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Abstract

Finite mixture models can adequately model population heterogeneity when this heterogeneity

arises from a finite number of relatively homogeneous clusters. A good example of such a sit-

uation is modeling market segmentation. Order selection in mixture models, i.e. selecting the

correct number of components in the mixture model, however, is a problem which has not been

satisfactorily resolved. Existing simulation results in the literature do not completely agree with

each other. Moreover, it appears that the performance of different proposed selection methods

is affected by the type of model and the parameter values. Furthermore, most existing results

are based on simulations where the true generating model is identical to one of the models in the

candidate set. In order to partly fill this gap we carried out a simulation study for finite mixture

models of normal linear regressions. We included several types of model misspecification to study

the robustness of 18 order selection methods. Furthermore, we compared the performance of these

selection methods based on unpenalized and penalized estimates of the model parameters. The

results indicate that order selection based on penalized estimates greatly improves the success

rates of all order selection methods. The most successful methods were MRC, MRCk, MDL2,

ICL and ICL-BIC but not one method was consistently good or best for all types of model

misspecification.
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1. Introduction

Finite mixtures present a very attractive modeling framework to increase model flexibility with-

out the high-dimensional parameter spaces used in non-parametric or mixed modeling (Mclachlan

and Peel 2000). Often, a regular statistical model is too rigid to adequately represent possible

heterogeneity in the population. This heterogeneity can often be captured by a mixture of para-

metric models. Such mixtures have been successfully applied in a wide variety of fields. Wedel

and Kamakura (1999) for instance, have spent two chapters of their book on market segmentation

on this topic whereas Schlattmann (2009) has written an entire book about medical applications

of finite mixture models. However, despite its popularity and frequent usage, there are still some

complications with this type of model. The most important of these complications is that of

selecting the correct number of components (Mclachlan and Peel 2000) which we will refer to as

order selection. Not surprisingly, this has generated a lot of theoretical and applied research and
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many order selection methods have been suggested in the literature by now. However, most of

the simulation results which have been presented either disagree with each other or were obtained

in very idealized settings where model assumptions matched the simulation settings. Therefore,

in this paper, we have investigated violations of standard model assumptions in finite mixtures of

linear regression models, in the hope of partly filling this gap. We have compared several old and

new order selection methods using two different types of estimation, unpenalized and penalized

estimation. The rest of this paper is structured as follows. In section 2 some technical and practi-

cal background will be given about (fitting) a mixture model of linear regressions. In section 3 we

present a non-exhaustive overview of various popular and some lesser known but rather effective

methods to select the number of components in a mixture model. In this section we also give an

overview of some published results. In section 4 the design and results of our simulation study

will be presented and discussed.

2. Technical Background

2.1. Finite Mixtures of Linear Regressions

Suppose a population consists of K subpopulations Sk indexed by k = 1, · · · ,K. Within each

of these subpopulations, suppose it makes sense to model a univariate1 random variable Y as a

linear combination of p explanatory variables denoted by the vector x. Then, for a random sample

of size n across the subpopulations, we have
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yi = β01 + β11xi1 + · · ·+ βp1xip + εi1 if yi ∈ S1

...

yi = β0k + β1kxi1 + · · ·+ βpkxip + εik if yi ∈ Sk

...

yi = β0K + β1Kxi1 + · · ·+ βpKxip + εiK if yi ∈ SK

(1)

where i = 1, · · · , n. Note that the subpopulations are assumed to be mutually exclusive and

exhaustive. The error terms within each component are assumed to be i.i.d. normal with mean 0

and variance σ2
k and independent across the subpopulations. The vector of regression coefficients

will be denoted by β = (β1, · · · ,βK)
T

where βk = (β0k, β1k, · · · , βpk)
T
. Let z be a single

trial realization of a random multinomial variable with parameter vector π = (π1, · · · , πK)
T

which indicates from which subpopulation Y originates. Therefore, if an observation i belongs to

component k, zi is a vector of 0s with a 1 at the kth position. The parameters πk, k = 1, · · · ,K,

indicate the relative size of the subpopulations in the entire population under consideration. From

its definition it follows that
∑K

k=1 πk = 1 and that πk ≥ 0,∀k = 1, · · · ,K. The joint distribution

of y and z, conditional on x, can now be written as

f (y, z|x,Ψ) =

K
∏

k=1

[

πkN
(

y|βT
k x, σ

2
k

)]zik
(2)

1This can be readily extended to the multivariate case.
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where N
(

y|βT
k x, σ

2
k

)

represents the normal distribution function of a variable y with mean βT
k x

and variance σ2
k, x includes an intercept term and Ψ =

(

π,β, σ2
1 , · · · , σ

2
K

)T
denotes the complete

parameter vector. Note that one of the elements of π is redundant due to the summation restriction

given above. The complete data log likelihood or joint log likelihood of y and z of the sample can

then be expressed as

LLc (Ψ) =

n
∑

i=1

K
∑

k=1

zik{log (πk) + log
[

N
(

yi|β
T
k xi, σ

2
k

)]

}. (3)

A finite mixture model of linear regressions now arises when the subpopulation indicator variable

z is not observed (or inherently unobservable). In this case, one has to resort to working with the

marginal distribution of Y (marginalized over Z) and the marginal distribution of y, conditional

on x, becomes

f (y|x,Ψ) =

K
∑

k=1

πkN
(

y|βT
k x, σ

2
k

)

(4)

and the corresponding observed log likelihood of the sample is

LL (Ψ) =

n
∑

i=1

log

[

K
∑

k=1

πkN
(

yi|β
T
k xi, σ

2
k

)

]

. (5)

This model is the finite mixture model of normal linear regressions that was introduced by Desarbo

and Cron (1988). The relative sizes of the subpopulations are called mixture proportions or mixture

weights2 and the densities in the subpopulations are called the component densities, which are

conditional on component membership and the explanatory variables. Note that, in the absence

of any other information, the mixture proportions are the a priori probabilities of belonging to a

specific component for a randomly sampled subject.

Maximizing the observed log likelihood (5) can be done in a variety of ways (all iteratively as

there is no closed-form solution) and is usually done by using the expectation-maximization (EM)

algorithm (Dempster, Laird, and Rubin 1977) which uses (3) rather than (5). Every iteration

in the EM algorithm consists of two steps, an expectation step and a maximization step. In the

expectation step the expected value of the complete data log likelihood (3), conditional on the

vector of current parameter values and the observed data, is calculated. This expression is then

subsequently maximized with respect to the model parameters in the maximization step, yielding

a new set of parameter values. Dempster et al. (1977) showed that iterating these two steps is

equivalent to maximizing the observed log likelihood, which is the goal. Calculating the conditional

expected value of (3) is straightforward as the only random terms are the zik which are binary

indicator variables and are linear in (3). So, for a general iteration (t + 1), the expectation step

consists of calculating

2It is possible to generalize (4) by including explanatory variables to model the mixture proportions using a
logistic regression model for instance. If these explanatory variables are different from the variables which model
the component means they can be ignored for order selection as the marginal model is a mixture model with the
same number of components (Bandeen-Roche, Miglioretti, Zeger, and Rathouz 1997).
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E
[

Zik|yi,xi,Ψ
(t)
]

=
π
(t)
k N

(

yi|β
T (t)
k xi, σ

2(t)
k

)

∑K
k=1 π

(t)
k N

(

yi|β
T (t)
k xi, σ

2(t)
k

) ≡ τ
(t+1)
ik . (6)

The τ
(t+1)
ik can be viewed as the posterior probability of an observation with observed values yi

and xi to belong to component k. Maximizing (3), with the zik replaced by the estimated τ
(t+1)
ik ,

now yields the following closed-form solutions

π
(t+1)
k =

∑n
i=1 τ

(t+1)
ik

n

β
(t+1)
k =

(

XTW
(t+1)
k X

)−1

XTW
(t+1)
k y (7)

σ
2(t+1)
k =

(

y −Xβ
(t+1)
k

)T

W
(t+1)
k

(

Y −Xβ
(t+1)
k

)

∑n
i=1 τ

(t+1)
ik

where X is the n× (p+ 1) design matrix including an intercept column, y is the vector with the

outcome variable and W
(t+1)
k is a diagonal matrix with diagonal elements τ

(t+1)
1k , · · · , τ

(t+1)
nk . The

updated parameter estimates can now be used for a new iteration by plugging them into (6). This

algorithm is carried out until some convergence criterion is satisfied. A nice property of the EM

algorithm is that the observed log likelihood cannot decrease (Dempster et al. 1977).

2.2. Mixture Regression in Practice

There are some considerations to be made for a practical implementation of finite mixture

models. First of all, the log likelihood of all finite mixture models frequently has multiple local

optima (Mclachlan and Peel 2000). Therefore, for a particular set of starting values, application

of the EM algorithm can only guarantee you to find a local maximum (or a saddle point in

pathological cases (Mclachlan and Krishnan 2008)) and not the global maximum (if this exists).

In order to increase the probability of locating the desired optimum it is recommended to apply the

EM algorithm from a variety of starting points (Mclachlan and Peel 2000) and select the solution

with the highest log likelihood value. This strategy is, however, not a guarantee to success. Then

there is still the matter of selecting appropriate starting values. While there has been some research

on obtaining good start values (see for instance Karlis and Xekalaki (2003) for univariate normal

and Poisson data and Biernacki, Celeux, and Govaert (2003) for multivariate normal data), as far

as we know there are no results for mixtures of linear regressions. Viele and Tong (2002) proposed

the following strategy for obtaining a random set of starting parameters:

• Generate the mixture proportions π as a random draw from a Dirichlet distribution with

parameter vector (1, · · · , 1).

• For every component k = 1, · · · ,K, select a random sample of p + 1 observations (Xr,yr)

without replacement from the data. Obtain βk as the solution of βk = X−1
r yr.

• Generate the component variances as random draws from a uniform distribution with support

[0, s2(1)]. Here, s2(1) denotes the estimated mean squared error obtained from a regular one-

component regression analysis.
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We have compared this procedure in some small simulation studies with two other procedures. The

first alternative procedure only differs in how β is generated. For each component k = 1, · · · ,K,

an intercept is randomly drawn from a uniform distribution with support [min(yi),max(yi)], i =

1, · · · , n. All other coefficients are initialized as 0. The second alternative procedure consists of

randomly assigning each sample point to one of the K components. We have done this by hard

assignment (assign each observation to exactly one component) and by soft assignment (assign

each observation to every component with random weights). The EM algorithm is then started

from the M-step by considering the assignment as the initial E-step. In our results we found that

the strategy of Viele and Tong (2002) performed favorably compared to the alternatives.

Second, the EM algorithm is generally known to converge slowly, linearly or even sublinearly

(Mclachlan and Krishnan 2008). Usually, the algorithm is stopped when the log likelihood and/or

the parameter estimates do not change much during the last iterations (Mclachlan and Peel 2000).

However, due to its slow convergence rate, one can erroneously stop the algorithm too early,

i.e. before convergence. Lindstrom and Bates (1988) call this a ’measure of lack of progress but

not of actual convergence’. Böhning et al. (1994) used Aitken’s acceleration to derive a suitable

stopping criterion for a linear convergent sequence. At each iteration (starting from the third),

one estimates the stationary value of the log likelihood by using the three last log likelihood

values as l
(t+1)
∞ = l(t) + 1

1−a(t) (l
(t+1) − l(t)) where for simplicity of notation l(t) denotes the log

likelihood value at iteration t and a(t) = l(t+1)−l(t)

l(t)−l(t−1) denotes the estimated rate of convergence of

the sequence of log likelihood values. This method is also used to decrease the computation time

caused by the multiple random starts as it predicts the stationary log likelihood without requiring

the parameters to converge. Each set of starting parameters is iterated until the difference in

the estimates of the stationary log likelihood value is smaller than 10−9. The solution with the

highest estimated stationary log likelihood is then taken as the optimal solution. However, for

some selection criteria (see infra) accurate estimates of the parameter values are also necessary.

Therefore, the best solution is then iterated further until the difference between the actual log

likelihood and the estimated stationary log likelihood is smaller than 10−12 and the maximum

absolute change in the estimated component variances is smaller than 10−9. The latter criterion is

added because Abbi et al. (2008) found that the variance parameters have the slowest convergence

rate.

Third, for finite mixture models with normal components with component specific variance pa-

rameters (or covariance matrices) there exists no global maximum for the log likelihood (Mclachlan

and Peel 2000). Recall that for a normal distribution the log likelihood is divided by the standard

deviation. Therefore, in a mixture of normal linear regressions with K > 1 components, one can

make the log likelihood infinite by taking any p + 1 sample points and put them in a separate

component. The resulting fitted hyperplane in this component will then have a perfect fit and its

estimated component variance will be 0. Such a solution is obviously neither desired nor useful.

A simple solution to this problem would be to put an equality constraint on the variance terms

across the components, but this might be too restrictive. Components for which the variance

tends to 0 are however not really a problem in practice as the computer will detect these and

one can just discard these ’solutions’. A far more serious problem is the potential existence of

’spurious’ solutions. Mclachlan and Peel (2000, p. 99) describe these as ’solutions with relatively

large local maxima that occur as a consequence of a fitted component having a very small (but
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nonzero) variance’. Hence, these solutions converge to parameter values which are very close to,

but not on, the edge of the parameter space (σ2
k and πk close to 0). Usually, these solutions are not

interesting as they accommodate some random local pattern but will most likely not generalize

outside the sample. Despite that only a relatively small number of observations belong to these

components, their contribution to the log likelihood may be so high that this solution has a larger

sample log likelihood than the desired local maximum (containing meaningful components) and

hence masks the desired solution. Dealing with such solutions (i.e. eliminating spurious solutions)

will probably require some judgement from the researcher. However, in a simulation study this

cannot be done. In our implementation, there are two ways for a local solution to be discarded.

The first way is when the estimated component standard deviation becomes smaller than 10−10 to

avoid singularities. A second way out is when an estimated mixture proportion becomes smaller

than p+1
n as this is the boundary value of the effective sample size with which a regression plane

with p + 1 coefficients can be estimated. Other solutions for the singular/spurious component

problem include restricting the parameter space or penalizing the likelihood which is the subject

of the next section.

2.3. Penalizing the Likelihood

Hathaway (1985) proposed to solve the unboundedness of the likelihood by constraining the

parameter space such that mink,k′( σk

σk′

) ≥ c > 0 for all combinations of k, k
′

= 1, · · · ,K. This

formulation ensures that there is a global maximum to the log likelihood which is not singular.

Furthermore, by choosing the right c one can also get rid of the spurious solutions. On the other

hand, implementing this constraint restricts the solution space and might exclude the desired

solution if c is too large. A simpler approach seems to be to penalize the likelihood which has

been proposed by Ciuperca, Ridolfi, and Idier (2003) and Chen, Tan, and Zhang (2008). For finite

mixture models of univariate normal distributions Ciuperca et al. (2003) proved that in case K

is known a priori, their penalized likelihood estimator is consistent and Chen et al. (2008) proved

that their version of the penalized likelihood estimator is consistent even when K is unknown.

The latter result was generalized to (unconditional) multivariate normal distributions by Chen

and Tan (2009). In all three papers the conjugate prior distribution for the component variances

is used as the penalty function which makes this method a variant of maximum a posteriori

estimation. Ciuperca et al. (2003) showed in a small example how the penalized likelihood method

can outperform the method from Hathaway (1985) in case c is too large. Chen et al. (2008) and

Chen and Tan (2009) showed with simulation how their penalized estimator gives similar and

sometimes better parameter estimates in terms of bias and variance compared to the unpenalized

approach. In this paper, the approach of Chen et al. (2008) is adopted which results in a penalized

log likelihood of the following form

LL (Ψ) =

n
∑

i=1

log

[

K
∑

k=1

πkN
(

yi|β
T
k xi, σ

2
k

)

]

− an

K
∑

k=1

(

s2(1)

σ2
k

+ log σ2
k

)

(8)

where an is a constant which depends on the sample size and moderates the influence of the penalty

function. The penalty function in (8) is equivalent to putting an inverse-gamma distribution on

the component variances with mode at s2(1). This mode is based on the sample data and is

taken to be the estimated variance of the error term in a one-component regression. Maximizing

(8) now results in a well-posed maximization problem with a global maximum in the interior of
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the parameter space. This, however, does not make (8) concave (there can still be numerous

local optima) and therefore does not rid us of the necessity of starting the EM algorithm from

different points. The effect of penalizing the likelihood this way only modifies the estimation of

the component variances in the M-step. All other equations in (6) and (7) remain the same. The

new closed-form solution in an EM-iteration (t+ 1) is

σ
2(t+1)
k =

(

y −Xβ
(t+1)
k

)T

W
(t+1)
k

(

y −Xβ
(t+1)
k

)

+ 2ans
2
(1)

∑n
i=1 τ

(t+1)
ik + 2an

. (9)

From (9) it can be seen that when an is a function which goes to 0 for n going to ∞, the resulting

penalized estimator is equivalent to the unpenalized estimator for large sample sizes. However,

for a non-zero an in a finite sample, the component variances can never become 0. The resulting

estimator in (9) looks similar to the James-Stein estimator which is known to decrease the mean

squared error of an original estimator by introducing a relatively small bias (James and Stein 1961;

Chen and Tan 2009).

In order to validate these results for mixtures of linear regressions and to select an appro-

priate an we carried out some simulations. We simulated 200 sets of true parameters for a

mixture regression model with true number of components K = 2 and K = 3. The mix-

ture proportions were uniformly drawn from the sets π1 ∈ {0.2, 0.3, 0.4, 0.5} for K = 2 and

(π1, π2) ∈ {(0.2, 0.2), (0.2, 0.3), (0.2, 0.4), (0.3, 0.3), (0.3333, 0.3333)} for K = 3. The regression co-

efficients were drawn from U [−2, 2] and the component variances were drawn from U [0.5, 2] where

U [a, b] denotes a continuous uniform distribution with support [a, b]. For each of these 2×200 sets

of true parameters, a thousand samples were generated with sample sizes n = 300 and n = 600.

Every sample had p = 3 explanatory variables which were drawn from U [0, 10]. A sample of size

n is generated by drawing a single trial multinomial variable with the mixture proportions as

parameter vector. Hence, each observation is labeled to belong to one specific component. Then,

for each observation, the dependent variable yi is drawn from a normal distribution with mean

βT
k xi and variance σ2

k. Estimation was done using 9 random sets of start parameters and the true

parameter vector using unpenalized estimation and penalized estimation with five specifications

for an = n− 1
j with j = 1, · · · , 5 and where each estimator used the same start values. It is expected

that the solution obtained by starting from the true parameter values will converge most of the

times to the desired local optimum. The solutions of the random starts however, can converge to

spurious solutions which may result in a larger sample log likelihood. The quality of the estima-

tion procedures is therefore judged by their ability to recover the parameters which we measure

by the mean squared error (MSE) of the estimates compared with the true parameters. Table

1 and table 2 present the average mean squared error over the 200 sets of random parameters

for K = 2 and K = 3 respectively. The standard deviations of the MSE are shown in brackets.

From table 1 one can see that larger penalties decrease the average MSE (except for the variance

parameters) in the case of two components. Hence, including a penalty term decreases the risk of

landing in a spurious solution. For the component variances, the average MSE decreases initially

but then rapidly increases beyond the unpenalized average MSE. Hence, by including a larger

penalty, the induced bias in the variance estimates offsets the decreased variance of the estimates.

From table 2 it seems that the optimal penalty term with respect to average MSE is somewhere

in between the two extremes for most parameters. Both tables demonstrate that the differences

between the estimation methods become smaller for larger samples which is expected as larger
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K = 2, n = 300

Pen - n−1 n
1
2 n

1
3 n

1
4 n

1
5

π1 0.0017 (0.0089) 0.0011 (0.0031) 0.0011 (0.0025) 0.0010 (0.0022) 0.0010 (0.0021) 0.0010 (0.0020)
β01 0.2127 (0.3260) 0.1910 (0.1402) 0.1888 (0.1251) 0.1882 (0.1222) 0.1879 (0.1200) 0.1881 (0.1195)
β02 0.0993 (0.2450) 0.0798 (0.0609) 0.0784 (0.0478) 0.0778 (0.0427) 0.0777 (0.0423) 0.0770 (0.0369)
β11 0.0026 (0.0051) 0.0022 (0.0018) 0.0022 (0.0015) 0.0021 (0.0013) 0.0021 (0.0013) 0.0021 (0.0013)
β12 0.0012 (0.0036) 0.0009 (0.0006) 0.0009 (0.0005) 0.0009 (0.0004) 0.0009 (0.0004) 0.0009 (0.0004)
β21 0.0029 (0.0084) 0.0024 (0.0036) 0.0023 (0.0029) 0.0023 (0.0027) 0.0023 (0.0027) 0.0023 (0.0026)
β22 0.0012 (0.0037) 0.0010 (0.0014) 0.0010 (0.0010) 0.0010 (0.0010) 0.0010 (0.0009) 0.0009 (0.0008)
β31 0.0026 (0.0058) 0.0022 (0.0019) 0.0022 (0.0016) 0.0022 (0.0015) 0.0022 (0.0014) 0.0021 (0.0014)
β32 0.0012 (0.0037) 0.0009 (0.0007) 0.0009 (0.0006) 0.0009 (0.0004) 0.0009 (0.0004) 0.0009 (0.0004)
σ1 0.0117 (0.0205) 0.0106 (0.0122) 0.0099 (0.0089) 0.0156 (0.0197) 0.0274 (0.0455) 0.0416 (0.0741)
σ2 0.0062 (0.0244) 0.0044 (0.0062) 0.0042 (0.0037) 0.0056 (0.0056) 0.0089 (0.0128) 0.0128 (0.0217)

K = 2, n = 600

Pen - n−1 n
1
2 n

1
3 n

1
4 n

1
5

π1 0.0005 (0.0012) 0.0005 (0.0006) 0.0005 (0.0005) 0.0005 (0.0005) 0.0005 (0.0004) 0.0005 (0.0004)
β01 0.0986 (0.1315) 0.0899 (0.0550) 0.0898 (0.0546) 0.0897 (0.0543) 0.0897 (0.0539) 0.0897 (0.0536)
β02 0.0401 (0.0389) 0.0374 (0.0165) 0.0373 (0.0164) 0.0373 (0.0164) 0.0373 (0.0163) 0.0373 (0.0163)
β11 0.0011 (0.0010) 0.0010 (0.0006) 0.0010 (0.0006) 0.0010 (0.0006) 0.0010 (0.0006) 0.0010 (0.0006)
β12 0.0005 (0.0006) 0.0004 (0.0002) 0.0004 (0.0002) 0.0004 (0.0002) 0.0004 (0.0002) 0.0004 (0.0002)
β21 0.0012 (0.0025) 0.0011 (0.0009) 0.0011 (0.0009) 0.0010 (0.0008) 0.0010 (0.0008) 0.0010 (0.0008)
β22 0.0005 (0.0005) 0.0004 (0.0003) 0.0004 (0.0003) 0.0004 (0.0002) 0.0004 (0.0002) 0.0004 (0.0002)
β31 0.0011 (0.0013) 0.0010 (0.0006) 0.0010 (0.0006) 0.0010 (0.0006) 0.0010 (0.0006) 0.0010 (0.0006)
β32 0.0005 (0.0006) 0.0004 (0.0002) 0.0004 (0.0002) 0.0004 (0.0002) 0.0004 (0.0002) 0.0004 (0.0002)
σ1 0.0049 (0.0050) 0.0047 (0.0039) 0.0045 (0.0035) 0.0054 (0.0044) 0.0080 (0.0102) 0.0116 (0.0183)
σ2 0.0021 (0.0028) 0.0020 (0.0011) 0.0019 (0.0009) 0.0021 (0.0011) 0.0028 (0.0026) 0.0037 (0.0048)

Table 1: Average MSE (standard deviation MSE) for 2 component models.
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K = 3, n = 300

Pen - n−1 n
1
2 n

1
3 n

1
4 n

1
5

π1 0.0015 (0.0046) 0.0011 (0.0019) 0.0010 (0.0014) 0.0010 (0.0014) 0.0010 (0.0015) 0.0011 (0.0016)
π2 0.0013 (0.0034) 0.0010 (0.0017) 0.0010 (0.0014) 0.0010 (0.0013) 0.0010 (0.0012) 0.0010 (0.0011)
π3 0.0018 (0.0044) 0.0013 (0.0023) 0.0013 (0.0019) 0.0012 (0.0017) 0.0012 (0.0017) 0.0012 (0.0017)
β01 0.9442 (6.8421) 0.3238 (0.2501) 0.3111 (0.1814) 0.3094 (0.1663) 0.3126 (0.1640) 0.3177 (0.1646)
β02 0.3444 (1.1443) 0.2255 (0.1844) 0.2164 (0.1387) 0.2188 (0.1490) 0.2223 (0.1566) 0.2263 (0.1607)
β03 0.2209 (0.5593) 0.1389 (0.0761) 0.1375 (0.0726) 0.1372 (0.0720) 0.1377 (0.0715) 0.1388 (0.0716)
β11 0.0298 (0.3191) 0.0045 (0.0069) 0.0044 (0.0068) 0.0047 (0.0104) 0.0048 (0.0108) 0.0049 (0.0109)
β12 0.0062 (0.0270) 0.0034 (0.0068) 0.0032 (0.0065) 0.0035 (0.0103) 0.0035 (0.0106) 0.0036 (0.0106)
β13 0.0046 (0.0174) 0.0021 (0.0037) 0.0019 (0.0028) 0.0019 (0.0030) 0.0019 (0.0031) 0.0019 (0.0032)
β21 0.0387 (0.4527) 0.0041 (0.0047) 0.0039 (0.0038) 0.0039 (0.0035) 0.0040 (0.0036) 0.0044 (0.0057)
β22 0.0047 (0.0152) 0.0028 (0.0039) 0.0027 (0.0035) 0.0026 (0.0032) 0.0027 (0.0033) 0.0030 (0.0053)
β23 0.0038 (0.0115) 0.0019 (0.0020) 0.0018 (0.0016) 0.0018 (0.0017) 0.0018 (0.0019) 0.0019 (0.0022)
β31 0.0116 (0.0532) 0.0049 (0.0095) 0.0044 (0.0063) 0.0045 (0.0087) 0.0046 (0.0088) 0.0046 (0.0089)
β32 0.0060 (0.0287) 0.0034 (0.0080) 0.0032 (0.0069) 0.0034 (0.0090) 0.0034 (0.0091) 0.0035 (0.0090)
β33 0.0059 (0.0295) 0.0024 (0.0074) 0.0020 (0.0028) 0.0019 (0.0024) 0.0019 (0.0024) 0.0019 (0.0023)
σ1 0.0231 (0.0414) 0.0186 (0.0190) 0.0176 (0.0135) 0.0447 (0.0580) 0.0937 (0.1263) 0.1499 (0.1999)
σ2 0.0148 (0.0279) 0.0121 (0.0122) 0.0119 (0.0098) 0.0314 (0.0398) 0.0673 (0.0938) 0.1088 (0.1510)
σ3 0.0114 (0.0256) 0.0084 (0.0110) 0.0078 (0.0060) 0.0156 (0.0198) 0.0312 (0.0481) 0.0500 (0.0802)

K = 3, n = 600

Pen - n−1 n
1
2 n

1
3 n

1
4 n

1
5

π1 0.0006 (0.0017) 0.0005 (0.0006) 0.0005 (0.0005) 0.0005 (0.0005) 0.0005 (0.0007) 0.0005 (0.0008)
π2 0.0005 (0.0011) 0.0005 (0.0006) 0.0005 (0.0006) 0.0005 (0.0007) 0.0005 (0.0008) 0.0005 (0.0008)
π3 0.0007 (0.0012) 0.0006 (0.0008) 0.0006 (0.0007) 0.0006 (0.0007) 0.0006 (0.0007) 0.0006 (0.0006)
β01 0.1625 (0.1948) 0.1458 (0.0824) 0.1447 (0.0789) 0.1444 (0.0772) 0.1451 (0.0768) 0.1465 (0.0783)
β02 0.1401 (0.5011) 0.1013 (0.0580) 0.1008 (0.0579) 0.1014 (0.0585) 0.1030 (0.0643) 0.1050 (0.0759)
β03 0.0689 (0.0520) 0.0657 (0.0331) 0.0655 (0.0326) 0.0654 (0.0323) 0.0654 (0.0322) 0.0656 (0.0322)
β11 0.0022 (0.0056) 0.0017 (0.0014) 0.0017 (0.0016) 0.0019 (0.0043) 0.0022 (0.0083) 0.0023 (0.0096)
β12 0.0017 (0.0069) 0.0012 (0.0012) 0.0012 (0.0015) 0.0014 (0.0044) 0.0017 (0.0083) 0.0018 (0.0096)
β13 0.0011 (0.0039) 0.0008 (0.0008) 0.0008 (0.0007) 0.0008 (0.0007) 0.0008 (0.0007) 0.0008 (0.0007)
β21 0.0020 (0.0039) 0.0016 (0.0009) 0.0016 (0.0008) 0.0016 (0.0008) 0.0016 (0.0008) 0.0016 (0.0008)
β22 0.0015 (0.0043) 0.0011 (0.0007) 0.0011 (0.0006) 0.0011 (0.0006) 0.0011 (0.0006) 0.0011 (0.0006)
β23 0.0009 (0.0019) 0.0008 (0.0005) 0.0008 (0.0005) 0.0008 (0.0005) 0.0008 (0.0005) 0.0008 (0.0005)
β31 0.0027 (0.0105) 0.0017 (0.0013) 0.0017 (0.0014) 0.0019 (0.0035) 0.0021 (0.0066) 0.0022 (0.0077)
β32 0.0022 (0.0127) 0.0013 (0.0017) 0.0013 (0.0017) 0.0015 (0.0038) 0.0017 (0.0068) 0.0017 (0.0077)
β33 0.0017 (0.0107) 0.0009 (0.0017) 0.0008 (0.0009) 0.0008 (0.0009) 0.0008 (0.0009) 0.0008 (0.0008)
σ1 0.0089 (0.0148) 0.0079 (0.0064) 0.0074 (0.0050) 0.0122 (0.0129) 0.0238 (0.0330) 0.0390 (0.0555)
σ2 0.0057 (0.0060) 0.0054 (0.0042) 0.0051 (0.0038) 0.0082 (0.0069) 0.0163 (0.0196) 0.0272 (0.0375)
σ3 0.0042 (0.0087) 0.0036 (0.0032) 0.0035 (0.0023) 0.0047 (0.0037) 0.0080 (0.0100) 0.0125 (0.0184)

Table 2: Average MSE (standard deviation MSE) for 3 component models.
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samples decrease the number of spurious solutions and the value of the penalty term. Further-

more, we can see that the average MSE is larger for 3 component models than for 2 component

models. This seems logical as complexer models will likely introduce more local optima and hence

probably more spurious optima. Larger sample sizes also decrease the size of the average MSE

which reflects the consistency of both estimators. It is also apparent that the intercept parameters

are estimated relatively poorly. This is most likely caused by the fact that these parameters are

estimated at the boundary of the design space of the explanatory variables. If one is interested

in estimating this parameter precisely, better experimental designs are warranted. Note also the

very large average and standard deviation of the intercept terms for the unpenalized estimator in

the upper part of table 2. This is due to one very large outlier (estimated MSE almost 96) for

which the unpenalized method deviated extremely from the true solution despite the inclusion of

the true parameters in the start values.

From tables 1 and 2 it appears that including a penalty term pays off with respect to the MSE.

However, it is hard to determine the optimal value of the penalty constant from these tables. We

have summarized the results even more by summing the parameter-wise average MSE. As the

different types of parameters have different ranges, the MSEs were first divided by the square of

their range to make the errors comparable. Figure 1 shows the relative total average MSE with
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Figure 1: Total relative average MSE relative to the unpenalized estimator.

respect to the unpenalized estimator. From this plot it appears that a penalty constant of n− 1
2

performs best for our very limited grid search although the difference with n−1 is very small. Chen

and Tan (2009) also found in their simulations that a penalty constant of n− 1
2 performed best

relative to no penalty and n−1. It might pay dividends to find the optimal penalty constant over

a much finer grid (and an optimal penalty function) but this is beyond the scope of this paper.

As was shown empirically, the penalized maximum likelihood estimator has on average a smaller

MSE and has the ability to steer the EM algorithm away from spurious optima. Therefore, we

hypothesize that this estimator can improve model selection for finite mixture models as most
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of the (non-Bayesian) selection criteria are based on the maximum log likelihood and/or the

maximum likelihood estimates.

3. Order Selection

3.1. Order Selection Criteria

Mixture models in general can be used for two main purposes, namely density estimation or

approximation and model-based clustering (Mclachlan and Peel 2000). A mixture model can be

used to ’semi-parametrically’ estimate densities as any distributional form can be mimicked by

adding enough components (see for instance Marron and Wand (1992)). Mixture models can also

be used to perform model-based clustering. In model-based clustering, the components represent

real but unobserved (or perhaps inherently unobservable) groups in a population and thus have

a meaningful interpretation. In both cases the number of components is often unknown a priori.

Order selection in finite mixture models consists of finding the appropriate number of components

based on the observed data. Order selection for density estimation has mostly been resolved as

criteria such as AIC and BIC appear to select a suitable number of components (Mclachlan and

Peel 2000). In a model-based clustering context however, order selection is a hard problem for

which still no general solution exists (Mclachlan and Peel 2000; Nylund et al. 2007).

An obvious method to determine the number of components would seem to use the likelihood

ratio test because a model with K components is nested in a model with K + 1 components.

Unfortunately, the limiting distribution of the test statistic is not the usual χ2 distribution with

degrees of freedom equal to the difference in numbers of parameters. The reason for this is that

the regularity conditions which are used in the derivation of the limiting distribution, are violated

in the case of mixture models (Ghosh and Sen 1985)3. Moreover, Seidel et al. (2000a), Seidel et al.

(2000b) and Seidel and Sevcikova (2004) have demonstrated that the distribution of the likelihood

ratio test statistic depends on the particular implementation of the EM algorithm. They showed

how different start strategies, different stopping rules and different ways of handling spurious com-

ponents affect this distribution in mixtures of exponential distributions. As a way out, McLachlan

(1987) suggested a parametric bootstrap approach. In such a procedure, one generates B datasets

under the null hypothesis (H0 : K = K0) and subsequently calculates the likelihood ratio test

statistic for each bootstrap sample. Unfortunately, the number of bootstrap samples B will likely

have to be high in order to achieve sufficient power. Furthermore, for every bootstrap sample

one has to implement the same estimation procedure used on the original sample which generally

will require multiple starts. This results in a computationally burdensome procedure, especially

in a simulation setting4, and therefore this selection method will not be used here. Burnham and

Anderson (2002) give another justification for this decision, as they vehemently argue throughout

their book that hypothesis testing procedures are not designed for model selection. Therefore,

these tests lack theoretical justification in model selection whereas information criteria such as

AIC are specifically designed for model selection and should be more suited for order selection in

mixture models. Furthermore, Sarstedt (2008) searched applications of mixture regression models

in marketing journals between 2000 and 2006 and found that none of the 32 articles he found used

3For more on this topic, see for instance Mclachlan and Peel (2000, section 6.4) or Garel (2007).
4Bootstrapping the likelihood ratio test may however be very useful if one has enough time and/or computing

power. Nylund et al. (2007) presented very favorable results from their simulation study.
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a likelihood ratio test or a bootstrapped version for model selection. In most articles BIC was

used to select the number of components, followed by AIC and some variants of that suggesting

that in practice the bootstrap test is not really used. Another type of model selection methods

which will not be considered here are methods based on the Fisher information matrix because

approximations to this matrix are only valid for very large samples, especially for mixture models

(Mclachlan and Peel 2000) and inaccurate estimates will only introduce extra variability in the

order selection5. In what follows, the selection methods which were used in our simulation study

will be discussed.

Burnham and Anderson (2002) classify model selection criteria into three broad classes, namely

optimization of a selection criterion, hypothesis testing and ad hoc methods. As mentioned previ-

ously, hypothesis testing will not be used here. We will start with reviewing some criteria which

belong to the first class, the information criteria. Most of these criteria were derived for general

statistical models and not for order selection in finite mixture models specifically. It should also

be noted that for all subsequent criteria, the model in the candidate model set for which the

respective criterion is minimized is the selected model. The best known information criterion is

most likely AIC which stands for Akaike’s information criterion6. AIC is defined as

−2LL
(

Ψ̂
)

+ 2np (10)

where LL
(

Ψ̂
)

is the log likelihood of the data evaluated at the maximum likelihood estimates

and np denotes the number of parameters in the model which is equal to (p+3)K − 1 for mixture

regressions with p explanatory variables in each component. Akaike (1974) derived AIC as an

estimate of the (directed) Kullback-Leibler divergence7 between the true model and the fitted

model. The term np is a bias-correction term as the maximized log likelihood is a positively

biased estimator of the expected Kullback-Leibler information. Despite popular belief, AIC does

not require that the true model is in the set of candidate models (Konishi and Kitagawa 1996;

Burnham and Anderson 2002) but the approximations in the derivation do require the same

regularity conditions as are needed for the likelihood ratio test (Titterington, Smith, and Makov

1985; Mclachlan and Peel 2000). Several authors have noticed that it tends to overfit, i.e. select

too many components, in a finite mixture context (Mclachlan and Peel 2000) but it is still used

as shown by Sarstedt (2008). AIC is only asymptotically correct and Burnham and Anderson

(2002) warn against using AIC when the ratio n
np

is smaller than 40. To remedy this, Hurvich

and Tsai (1989) developed a small-sample version of AIC for regular linear models with normal

errors. Burnham and Anderson (2002) however, also advocate its use in other contexts unless the

underlying probability distribution deviates strongly from a normal one. Finite mixtures of normal

distributions however, are not normal and can be multimodal, skewed, . . . . Hence, it would seem

that this small sample improvement will not work well in the mixture context. The small-sample

5The most widely known criterion of this type is probably ICOMP (Bozdogan 1993) which is defined as

−2LL
(

Ψ̂

)

+ nplog
[

n−1
p trace

(

I−1
)

]

− log
(

|I−1|
)

where I denotes the expected information matrix, np is the

number of parameters and |.| is the determinant.
6Akaike himself actually called it ’An information criterion’(Burnham and Anderson 2002).
7The Kullback-Leibler divergence between distributions f and g is defined as I(f, g) =

∫

f(x) log f(x)dx −
∫

f(x) log g(x|θ)dx and represents the lost information when approximating f by g (Kullback and Leibler 1951;
Burnham and Anderson 2002).
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AIC, denoted by AICc is equal to AIC +
2np(np+1)
n−np−1 . It is straightforward to see that the penalty

will be larger than that of AIC for finite sample sizes and tends to 0 as the sample size increases.

Whereas AIC is derived by looking at the directed Kullback-Leibler divergence between the

truth and the approximating model, Cavanaugh (1999) used the symmetric Kullback-Leibler di-

vergence8 between truth and approximation. He showed that optimizing this criterion leads to

KIC = −2LL
(

Ψ̂
)

+ 3np which is short for Kullback information criterion and has a larger

penalty than AIC. Cavanaugh (2004) derived also a small sample version KICc = −2LL
(

Ψ̂
)

+

nlog
(

n
n−np+1

)

+
n{(n−np+1)(2np+1)−2}

(n−np−1)(n−np+1) and showed that it can also hold as an approximation for

non-linear models. Cavanaugh (1999) argued that KIC might be a more sensitive measure of

departure from the truth than AIC. Interestingly enough, Bozdogan (1993) conjectured that the

asymptotic log likelihood ratio for nested mixture models is distributed as a non-central χ2 dis-

tribution. From this he derived that the penalty in (10) should be 3np, which is the same formula

as Cavanaugh’s KIC. Another modification of AIC was suggested by Bhansali and Downham

(1977) who suggested to increase the penalty term to 4np, based on simulations of autoregressive

models, which we will denote by AIC4.

One ’drawback’ of AIC is that it is not a consistent criterion9. A consistent model selection

criterion is a criterion which, as the sample size grows, asymptotically selects the true model

with probability 1 provided that the true model is in the candidate set of models (Burnham

and Anderson 2002). Several of such consistent criteria have been derived in the literature. It

should also be noted that by requiring a criterion to be consistent, it no longer is an estimator of

the relative Kullback-Leibler divergence and is hence no longer efficient (Burnham and Anderson

2002; Yang 2005). Efficiency here means that as the sample size tends to infinity, an efficient

information criterion will select the model in the candidate model set which has the smallest

expected squared prediction error. Hannan and Quinn (1979) derived the consistent HQ criterion

which replaces 2np by 2nplog (log(n)) in (10) and has a larger penalty than AIC for sample

sizes larger than 15. Bozdogan (1987) proposed another consistent modification of (10), namely

CAIC = −2LL
(

Ψ̂
)

+ np [log(n) + 1] which increases the penalty function for any sample size.

Perhaps the most famous among the consistent criteria is BIC (Schwarz 1978), known as Bayesian

information criterion or Schwarz criterion, which is defined as

BIC = −2LL
(

Ψ̂
)

+ nplog(n) (11)

and can be derived as a large sample approximation of the logarithm of the integrated likelihood

(integrated over the parameter space). Using BIC implies selecting the model with the largest

posterior probability without specifying priors. Mclachlan and Peel (2000) note that the derivation

of (11) requires regularity conditions which break down for finite mixture models. However, as

AIC, BIC is still used in practice as indicated by Sarstedt (2008). It has been reported that BIC

underfits finite mixtures (i.e. selects a model with too few components) for small sample sizes

(Mclachlan and Peel 2000). BIC was independently derived by Rissanen (1986) based on coding

theory and is known as minimum description length in this field. There also exists an adjusted

8The symmetric Kullback-Leibler divergence J(f, g) between f and g is defined as J(f, g) = I(f, g) + I(g, f).
9Burnham and Anderson (2002) argue that in most realistic situations, it is impossible that the true model is in

the set of candidate models and show furthermore by simulation that in case it is, AIC also selects the true model
with high probability.
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version of BIC, denoted by aBIC, which mitigates underfitting in small samples where sample

size n in (11) is replaced by n+2
24 (Sclove 1987). Liang, Jaszczak, and Coleman (1992) mention two

other modifications of (11) where the penalty term is 2nplog(n) and 5nplog(n). These criteria will

be denoted by MDL2 and MDL5 respectively. For non-trivial sample sizes (larger than 55) we

can order most of these criteria from the smallest penalty function to the largest penalty function

as AIC, KIC, AIC4, BIC,CAIC,MDL2,MDL5. AICc,KICc,aBIC and HQ are somewhere

in between depending on the sample size and the dimension of the parameter vector. In general

we can say that AIC would select larger models as it has the lowest penalty term which may

cause problems with overfitting, as is reported in the literature. MDL5 on the other hand will

select small models as its penalty term is by far the largest and will therefore be most prone to

underfitting. Burnham and Anderson (2002) state that a lot of simulation results report overfitting

of AIC because it is improperly used. They argue that the small sample version AICc should

have been used in many cases. However, as mentioned earlier, the derivation of AICc was done

for regular linear models and is theoretically incorrect for other types of models. Burnham and

Anderson (2002) therefore recommend using a corrected AIC specifically developed for mixture

models. Naik, Shi, and Tsai (2007) derived such a mixture regression criterion for simultaneous

selection of the number of components and the number of explanatory variables per component,

MRC, which has the following formula

MRC =
K
∑

k=1

nπ̂k log(σ̂
2
k) +

K
∑

k=1

nπ̂k(nπ̂k + pk)

nπ̂k − pk − 2
− 2

K
∑

k=1

nπ̂k log(π̂k) (12)

where pk = trace

(

X̂k

(

X̂
T

k X̂k

)−1

X̂
T

k

)

, X̂k = Ŵ
1/2

k X and Ŵ k is a diagonal matrix with

elements τ̂1k, · · · , τ̂nk. The first term in (12) measures the lack of fit and hence minimizing it will

lead to larger models. This tendency is countered by the second term which penalizes retaining

many explanatory variables and by the third term which penalizes the number of components.

When K = 1, (12) is equal to AICc and for large samples it is equivalent to AIC. Similar

to Cavanaugh (1999), Hafidi and Mkhadri (2010) derived an information criterion based on the

symmetric Kullback-Leibler divergence which we will call MRCk and which is defined as MRC +
∑K

k=1 (pk + 1).

Next to the information criteria we will also consider some classification based methods which

were also specifically developed for finite mixture models but not for mixtures of (linear) regres-

sions. These methods take classification into account and tend to select models which are able

to convincingly classify the observations. It can be shown that the estimated complete data log

likelihood is equal to the sample log likelihood minus the entropy of the posterior classification

matrix of the estimated posterior probabilities (Hathaway 1986):

LLc

(

Ψ̂, τ̂
)

= LL
(

Ψ̂
)

+

K
∑

k=1

n
∑

i=1

τ̂ik log τ̂ik (13)

where τ̂ denotes the matrix of posterior probabilities and the second term on the right hand

side is the negative of the estimated entropy EN(τ̂ ). Biernacki and Govaert (1997) suggested

using this for order selection. By multiplying (13) by −2 one obtains the classification likelihood

criterion (CLC). Biernacki and Govaert (1997) found that this criterion works well for well
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separated components and equal mixture proportions. Banfield and Raftery (1993) also used

the classification likelihood to derive an approximate Bayesian criterion called the approximate

weight of evidence AWE = −2LLc

(

Ψ̂, τ̂
)

+2np(
3
2 + log n). Note that the penalty term in AWE

is very large. Celeux and Soromenho (1996) propose to use the entropy directly to select the

correct number of components by using the normalized entropy criterion NEC = EN(τ̂ )

LL(Ψ̂)−LL(1)

where LL(1) denotes the maximized log likelihood for a one-component model. As this criterion is

undefined for K = 1, Biernacki, Celeux, and Govaert (1999) modified it by setting NEC at 1 in

this case. As CLC and NEC don’t penalize for model complexity these methods might tend to

overfit which can be overcome by including a penalty for model complexity. Furthermore, BIC

does not take the mixture context into account. Biernacki, Celeux, and Govaert (1998) proposed

to solve these problems with the integrated classification likelihood criterion which is defined as

ICL = CLC + 2n

K
∑

k=1

π̂k log(π̂k) + (np −K + 1) log(n)− 2K(nπ̂1, · · · , nπ̂K) (14)

K(n1, · · · , nK) =

K
∑

k=1

log (Γ(nk + α))− log (Γ(n+Kα))− g log (Γ(α)) + log (Γ(Kα)) (15)

where Γ(.) is the gamma function and α represents the parameter of a prior Dirichlet distribution

on π. Jeffrey’s non-informative prior takes α as 1/2 which is also what Biernacki et al. (1998) use

and what will be used here. Biernacki et al. (1998) also provide a large sample BIC approximation

to ICL which is ICL − BIC = CLC + np log(n) and they have found that this approximation

doesn’t differ much from using (14). An overview of all order selection criteria considered can be

found in table 3.

3.2. Previous Results

Selecting the correct number of components has been extensively studied in the literature.

These simulation studies vary in the type of models considered, the selection methods used and

the settings of the simulation design (experimental factors). In this section, some of these studies

will be reviewed.

In the context of mixtures of multinomial distributions (also known as latent class analysis)

several extensive simulation studies have been performed. Yang (2006) found that aBIC was

generally the best criterion. For large samples BIC and CAIC also performed well. Dias (2007)

concluded that BIC outperforms several complete information based criteria. Yang (2007) also

found that aBIC was the best performing information criterion and also mention KIC as a good

alternative. Cutler and Windham (1994) simulated mixtures of multivariate normal components.

They found that ICOMP was superior to both AIC and BIC. In a small scale simulation

McLachlan and Ng (2000) found that ICL and ICL-BIC outperformed BIC and AIC and

showed that AIC tends to overfit. Celeux and Soromenho (1996) also performed some simulations

for both univariate and multivariate mixtures of normal distributions. They found that AIC has

a slight tendency to select too many components, that BIC tends to select too few and that

NEC and ICOMP generally perform best. Nylund et al. (2007) concluded that BIC is the best

information criterion for both mixtures of contingency tables and mixtures of normal distributions.

They also showed that a parametric bootstrap of the likelihood ratio test outperforms BIC. An

interesting study is that of Fonseca and Cardoso (2007) where they compared the performance of
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Criterion Formula Source

AIC −2LL
(

Ψ̂

)

+ 2np Akaike (1974)

AICc AIC +
2np(np+1)

n−np−1
Hurvich and Tsai (1989)

KIC −2LL
(

Ψ̂

)

+ 3np Cavanaugh (1999)

KICc −2LL
(

Ψ̂

)

+ nlog
(

n
n−np+1

)

+
n{(n−np+1)(2np+1)−2}

(n−np−1)(n−np+1)
Cavanaugh (2004)

AIC4 −2LL
(

Ψ̂

)

+ 4np Bhansali and Downham (1977)

HQ −2LL
(

Ψ̂

)

+ 2nplog (log(n)) Hannan and Quinn (1979)

CAIC −2LL
(

Ψ̂

)

+ np [log(n) + 1] Bozdogan (1987)

BIC −2LL
(

Ψ̂

)

+ nplog(n) Schwarz (1978), Rissanen (1986)

aBIC −2LL
(

Ψ̂

)

+ nplog(
n+2
24

) Sclove (1987)

MDL2 −2LL
(

Ψ̂

)

+ 2nplog(n) Liang et al. (1992)

MDL5 −2LL
(

Ψ̂

)

+ 5nplog(n) Liang et al. (1992)

MRC
∑K

k=1 nπ̂k log(σ̂2
k
) +

∑K
k=1

nπ̂k(nπ̂k+pk)
nπ̂k−pk−2

− 2
∑K

k=1 nπ̂k log(π̂k) Naik et al. (2007)

MRCk MRC +
∑K

k=1 (pk + 1) Hafidi and Mkhadri (2010)

CLC −2LL
(

Ψ̂

)

− 2
∑K

k=1

∑n
i=1 τ̂ik log τ̂ik Biernacki and Govaert (1997)

AWE CLC + 2np(
3
2
+ logn) Banfield and Raftery (1993)

NEC
−

∑K
k=1

∑n
i=1 τ̂ik log τ̂ik

LL(Ψ̂)−LL(1)
Celeux and Soromenho (1996)

ICL CLC + 2n
∑K

k=1 π̂k log(π̂k) + (np −K + 1) log(n)− 2K(nπ̂1, · · · , nπ̂K) Biernacki et al. (1998)

ICL-BIC CLC + nplog(n) Biernacki et al. (1998)

Table 3: Overview of order selection criteria. K(n1, · · · , nK) =
∑K

k=1 log (Γ(nk + α)) − log (Γ(n+Kα)) −
g log (Γ(α)) + log (Γ(Kα)).

16



several selection measures on 42 real datasets where the true number of components is known. For

the categorical datasets, they found that KIC worked best as it selected the correct number of

components in 95% of the cases. For continuous data, they used multivariate normal models and

found that BIC works best with a success rate of 77%. In the datasets with mixed types of data

(both continuous and categorical) they found that ICL-BIC performed best (80% success rate).

They also noted that the performance of the AIC family of information criteria and ICL-BIC

varied a lot across the different types of data. From their results, it can be seen that BIC has

the highest average success rate followed by CAIC. CLC on the other hand performs worst on

average, followed by AWE. Jedidi, Jagpal, and DeSarbo (1997) found that BIC and to a lesser

extent CAIC work well in mixtures of structural equation models. Andrews and Currim (2003a)

showed that KIC outperforms ICOMP , BIC and a validation sample method in mixtures of

logistic regressions. In the context of mixtures of growth models, Lubke and Neale (2006) found

that AIC and aBIC outperform BIC and CAIC. Tofighi and Enders (2008) also found that

aBIC works well and BIC performs poorly for this type of models.

Hawkins, Allen, and Stromberg (2001) were the first to systematically investigate model selec-

tion in finite mixtures of univariate linear regressions using an extensive simulation study. The

factors in the experiment were the true number of mixing components (1 to 4), the mixture pro-

portions and the parameters in the component regression models which were condensed in one

measure of separation between the components. They compared order selection based on 22 selec-

tion criteria which were based on the log likelihood, an approximation to the Fisher information

matrix and several approximations to the complete data log likelihood and the complete data

Fisher information matrix. They also included two classification-based measures. In general they

concluded that model selection performance of all criteria decreased as the true number of compo-

nents increased and in the presence of small mixture proportions. The performance increased on

the other hand when the components were better separated. For a small number of components

(1 or 2) they found that ICOMP was the second worst criterion (only better than the log likeli-

hood itself). BIC and to a lesser extent AWE performed the best in that situation. For larger

numbers of components no criterion outperformed the others in all circumstances. They could

however conclude that AIC, KIC, ICOMP , BIC and AWE as a group performed better than

the other measures which were based on approximations of the complete data Fisher information

matrix or on the posterior probabilities. Finally, they also noted that KIC did not systemati-

cally outperform AIC or the other way around. Andrews and Currim (2003b) investigated the

performances of AIC, KIC, BIC, CAIC, ICOMP , a validation sample log likelihood and NEC

in a simulation of linear regression with repeated observations per subject. They varied eight

factors: the true number of components, the mean separation between component coefficients, the

number of subjects, the number of observations per subject, the number of explanatory variables,

R2 within the components, the minimum mixture proportion and the measurement level of the

explanatory variables. They found that KIC was the best criterion in all experimental conditions

followed by BIC and the validation log likelihood. ICOMP , NEC and AIC on the other hand

did not perform well. Oliveira-brochado and Martins (2008) performed a similar simulation study

as Andrews and Currim (2003b). They added another experimental factor differentiating between

normal errors and uniform errors. Furthermore they compared 26 selection criteria. They found

that overall, KIC, ICL-BIC, HQ and AIC4 (in that order) performed best and that AIC, AICc

and ICOMP had the largest tendency to overfit. Most of the classification-based criteria on the
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other hand showed high rates of underfitting. Both studies also showed that generally the perfor-

mance of the criteria increases when the true model is less complex, i.e. fewer components and

explanatory variables, the separation between the components increases, the sample size grows and

the absence of very small components. Surprisingly, Oliveira-brochado and Martins (2008) found

that the effect of error misspecification only had a small negative effect. Finally, Sarstedt (2008)

investigated the performance of AIC, KIC,BIC and CAIC in mixtures of univariate regressions

while varying the sample size systematically between 100 and 500. In this study it was found that

CAIC and to a lesser degree BIC performed well across all sample sizes. KIC only performed

well for sample sizes larger than 250 and AIC performed poorly in all experimental conditions.

All these results suggest that it might be impossible to find one selection criterion to work best in

all situations, let alone for all types of models10.

4. Simulation Study

4.1. Experimental Design

The design of our simulation study largely follows Hawkins et al. (2001). The number of

explanatory variables p is set to 3 in all true models. All explanatory variables are drawn from

uniform distributions with support [0, 10]. The regression coefficients (including the intercept)

and the component variances are drawn from uniform distributions with support [−2, 2] and

[0.5, 2] respectively to increase generalizability. As a measure of separation for the components

we calculated the average distance between the component regression hyperplanes as in Hawkins

et al. (2001). The distance between 2 components k and l at some specific point x is equal to

M =

√

√

√

√

(

βT
k x− βT

l x
)2

σ2
k + σ2

l

. (16)

We evaluated this at 50 evenly spaced grid points between 0 and 10 in each of the 3 dimensions

and took the average as the separation between component k and l.

The experimental factors and levels are:

• K∗, true number of components: 1, 2 or 3;

• n, sample size: 300 or 600;

• π, the mixture proportions: equal (1/K∗) or unequal with π = (0.34, 0.66) for K∗ = 2 and

π = (0.25, 0.25, 0.5) for K∗ = 3;

• t, type of model (mis)specificaton: 1-8.

A level of 1 for t indicates no misspecification and is the only specification (together with

t = 5) where the true model is in the set of candidate models. Level 2 means that after the true

data generation 3 independent explanatory variables were added to the sample. This is a situation

which frequently arises when researchers are unsure which variables are relevant. The data used for

estimation thus contain superfluous, uninformative variables. A misspecification level 3 indicates

that after data generation one of the explanatory variables was dropped from the sample (we have

10Bootstrapping might be one but its computational burden makes it impractical.
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arbitrarily taken the last one). This mimics a situation were an important variable is unknown to

be related to the dependent variable. In both cases, due to the independency of the explanatory

variables, it would be expected that the regression coefficients could still be estimated without

bias when the model is estimated with K∗ components. It is however expected that with type 2

misspecification the order selection procedures can capitalize on the higher dimensionality of the

parameter space and hence prefer models with more components which would lead to overfitting.

In situation 3, the parameter space has a smaller dimension and therefore it might be harder to

pick up the true number of components. As the importance of the dropped explanatory variable

is not uniform across the components (the regression coefficient varies across the components)

it might also be the case that specific components become much harder to find for a large |β3k|

whereas detection of others might hardly be influenced for small |β3k|. It is therefore expected

that this would increase the rate of underfitting for the selection procedures. Misspecification

type 4 means that the true data generation mechanism includes an interaction (arbitrarily taken

between explanatory variables 2 and 3) whereas it is estimated without this effect. The estimated

regression coefficients will no longer be unbiased as the explanatory variables are correlated with

the unincluded but real interaction effect. It is unclear how this will affect model selection.

Type 5 is not a real model misspecification as it indicates that the explanatory variables are

correlated. The design matrix for this factor level was generated according to Falk (1999) with all

correlations put to 0.5. For all types 1 to 5 the errors are normally distributed as specified earlier.

Misspecification of type 6 indicates that the normal error terms are transformed to have a higher

kurtosis and type 7 that they are transformed to have skewed errors. The transformations were

done according to Fleishman’s method (Fleishman 1978). The type 6 errors were transformed to

have excess kurtosis of 4 whereas the type 7 errors were transformed to have excess kurtosis of 4

and skewness of 1.511.

The effect of these transformations is illustrated in figure 2 for standard normal variables. It

can readily be seen that type 6 makes the tails of the error distribution heavier with respect to a

normal distribution. On the one hand this makes it easier to find the real components but on the

other hand this may lead to extra components which accommodate the outlying observations. It

is therefore expected that this type of misspecification will lead to overfitting. For type 7 of model

misspecification, the error terms are asymmetric which will most likely also lead to overfitting.

Titterington et al. (1985) for instance, showed how it is practically impossible to differentiate a

lognormal distribution (which is skewed) from a mixture of 2 normal distributions. The final type

of model misspecification (8) is a case where the errors within a component are heteroskedas-

tic. This was achieved by multiplying the error of observation i belonging to component k with

exp(
∑p

j=1 xij

5p − 0.3). Afterwards the errors were multiplied by the appropriate scaling factor to

make them have the required average variance within each component. It is expected that this will

also lead to increased overfitting as the regions with higher error variability might accommodate

multiple components. An overview of the different model specifications can be found in table 4.

The design is full factorial and was executed with 1000 replications. For each replication and

combination of factor settings, a set of parameters and a design matrix was generated as specified

above. Component membership was generated by drawing a sample of size n from a multinomial

distribution with parameter vector π. The dependent variables yi where then generated as a

11It is not possible to set skewness independently from kurtosis (Headrick 2002).
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Figure 2: Kernel density plot of error distributions.

Code Type of misspecification
1 -
2 3 superfluous explanatory variables
3 1 missing explanatory variable
4 missing interaction
5 multicollinearity
6 heavy tailed errors
7 skewed errors
8 heteroskedastic errors within each component

Table 4: Overview of model (mis)specifications.
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draw from a normal distribution with mean βT
k xi for the relevant component k and a (potentially

transformed) variance. Models where K∗ = 1 were fitted with K = 1 − 3, models with K∗ = 2

were fitted with K = 1− 5 and models with K∗ = 3 were fitted with K = 1− 6 where K∗ denotes

the true number of components. Estimation was done with an unpenalized and a penalized EM

algorithm with 200 random starts for K > 1. The penalty constant was taken to be n− 1
2 . As

measures of performance we will look at the relative root mean squared error of estimation and

the success rate of the order selection criteria compared to the known true number of components

K∗. However, as the correct model is not always in the set of candidate models it might be that

a model with K 6= K∗ is a more appropriate model. Therefore we will also look at a validation

sample of size 1000 generated from the true data generating model. The estimated model with

the highest log likelihood in the validation sample is then taken as a success with respect to out

of sample prediction as this is an estimate of the Kullback-Leibler divergence up to a constant

(Burnham and Anderson 2002).

4.2. Results and Discussion

Before we analyze the model selection results, we take a look at the convergence of the un-

penalized and the penalized estimators. From table 5 it can be seen that there is no difference

between both estimation procedures (in terms of convergence) when the true number of compo-

nents is 1 as for every dataset a non-spurious solution could be found for k = 1− 3. For a higher

number of true components, however there is a large difference between both procedures. Both

estimators converged to non-spurious solutions for models where K ≤ K∗ with some rare excep-

tions for the penalized estimator. This is not necessarily a big problem. The instances when this

happened occurred when one component was very close to another component which made them

virtually indistinguishable (separation < 1) and happened 8 out of 9 times for a sample size of

300. Nevertheless this serves as an indication that penalizing the likelihood can be problematic if

the penalty term is too large. From table 5 it can also be observed that a penalized likelihood es-

Type
1 2 3 4 5 6 7 8

K∗ K Unp Pen Unp Pen Unp Pen Unp Pen Unp Pen Unp Pen Unp Pen Unp Pen
1 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 0.86 1.00 0.92 1.00 1.00 1.00 0.86 1.00 0.85 1.00 0.98 1.00 0.99 1.00 1.00
4 0.97 0.67 0.99 0.82 1.00 0.98 0.98 0.69 1.00 0.72 0.99 0.90 0.99 0.93 1.00 0.97
5 0.82 0.44 0.77 0.58 0.96 0.82 0.83 0.46 0.91 0.51 0.88 0.69 0.87 0.65 0.93 0.83

3 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 1.00 1.005 1.00 1.001 1.00 1.00 1.00 1.00 1.00 1.003 1.00 1.00 1.00 1.00 1.00 1.00
4 0.99 0.73 1.00 0.87 1.00 1.00 0.99 0.72 1.00 0.79 0.99 0.94 1.00 0.96 1.00 0.99
5 0.84 0.40 0.79 0.55 0.96 0.90 0.83 0.40 0.93 0.50 0.89 0.72 0.89 0.76 0.96 0.91
6 0.17 0.06 0.32 0.19 0.46 0.36 0.17 0.06 0.37 0.13 0.26 0.17 0.25 0.18 0.37 0.32

Table 5: Rates of properly converged estimations. Cells where estimation with the correct number of components
did not converge are indicated with a superscript which denotes the number of failures out of a total of 4000.

timator can partly serve as an order selection tool by not converging to any non-spurious solution

with K > K∗. This also happens for the non-penalized estimator but with much lower frequency.

Obviously, solutions which did not converge are not considered for order selection and hence for

these datasets, that particular number of components cannot be selected.
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Next we take a look at the root mean squared error of both estimators when K∗ > 1 and

K = K∗ because for one-component models, both estimators are identical (closed-form solution)

and for K 6= K∗ the model structure is too different from the truth to be easily compared. As

before, the results are adjusted for the different ranges of the different types of parameters. From

table 6 it is clear that on most occasions the penalized estimates have smaller RMSE than the

n
300 600

type K∗ π Unp Pen Unp Pen
1 2 Equal 0.135 0.132 0.094 0.094

Unequal 0.142 0.141 0.099 0.098
3 Equal 0.228 0.221 0.159 0.147

Unequal 0.276 0.408 0.168 0.158
2 2 Equal 0.173 0.167 0.117 0.114

Unequal 0.184 0.179 0.130 0.126
3 Equal 0.319 0.278 0.216 0.197

Unequal 0.357 0.316 0.230 0.200
3 2 Equal 2.911 2.909 2.926 2.922

Unequal 2.924 2.923 2.912 2.912
3 Equal 3.711 3.664 3.657 3.642

Unequal 3.595 3.526 3.612 3.608
4 2 Equal 0.134 0.133 0.094 0.092

Unequal 0.146 0.142 0.095 0.095
3 Equal 0.243 0.218 0.157 0.148

Unequal 0.246 0.229 0.168 0.157
5 2 Equal 0.122 0.120 0.083 0.083

Unequal 0.128 0.127 0.091 0.087
3 Equal 0.234 0.211 0.151 0.152

Unequal 0.243 0.214 0.155 0.143
6 2 Equal 0.169 0.165 0.122 0.121

Unequal 0.171 0.170 0.126 0.125
3 Equal 0.297 0.264 0.201 0.194

Unequal 0.340 0.300 0.231 0.226
7 2 Equal 0.176 0.170 0.122 0.120

Unequal 0.192 0.189 0.137 0.135
3 Equal 0.296 0.266 0.232 0.221

Unequal 0.325 0.294 0.250 0.230
8 2 Equal 0.470 0.474 0.448 0.454

Unequal 0.597 0.607 0.589 0.594
3 Equal 1.099 1.038 1.003 0.995

Unequal 1.263 1.202 1.232 1.162

Table 6: Average relative RMSE.

unpenalized estimates. Furthermore, when the unpenalized estimator is better, the difference is

small expect for the cell with n = 300, type= 1,K∗ = 3 and π is unequal. This large deviation

is caused by 3 large outliers and the median difference is only 0.003. Hence, once again one can

see that penalization generally leads to better estimation. Furthermore one can notice that the

estimators perform better for equal mixture proportions, larger samples and fewer components.

Finally, it can be seen that type 3 misspecification leads to the worst estimates (by far) of all

types of misspecification followed by type 8. Other misspecifications have only minor detrimental
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effects (if at all).

Table 7 presents the percentages of underfitting, correct fitting and overfitting with respect to

the true number of components for each type of misspecification, estimation and order selection

method. A striking difference can be noticed between penalized estimation and unpenalized esti-

mation. In all but two settings, the model selection criteria have a higher or equal probability of

selecting the correct number of components when using the penalized estimator and when they

do worse, it is only by 1 percentage point at most. Therefore, the rest of the discussion will be

about the results from the penalized estimation. Another very noticeable effect is that neglecting

to include an important explanatory variable decreases the performance of all criteria by a sizable

percentage. The criteria which are most robust to this type of misspecification are MDL2 with a

72% succes rate, CAIC with a 68% success rate and BIC with a 63% success rate. Furthermore,

in this setting, the largest rates of underfitting can be observed, especially for those selection cri-

teria which perform well (80% overall success rate or higher). Including superfluous explanatory

variables does not seem to affect the better selection methods on the other hand whereas it has

a substantial detrimental effect on the estimators of the relative or symmetric Kullback-Leibler

divergence (but not on those derived specifically for mixture models) and on the sample size ad-

justed BIC and HQ. This outcome would suggest that, all things considered, one is better of with

too many explanatory variables than with too few, although this is a conclusion which would need

to be investigated in more detail. Surprisingly enough neglecting an interaction does not seem to

decrease the performance of the selection criteria. Moreover, many of them actually increase their

success rate by a percentage point in this situation. On the other hand, multicollinearity of the

explanatory variables appears to have a small negative effect. Many criteria do surprisingly well in

the case of error misspecification although the highest success rates are somewhat lower for these

situations. However, none of the criteria appear to be very robust to all three types of misspec-

ification. MDL5 and AWE appear to be unaffected by the heavier tails and skewness but drop

substantially in case of heteroskedasticity. The most stable criteria here are MRCk, MRC and the

integrated classification criteria ICL and ICL-BIC. Furthermore, it can be seen that AIC and

AICc are by far the least successful criteria with high rates of overfitting and that AIC is domi-

nated by AICc by a small margin. Their symmetric counterparts KIC and KICc perform better

but still not well compared to other criteria and it can be seen that KICc dominates KIC. The

two criteria derived especially for mixtures of linear regressions (MRC and MRCk) outperform

these criteria substantially but amongst themselves they don’t differ much. The larger penalties in

AIC4, CAIC and BIC make these measures very performant for situations 1, 2, 4 and 5, among

the better performers in situation 3 but decrease this excellent performance substantially in case

of error misspecification. Similar behaviour can be observed for CLC and HQ. It should also be

noted that aBIC is dominated by BIC. NEC is an interesting case as it never performs really

well with a maximum succes rate of 80% but, except for type 3 misspecification, seems to keep

itself at a respectable level in all other situations. All things considered, it appears that MRC,

MRCk, MDL2, MDL5, ICL and ICL-BIC are the criteria which consistently perform with a

high success rate (except for misspecification level 3). Unfortunately, there is not a single criterion

which outperforms the others in all scenarios and never drops below 80%. The performance of the

best criteria is graphically presented in figure 3.

Table 8 presents the percentages of underfitting, correct fitting and overfitting of the penalized
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AIC AICc MRC KIC KICc MRCk AIC4 CAIC HQ
Type Pen U C O U C O U C O U C O U C O U C O U C O U C O U C O
1 P 0.00 0.58 0.42 0.00 0.62 0.37 0.06 0.94 0.00 0.00 0.84 0.16 0.00 0.87 0.13 0.06 0.94 0.00 0.00 0.97 0.03 0.01 0.99 0.00 0.00 0.94 0.06

U 0.00 0.01 0.99 0.00 0.02 0.98 0.05 0.75 0.20 0.00 0.04 0.96 0.00 0.06 0.94 0.05 0.82 0.12 0.00 0.14 0.86 0.01 0.77 0.23 0.00 0.09 0.91
2 P 0.00 0.39 0.61 0.00 0.49 0.51 0.06 0.94 0.00 0.00 0.67 0.33 0.00 0.73 0.27 0.06 0.94 0.00 0.01 0.86 0.13 0.02 0.98 0.00 0.00 0.78 0.22

U 0.00 0.00 1.00 0.00 0.00 1.00 0.05 0.44 0.52 0.00 0.01 0.99 0.00 0.01 0.99 0.05 0.57 0.38 0.00 0.02 0.98 0.01 0.43 0.56 0.00 0.01 0.99
3 P 0.00 0.08 0.92 0.00 0.11 0.89 0.44 0.54 0.01 0.01 0.26 0.73 0.01 0.29 0.69 0.45 0.54 0.01 0.04 0.42 0.55 0.13 0.68 0.19 0.02 0.36 0.62

U 0.00 0.01 0.99 0.00 0.01 0.99 0.42 0.49 0.09 0.00 0.02 0.98 0.00 0.04 0.96 0.43 0.51 0.06 0.01 0.10 0.89 0.11 0.62 0.26 0.00 0.06 0.94
4 P 0.00 0.58 0.42 0.00 0.63 0.37 0.05 0.95 0.00 0.00 0.83 0.17 0.00 0.87 0.13 0.06 0.95 0.00 0.00 0.97 0.03 0.01 0.99 0.00 0.00 0.93 0.06

U 0.00 0.01 0.99 0.00 0.02 0.98 0.05 0.75 0.21 0.00 0.05 0.95 0.00 0.07 0.93 0.05 0.82 0.13 0.00 0.14 0.86 0.01 0.76 0.24 0.00 0.09 0.91
5 P 0.00 0.55 0.45 0.00 0.60 0.40 0.09 0.91 0.00 0.00 0.83 0.17 0.00 0.86 0.13 0.09 0.91 0.00 0.01 0.96 0.03 0.01 0.99 0.00 0.00 0.93 0.06

U 0.00 0.00 1.00 0.00 0.00 1.00 0.08 0.70 0.22 0.00 0.02 0.98 0.00 0.03 0.97 0.08 0.78 0.14 0.00 0.09 0.91 0.01 0.73 0.26 0.00 0.05 0.95
6 P 0.00 0.07 0.93 0.00 0.09 0.91 0.05 0.89 0.06 0.00 0.14 0.86 0.00 0.17 0.83 0.05 0.90 0.05 0.00 0.24 0.76 0.01 0.58 0.42 0.00 0.19 0.81

U 0.00 0.00 1.00 0.00 0.00 1.00 0.04 0.78 0.18 0.00 0.01 0.99 0.00 0.01 0.99 0.05 0.81 0.14 0.00 0.03 0.97 0.00 0.26 0.74 0.00 0.02 0.98
7 P 0.00 0.03 0.97 0.00 0.03 0.97 0.04 0.87 0.09 0.00 0.04 0.96 0.00 0.05 0.95 0.05 0.88 0.08 0.00 0.08 0.92 0.00 0.27 0.73 0.00 0.06 0.94

U 0.00 0.00 1.00 0.00 0.00 1.00 0.04 0.76 0.21 0.00 0.00 1.00 0.00 0.00 1.00 0.04 0.79 0.18 0.00 0.01 0.99 0.00 0.12 0.88 0.00 0.00 1.00
8 P 0.00 0.02 0.98 0.00 0.02 0.98 0.18 0.82 0.00 0.00 0.07 0.93 0.00 0.11 0.89 0.18 0.81 0.00 0.00 0.19 0.80 0.02 0.62 0.36 0.00 0.13 0.87

U 0.00 0.00 1.00 0.00 0.00 1.00 0.17 0.73 0.11 0.00 0.01 0.99 0.00 0.01 0.99 0.17 0.75 0.08 0.00 0.03 0.97 0.01 0.39 0.60 0.00 0.01 0.99

BIC aBIC MDL2 MDL5 CLC AWE ICL ICL-BIC NEC
Type Pen U C O U C O U C O U C O U C O U C O U C O U C O U C O
1 P 0.01 0.99 0.00 0.00 0.81 0.19 0.02 0.98 0.00 0.07 0.93 0.00 0.05 0.94 0.00 0.09 0.91 0.00 0.06 0.94 0.00 0.06 0.94 0.00 0.20 0.80 0.00

U 0.00 0.58 0.42 0.00 0.04 0.96 0.02 0.98 0.01 0.07 0.93 0.00 0.03 0.14 0.83 0.09 0.91 0.00 0.06 0.62 0.32 0.06 0.63 0.31 0.18 0.36 0.45
2 P 0.01 0.99 0.00 0.00 0.64 0.35 0.03 0.97 0.00 0.15 0.85 0.00 0.05 0.93 0.01 0.12 0.88 0.00 0.07 0.93 0.00 0.07 0.93 0.00 0.20 0.80 0.01

U 0.00 0.21 0.79 0.00 0.00 1.00 0.03 0.95 0.02 0.15 0.85 0.00 0.02 0.02 0.96 0.11 0.89 0.00 0.05 0.30 0.65 0.05 0.31 0.64 0.16 0.27 0.57
3 P 0.10 0.63 0.27 0.01 0.21 0.78 0.24 0.72 0.04 0.44 0.56 0.00 0.42 0.54 0.04 0.51 0.49 0.00 0.46 0.53 0.00 0.47 0.53 0.00 0.48 0.51 0.01

U 0.07 0.50 0.42 0.00 0.02 0.98 0.24 0.72 0.04 0.44 0.56 0.00 0.36 0.30 0.34 0.51 0.49 0.00 0.45 0.48 0.07 0.45 0.48 0.07 0.43 0.37 0.20
4 P 0.01 0.99 0.00 0.00 0.81 0.19 0.02 0.98 0.00 0.07 0.93 0.00 0.05 0.95 0.00 0.09 0.92 0.00 0.06 0.94 0.00 0.06 0.94 0.00 0.19 0.80 0.00

U 0.00 0.57 0.43 0.00 0.04 0.96 0.02 0.98 0.01 0.07 0.93 0.00 0.03 0.13 0.84 0.08 0.92 0.00 0.05 0.61 0.33 0.05 0.62 0.33 0.18 0.36 0.46
5 P 0.01 0.99 0.00 0.00 0.80 0.20 0.03 0.97 0.00 0.11 0.89 0.00 0.08 0.92 0.00 0.13 0.87 0.00 0.10 0.90 0.00 0.10 0.90 0.00 0.23 0.76 0.00

U 0.00 0.52 0.47 0.00 0.01 0.99 0.03 0.96 0.01 0.10 0.90 0.00 0.05 0.09 0.86 0.13 0.87 0.00 0.09 0.55 0.37 0.09 0.55 0.36 0.21 0.30 0.49
6 P 0.00 0.47 0.52 0.00 0.11 0.89 0.02 0.88 0.10 0.07 0.93 0.00 0.04 0.64 0.32 0.08 0.92 0.00 0.06 0.86 0.09 0.06 0.86 0.08 0.18 0.73 0.09

U 0.00 0.14 0.86 0.00 0.01 0.99 0.02 0.79 0.19 0.07 0.93 0.00 0.02 0.25 0.73 0.07 0.88 0.04 0.04 0.43 0.53 0.04 0.44 0.52 0.17 0.41 0.42
7 P 0.00 0.19 0.81 0.00 0.03 0.97 0.01 0.62 0.37 0.06 0.93 0.01 0.03 0.70 0.26 0.07 0.92 0.01 0.05 0.86 0.09 0.05 0.87 0.09 0.19 0.76 0.05

U 0.00 0.06 0.94 0.00 0.00 1.00 0.01 0.55 0.44 0.06 0.93 0.01 0.02 0.50 0.48 0.07 0.90 0.03 0.04 0.67 0.29 0.04 0.67 0.29 0.18 0.63 0.19
8 P 0.01 0.49 0.49 0.00 0.04 0.96 0.07 0.86 0.07 0.22 0.78 0.00 0.16 0.80 0.03 0.26 0.74 0.00 0.20 0.79 0.00 0.20 0.79 0.00 0.29 0.70 0.01

U 0.00 0.22 0.78 0.00 0.00 1.00 0.06 0.85 0.09 0.22 0.78 0.00 0.11 0.45 0.44 0.26 0.74 0.00 0.18 0.55 0.27 0.18 0.56 0.26 0.25 0.48 0.27

Table 7: Rates of underfitting (U), correct fitting (C) and overfitting (O) by misspecification type and method for the penalized (P) and the unpenalized (U) estimator with
respect to the true number of components in the generating model.
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Figure 3: Success rates of best performing criteria using the penalized estimator for the different model specifications.
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AIC AICc MRC KIC KICc MRCk AIC4 CAIC HQ
Type U C O U C O U C O U C O U C O U C O U C O U C O U C O
1 0.03 0.56 0.42 0.03 0.60 0.37 0.08 0.92 0.00 0.03 0.81 0.16 0.03 0.84 0.13 0.08 0.92 0.00 0.03 0.94 0.03 0.04 0.96 0.00 0.03 0.91 0.06
2 0.01 0.38 0.61 0.01 0.48 0.51 0.07 0.93 0.00 0.01 0.66 0.33 0.01 0.72 0.27 0.07 0.93 0.00 0.01 0.86 0.13 0.02 0.98 0.00 0.01 0.77 0.22
3 0.08 0.36 0.56 0.10 0.39 0.51 0.82 0.18 0.01 0.21 0.49 0.30 0.24 0.50 0.26 0.82 0.17 0.01 0.35 0.51 0.14 0.62 0.37 0.01 0.30 0.51 0.20
4 0.03 0.55 0.42 0.03 0.60 0.37 0.08 0.92 0.00 0.03 0.81 0.17 0.03 0.84 0.13 0.08 0.92 0.00 0.03 0.94 0.03 0.04 0.96 0.00 0.03 0.91 0.06
5 0.02 0.53 0.45 0.03 0.58 0.40 0.11 0.89 0.00 0.03 0.80 0.17 0.03 0.84 0.13 0.11 0.89 0.00 0.03 0.94 0.03 0.04 0.96 0.00 0.03 0.90 0.07
6 0.16 0.30 0.55 0.18 0.30 0.52 0.77 0.21 0.02 0.26 0.33 0.41 0.29 0.34 0.38 0.77 0.21 0.02 0.35 0.39 0.26 0.54 0.39 0.06 0.32 0.36 0.32
7 0.10 0.57 0.34 0.12 0.55 0.32 0.93 0.06 0.01 0.19 0.53 0.28 0.22 0.53 0.25 0.93 0.06 0.01 0.30 0.51 0.19 0.60 0.37 0.04 0.25 0.52 0.23
8 0.09 0.49 0.42 0.12 0.48 0.40 0.91 0.09 0.00 0.22 0.45 0.33 0.27 0.44 0.30 0.91 0.09 0.00 0.38 0.40 0.22 0.73 0.24 0.03 0.32 0.42 0.27

BIC aBIC MDL2 MDL5 CLC AWE ICL ICL-BIC NEC
Type U C O U C O U C O U C O U C O U C O U C O U C O U C O
1 0.03 0.97 0.00 0.03 0.78 0.19 0.05 0.95 0.00 0.10 0.90 0.00 0.08 0.92 0.00 0.11 0.89 0.00 0.09 0.91 0.00 0.09 0.91 0.00 0.22 0.78 0.00
2 0.02 0.98 0.00 0.01 0.63 0.36 0.03 0.97 0.00 0.15 0.85 0.00 0.06 0.93 0.01 0.12 0.88 0.00 0.08 0.92 0.00 0.08 0.92 0.00 0.20 0.80 0.01
3 0.56 0.41 0.03 0.19 0.46 0.35 0.74 0.26 0.00 0.83 0.17 0.00 0.80 0.18 0.02 0.85 0.15 0.00 0.83 0.17 0.00 0.83 0.17 0.00 0.83 0.16 0.01
4 0.03 0.97 0.00 0.03 0.78 0.19 0.04 0.96 0.00 0.10 0.90 0.00 0.07 0.92 0.00 0.11 0.89 0.00 0.08 0.92 0.00 0.08 0.92 0.00 0.21 0.79 0.00
5 0.04 0.96 0.00 0.03 0.77 0.20 0.05 0.95 0.00 0.13 0.87 0.00 0.10 0.89 0.00 0.15 0.85 0.00 0.12 0.88 0.00 0.12 0.88 0.00 0.25 0.75 0.00
6 0.49 0.41 0.09 0.25 0.32 0.43 0.71 0.28 0.01 0.79 0.21 0.00 0.70 0.15 0.15 0.79 0.21 0.00 0.77 0.20 0.03 0.77 0.20 0.03 0.80 0.14 0.06
7 0.51 0.42 0.07 0.17 0.54 0.28 0.80 0.19 0.00 0.95 0.05 0.00 0.87 0.07 0.06 0.95 0.05 0.00 0.93 0.05 0.01 0.93 0.05 0.01 0.94 0.04 0.02
8 0.66 0.28 0.06 0.20 0.44 0.36 0.86 0.14 0.00 0.93 0.07 0.00 0.90 0.08 0.02 0.94 0.06 0.00 0.92 0.08 0.00 0.92 0.08 0.00 0.93 0.06 0.00

Table 8: Rates of underfitting (U), correct fitting (C) and overfitting (O) by misspecification type with respect to the maximum log likelihood in validation sample.
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estimator with respect to the maximized log likelihood in the validation sample. An interesting

pattern can be found here. The criteria which were very bad in selecting the true number of

components, AIC, AICc, KIC, KICc, AIC4, HQ and aBIC, have relatively high success rates

here for types 3, 6, 7 and 8 of model misspecification whereas MRC, MRCk, MDL2, MDL5,

CLC, AWE, ICL and ICL-BIC do very bad here. In conclusion, a trade-off appears to be

noticeable between selecting the number of components and selecting a model which predicts future

samples best. Hence, AIC and its relatives in fact do what they are designed to do. Unfortunately,

the success rates are not overwhelming ranging between 30% and 57%. Furthermore, there is no

clear best criterion here too. Perhaps, with larger sample sizes, this performance would increase

and if Burnham and Anderson (2002) are right in the sense that there don’t exist any simple

models (i.e. truth has nearly an infinite number of parameters), the AIC family of efficient

selection criteria would be preferred. However, selecting the correct number of components can

also be very important and we feel it would be preferrable to remedy misspecification by data

transformations or different model specifications rather than by adding components which are not

represented in the population.

In table 9 the results are presented at a lower level of detail for the case where the true number

Type 1 2 3 4 5 6 7 8
n 300 600 300 600 300 600 300 600 300 600 300 600 300 600 300 600
AIC 0.02 0.01 0.00 0.00 0.06 0.04 0.02 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00
AICc 0.04 0.01 0.00 0.00 0.07 0.04 0.04 0.02 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00
MRC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.96 0.88 0.99 0.99 1.00
KIC 0.53 0.40 0.01 0.00 0.24 0.18 0.47 0.40 0.51 0.41 0.01 0.00 0.00 0.00 0.00 0.00
KICc 0.62 0.45 0.05 0.01 0.26 0.19 0.58 0.45 0.60 0.46 0.01 0.00 0.00 0.00 0.00 0.00
MRCk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.97 0.89 0.99 1.00 1.00
AIC4 0.92 0.87 0.52 0.36 0.36 0.27 0.92 0.87 0.91 0.86 0.07 0.00 0.00 0.00 0.01 0.00
CAIC 1.00 1.00 1.00 1.00 0.61 0.41 1.00 1.00 1.00 1.00 0.42 0.08 0.01 0.00 0.34 0.00
HQ 0.77 0.79 0.13 0.15 0.31 0.26 0.75 0.79 0.74 0.78 0.03 0.00 0.00 0.00 0.00 0.00
BIC 1.00 1.00 1.00 1.00 0.51 0.38 1.00 1.00 1.00 1.00 0.28 0.04 0.00 0.00 0.14 0.00
aBIC 0.22 0.54 0.00 0.01 0.15 0.21 0.19 0.56 0.21 0.56 0.00 0.00 0.00 0.00 0.00 0.00
MDL2 1.00 1.00 1.00 1.00 0.96 0.66 1.00 1.00 1.00 1.00 0.91 0.53 0.29 0.00 0.96 0.35
MDL5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 1.00 1.00
CLC 0.99 0.99 0.97 0.99 0.99 1.00 0.98 0.99 0.98 0.99 0.56 0.90 0.78 0.99 0.97 1.00
AWE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00
ICL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 0.96 0.91 0.99 1.00 1.00
ICL-BIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.96 0.91 0.99 1.00 1.00
NEC 0.99 0.99 0.97 0.99 0.99 1.00 0.98 0.99 0.98 0.99 0.56 0.90 0.78 0.99 0.97 1.00

Table 9: Success rates with respect to the true number of components when K∗ = 1.

of components is 1 (K∗ = 1). Order selection in this case entails the important decision whether

there is actually heterogeneity in the population in the form of multiple groups or not. It can

be seen that the best performing criteria here are AWE, MDL5, MRCk, MRC, ICL and ICL-

BIC. It should however be noted that the performance of these criteria in this case is not a

completely reliable quality measure as a success rate of 100% can be achieved by making the

penalty term on the number of parameters large enough. On the other side of the spectrum one

can see that AIC and AICc perform dreadfully as they overfit in nearly every case. A curious

result is that the performance of several criteria decreases or does not increase when the sample

size is larger among all types of true model specification. These criteria are AIC, AICc, KIC,

KICc, AIC4, CAIC, BIC and MDL2. This is not a desirable result as more information should

lead to better inference. With respect to the type of model misspecification, one can observe that

even without any misspecification, AIC, AICc, KIC, KICc and aBIC have poor performances.
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Among the selection criteria that consistently perform well, there is not much of a drop comparing

no misspecification to the various types of misspecification. Furthermore, it can be seen that

dropping an explanatory variable has a smaller negative impact than error misspecification. This

is a logical result as the criteria can only make a mistake in one direction, i.e. overfitting, and

dropping an explanatory variable generally increases the rate of underfitting.

In order to study the results in more detail, table 10 presents the odds ratios for the experimen-

Factor n K∗
π type min s max est

Odds ratio 300 vs

600

2 vs 3 equal
vs un-
equal

2 vs 1 3 vs 1 4 vs 1 5 vs 1 6 vs 1 7 vs 1 8 vs 1 - -

AIC 1.13* 0.25* 1.03 0.40* 0.05* 0.82* 1.00 0.03* 0.01* 0.01* 1.11* 0.27*
AICc 1.62* 0.22* 1.04 0.53* 0.05* 0.86* 1.00 0.02* 0.01* 0.02* 1.10* 0.29*
MRC 0.92* 1.27* 0.91* 0.98 0.02* 0.56* 0.57* 0.52* 0.37* 0.20* 2.06* 0.81*
KIC 2.06* 0.26* 1.08* 0.42* 0.03* 0.85* 0.94 0.01* 0.00* 0.01* 1.05* 0.36*
KICc 3.67* 0.23* 1.08* 0.56* 0.02* 0.94 1.01 0.01* 0.00* 0.01* 1.04* 0.40*
MRCk 0.91* 1.33* 0.92* 0.98 0.01* 0.54* 0.56* 0.61* 0.44* 0.19* 2.18* 0.82*
AIC4 4.85* 0.32* 1.15* 0.54* 0.01* 0.93 0.96 0.00* 0.00* 0.00* 0.99 0.49*
CAIC 3.18* 0.47* 1.31* 0.69* 0.04* 0.95 0.69* 0.02* 0.01* 0.04* 1.01 0.68*
HQ 2.83* 0.29* 1.11* 0.46* 0.02* 0.92 0.95 0.01* 0.00* 0.00* 1.01 0.43*
BIC 3.48* 0.39* 1.31* 0.71* 0.02* 0.98 0.71* 0.01* 0.00* 0.02* 0.99* 0.63*
aBIC 0.60* 0.25* 1.06* 0.45* 0.03* 0.91 0.98 0.01* 0.00* 0.01* 1.05* 0.30*
MDL2 1.11* 1.09* 1.31* 0.66* 0.06* 0.88 0.67* 0.32* 0.07* 0.31* 1.19* 0.78*
MDL5 0.15* 7.05* 1.34* 0.30* 0.01* 0.40* 0.54* 1.33* 1.47* 0.11* 2.95* 0.69*
CLC 0.65* 1.37* 0.92* 0.95 0.04* 0.81* 0.66* 0.11* 0.13* 0.25* 1.30* 0.73*
AWE 0.50* 2.40* 0.98 0.69* 0.00* 0.37* 0.47* 1.26* 1.35* 0.10* 3.18* 0.75*
ICL 0.79* 1.39* 0.93* 0.93 0.02* 0.60* 0.57* 0.43* 0.41* 0.20* 1.84* 0.81*
ICL-BIC 0.79* 1.39* 0.93* 0.93 0.02* 0.59* 0.57* 0.44* 0.42* 0.20* 1.85* 0.81*
NEC 1.24* 11.20* 0.93* 0.79* 0.02* 0.51* 0.59* 0.55* 0.52* 0.20* 2.04* 2.01*

Table 10: Odds ratios of selecting the true number of components by logistic regression for K∗ = 2, 3. Entries
marked with a * are significant at 5%. Min s denotes the minimum pairwise separation and max est denotes the
highest component model for which the estimation converged to an acceptable solution.

tal factors for the cases where K∗ > 1. These odds ratios were calculated from logistic regressions

for each order selection method12. Correctly selecting the true number of components was taken

as a success. Two of the factors in the model warrant some clarification. First, the minimum

separation between the components is included in the models. In case K∗ = 2 this is simply the

separation between components 1 and 2. In case K∗ = 3, the minimum of the three pairwise

separations is taken because the components for which the separation is minimal will be harder to

separate. Second, the factor ’max est’ represents the maximum number of components for which

a proper solution was found and is taken as a continuous effect. This factor was included in the

models as it limits the possible amount of overfitting. To illustrate the interpretation of the table

entries, consider the estimated odds ratio of AIC with respect to the sample size factor n. This

odds ratio was estimated at 1.127 and indicates that the odds of a success, i.e. selecting the true

number of components, when using AIC was approximately 1.13 times larger in a sample of size

300 than in a sample of size 600, controlling for the other experimental factors. Table entries

marked by a ∗ are significantly different from 1 at a significance level of 5%. Similar to the case

where K∗ = 1, AIC, AICc, KIC, KICc, AIC4, CAIC, BIC and MDL2 perform worse in larger

samples. This group is joined by HQ and NEC. The effect of the true number of components is

also very dissimilar across the different selection criteria and several of the estimated odds ratios

12Presenting these results in a high dimensional contingency table would be unwieldy.
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are very far from 1. Equal or unequal mixture proportions also have different effects across all

methods but the size of these effects is much smaller than the effects of the sample size or the

number of components. We can conclude that in most cases the criteria which performed bet-

ter for smaller samples also perform better in case of equal mixture proportions and with 3 true

components. Conversely, selection methods which perform better for larger samples tend to per-

form better in case of unequal mixture proportions and with 2 true components. This distinction

largely coincides with a criterion’s proneness to respectively overfit or underfit. It can be noted

that the odds of successfully selecting the true number of components increase when the mini-

mum separation increases as would be expected. The criteria which do not perform well across

experimental conditions seem to be less affected by the separation however (BIC and AIC4 even

performed better when the minimum separation was smaller). Furthermore, the performance of

all criteria decreased as the range of models which could be fitted increased. Again, there is an

exception here, namely NEC, the criterium which showed the highest rate of underfitting across

all types of model specification which would seem to indicate that this selection method is highly

conservative. Focussing on the group of order selection criteria which, on average, performed best

(MRC, MRCk, MDL2, MDL5, ICL and ICL-BIC), one can see that, controlling for all other

factors, the effect of the various model misspecifications compared to no model misspecification is

much larger than it appeared earlier. Including superfluous explanatory variables strongly affects

MDL2 and MDL5. Omitting a relevant explanatory variable has a very large negative effect on

all these criteria and MDL2 was least affected here. The effect of excluding a real interaction and

multicollinearity seems to be largely similar across these methods and again, MDL2 appears to be

most robust here. For most of these criteria, heteroskedasticity within the components seems to

have the largest negative effect of all error misspecifications with the exception of MDL2, which

seems more affected by skewed errors. Curiously enough, MDL5 actually performed better for

heavier tailed or skewed error specifications relative to no misspecification. This would indicate

that such misspecifications counter MDL5’s tendency to underfit due to its large penalty term.

On the other hand, this criterion was affected most by the heteroskedastic errors.

5. Conclusion

Order selection in finite mixture models is not a simple problem which seems to be confirmed

in our simulation. Different experimental settings influence the order selection criteria differently.

Some results however are obtained on which criteria seek to select the number of components

rather than minimizing the expected prediction error. For order selection it appears that the newly

developed mixture criteria (MRC and MRCk) perform rather well on most occasions. Similar

things can be said about MDL2, MDL5, ICL and ICL-BIC. The traditional model selection

criteria, AIC, AICc, BIC and aBIC on the other hand performed very poorly. Therefore,

based on our findings, we would recommend using selection methods which have been specifically

derived for finite mixture models or the lesser known MDL2 and MDL5. Furthermore, there

is some evidence that including irrelevant explanatory variables, excluding interaction effects or

multicollinearity are not very detrimental to order selection if one chooses a correct criterion. Not

including an important explanatory variable on the other hand does have a substantial negative

effect on all criteria. We have also found that distributional misspecification of the error terms

has a non-uniform effect on the selection criteria. In conclusion, we found that none of the

selection criteria was robust to every sort of misspecification we tested. A limitation of our
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simulation was that all misspecifications were present in all components. Furthermore, we only

tested for one particular ’amount’ of misspecification each time, rather than a range of mild to

severe misspecifications. Both of these settings could be interesting avenues to explore further.

There is one constant positive effect present in all our results: it pays to penalize. We have

found that appropriately penalizing the likelihood resulted in fewer spurious solutions. This had a

positive effect on the estimation error of the model parameters and on the performance of the order

selection criteria. Obviously, in practical situations it would be recommended to study all local

solutions which have been found in detail. Nevertheless, we think it would be useful to further

investigate the choice of penalizing constant(s), the data dependent element(s) and the functional

form of this penalty function.
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