ργ

= 0,

where the quantity p/ργ is associated with the entropy, S , of the gas. Under the

polytropic assumption p ∼ ρα the process is adiabatic only if the polytropic index

α satisfies the relation

α =
∂ ln p
∂ ln ρ

∣∣∣∣∣
S
.

However, whenever this condition is not satisfied it can be derived that:

Dp
Dt
− γp

ρ

Dρ
Dt

= (γ − α)p∇ · v,

where v is the velocity vector. This is equivalent to assuming that the process is not

adiabatic. In case of expansion of the medium, like in the solar corona, extra heat will

be added to the system when α < γ. From measurements it is established that the

temperature of the solar wind plasma decreases with radial distance from the Sun, but

it does not cool rapidly enough to be considered as adiabatic expansion (Goldstein et al.

1996). Assuming a polytropic relation for the solar wind plasma and that the matter

has three degrees of freedom, leads to: 1 < α < 5/3 = γ. A polytropic behaviour of

the solar wind was identified by Totten et al. (1995). These authors concluded from the

analysis of Helios 1 data that the solar wind behaved fairly polytropic between 0.3 AU

and 1 AU, with α = 1.46 as an average value for the polytropic index and that the

polytropic index was rather independent of the solar wind type.

In the next subsection we describe how, by using the more general polytropic rela-

tion mentioned above, the two components of solar wind can easily be reproduced.

2.1. Description of the model

In the classic MHD model it is assumed that the number of protons and electrons

is equal, np = ne = n/2, and that they are in thermal equilibrium, Tp = Te = T . In the

general case of polytropic flow the relation between pressure and density reads

p = Knα,
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where n is the total particle density (n = np + ne) and the parameters K and α are

constants. Combining the polytropic relation with the ideal gas law, we obtain

K = kBTn1−α,

with kB the Boltzmann constant.

Using the above considerations, it is clear that the polytropic relation derived by

Totten et al. (1995) cannot hold true all the way to the lower solar corona. This can

be demonstrated by a simple example. Taking typical values of the fast solar wind

at 1AU, np = 2 cm−3, Tp = 2.5 × 105 K and α = 1.46, we obtain a value of K =

3.2 × 10−21 N m3α−2. Holding the value of K and α constant, and taking a typical

coronal hole density of 1 × 108 cm−3, a temperature of 8.7 × 108 K is obtained! Near

the solar surface, the solar wind is assumed to be nearly isothermal and a value of the

polytropic index closer to one might be more appropriate. Using the same example as

above, but reducing α to a value of α = 1.25 yields a more realistic coronal temperature

at the base of 8.6 × 105 K. In case the observational value of α = 1.1 measured by

Van Doorsselaere et al. (2011) is used, the factor K has to be increased to a value of

K = 4.4×10−19 N m3α−2 in order to get the same value for the coronal temperature.

In the model presented in this paper the classic polytropic assumption is modified

and the parameters α and K are allowed to vary in space. This yields that energy

will not be conserved in this model.

When calculating the gradient of the pressure, it is evident that including spatial

variation in the parameters K and α will have an effect on the acceleration of the solar

wind:

∇p = Knαα
∇n
n

+ Knα
(∇K

K
+ ln(n)∇α

)
. (1)

We can consider the following two special cases:

Isothermal flow. In this case γ = α = 1. The temperature is constant at all time, and

so K = kBT0 is constant. The flow is by definition isentropic and and the gradient in

pressure reduces to:

∇p = kBT0∇n.

Isentropic flow. In the case of isentropic flow, it is assumed that p/ργ is constant, in

other words, K = K0 and α = γ both constant. Under these conditions, the expression
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for the pressure gradient is given by:

∇p = K0nαα
∇n
n
.

For a value of α > 1 this has a reducing effect on the pressure gradient, and as such on

the acceleration of the flow. This is easy to see when assuming for example n ∼ r−2.

Even for a small value of α = 1.05, the isentropic flow deviates already strongly from

the isothermal flow, having a much lower asymptotic wind speed. The higher the value

of the polytropic index, the slower the flow (see for example Keppens and Goedbloed

1999). In the general polytropic case, where both K and α can be position dependent,

the final flow profile will be strongly dependent on the spatial variation of both para-

meters. The mechanisms that accelerate the solar wind to its superfast velocity are

not explicitly modelled in this way, but hidden in the varying parameters α and K.

Since the acceleration profile is different in the two types of solar wind (see intro-

duction), it is natural to assume a different radial variation of the polytropic parameters

in the two solar wind types. The results presented in the next subsection were all ob-

tained with a spatial variation for the parameters α and K of the following form:

α(r) =



α0, if r < r1,

α0 + (α1 − α0) sin2
(
π
2

r−r1
r2−r1

)
, if r1 ≤ r ≤ r2,

α1, if r > r2,

The value of α is smoothly varying between the value α0 close to the Sun and its value

near 1AU, α1, where the variation in α takes place between the radial distances r1

and r2. The functional form of the factor K(r) is chosen accordingly to

K(r) = K0nα0−α(r)
0 f (r),

where

f (r) =



1, if r < r1,

1 + (K1 − 1) sin2
(
π
2

r−r1
r2−r1

)
, if r1 ≤ r ≤ r2,

K1, if r > r2,

with K1 = K1AU/K0nα0−α1
0 . The value of K1AU can be chosen from Table 3 in Totten

et al. (1995). Beyond a distance of r2 the parameters K and α remain constant

and the solution is described by a real polytrope. By choosing the coronal density
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n0, temperature T0, and polytropic index α0 the value of K0 can be fixed. Fludra et al.

(1999) have investigated the density and the temperature of the lower solar corona. In

their observations they found that the density and the temperature in the coronal holes

is lower than in the closed field regions. As a value for the electron density near the

limb they found 5 × 108 cm−3 in the equatorial region and 2 × 108 cm−3 in the polar

regions. The temperature near the limb varied between 7 × 105 K (polar region) to

1.1 × 106 K (equator) and away from the solar limb the temperature was increasing.

A realistic model for the solar corona must include this non-uniform temperature and

density distribution over the solar surface.

3. Results

In order to find out the model parameters that result in a realistic reconstruction of

the solar wind, a series of 1.5D tests were performed. With 1.5D we mean that the

assumptions are similar as in the Weber-Davis wind model (Weber and Davis 1967),

namely ∂
∂θ

= ∂
∂ϕ

= 0 and vθ = Bθ = 0. The ideal MHD equations are solved with the

Versatile Advection Code (VAC, Tóth 1996) on a non-equidistant mesh of 1200 grid

points spanning the range [1.03, 220]R�.

The desired solar wind properties at 1AU were set by looking at 10 years of ACE

observations. In Fig. 1 scatter plots are shown of the daily averaged data measured

by the SWEPAM instrument on board of the ACE satellite. A clear correlation exists

between the velocity and the proton temperature, but for the density and magnetic field

strength a large scatter is present in the data. However, the general trend is the faster the

wind, the lower the density and the stronger the IMF. Linear regression is used to derive

a relation between the solar wind velocity and the temperature (density). It should be

noted that interplanetary CMEs, magnetic clouds and corotating interaction regions

(CIRs) are not filtered out of the data. This relation serves only to set a rough estimate

for the solar wind variables at 1AU in different conditions.

From the linear fit of the ACE data, for each velocity (v∞) a corresponding density

(n1AU) and temperature (T1AU) can be estimated, and as such a value for K1AU can be

derived:

K1AU = kbT1AUn1−α1
1AU .

From the 1.5D tests, it was found that a value of α1 = 1.42 gives the best results.

This value is at the lower boundary of the value of the polytropic index as estimated
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by Totten et al. (1995). The other free parameters in the model (α0, r1, and r2) were

chosen in order to reproduce as good as possible the estimated solar wind variables at

1AU and this with realistic values for the coronal density, n0, and temperature, T0. In

Table 1 an overview is given of the model parameters used to obtain the best fit for

each specific solar wind type. The first three rows in Table 1 show the pre-set solar

wind velocity and corresponding proton density and temperature as derived from the

ACE observations. The next seven rows contain the model parameters K1AU , α0, α1, r1,

and r2, and the values chosen for the coronal density and temperature (n0,T0). The last

three rows represent the simulated values for the flow velocity, the proton density, and

the temperature at 1AU. Figure 2 shows the radial variation of the solar wind velocity,

the density, and the temperature for the different simulations listed in Table 1. Only for

the very slow wind (v∞ = 300kms−1) it turned out to be necessary to increase the value

of the polytropic index from α1 = 1.42 to α1 = 1.46. The value of α0 is depending on

the type of solar wind flow, as well as the range [r1, r2] whereover the variation in α and

K takes place. This range is taken longer for the slower wind, since it is observationally

known that the acceleration of the slow wind takes place over a larger spatial interval.

3.1. Extension of the model to 2.5D

The results from the 1.5D wind models are used to construct an approximation for

the solar wind under solar minimum conditions. In the 2.5D model, the velocity and

magnetic field vector are allowed to have all three components different from zero,

but there is no variation in the azimuthal direction. The MHD equations are solved

in spherical geometry on a grid containing 1200 × 91 cells, covering a full meridional

plane, i.e. (r, θ) ∈ [1.03, 220]R� × [0, π], where θ is the co-latitude. In the 1.5D case

it was trivial to keep the magnetic field divergence-free. In the 2.5D simulation the

solenoidal condition is guaranteed by a similar approach as the constraint transport

method of Evans and Hawley (1988).

The asymptotic solar wind speed is set accordingly to fit the Ulysses observations

of the solar wind during minimum conditions: in a region of ±20◦ around the solar

equator, the desired value for the solar wind velocity, v∞, is chosen 400 km s−1 and

outside this region it is set to 750 km s−1. Between the two regions of fast and slow solar

wind we have a small transition region of 5◦ in which the asymptotic solar wind speed is

changing linearly with latitude. In this simulation the solar wind flow is assumed to be

independent of the azimuthal direction. Once the desired velocity at 1AU is specified
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for each latitude, the density and the temperature are estimated from 10 years of ACE

data, as mentioned above (Fig. 1). The value of the polytropic index at 1AU is set to

α1 = 1.42. With all these variables defined, a value of the factor K1AU can be obtained

for each latitude. The polytropic parameters α and K are assumed to vary with radial

distance in the same way as specified in Section 2.1. At the solar surface the value for

the density, nbase, the temperature, Tbase, and α0 are set in correspondence with the 1.5D

results. This yields a non-uniform density and temperature distribution at the inner

boundary with a total particle density varying between 7 × 108cm−3 at the equator and

3×108cm−3 at the poles. The temperature increases from 1.25×106K in the polar areas

to 1.62×106K in the equatorial region. The value of the polytropic index near the solar

surface varies between the value α0 = 1.30 in the fast wind (V∞ > 600km s−1) and α0 =

1.20 in the slow wind (V∞ ≤ 350km s−1). In this simulation, the global solar magnetic

field is assumed to be a simple dipole with a field strength of 5 G at the poles. In the

1.5D simulations, the influence of the magnetic field strength on the acceleration of the

flow is neglegible. In the 2.5D simulations, however, the Lorentz force is important and

especially in the polar regions, the magnetic pressure causes additional acceleration of

the flow, compared to the 1.5D test cases. Therefore, an additional correction is applied

on the surface temperature, in order to obtain reasonable wind speeds near 1AU:

T̃base = Tbase +
(
Tpole − Tbase

)
cos

(
π

2
π/2 − |λ|
π/2 − λ0

)2

,

when the absolute latitude, λ, becomes larger than λ0 and Tbase remains unmodified

otherwise. Here we have chosen λ0 equal to 65◦ and Tpole = 1.1 × 106K. The lower

polar temperature, compared to the 1.5D case, reduces the thermal pressure gra-

dient, counterbalancing the additional acceleration due to the magnetic pressure

and as such avoiding a too high coronal flow speed.

A contour plot of the radial velocity is presented in Fig. 3. The figure also shows

the magnetic field lines and zooms in on the region within 30R� from the solar disk.

Figure 4 shows the angular variation in the simulated solar wind velocity, the tem-

perature, and the proton density at different radial distances. The bimodal solar wind

structure is well represented and the solar wind variables have values in the range of

the observations. Table 2 lists the values of the solar wind variables at the pole and the

equator and this for two radial distances of 0.3AU and 1AU. The simulated solar wind

data at 0.3AU are comparable with the measurements made by the Helios spacecraft.
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4. Summary and conclusions

We have presented a new approach for the frequently employed polytropic model,

used to simulate the solar wind flow. Polytropic models remain popular in solar wind

modelling because they are easy to implement and can reproduce the typical white

light characteristics of the solar corona. When focussing on the modelling of the so-

lar corona, a constant polytropic index close to unity is usually considered. However,

those models are unable to reproduce the bimodal wind structure and they cannot be

extended all the way up to the Earth’s orbit; the typical observed plasma values and

power law dependencies cannot be reproduced when assuming a constant polytropic

index. To overcome this problem, we have developed a polytropic wind model in

which the model parameters are variable in space. We have scanned the parameter

space in order to find those values that provide the best fit of some typical solar

wind values as derived from ACE data and that still fit within the observational

constraints. The variable model parameters represent the changing conditions in the

physics driving the solar wind throughout the heliosphere. Therefore, different types

of solar wind ask for a different functional representation of the model parameters. In

fact, this modelling approach is similar to including some ad hoc sink and source

terms in the energy and momentum equations. Another well known model using a

variable effective adiabatic index is the model of Roussev et al. (2003), later modi-

fied by Cohen et al. (2007). It has been demonstrated that this model is capable of

reproducing the magnitude of the solar wind plasma variables rather well under

solar minimum conditions (Cohen et al. 2008). A form of total energy is conserved

in their model. The reduced adiabatic index results in a correction on the thermal

pressure, which is similar in our model. However, the model presented here does

not guarantee energy conservation.

Models for the solar wind that are fast and accurate are important for space weather

prediction. During the last decade, considerable progress has been made in the 3D

MHD modelling of the solar corona, the propagation of solar transients through the

heliosphere, and their interaction with the Earth magnetosphere (e.g. Luhmann et al.

2004; Tóth et al. 2005). However, despite the increased computer power, running a full

3D simulation from Sun to Earth remains very expensive and time consuming. There-

fore, 1D models are still fairly popular in space weather research and for solar wind

predictions (e.g. Zieger and Hansen 2008; Feng et al. 2009). The 1D polytropic model
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presented here runs fast, is easily adjustable to obtain the desired solar wind speed, den-

sity, and temperature, and it is straightforward extensible to an axisymmetric solar wind

model. Numerical simulations have pointed to the importance of an accurate modelling

of the background medium in which CMEs propagate. The density and velocity distri-

bution of the solar wind will influence the shape and velocity of the CME associated

shock front (Jacobs et al. 2005; Wu et al. 2005). Observationally driven simulations of

the interplanetary propagation of CMEs are indispensable to obtain a correct interpre-

tation of the observations and to get insight in their complex structure and dynamics

(Lugaz et al. 2008, 2009). The 2.5D extension of the wind model presented in this pa-

per can serve as a background model for CME initiation and propagation studies under

solar minimum conditions. However, some caution has to be taken when studying

shock propagation in polytropic models. As already mentioned before, energy is

not conserved in this model and as such the well known Rankine-Hugoniot rela-

tions are not longer applicable. However, the same remark is true for every other

MHD model using source terms. Moreover, the result of shock propagation in a

polytropic model can significantly differ from a full MHD simulation. This has

been demonstrated by Pomoell and Vainio (2011), who constructed a polytropic

wind model with α = 1.05 = γ and an MHD model with γ = 5/3, including an

additional heating term in the energy equation in order to obtain the exact same

solution for the steady state wind as in the polytropic case. A CME was launched

in both configurations and the clear difference in the compression ratio and in the

extend of the shock front can be remarked. As has been noted by van der Holst

et al. (2010) the models using a reduced and variable polytropic index do not well-

describe CME driven shocks. This is because the value of the polytropic index is

kept fixed in time, and as such induces unphysical pressure (and thus tempera-

ture) when the solar wind diverges from its stationairy state due to, for example,

the passage of a CME.
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Figure 1: ACE data over the period 1998 − 2008.

Figure 2: Radial variation of the solar wind variables for the 1.5D simulations listed in Table 1.
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Figure 3: Visualisation of the 2.5D solar wind simulation. The colour code represents radial velocity and the

white lines mark magnetic field lines.

Figure 4: The angular variation of the solar wind velocity, the density, and the temperature obtained from the

2.5D simulation. Different colours represent different radial distances, varying between 1.25R� and 1AU.
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Table 2: The radial velocity, the proton density, and the temperature at a radial distance of 0.3AU and 1AU

in the simulated solar wind for solar minimum conditions.

V np+ T

pole

0.3AU 815 km s−1 16 cm−3 4.49 × 105K

1AU 830 km s−1 1.37 cm−3 1.6 × 105K

equator

0.3AU 351 km s−1 60 cm−3 1.81×105K

1AU 364 km s−1 4.2 cm−3 5.9×104K
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