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Abstract. In this paper, we model a research-and-development project as consisting of several
modules, with each module containing one or more activities. We examine how to schedule the
activities of such a project in order to maximize the expected profit when the activities have a prob-
ability of failure and when an activity’s failure can cause its module and thereby the overall project
to fail. A module succeeds when at least one of its constituent activities is successfully executed. All
activities are scheduled on a scarce resource that is modeled as a single machine. We describe various
policy classes, establish the relationship between the classes, develop exact algorithms to optimize
over two different classes (one dynamic program and one branch-and-bound algorithm), and examine
the computational performance of the algorithms on two randomly generated instance sets.
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1. Introduction. Activities in a practical project are typically subject to many
uncertainties; the most frequently studied types of uncertainty are resource break-
downs and duration variability. In research and development (R&D), activities may
also fail altogether, for instance because the new technology under study does not
perform as anticipated or because a toxicity test is not passed (in case of drug de-
velopment). We model an R&D project as consisting of several modules, with each
module containing one or more activities that pursue a homogeneous target, for in-
stance representing repeated trials or technological alternatives. Each activity has a
cost, a duration and a probability of success. A module is successful when at least
one of its included activities succeeds. The successful completion of the whole project
requires the successful completion of all the modules; project success equates with
receiving a project payoff (cash inflow). This setup is subsequently referred to as
‘modular project completion’. The objective is to schedule the activities in such a
way that a maximum expected profit is attained. A solution to this scheduling prob-
lem is a policy, which is a dynamic decision rule that decides which activities are to
be started at which time. We examine the scheduling of the project activities on a
single machine, representing a scarce or bottleneck resource. Examples of such scarce
resources are specialized equipment, or departments or individuals with specific areas
of expertise (see Kavadias and Loch [14] for a similar motivation in a slightly different
setting).

The main contributions of this paper are fivefold: (1) we introduce and formulate
a generic model for optimally scheduling R&D projects with modular completion; (2)
we describe various scheduling policy classes and examine the relationship between
the classes; (3) we provide an analysis of a number of properties; (4) we develop
exact algorithms to optimize over two different classes (one dynamic program and one
branch-and-bound algorithm); and (5) we examine the computational performance of
the algorithms on two randomly generated instance sets.
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§Corresponding author. E-mail: Roel.Leus@econ.kuleuven.be. Postal address: ORSTAT, Fac-

ulty of Business and Economics, KULeuven, Naamsestraat 69, B-3000 Leuven, Belgium.

1



2 K. COOLEN, W. WEI, F. TALLA NOBIBON, AND R. LEUS

The remainder of this text is organized as follows. Section 2 contains some defini-
tions, a formal problem statement and a brief survey of related work. Various classes
of scheduling policies are presented in Section 3, and a number of properties are stud-
ied in Section 4. Our algorithms are described in Section 5, and their computational
performance is tested in Section 6. Finally, Section 7 contains a summary and some
conclusions.

2. Problem statement and related work.

2.1. Definitions. Consider the planning of one project in isolation, consisting
of a set N = {0, 1, . . . , n+ 1} of jobs or activities (these two terms will be used
interchangeably) to be scheduled on a single machine. The job set is partitioned into
a set of non-empty modules M = {0, 1, . . . ,m + 1}. Let Ni denote the set of jobs
belonging to module i ∈M , then N = ∪i∈MNi and Ni∩Nj = ∅ if i ̸= j. Activities in
the same module pursue a similar target. The (dummy) modules 0 andm+1 represent
start and end of the project and contain only one (dummy) activity, indexed by 0 and
n+ 1 respectively.

Each activity k ∈ N\Nm+1 has a probability of technical success (PTS) pk; we
assume that p0 = 1. We consider the outcomes of the different tasks to be independent.
Value qk = 1− pk is the probability of failure of activity k. In practice, each activity
also has a specific duration, but this is not relevant to this article as we do not discount
the cash flows, or more generally because the objective function is not a function of
the start or completion times of the individual jobs.

A strict partial order is an irreflexive and transitive binary relation; below we omit
the qualifier ‘strict’ for brevity. Jobs within a module i are subjected to precedence
constraints represented by a partial order Bi on Ni. A partial order A on the set
of modules M is also part of the input, and an activity in a particular module can
only start when all predecessor modules are successful. A module is defined to be
successful if at least one of its constituent activities succeeds. The project is said to
be successful when all modules are successful. The foregoing definitions lead to an
object (M,A, (Ni, Bi)i∈M ), which will be called the modular network. Furthermore,
we define the order B∗ on set N to relate activities that do not necessarily belong to
the same module, as follows: (k, l) ∈ B∗ ⇔ (∃Bi : (k, l) ∈ Bi) ∨ (∃(i, j) ∈ A : (k ∈
Ni) ∧ (l ∈ Nj)). The digraph with node set N and arc set B∗ is referred to as the
induced network of the modular network.

Quantity ck ≥ 0 represents the cost of processing activity k ∈ N\Nm+1; these
costs are incurred at the start of each activity. We let c0 = 0. The value V > 0
denotes the end-of-project payoff that is received at the execution of the dummy end
job n+1; this payoff is obtained only when all modules are successful. Our goal is to
schedule the activities such as to maximize the expected profit. In the remainder of the
article, we refer to this problem as MP1 (short for ‘Modular Project scheduling on One
machine’). An instance of MP1 corresponds to a tuple (M,A, (Ni, Bi)i∈M ,p, c, V ),
with p and c two n-vectors whose components are the pi and ci, respectively, for
i /∈ {0, n+ 1}.

For an illustration of these definitions, we present an example instance with mod-
ular network and induced network given in Fig. 2.1. The project consists of seven
activities, N = {0, 1, 2, 3, 4, 5, 6}, where job 0 is the dummy start job and n + 1 = 6
represents the dummy end job. The jobs are partitioned into 5 = m+ 2 modules, so
M = {0, 1, 2, 3, 4} with N0 = {0}, N1 = {1, 2}, N2 = {3}, N3 = {4, 5} and N4 = {6}.
In the example, Bi = ∅ for i ∈ M\{1} and B1 = {(1, 2)}. For a binary relation R
on a set S, let T (R) denote its transitive closure, defined as the minimal transitive
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Fig. 2.1. Graphical representation of a modular network of an MP1 instance with five non-
dummy jobs partitioned into three non-dummy modules (left) and the corresponding induced network
(right)

relation on S that contains R. The transitive reduction t(R) of relation R is the
minimal relation on S such that T (t(R)) = T (R). The set A is the transitive closure
of the set {(0, 1), (0, 2), (1, 3), (2, 3), (3, 4)}. Fig. 2.1(b) shows the induced network of
the modular network of Fig. 2.1(a). The partial order B∗ is the transitive closure
of the relation {(0, 1), (0, 3), (1, 2), (2, 4), (2, 5), (3, 4), (3, 5), (4, 6), (5, 6)}. Note that in
the graphical representation of both the modular and the induced network, only the
transitive reduction of the partial order is shown.

We define a state vector as an n-component binary vector x = (x1, . . . , xn) with
one component associated with each non-dummy activity i in N , denoting the success
(xi = 1) or failure (xi = 0) of activity i. A state vector is also called a scenario. Let
Xi represent the Bernoulli random variable with parameter pi of success of activity
i, and denote by X = (X1, . . . , Xn) the associated vector of random variables. The
realization of each Xi is known only at the end of activity i. A schedule s for a project
is an ordered subset of its non-dummy activities; by st we denote the job in position
t in the schedule s. A schedule s is said to be feasible with respect to a scenario x if
for all i ∈M , for all l = su ∈ Ni, and

(F1) for all k with (k, l) ∈ Bi, we have k = st for some t < u;
(F2) for all j with (j, i) ∈ A, we have k = st ∈ Nj for some t < u with xk = 1.

Remark that a schedule may imply a selection of activities: not all elements of N need
to be retained. Requirement (F1) expresses that the precedence constraints within
a module must be respected (and is independent of the scenario), while requirement
(F2) states that the precedence constraints between the modules must not be violated,
which does depend on the realization of X. Let Σx denote the set of all schedules
feasible with respect to x and Σ =

∪
x∈Bn Σx. A feasible schedule s is called successful

for scenario x when it results in a successful project, i.e. when

∀ i ∈M\{0,m+ 1},∃ k = st ∈ Ni with xk = 1.

The Boolean success function σ(x, s) takes value 1 if s is successful for x, 0 otherwise.
For a scenario x and schedule s ̸= ∅ that is feasible for x, define the profit as

f(x, s) = σ(x, s) · V −
|s|∑
t=1

cst ,

where |s| is the length of s. When s = ∅ we set f(x, s) = 0.
For the example project described above, consider the scenario x1 = (0, 1, 1, 0, 0):

activities 2 and 3 succeed, but 1, 4 and 5 fail. The schedule s1 = (1, 2, 3, 4, 5) is feasible
for x1, but σ(x1, s1) = 0: the project fails. Under this scenario, there is no feasible
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schedule that can obtain the project payoff. The scenario x2 = (1, 0, 1, 1, 0), on the
other hand, allows for the payoff to be achieved: schedule s2 = (1, 3, 4), for instance,
is successful in this case. Note that only part of the activities in N are executed
by s2 and that this schedule would be successful under all scenarios of the format
(1,−, 1, 1,−), where − is either 0 or 1. When all ci = 1, i = 1, . . . , 5, and V = 4, we
have f(x1, s1) = −5 (a negative profit of −5, or loss of 5), while f(x2, s2) = 1.

2.2. Problem statement. A solution to problem MP1 is a policy : a decision
rule that decides in which sequence to start which activities. Formally, a policy Π is a
function Π : Bn 7→ Σ, mapping scenarios x to schedules that are feasible with respect
to x and that satisfy the following constraint:

(NA) if [Π(x)]u = l for an arbitrary job l and position u then also [Π(y)]u = l for
all scenarios y that have yk = xk for all jobs k = [Π(x)]t, t < u.
In the foregoing, we use the notation [z]t for the t

th component of a vector z. Require-
ment (NA) is often called non-anticipativity constraint and ensures that the decision
made at any time t can only be based on information that became available before or
at time t (in our case, time can be treated as the position of the jobs). In particular
we have [Π(x)]1 = [Π(y)]1, ∀x,y ∈ Bn. We refer to [23, 27] for more details and
further references on the use of policies as functions in stochastic scheduling.

The dynamic character of a policy as a dynamic decision process is somewhat
concealed by its representation as a function. For this reason, it is sometimes useful
to adopt an alternative representation by a binary decision tree, which is in line with
the literature on sequential testing (see [28], for instance). In such a tree, the non-leaf
nodes represent the scheduling of a non-dummy job and are labeled with the index
of the job. From a non-leaf node labeled k, two decision branches emanate. The left
arc represents a scenario where job k fails (xk = 0) and analogously the right arc
implies success of job k (xk = 1). The leaf nodes represent either success or failure
(abandonment) of the project. To each leaf node corresponds a unique schedule: the
job in position u of this schedule is precisely the label of the u-th node encountered
while traversing the unique path from the root to the leaf node. When this schedule
is successful, the corresponding leaf node is labeled ‘S’ (for success). In the other
case the project is abandoned and the node is labeled ‘F ’ (failure). For convenience,
we make a slight abuse of notation in the remainder of the paper by using the same
symbol k for a node and its corresponding job label.

Fig. 2.2 shows two policies for the example project presented earlier. Policy Π1

schedules only one job of each module and the project is abandoned as soon as a job
failure is encountered. Policy Π2 starts with job 1 and in case of failure, job 2 is
executed. Depending on the outcome of job 1, module 3 is treated differently: in case
of failure for 1, only job 4 is selected while if x1 = 1 then job 5 is started in case of
failure for job 4.

The problemMP1 under study boils down to selecting a policy Π∗ within a specific
class C of policies that maximizes the expected profit of the project:

Π∗ = argmax
Π∈C

E[f(X,Π(X))],

with E the expectation operator. In the remainder of this text, we write E[f(Π)]
instead of E[f(X,Π(X))] to simplify notation. As an illustration, for policy Π1 de-
scribed in Fig. 2.2(a) we have

E[f(Π1)] = V p3p1p5 − c3 − p3c1 − p3p1c5.
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Fig. 2.2. Two policies for the example project of Fig. 2.1(a)

In general terms, using the definition of a policy as a mapping, we obtain

E[f(Π)] =
∑
x∈Bn

( ∏
i:xi=1

pi

)( ∏
i:xi=0

qi

)
f(x,Π(x)).

Manually, the expected profit of a policy Π is usually more easily computed using the
tree representation T of the policy. For an arbitrary node k, define C(k) to be the
set of jobs on the path from the root of T to node k excluding node k, and let C1(k),
resp. C0(k), be the subset of C(k) containing only jobs for which the arc leading to
the successor job in the path is a right, resp. left, arc. The collection of all the leaf,
resp. non-leaf, nodes of T is denoted as L(T ), resp. NL(T ). Then

E[f(Π)] =
∑

k∈L(T )

Prob(k)

V k −
∑

l∈C(k)

cl

 ,

where Prob(k) =
(∏

l∈C1(k)
pl

)
·
(∏

l∈C0(k)
ql

)
is the probability of reaching node k,

and

V k =

{
V if k is labeled S,

0 if k is labeled F .

Equivalently,

(2.1) E[f(Π)] =
∑

k∈L(T )

Prob(k) · V k −
∑

k∈NL(T )

Prob(k) · ck.

From Eq. (2.1) and by stepwise updating Prob(k) from root node to leaf nodes,
we have the following observation:

Observation 2.1. Evaluation of an arbitrary policy can be done in time linear
in the number of nodes in the decision tree.

Since an arbitrary policy can be defined by describing its decision tree, this time
complexity is probably the best one can hope to obtain. Furthermore, the size of
the decision tree of an arbitrary policy may be exponential in the number of jobs.
Evaluation of special classes of policies is discussed in Section 4.
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2.3. Related work. Extensive literature surveys on the topic of scheduling un-
der uncertainty are provided in [1, 7, 11, 24, 30]. The main topic of interest in these
sources is duration uncertainty, sometimes complemented with uncertain resource
availabilities. In this text, we incorporate the concept of activity success or failure
into the scheduling decisions. De Reyck and Leus [9] develop an algorithm for project
scheduling with uncertain activity outcomes, where project success is achieved only
if all individual activities succeed. A similar model is tackled by Schmidt and Gross-
mann [25] and Jain and Grossmann [12], who study the scheduling of failure-prone
new-product-development testing tasks when non-sequential testing is admitted. In
the foregoing references, however, the possibility of pursuing multiple alternatives to
achieve the same result (modular completion) is not included. This concept of mod-
ular completion is hinted at in the informal paper [8], but resource constraints are
not considered and no solution procedures are proposed. The work of De Reyck et
al. [8] is continued by Creemers et al. [5], who also study modular completion but
with a focus especially on the impact of activity duration variability on the project’s
value, while we work with deterministic durations. Creemers et al. also neglect re-
source constraints, while we are scheduling on a single machine. Malewicz [19] studies
parallel machine scheduling where tasks are executed by unreliable machines, and the
probability for correct execution of each job by each machine is known. The goal is to
find a policy that assigns tasks to machines (possibly in parallel and redundantly) so
as to minimize expected completion time; the same task can be executed more than
once.

Closely related to the model developed in this paper is the work on sequential
testing, in which a series of tests is to be performed to diagnose a system (i.e., to know
its state, which usually is either ‘working’ or ‘failing’). A solution in this setting is an
inspection strategy, which specifies on the basis of the state of the already inspected
components which component is to be inspected next, or halts if it is able to recognize
the correct state of the system. Reviews of this body of literature can be found in
Boros and Ünlüyurt [2] and Ünlüyurt [28]. The main differences with our scheduling
problem are twofold: (1) the inspections will continue as long as the state of the
system is not known, while we allow the project to be aborted preliminarily if this
is better for the project’s value, and (2) most of the work in this area has focused
on diagnosing so-called ‘k-out-of-n’ systems, where the system functions if k or more
of its components work. In our model, the success of a project is dependent on the
success of its constituent modules, and so a project’s success is not merely determined
by the number of successful activities.

3. Special classes of policies. Both the representation of a policy as a mapping
and as a decision tree allow to conclude that the number of scheduling policies for an
MP1 instance is finite. The class of all policies is denoted by CALL. An optimal policy
in CALL is called globally optimal. In this section we distinguish different policy classes,
study their characteristics, and examine the relationship between them. To measure
the quality of a policy class for a given MP1 instance, we define the relative optimality
gap γ(C) of a policy class C as the relative deviation from the global optimum, i.e.

γ(C) =

{
π(CALL)−π(C)

π(CALL)
if π(CALL) ̸= 0,

0 otherwise,

where π(C) denotes the expected profit of a policy that is optimal in policy class C.
A relative gap γ(C) = 0 implies that an optimal policy of class C is also a globally
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optimal policy. The other extreme, γ(C) = 1, occurs when all policies of C have
non-positive expected profit whereas a globally optimal policy has positive expected
profit.

3.1. Dominance results. We define the following properties:
(R1) When a job of a module is executed with a failure and all other jobs of the

module were previously scheduled without success, the project is abandoned.
(R2) When a job of a module is executed successfully, no other unscheduled job

of the same module is scheduled after this job.
(R3) After activity success, the project is never abandoned immediately, i.e. either

payoff is obtained or another job is scheduled.
A policy satisfying the properties (R1)–(R3) will be called a reasonable policy ; all
reasonable policies are gathered in set CREA. The example policies in Fig. 2.2 are
clearly reasonable. We have the following dominance result:

Observation 3.1. There exists a reasonable globally optimal policy for MP1, i.e.
γ(CREA) = 0.

Next we describe a subclass of CREA with a specific structure. To this end,
we define a pair of distinct nodes k1 and k2 of the decision-tree representation of a
reasonable policy to be equivalent if they satisfy the properties (E1)–(E3) below.

(E1) The incoming arcs of k1 and k2 are right (success) arcs.
(E2) ∀i ∈M : C1(k1) ∩Ni ̸= ∅ ⇔ C1(k2) ∩Ni ̸= ∅.
(E3) ∀i ∈M : C1(k1) ∩Ni = ∅ ⇒ C0(k1) ∩Ni = C0(k2) ∩Ni.

A policy Π ∈ CREA is called a dominant policy if the subtrees emerging from every
pair of equivalent nodes of its decision-tree representation are identical. The set of
dominant policies is denoted by CDOM . The policy in Fig. 2.2(a) is dominant as it
contains no equivalent pair of nodes. The policy depicted in Fig. 2.2(b), on the other
hand, is not an element of CDOM , which can be seen by considering the equivalent
nodes labeled with job 3: the subtrees emerging from these two nodes differ in whether
or not to perform job 5 after failure of job 4. The next theorem is a stronger result
than Observation 3.1.

Theorem 3.1. There exists a dominant policy for MP1 that is globally optimal,
i.e. γ(CDOM ) = 0.

Proof. Let I be an instance of MP1 and consider a globally optimal policy Π
for instance I with decision tree T and expected profit π. We can assume Π to be
reasonable because of Observation 3.1. If Π is not a dominant policy, we can choose
two equivalent nodes k1 and k2 for which the subtrees T1 resp. T2 with root node k1
resp. k2 are not identical. Let I ′ be the MP1 instance derived from I by deleting the
modules i for which C1(k1) ∩Ni ̸= ∅ as well as the jobs k ∈ C0(k1) inside modules i
for which C1(k1)∩Ni = ∅. Subtrees T1 resp. T2 represent policies for instance I ′ with
expected profits π1 resp. π2. Assume π1 ≥ π2. Replacing T2 by T1 in T gives rise to
another policy for I with expected profit π+Prob(k2)(π1 − π2) ≥ π. This procedure
can be repeated until all equivalent nodes of T have identical subtrees emerging from
them.

Below, we proceed with the description of a number of subclasses of CREA that
have a compact combinatorial representation, enabling simpler implementation, simi-
lar to Stork’s [27] treatment of scheduling policies for stochastic resource-constrained
project scheduling. Somewhat counter-intuitively, however, we will observe in Sec-
tion 6 that the subclasses do not allow for faster search procedures in our implemen-
tations. Section 3.2 presents elementary policies and module-wise policies are the
subject of Section 3.3.
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3.2. Elementary policies. In the sequel, we use both the terms ‘ordering’ and
‘(order) list’ to refer to a complete order on a job set, represented as a permutation
L = (j1, j1, . . . , j|L|). Denote by L(t) the t-th element of L, so L(t) = jt. The class CE
of elementary policies is inspired by priority rules for deterministic scheduling [16, 17]:
each Π ∈ CE is characterized by a compatible ordering L of a subset of N \ {0, n+1}.
We call a list L compatible if either L = ∅ or when conditions C(1)–C(4) below hold.

(C1) For each non-dummy module i, there is at least one job k ∈ Ni in list L.
(C2) If a job l of module i belongs to L then all jobs k with (k, l) ∈ Bi appear in

the list before job l.
(C3) If a job l of module i belongs to L then for each module j with (j, i) ∈ A

there must be at least one job of module j in the list before job l.
(C4) If a job of module i belongs to L then all jobs that appear earlier in the list

are in modules j for which (i, j) /∈ A.

Remark that condition (C3) is redundant because it is implied by (C1) and (C4).
The condition is listed nevertheless because it will be needed for the definition of a
‘compatible partial list’ (see Section 5.2), in which condition (C1) does not necessarily
hold.

For a given scenario x, the elementary policy Π( · ;L) parameterized by compatible
list L generates a unique schedule Π(x;L) as described by Algorithm 1. Policy Π1

in Fig. 2.2(a) is elementary with L = (3, 1, 5), while policy Π2 in Fig. 2.2(b) is not
elementary due to its different treatment of jobs 4 and 5 according to the outcome
of job 1. We observe that elementary policies are reasonable policies. A yet stronger
result is the following:

Theorem 3.2. Elementary policies are dominant, i.e. CE ⊂ CDOM .

Proof. Consider an elementary policy Π( · ;L) for an arbitrary MP1 instance I.
We know that an elementary policy is reasonable. Choose two arbitrary equivalent
nodes k1 = L(t1) and k2 = L(t2) (we slightly abuse notation by identifying a node k
and its corresponding job label). If t1 = t2 = t, both subtrees must be identical as
they are both completely determined by the sublist of L obtained by deleting the first
t − 1 elements of L. Next, we assume that t1 < t2; we will show that this situation
never occurs. Denote by i the module containing k1. Note that, according to (R2),
C1(k1) ∩Ni = ∅. We will derive a contradiction for every possible occurring case. If
we assume k1 ∈ C(k2), then either k1 ∈ C1(k2) or k1 ∈ C0(k2). If k1 ∈ C1(k2) then
condition (E2) implies C1(k1) ∩Ni ̸= ∅ and a contradiction is found. If k1 ∈ C0(k2),
on the other hand, then condition (E3) would imply k1 ∈ C0(k1), which is impossible.

Algorithm 1 Schedule generation by elementary policy Π( · ;L) for scenario x

1: s = ∅
2: while L ̸= ∅ do
3: Remove first job k from L and append it to the end of s; let i be such that

k ∈ Ni

4: if (xk = 0) ∧ (no other job of Ni appears in L) then
5: Return s
6: else if xk = 1 then
7: Delete all other jobs of Ni from L
8: end if
9: end while

10: Return s
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Finally, if k1 /∈ C(k2) we can choose t < t1 with L(t) ∈ C1(k2) ∩Ni. Again by (E2),
C1(k1) ∩Ni ̸= ∅, which completes the proof.

Define an n:n-system (‘n-out-of-n-system’) or single-activity-module project as an
instance of MP1 where each module contains exactly one activity. For n:n-systems,
every job needs to be executed successfully in order to win the project payoff. A
1:n-system (‘1-out-of-n-system’) or single-module project, on the other hand, contains
only one non-dummy module holding all non-dummy jobs and the project succeeds at
the completion of the first successful job. Note that for a general 1:n-system, B1 need
not be empty. A result similar to the theorem below is shown in [8] for the setting
without resource constraints.

Theorem 3.3. Elementary policies are globally optimal for n:n-systems and 1:n-
systems.

Proof. First consider an n:n-system. Let Π∗ be any globally optimal policy and
put L = Π∗(1), with 1 the scenario where all jobs are successful. We must show
that E[f(Π(X;L))] = E[f(Π∗)]. Consider an arbitrary state vector x and let u be the
smallest number such that activity [Π∗(x)]u fails. Because of the non-anticipativity
constraint, [Π∗(x)]t = [Π∗(1)]t for all t < u. Because [Π∗(1)]t = [Π(x;L)]t for all
t < u, it follows that policies Π∗ and Π( · ;L) behave the same for scenario x for all
positions smaller than u. Since the elementary policy will abandon the project at time
u, we have f(Π(x;L)) ≥ f(Π∗(x)). If no such position u exists then non-anticipativity
implies that Π∗ and Π( · ;L) behave exactly the same for scenario x and for all positions
and f(Π(x;L)) = f(Π∗(x)). Consequently, E[f(Π(X;L))] ≥ E[f(Π∗)]. The inverse
inequality follows from the optimality of Π∗.

Now consider a 1:n-system. The proof proceeds analogously to the n:n case.
Again, Π∗ is any globally optimal policy but now we show E[f(Π(X;L))] = E[f(Π∗)]
for L = Π∗(0), where 0 is the scenario in which all jobs fail. For an arbitrary state
vector x, let u be the smallest number such that activity [Π∗(x)]u is successful. By
non-anticipativity, the schedules corresponding to x on the one hand and to 0 on the
other hand are the same for all positions smaller than u. When no such u exists, these
schedules are identical. Since the elementary policy will not execute any other job after
the first successful job (it reaps the payoff), it follows that f(Π(x;L)) ≥ f(Π∗(x)),
which completes the proof.

A result similar to Theorem 3.3 does not hold for arbitrary MP1 instances:

Observation 3.2. Elementary policies are not globally optimal, i.e. there exist
instances for which γ(CE) > 0.

To verify the observation, consider the project network in Fig. 3.1(a), consisting
of two parallel modules, each module containing two jobs that are not precedence-
related. In Appendix A we derive a number of conditions on the parameters of this
instance under which the non-elementary policy Π∗ as described by Fig. 3.1(b) yields a
higher expected total profit than any elementary policy. This is the case, for instance,
for the values p1 = p2 = p3 = p4 = 1

2 , c1 = c3 = 1, c2 = c4 = 3 and V = 13. Full
verification of the correctness of the counterexample is rather lengthy and relegated
to the appendix. We even have a stronger observation:

Observation 3.3. Elementary policies can be arbitrarily bad, i.e. there exist
instances for which γ(CE) = 1.

In Appendix B we provide an example instance that has an objective value of
1.18 for the globally optimal policy, while the empty policy is the best elementary
policy (with zero objective value). Our verification of this latter result is slightly less
satisfactory than for Observation 3.2, however, because it was assisted by a computer
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(b) Decision-tree representation of non-
elementary policy Π∗

Fig. 3.1. Counterexample for the claim that elementary policies would be globally optimal

implementation of our algorithms (see Section 5) rather than by pure reasoning (as
in Appendix A). We have not been able to find a counterexample of the same size as
for Observation 3.2.

An MP1 instance with A = {(0, j) | j = 1, . . . ,m+1}∪{(i,m+1) | i = 1, . . . ,m}
and Bi = ∅ for all i ∈ M is called precedence-unrelated. Based on [3, 20] the special
cases of precedence-unrelated n:n-systems and precedence-unrelated 1:n-systems are
polynomially solvable. More concretely we have following two theorems:

Theorem 3.4. For a precedence-unrelated n:n-system and a job list L with
cL(k)

qL(k)
≤ cL(k+1)

qL(k+1)
for all k = 1, . . . , n− 1, elementary policy Π( · ;L) is globally opti-

mal unless its expected profit is less then zero, in which case it is optimal to directly
abandon the project.

Theorem 3.5. Consider a precedence-unrelated 1:n-system. Assume the non-
dummy jobs k are indexed in non-decreasing ratio ck/pk and let k∗ be the smallest
job index such that ck∗/pk∗ ≥ V ; if no such index exists put k∗ = n+ 1. Elementary
policy Π( · ;L) is globally optimal with L = (1, 2, . . . , k∗ − 1) if k∗ > 1 and L = ∅ if
k∗ = 1.

For an n:n-system with a series-parallel precedence graph, a polynomial algorithm
exists for solving MP1 [21]. A series-parallel graph (SPG) is defined recursively as
a series or parallel composition of two SPGs; it can be verified in polynomial time
whether a graph is a SPG or not [29].

3.3. Module-wise policies. A module-wise policy or M-policy is a reasonable
policy that only produces schedules in which all jobs belonging to the same module
are executed consecutively, so no ‘jumping’ between modules occurs. We denote by
CM the class of M-policies. Formally, we have Π ∈ CM if Π ∈ CREA and for all x ∈ Bn,
i ∈ M , and k ∈ Ni with xk = 0 and k = [Π(x)]t for some t < |Π(x)|, we have
[Π(x)]t+1 ∈ Ni.

We define module-sequence policies or MS-policies as M-policies that adhere to
the same linear extension on the module order A for each possible realization. This
class is represented by symbol CMS . Formally, Π ∈ CMS if Π ∈ CM and there exists a
strict total order ≺ on A such that for all x ∈ Bn, i, j ∈M , k ∈ Ni and l ∈ Nj , with
k = [Π(x)]s and l = [Π(x)]t, we have s < t ⇔ i ≺ j. Finally, the class of elementary
MS-policies or EMS-policies is denoted by CEMS .

The hierarchy between the policy classes put forward in this paper is depicted in
Fig. 3.2. An arrow from one class to another means that the first is a subclass of the
second.
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Fig. 3.2. Hierarchy of policy classes CALL, CREA, CDOM , CE , CM , CMS and CEMS

0 3 6

1 2

N1

N0 N2

N3

N4

4 5

(a) Network with three parallel modules

1

F

3

4

2

5F

3

F S

S54

3F

F S

F S

(b) Policy in CM\CMS

1

F

3

4

2

3F

5

S

S5

F S4

F

F S

(c) Policy in CMS\CEMS

1

F

3

4

2

3F

4

S

5

F S5

F

F S

S

(d) EMS-policy

Fig. 3.3. Illustration of the difference between classes CM , CMS and CEMS

Fig. 3.3(b) shows a decision-tree representation of an M-policy for MP1 instances
corresponding to the network of Fig. 3.3(a). This policy is not an MS-policy because
depending on success or failure of activity 1, modules 2 and 3 are treated in different
order. The policy of Fig. 3.3(c) is a member of CMS with 1 ≺ 2 ≺ 3, but it is not
elementary because the execution order of jobs 4 and 5 of module 3 is dependent
on the scenario for module 1. Fig. 3.3(d) depicts an EMS-policy defined by job list
(1, 2, 3, 4, 5).

Theorem 3.6. Dominant module-wise policies are elementary module-sequence
policies and vice versa, i.e. CEMS = CM ∩ CDOM .

Proof. Clearly, CEMS ⊆ CM ∩ CDOM . For a dominant M-policy Π, it suffices
to find a list L of the form (L1, . . . , Lm) with Li ⊂ Nσ(i) for some permutation σ
of the modules, such that Π = Π( · ;L). Because Π is an M-policy, all jobs of the
schedule Π(0) belong to the same module i1. Set L1 = Π(0) and for ease of notation
assume L1 = (1, . . . , l). Let I1 be the MP1 instance derived from I by deleting
(all jobs of) module i1. For every k ∈ L1, let Πk be the policy of I1 such that
Π((ek,x)) = ((1, . . . , k),Πk(x)),∀x ∈ Bn−l, with ek a vector of Bl consisting of all
zeros, except for component k. Since Π is dominant, all policies Πk are identical and
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again dominant. Denote this policy by Π1. The same procedure can be repeatedly
applied to produce a list Lj ⊂ Nij , an instance Ij and a policy Πj for j = 2, . . . ,m.
Finally, set L = (L1, . . . , Lm) and σ = (i1, . . . , im). By construction, Π equals the
elementary policy Π( · ;L).

4. Properties. A problem of interest related to MP1 is that of searching for an
optimal schedule when the outcome of the activities (failure or success) is known in ad-
vance. An instance of this problem corresponds to a tuple (M,A, (Ni, Bi)i∈M ,x, c, V )
in which x is a given state vector, contrary to an MP1 instance, where a vector p
containing the success probabilities is given. The objective is to find a schedule s∗

feasible with respect to x with maximal profit f(x, s∗). We refer to this problem as
DMP1 (short for ‘Deterministic Modular Project scheduling on One machine’). The
following result is quite straightforward:

Theorem 4.1. DMP1 can be solved in polynomial time.
Proof. If there is a module in which all activities fail, s∗ = ∅ is optimal. Otherwise,

for each non-dummy module i, define N ′
i as the set of jobs l ∈ Ni with xl = 1 and

xk = 0 for all jobs k ∈ Ni with (k, l) ∈ Bi. For each job l ∈ N ′
i define αl :=

cl+
∑

k:(k,l)∈Bi
ck. Choose for each non-dummy module i a job l∗(i) such that l∗(i) =

argminl∈N ′
i
αl. Let s be a schedule containing all the l∗(i) such that (i, j) ∈ A implies

l∗(i) before l∗(j) in s, and insert all jobs k for which (k, l∗(i)) ∈ Bi immediately before
the corresponding l∗(i) in an order that respects Bi. If f(x, s) > 0, s∗ = s is optimal,
otherwise s∗ = ∅ is optimal. The described procedure produces an optimal schedule
in polynomial time.

For the general MP1 problem, on the other hand, the following complexity result
holds:

Theorem 4.2. MP1 is NP-hard, even for the special cases of n:n-systems and
1:n-systems.

Proof. For n:n-systems, the proof can be found in [9] and relies on a reduction
from 1|prec|

∑
wiCi, with the implicit assumption that the payoff is sufficiently high

so that all activities are executed. For 1:n-systems, when the payoff V > maxk ck/pk,
we can restrict ourselves to policies Π that schedule all the jobs in the scenario where
all jobs fail, i.e. |Π(0)| = n. NP-hardness then follows from a reduction from MP1 for
n:n-systems, see [8].

Another important issue is the hardness of computation of the profit of an el-
ementary policy for an arbitrary MP1 instance, which is settled by the following
theorem:

Theorem 4.3. Given an arbitrary MP1 instance I and an arbitrary job list L
compatible with I, the expected profit E[f(Π( · ;L))] for the elementary policy Π( · ;L) ∈
CE can be computed in time linear in n.

Proof. In general, the expected profit of a policy Π can be obtained as

(4.1) E[f(Π)]) = S · V −
n∑

k=1

R(k)ck,

with S the probability of project success and R(k) the probability that job k is paid
for when policy Π is applied. The probabilities R(k) can be calculated recursively
when the policy is elementary. Obviously, R(k) = 0 if k /∈ L. For job k in position t
of the list L, denote with it the module of job L(t), i.e. k = L(t) ∈ Nit , t ∈ {1, . . . , T}
with T = |L|. In this case we have R(k) = (1 − πit(t))(1 − Q(t)), with Q(t) the
probability that the project fails before the t-th job in L is processed and πit(t) the
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probability that success is achieved for module it before job L(t) is executed, under
the condition that the project is not abandoned before stage t. We initialize Q(1) = 0
and πj(1) = 0 for all j = 1, . . . ,m, since no non-dummy activities have been started
yet before L(1). We extend the definition of Q(t) and πj(t) to t = T + 1, which
corresponds to adding the dummy end job to the end of the list, i.e. L(T +1) = n+1.
Because the project is successful if and only if every module is successful, we have
S =

∏m
j=1 πj(T +1) = 1−Q(T +1). For 1 ≤ j ≤ m and 2 ≤ t ≤ T +1 we obtain the

recursions

πj(t) =

{
πj(t− 1) + (1− πj(t− 1)) pL(t−1) if j = it−1,

πj(t− 1) otherwise,
(4.2)

Q(t) =

{
Q(t− 1) + (1−Q(t− 1)) (1− πit−1(t)) if Nit−1 ∩

∪
s≥t L(s) = ∅,

Q(t− 1) otherwise.
(4.3)

For a given stage t, we need Q(t) and πj(t) for only one module j to know the value of
R(L(t)). Moreover, to obtain πj(t) for all modules j, we only need to adapt πj(t− 1)
for one module j. Combined with the observation that a recursive step takes only
constant computation time, the theorem follows.

We conclude that the evaluation of elementary policies can be done efficiently.
For general policies, by contrast, evaluation time may be exponential in the number
of jobs because the number of nodes in the decision tree may be exponential in n and
a compact representation is not always at hand (see Observation 2.1). Finally, we
note that the values πj(t) can alternatively also be computed directly, as follows:

πj(t) = 1−
∏

L(s)∈Nj , s<t

qL(s).

As an example, consider job list L = (1, 3, 2, 4) for the network of Fig. 3.1(a).
Remark that the equality pk + qkpl = 1− qkql holds for every pair of jobs k, l. From
Table 4.1 we find R(1) = 1, R(3) = 1, R(2) = q1, R(4) = q3(1 − q1q2) and S =
(1− q1q2)(1− q3q4), leading to

E[f(Π( · ;L))] = (1− q1q2)(1− q3q4)V − c1 − c3 − q1c2 − q3(1− q1q2)c4.

One easily verifies that the same result is obtained via the decision-tree representation
and Eq. (2.1).

Some special cases can be implemented in an alternative way:
1. Consider an n:n-system and let L = (1, . . . , n) be the list determining the

elementary policy Π( · ;L). According to Eqn. (2.1), the expected profit E[f(Π( · ;L))]

Table 4.1
Computation of values Q and π

stage t 1 2 3 4 5
L(t) 1 3 2 4 5

π1(t) 0 p1 p1 p1 + q1p2 p1 + q1p2
π2(t) 0 0 p3 p3 p3 + q3p4
Q(t) 0 0 0 q1q2 q1q2 + (1− q1q2)q3q4
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equals

V
n∏

k=1

pk − c1 −
n∑

k=2

(
k−1∏
l=1

pl

)
ck.

We have O(n) additive operations, but the number of multiplications is O(n2). Nev-

ertheless, we can compute the numbers al :=
∏l

k=1 pk, l = 1, . . . , n, only using O(n)
multiplications because al = al−1pl (l = 2, . . . , n). A similar reasoning can be followed
for the evaluation of elementary policies for 1:n-systems.

2. Consider an arbitrary EMS-policy Π with corresponding job list L and as-
sume a total module order ≺ such that 1 ≺ · · · ≺ m. For each module j ∈ {1, . . . ,m},
let Ij be the instance of MP1 consisting of only module j and define a list Lj as
the sublist of L consisting of jobs of module j only. Policy Π( · ;Lj) is a well defined
elementary policy for instance Ij ; remark that Ij is a 1:|Lj |-system. Now recursively
define aj to be the expected profit of Π( · ;Lj) with payoff equal to aj+1 and initialize
am+1 ≡ V . Because of the structure of the EMS-policy Π, we have E[f(Π)] = a1
and in order to obtain a1 we need to compute the expected profit of the elementary
policies Π( · ;Lj) for j = m,m − 1, . . . , 1. Because the time complexity of evaluating
an elementary policy for a 1:|Lj |-system is O(|Lj |) as pointed out above, the time
complexity of evaluating the EMS-policy Π is O(

∑
|Lj |) = O(n) as |Lj | ≤ |Nj | and∑

|Nj | = n.

The final theorem of this section shows that the class of elementary policies always
contains an optimal module-sequence policy.

Theorem 4.4. There exists an EMS-policy that is optimal in the class CE of
elementary policies. Consequently, max{E[f(Π)] | Π ∈ CE} = max{E[f(Π)] | Π ∈
CEMS}.

Proof. Consider an elementary policy Π( · ;L) and assume L = (Li, L̃, ki, L̂)

with Li ⊂ Ni, L̃ ∩ Ni = ∅ and ki ∈ Ni. We show that the expected profit is not
decreasing when the block Li is moved just before job ki, i.e. we prove E[f(Π( · ;L′))] ≥
E[f(Π( · ;L))] with L′ = (L̃, Li, ki, L̂). The expected profit can be computed using
Eq. (4.1). If the elementary policy defined by job list L resp. L′ is applied, we denote
by S resp. S′ the probability of project success, and byR(k) resp. R′(k) the probability
of paying for job k. These probabilities can be computed with the recursive formulas
(4.2)–(4.3), which results in S′ = S, R′(k) = (1−α)R(k) for k ∈ Li and R′(k) = R(k)
otherwise. The constant α is the probability that the project fails due to the processing
of the jobs in block L̃, i.e.

α = 1−
∏

j:Nj∩L̂=∅,
j ̸=i

1−
∏

k∈L̃∩Nj

qk

 .

Consequently, R′(k) ≤ R(k) for all k and the theorem follows.

5. Algorithms. Two exact algorithms to solve problem MP1 are presented in
this section. A dynamic-programming algorithm that finds a globally optimal policy
is discussed in the first part of the section. The second part is devoted to a branch-
and-bound algorithm that finds an optimal elementary policy. The section ends with
a short description of two heuristic solution procedures.
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5.1. Dynamic programming. We describe a backward stochastic dynamic-
programming (stochastic DP, SDP) recursion to determine a globally optimal policy
for MP1. The algorithm is loosely inspired by the DP in Kulkarni and Adlakha [18],
which is an exact method for deriving the distribution and moments of the earliest
project completion time of Markovian PERT networks. At any decision moment t,
the status of an activity is either idle or redundant. An activity is idle when it has not
yet been started and success has not been achieved yet for its module. An activity
is redundant when it has been processed or when the corresponding module was
successfully completed. Denote by Y the set of idle activities and by R the redundant
activities. At any decision moment t, these sets constitute a partition of the job set:
N = Y (t) ∪ R(t) and Y (t) ∩ R(t) = ∅. The state of the system corresponds with
one choice for the status for each activity. Consequently, the state of the system is
completely determined by Y , because R = N\Y .

A state Y ∈ 2N is called feasible when membership of Y implies membership of
Y for all successor activities according to B∗. We let S represent the set of feasible
states; S will also be called the state space. Formally, we have Y ∈ S if and only if
k ∈ Y implies l ∈ Y for all (k, l) ∈ B∗. As a consequence, the dummy end job is
always a member of Y .

For an MP1 instance I and a feasible system state Y , a smaller MP1 instance
I(Y ) is defined by removing all non-dummy redundant jobs in N\Y from the modular
network of I, removing empty modules, and also removing the corresponding elements
from A and Bi (i = 1, . . . ,m). The value function G : S 7→ R+ of the SDP recursion
maps a feasible state Y onto the expected profit of an optimal policy for MP1 instance
I(Y ). We always have G(Y ) ≥ 0 because the empty policy is included in the policy
class. The maximum expected profit of the initial MP1 instance I equals G(N\{0}),
since I(N\{0}) = I. As initial boundary condition, we set G({n + 1}) = V . For
|Y | > 1, define the set of eligible activities E(Y ) as the subset of Y with all preceding
jobs being redundant, i.e. l ∈ E(Y ) if and only if l ∈ Y , and k /∈ Y for all (k, l) ∈ B∗.
The SDP relies on the following recurrence relation:

G(Y ) = max
k∈E(Y )

{
0 , pkG(Yp,k) + qkH(Yq,k)− ck

}
, Y ∈ S \ {{n+ 1}}(5.1)

G({n+ 1}) = V(5.2)

with Yp,k = Y \Nik , Yq,k = Y \{k} and

H(Yq,k) =

{
0 if Y ∩Nik = {k},
G(Yq,k) otherwise.

An optimal policy Π∗ can be extracted from the SDP by registering the jobs where the
maxima are reached in (5.1). Concretely, if x is a realization, [Π∗(x)]0 is a job where
the maximum is reached in (5.1) for state Y 0 = N\{0}. Denote this job by k1 and its
module by i1. If xk1 = 1 we move to state Y 1

p = Y 0\Ni1 and [Π∗(x)]1 is a job where
the recurrence relation reaches its maximum for state Y 1

p . If xk1 = 0 and |Ni1 | > 1
we move to state Y 1

q = Y 0\{k1} and [Π∗(x)]1 is a job where the recurrence relation
reaches its maximum for state Y 1

q . If |Ni1 | = 1 the schedule ends (|Π∗(x)| = 1).
Proceeding in this way, we can construct schedule Π∗(x). Note that the project is
abandoned when the maximum over all eligible jobs is negative, which coincides with
a value function of zero in (5.1).

Theorem 5.1. Recurrence relation (5.1)–(5.2) finds a globally optimal policy.
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Proof. Let I be an arbitrary MP1 instance an let Π be a reasonable policy with
decision-tree representation T and expected profit π. Denote the root node of T by k
and the module containing job k by i. If job k is successful, we consider the instance
Ip obtained by removing module i together with adjacent inter-modular precedence
constraints from the modular network of instance I. The subtree Tp of T emerging
from the success edge of node k of T is a decision-tree representation of a policy Πp

for instance Ip with expected profit πp. If job k fails, we consider the instance Iq
obtained by removing job k from module i. Let Tq be the subtree emerging from the
failure edge of node k of T . If k is the only job in module i then Tq consists of only
one (leaf) node, labeled F . Otherwise, Tq is a tree representation of a policy Πq for
instance Iq with expected profit πq. The expected profit of Π can be expressed as
π = pkπp+qkπ̄q−ck with π̄q = 0 if Ni = {k} and π̄q = πq otherwise. By the principle
of optimality, it follows that policy Π is optimal for instance I if the policies Πp and
Πq are optimal for the smaller instances Ip and Iq, respectively.

Theorem 5.2. The optimal policy generated by recurrence relation (5.1)–(5.2)
is a dominant policy.

Proof. Let Π∗ be a policy generated by the SDP as explained above. In order to
show that Π∗ is dominant, we choose two equivalent nodes k1 and k2 of the decision
tree T ∗ of Π∗. The decisions made from these nodes are identical because they
correspond to one and the same state in the recurrence relation. The state Y (k)
corresponding to a node k of T ∗ is given by the complement of C0(k) ∪ {Ni |Ni ∩
C1(k) ̸= ∅}. From (E2)–(E3) it follows that Y (k1) = Y (k2).

For efficient implementation of the DP recursion, we construct a total order re-
lation ≤S on the state space S that determines the order in which the states are
evaluated. The relation is such that the value-function values on the right-hand side
of (5.1) that are input to the computation of G(Y ) have already been computed be-
forehand. We observe that the corresponding states always have a cardinality strictly
less than |Y |. This implies that any ordering ≤S respecting Y1 ≤S Y2 ⇔ |Y1| ≤ |Y2|
satisfies our needs. To find a suitable order, the approach taken in [6] is followed
by partitioning the state space according to the so-called rank of inclusion-maximal
antichains of the induced network. An inclusion-maximal antichain is also referred to
as a uniformly directed cut (UDC). Denote the set of UDCs by U . The UDCs of the
MP1 instance depicted in Fig. 2.1 are U0 = {0}, U1 = {1, 3}, U2 = {2, 3}, U3 = {4, 5}
and U4 = {6}. Let U be a UDC and denote by N(U) the subset of N containing the
successor jobs of U , i.e.

N(U) = {l ∈ N | ∃ k ∈ U : (k, l) ∈ B∗}.

The rank r of a UDC counts the number of predecessor activities in the induced net-
work, i.e. r(U) = |N\(N(U)∪U)|. For the example we have N(U0) = {1, 2, 3, 4, 5, 6},
N(U1) = {2, 4, 5, 6}, N(U2) = {4, 5, 6}, N(U3) = {6}, N(U4) = ∅ and r(U0) = 0,
r(U1) = 1, r(U2) = 2, r(U3) = 4, r(U4) = 6.

A set of subsets of N is associated with each U ∈ U and is denoted by σ(U). A
set Y ⊂ N belongs to σ(U) if we can write Y = N(U) ∪ U ′ with U ′ a non-empty
subset of U such that E(Y ) ⊂ U . Note that N(U) ∪ U always belongs to σ(U) since
E(N(U) ∪ U) = U . In the following theorem, we summarize results obtained in [6]:

Theorem 5.3. Let U , U ′ be UDCs and let Y ∈ σ(U), Y ′ ∈ σ(U ′). We have
(i) {σ(U) |U ∈ U} is a partition of S.
(ii) Assume Y is in the left-hand side, and Y ′ is in the right-hand side of (5.1).

If U ′ ̸= U then r(U ′) > r(U).
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(iii) If r(U ′) > r(U) then |Y ′| < |Y |.
From Theorem 5.3 we infer an appropriate total order on the state space S by

enumerating the parts σ(U) of the partition in non-increasing rank order and the
states in a given set σ(U) in non-decreasing cardinality order. For the example, this
leads to the following steps in computing the recurrence relation:

1. σ(U4) = {Y0} with Y0 = {6}; G(Y0) = V .
2. σ(U3) = {Y1, Y2, Y3} with Y1 = {4, 6}, Y2 = {5, 6}, Y3 = {4, 5, 6};

G(Y1) = max{0, p4G(Y0)− c4},
G(Y2) = max{0, p5G(Y0)− c5},
G(Y3) = max{0, p4G(Y0) + q4G(Y2)− c4, p5G(Y0) + q5G(Y1)− c5}.

3. σ(U2) = {Y4, Y5, Y6} with Y4 = {3, 4, 5, 6}, Y5 = {2, 4, 5, 6}, and
Y6 = {2, 3, 4, 5, 6};

G(Y4) = max{0, p3G(Y3)− c3},
G(Y5) = max{0, p2G(Y3)− c2},
G(Y6) = max{0, p2G(Y4)− c2, p3G(Y5)− c3}.

4. σ(U1) = {Y7, Y8} with Y7 = {1, 2, 4, 5, 6}, Y8 = {1, 2, 3, 4, 5, 6};
G(Y7) = max{0, p1G(Y3) + q1G(Y5)− c1},
G(Y8) = max{0, p1G(Y4) + q1G(Y6)− c1, p3G(Y7)− c3}.

Note that Y6 /∈ σ(U1) since E(Y6) ̸⊂ U1. The maximum expected profit is G(Y8).

5.2. Branch and bound. In this section, we develop an algorithm to optimize
over the class CEMS of elementary module-sequence policies. Recall that an optimal
policy in this class is also optimal in the superclass CE (Theorem 4.4). Adapting the
DP described in the previous section does not seem to be straightforward. To see this,
reconsider the argument made in the proof of Theorem 5.1: a policy Π of an instance
I can be decomposed in two policies Πp resp. Πq of smaller instances Ip resp. Iq.
Unfortunately, policy Π is not necessarily elementary even if policies Πp and Πq are
elementary, making the recurrence relation (5.1) invalid for elementary policies. To
further illustrate this, consider the instance and policy Π∗ depicted in Fig. 3.1. This
policy is not elementary despite the fact that Π∗

p and Π∗
q are elementary (and module-

sequence) with corresponding order lists (3, 4) and (3, 2) respectively. The fact that
an elementary policy is representable by a job list makes the solution space CE very
suitable for implicit enumeration by means of a branch-and-bound (B&B) algorithm,
however, and this section is devoted to the development of such an algorithm.

5.2.1. Branching strategy. We devise a branching tree that enumerates the
elements of class CEMS . Fig. 5.1 shows the branching tree of an MP1 instance with
the modular network of Fig. 2.1(a). A node η in the tree is labeled with a job k(η) and
represents a partial order list PL(η), determined by the node labels of the unique path
in the search tree starting from the root node and ending in the node labeled k(η). The
root node at level 0 is labeled with the dummy start job 0 and every leaf node is labeled
with the dummy end job n + 1. Denote by Mu(η) resp. Ms(η) the set of unstarted
resp. already started modules, i.e. Mu(η) = {i ∈ {1, . . . ,m} |Ni ∩ PL(η) = ∅} and
Ms(η) = {1, . . . ,m}\Mu(η). Consider a node η labeled with a job k inside a module
i. A node η′ labeled with a job k′ inside a module i′ is a child node of node η if
conditions (P1)–(P3) below hold.

(P1) k′ /∈ PL(η).
(P2) (PL(η), k′) is a compatible partial list (see Section 3.2).
(P3) i′ /∈Ms(η)\{i}.

The collection of all the leaf nodes corresponds to the collection of all compatible job
lists for which jobs belonging to the same module are consecutive, and thus to class
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Fig. 5.1. Branching tree for an MP1 instance with modular network as depicted in Fig. 2.1(a)

CEMS . Note that removal of condition (P3) defines a branching tree for class CE ,
where the consecutive execution of jobs from the same module is not longer enforced.
For the example network, this would mean that node B of the branching tree depicted
in Fig. 5.1 would receive a third child, labeled with job 2.

5.2.2. Upper bound. In our upper-bound computation we assume that the
project is executed, i.e. we exclude the empty policy from the solution space. A
negative upper bound at a given node is automatically pruned by the zero global
lower bound (see Section 5.2.3). Consequently, at least one job in each module needs
to processed (condition (C1)), this to render the project potentially successful. Our
upper bound z̄(η) at node η consists of a positive part EP(η) that overestimates the
expected payoff and a negative part EC (η) that underestimates the expected cost,
and exploits the knowledge of the thus-far constructed partial list PL(η).

The expected payoff increases when more jobs are included in the list. Con-
sequently, an overestimation of the expected payoff results from scheduling all jobs
in all modules, unless adding a job to the list leads to an invalid order list. De-
note by M1(η) the set of modules in which no new activities can be started due
to condition (P3), i.e. M1(η) = Ms(η)\{i}, and gather the remaining modules in
M2(η) = {1, . . . ,m}\M1(η). The first term of the upper bound equals

(5.3) EP(η) =

 ∏
i∈M1(η)

(
1−

∏
k∈Ni∩PL(η)

qk

) ·
 ∏
i∈M2(η)

(
1−

∏
k∈Ni

qk

) · V.
Note that M1(η) also contains modules containing a job for which addition to the
partial order list leads to a violation of condition (C4). The bound described by
Eq. (5.3) would remain valid if we optimized over class CE , but the set of forbidden
modules M1(η) would be smaller and given byM1(η) = {i ∈ {1, . . . ,m} |Nj∩PL(η) ̸=
∅ for some (i, j) ∈ A}. Consequently, the bound is stronger for class CEMS than for
class CE .

The expected cost increases when more jobs are in the list, so an underestimation
includes only a single job for each module that has no job in the partial list. The
probability of paying for such a job decreases when more modules are scheduled before
it, because they all need to be successful. To write down a closed formula, define N ′

i

as the subset of Ni holding the first jobs of a module: N ′
i = {l ∈ Ni | ̸ ∃k ∈ Ni :
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(k, l) ∈ Bi}. The second term of the upper bound can be written as

EC (η) =
∑

i∈Ms(η)

 ∑
k∈Ni∩PL(η)

R(k)ck

+
∑

i∈Mu(η)

 ∏
j:(i,j) ̸∈A

P (j)

 min
k∈N ′

i

ck

(5.4)

with

(5.5) P (j) =

{
mink∈N ′

j
pk if j ∈Mu(η),

1−
∏

k∈Nj∩PL(η) qk if j ∈Ms(η).

The quantity R(k) is the probability of paying for job k when PL(η) is applied (in
line with the definition in Section 4) under the condition that no further activities in
the module of job k are processed apart from those in PL(η). These values can be
computed using the recursion discussed in the proof of Theorem 4.3 applied to the
instance obtained by removing jobs that are not in PL(η).

The upper bound at the root node η0 is a global upper bound and is given by

(5.6) z̄(η0) =

n∏
i=1

(
1−

∏
k∈Ni

qk

)
V −

m∑
i=1

 ∏
j:(i,j)̸∈A

min
k∈N ′

j

pk

min
l∈N ′

i

cl.

The computation of the bound is illustrated for the nodes A, B and C of the
branching tree depicted in Fig. 5.1. The global upper bound at the root node A is

z̄(A) = (1− q1q2)p3(1− q4q5)V − (p3c1 + p1c3 + p1p3 min{c4, c5}).

For node B at level 2, we have a partial list PL(B) = (0, 1, 3) and module sets
Ms(B) = {1, 2}, Mu(B) = {3}, M1(B) = {1} and M2(B) = {2, 3}. Since R(1) = 1
and R(3) = p1, the local upper bound in B is

z̄(B) = (1− q1)p3(1− q4q5)V − (c1 + p1c3 + p1p3 min{c4, c5}).

Remark that the bound would weaken if we optimized over CE : then M1(B) = ∅ and
M2(B) = {1, 2, 3}, and the factor 1− q1 in EP(B) would change to 1− q1q2. Finally,
in node C at level 3, we have PL(C) = (0, 1, 3, 5), Ms(C) = {1, 2, 3}, Mu(C) = ∅,
M1(C) = {1, 2}, M2(C) = {3}, R(1) = 1, R(3) = p1 and R(5) = 1−(q1+p1q3) = p1p3,
resulting in a local upper bound

z̄(C) = p1p3(1− q4q5)V − (c1 + p1c3 + p1p3c5).

5.2.3. Global lower bound. Since the empty policy belongs to CEMS , an initial
global lower bound is z = 0. Heuristic procedures can be used to strengthen this bound
(see Section 5.3). In each leaf node η, the local upper bound described in the previous
subsection is also exactly the expected profit of the elementary policy defined by the
(full) order list PL(η) and hence constitutes a global lower bound (z = z̄(η)).

5.3. Heuristic procedures. Inspired by the results of Section 3.2, we propose
a heuristic algorithm for general n:n-systems (Algorithm 2). The algorithm produces
an elementary policy Π( · ;L) that can serve as an approximate solution to the global
optimum and functions as a subroutine in Algorithm 3, which provides an elementary
policy for general MP1 instances.
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Algorithm 2 Heuristic for n:n-systems

1: L = ∅; E = set of non-dummy jobs without non-trivial predecessors
2: while E ̸= ∅ do
3: Choose a job k∗ from E such that ∀k ∈ E\{k∗} we have ck∗/qk∗ ≤ ck/qk
4: Add job k∗ to the end of L
5: Update E = E\{k∗}∪ {jobs in N\(E ∪L∪{n+1}) with all predecessors in L}
6: end while
7: Return L

Algorithm 3 Heuristic for general instances

1: for each module i do
2: Let N ′

i = {k ∈ Ni | @l ∈ Ni : (l, k) ∈ Bi}
3: Let ki = argmin{cl/pl | l ∈ N ′

i}
4: end for
5: Apply Algorithm 2 to the m:m-system obtained by removing all jobs from module

i except for job ki

6. Computational experiments. We have implemented the algorithms in C++
using Microsoft Visual Studio 2010. The experiments were run on a Dell Desktop
E8500 Optiplex 760 with an Intel Core 2 Duo processor with clock rate of 3.16 GHz
and 3.21 GB of RAM, equipped with Windows XP Professional Version 2002 Service
Pack 3. All CPU times are expressed in seconds.

We have generated two data sets, which are available on-line1. The first set ex-
clusively consists of n:n-systems, whereas the second contains general MP1 instances,
possibly holding more than one activity per module. The n:n-instances are created
similarly to [9], using the random network generator RanGen [10] to build directed
graphs for a given value of n and of the density of the network, which is measured by
the order strength OS . The order strength is defined as the number of precedence-
related activity pairs divided by the maximum possible number of such pairs, which
is
(
n
2

)
= n(n− 1)/2. We create 10 instances for each of the combinations of values for

the parameters n and OS , with n ∈ {10k | k = 1, 2, . . . } and OS ∈ {0.4, 0.6, 0.8}. The
second data set contains instances for the same combinations of values for n and for
the OS of the induced network as for the n:n-instances, although the OS value is now
only approximative, and not necessarily identical for all the instances. Full details on
the data generation are provided in Appendix C.

Below, we include a discussion of some implementation issues for the DP algorithm
(Section 6.1), followed by a presentation of the computational results (Section 6.2).

6.1. Implementation issues for the DP algorithm. The SDP recursion uses
a bitwise representation for a set of activities. A subset of n jobs is represented by an
array of size ⌈n/32⌉ containing 32-bit integers. A job k is an element of the subset
if and only if the k-th bit of the integer array is a 1-bit. This representation allows
to efficiently manage memory. Moreover, binary set operations such as the union,
intersection and complement of two sets and adding an element to or removing an
element from a set can also be implemented more efficiently.

To generate the UDCs, we observe that the set U of inclusion-maximal antichains
of the induced network coincides with the set of maximal independent sets of the

1Available at http://www.econ.kuleuven.be/public/NDBAC96/MP1 instances.htm
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undirected graph with node set N that contains all edges {k, l} with either (k, l) ∈
B∗ or (l, k) ∈ B∗. The algorithm presented in [13] is implemented to generate all
maximal independent sets in lexicographic order, with only polynomial delay between
the output of two successive independent sets. During the generation process, the
rank of the UDC is computed and UDCs are grouped based on their rank.

The main issue in the implementation of the SDP recursion is the memory man-
agement: memory and not computation time will turn out to be the bottleneck. For
instances with n ≤ 32 it is possible to represent the value function with an array of
size 2n, in which each index of the array is one of the 2n possible states. In prac-
tice, however, this implementation is only suitable for solving very small instances.
Storing an array of size 230, for example, would require too much RAM even for an
average recent computer. Fortunately, |S| is often substantially less than 2n, espe-
cially for dense precedence networks (both intermodular as well as intramodular),
which creates opportunities for handling the memory more efficiently. Note that |S|
can be computed exactly using the state-space partition in UDCs (Theorem 5.3), i.e.
|S| =

∑
U∈U |σ(U)|. We use a hash table [4, 15, 26] to tackle these memory issues,

which is a data structure enabling fast storage and lookup of the data elements. El-
ements of a hash table are pairs consisting of a key and a value. In our SDP, a
key-value pair takes the form (Y,G(Y )) with Y ∈ S a feasible state and G(Y ) the
value function at state Y . A hash function maps a key to one of the possible table
entries and determines the location to store and retrieve the associated value. The
function g(Y ) := h(Y ) mod L maps a key Y to an integer hash value in the range
[0, L−1], with L the length of the hash table. The integer h(Y ) undergoes a modulo-L
operation to guarantee a valid index of the hash table. Below, we will use the term
hash function both for g and for h. When two different keys are mapped to the same
table entry, a collision occurs, which can be resolved in several ways. More details on
the data structures used are provided in Appendix D.

A key Y is represented by an integer array Y = (y0, . . . , yl) of size l+1 = ⌈n/32⌉.
A simple function of the form

∑l
i=0 yi results in equal hash values for different permu-

tations of the components of Y , so a multiplication with a position-dependent power
of a large prime number c is usually performed, i.e. h0(Y ) :=

∑l
i=0 yic

i. This is a
common hash function mainly used for string keys [15]. Fig. 6.1 shows the perfor-
mance of h0 on an n:n-instance with n = 60 and OS = 0.4 (filename s n60 os4 1),
dependent on the table size L (scaled by the total number of elements in the list: the
horizontal axis shows L/|S|). The state space for the example instance is quite large,
approximatively |S| = 10 924 600. The left plot shows the average number of calls
needed to retrieve an element from the hash table as a function of the table size, the
right plot depicts the CPU time. Typically, L is chosen as a large prime P or as a
power of two. By choosing the latter, i.e. L = 2k, the slightly more expensive modulo
operator in g(Y ) = h(Y ) mod L can be avoided since the result of the modulo opera-
tor coincides with the first k bits of h(Y ). Both options are explored in Fig. 6.1. We
find that a prime number for the table size (diamond marks, light-grey curve) is far
better than 2k (square, dark grey), both on CPU time as well as with respect to the
average number of calls. One reason for this is probably that h0 by itself is actually
a rather poor hash function, and that simply dropping the (32− k) most significant
bits results in too many collisions. The modulo operator with a prime number, on
the other hand, if not too close to a power of two, will improve the randomness and
is in fact a well-known hash function for integer keys, known under the name division
method [4]. The prime number should be as far as possible from a power of two to
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Fig. 6.1. Influence of the table size on the performance of the hash table
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Fig. 6.2. Effect of the composition of h0 with an integer hash function

avoid clustering [4, 15]. In our implementation, we take a prime number close to the
middle of the intervals (2k, 2k+1).

The quality of the hash function h0 can be significantly improved when it is
followed by a good integer hash function. Integer hash functions expect an integer
key and manipulate the bits of the key to produce a randomized integer where the
probability of a 1-bit or a 0-bit is equally likely for all the 32 bits of the integer.
Good integer hash functions strive for a change in as many bits as possible when
two different keys only differ in a single or a few bits. From the literature, the best-
performing hash functions are Wang’s “32-bit Mix Function” hW and Jenkins’ 32-bit
integer hash function hJ [31]. The left graph of Fig. 6.2 shows that the quality of
hash function h0 (with prime table sizes) improves after applying hW or hJ (with
power-of-two table sizes), or hJ (with prime table sizes). The average number of calls
to retrieve an element can be reduced from about 6.5 to 1.7 for a sufficiently large
table size. The right graph indicates that, for prime table sizes, the efficiency gain for
h0 by composing with function hJ is fully undone by the increase in complexity of the
hash function. For power-of-two sizes, however (where we avoid the expensive modulo
operator), the composed functions are better and and even have a minor advantage
in CPU time compared to prime table sizes. Function hJ is slightly better than hW ,
both in quality (number of calls) and in efficiency, but the difference is very small.



PROJECT SCHEDULING WITH MODULAR PROJECT COMPLETION 23

Table 6.1
Comparison of average CPU times and number of solved instances (out of 10) between DP and

B&B for the data set containing only n:n-instances. The CPU time is averaged only for the solved
instances.

OS = 0.8 OS = 0.6 OS = 0.4

DP B&B DP B&B DP B&B

n CPU # CPU # CPU # CPU # CPU # CPU #

10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10
20 0.00 10 0.00 10 0.00 10 0.01 10 0.00 10 0.04 10
30 0.00 10 0.08 10 0.00 10 2.23 10 0.02 10 35.51 10
40 0.00 10 2.74 10 0.01 10 349.52 10 0.23 10 314.03 3
50 0.00 10 77.82 10 0.04 10 1.04 3 2.39 10 1.23 2
60 0.00 10 506.28 9 0.21 10 0.17 2 30.73 10 161.03 5
70 0.01 10 5.70 4 1.03 10 0.06 2 0 0.81 1
80 0.02 10 0.05 1 3.99 10 30.80 3 0 15.98 1
90 0.05 10 0 15.35 10 0 0 0

100 0.09 10 0 56.62 8 0 0 0
110 0.21 10 0 0 0 0 0
120 0.46 10 0 0 0 0 0

We have obtained similar findings for the other instances. Based on this analy-
sis, we have opted for hash function hJ ◦ h0 as final implementation for solving the
instances of the two data sets. Fig. 6.2 suggests that a table size at least half the size
of the state space is sufficient, because the improvement for larger sizes is only minor.
The size of the hash table is set as the largest power of two smaller than |S|, and is
thus between |S|/2 and |S|. Note that the average number of calls is monotonously
decreasing when L goes up (the quality of the hash table improves with increasing
L), but the same need not be true for the CPU time: the efficiency of hash tables
can decrease when L is overly large. The largest table size that we have been able to
implement is L = 228, which is about 25 times the size of the state space of the test
instance. Compared to a good choice for the table size, which is L = 223, the average
number of calls drops to 1.1, but the CPU time increases by more than a second. A
possible explanation for this might be the increase in cache misses, since blocks of
memory will contain more redundant lines holding unused table entries [22].

6.2. Computational results. Table 6.1 reports the average CPU time of the
algorithms for the first data set, which contains only n:n-systems. The number of
instances solved until guaranteed optimality (out of 10) is displayed together with
the average CPU time. The DP solves instances with 120 jobs and high OS (0.8) in
less than a half second. When the order strength decreases, the state space grows
(see Table 6.2(a)) and the instances become harder to solve. For OS = 0.6, we can
solve instances with up to 100 jobs and more than 23 million states in less than one
minute on average. Larger instances cannot be solved because the computer runs out
of memory. If OS is further lowered to 0.4, the DP solves instances with n = 60 in a
half minute. For larger networks, we again encounter memory problems. We conclude
that the instances become harder when the density of the networks decreases, and
that overall the DP solves quite large instances (with a very large state space) in little
time.

For the first data set, the B&B algorithm finds optimal elementary policies with
the same objective values as the DP (Theorem 3.3). A time limit of 30 minutes
is imposed when running the B&B algorithm. The results are also summarized in
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Table 6.2
Additional indicators of the computational effort of the two algorithms for each instance group

specified by n and OS of the first data set (n:n-instances)

(a) Average size of the state space in the DP
(average only over the solved instances)

n OS = 0.8 OS = 0.6 OS = 0.4

10 22 40 91
20 88 316 1557
30 254 2044 16284
40 689 9650 176200
50 1460 41983 1421452
60 3657 162351 14074728
70 8092 644306
80 15569 2176367
90 31474 7335005

100 61867 23517689
110 131360
120 280685

(b) Average number of visited nodes in the
B&B tree (average over all 10 instances per
cell)

n OS = 0.8 OS = 0.6 OS = 0.4

10 11 18 40
20 57 417 1914
30 2005 27834 511554
40 34514 3337916 11596365
50 558017 6215383 5608505
60 2483434 4673974 5258784
70 2621293 7446097 5292828
80 2506070 3315457 5248734

Table 6.3
Comparison of average CPU times and number of solved instances (out of 10) between DP and

B&B for the second data set (general MP1 instances). The CPU time is averaged only for the solved
instances.

OS = 0.8 OS = 0.6 OS = 0.4

DP B&B DP B&B DP B&B

n CPU # CPU # CPU # CPU # CPU # CPU #

10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10 0.00 10
20 0.00 10 0.03 10 0.00 10 0.71 10 0.00 10 24.04 10
30 0.00 10 18.22 10 0.00 10 126.97 5 0.01 10 254.31 3
40 0.00 10 627.54 5 0.02 10 10.35 2 1.23 10 0
50 0.00 10 0 0.04 10 0 5.95 9 0
60 0.02 10 0 1.54 10 0 23.6 8 0
70 0.06 10 0 3.27 10 0 41.9 6 0
80 0.07 10 0 16.65 10 0 403.9 4 0
90 0.19 10 0 24.6 9 0 2041.1 2 0

100 0.21 10 0 21.1 4 0 0 0
110 1.09 10 0 160.3 4 0 0 0
120 1.48 10 0 363.6 4 0 0 0

Table 6.1. We conclude that the B&B is far slower than the DP; each unsolved
instance is interrupted due to the time limit, there are no memory problems. This
also means more instances will likely be solved by simply increasing the time limit.
For instances with OS = 0.8, the algorithm solves to optimality 64 instances (out of
80) with at most 80 activities within the time limit. For order strengths of 0.6 and
0.4, this number reduces to 50 and 42, respectively. Table 6.2(b) shows the average
number of nodes (rounded to the nearest integer) explored by the B&B algorithm.
This number grows very rapidly up to the value of n for which the number of instances
solved is less than 50%, after which the number of nodes stabilizes. This might be
explained by the fact that for most instances, the time limit is reached and the number
of nodes investigated so far by the B&B algorithm is significantly smaller than the
number of nodes that would be investigated if the algorithm was run to completion.
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Table 6.4
Additional indicators of the computational effort of the two algorithms for each instance group

specified by n and OS of the second data set (general MP1 instances)

(a) Average size of the state space in the DP
(average only over the solved instances)

n OS = 0.8 OS = 0.6 OS = 0.4

10 21 44 72.4
20 80 325 1093.8
30 263 2905 8940.5
40 790 13452 622098
50 2587 19032 2486256
60 3955 736142 1774351
70 32972 1481591 3922089
80 18416 5792564 17851239
90 91720 7234182 13352239

100 116229 5457474
110 494835 19013690
120 595798 13552638

(b) Average number of visited nodes in the
B&B tree (average over all 10 instances per
cell)

n OS = 0.8 OS = 0.6 OS = 0.4

10 42 120 200
20 2461 53015 745391
30 854607 38286295 61974755
40 34113658 36044811

In Table 6.3, the run times and the number of solved instances are shown for the
second data set, which contains general MP1 instances. The DP is again by far more
efficient than the B&B. Compared to the first data set, the difficulty of the instances
for a fixed value of n and OS is significantly more heterogenous (see also Table 6.4).
One possible cause might be that the order strength of the induced network does
not accurately capture the complexity of an instance anymore. The intermodular
precedence constraints may only have a small influence on the order strength of the
induced network, but they can have an important impact on the size of the state
space and thus on the difficulty of the instance. If multiple modules contain only few
precedence constraints, the state space grows dramatically.

The average relative optimality gap of the elementary policies found by the B&B
algorithm is 1.28% for the 85 instances that are solved until optimality within the
time limit. Only 11 instances out of 85 have an optimality gap different from 0%,
and exactly one of those 11 instances reaches an optimality gap of 100% (this is the
instance reproduced in Appendix B).

7. Summary and conclusions. This article has studied a model for schedul-
ing R&D projects such as to maximize the expected profit when activities have a
possibility of failure. The model extends earlier work by introducing a two-layered
network structure, where activities are grouped in modules such that individual ac-
tivity default does not necessarily imply an overall project failure. Activities have
deterministic durations, a fixed processing cost, and are scheduled on a single ma-
chine. In this setting, a solution is a policy, which can be naturally described by a
binary decision tree.

Multiple policy classes are proposed and the relationship between the classes
is examined. Elementary policies are determined by a list of activities and have
a compact representation, this in contrast to more general classes of policies. We
show that elementary policies are globally optimal for a number of specific network
structures, but not in general. We also prove that it is sufficient to execute the
jobs module by module when the solution space is restricted to elementary policies.
Although the general scheduling problem is NP-hard, some special cases are shown
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to be polynomially solvable.
A backward stochastic dynamic-programming recursion is developed to produce

globally optimal policies. The algorithm is quite efficient and can solve large in-
stances with more than 100 jobs, with the performance dependent on the density of
the network. The bottleneck of the algorithm turns out to be memory rather than
computation time. Because an adaptation of the dynamic-programming recursion to
elementary policies is not straightforward, a branch-and-bound algorithm is proposed
to find an optimal elementary policy. Notwithstanding the smaller solution space, in
our implementations the optimization over elementary policies is significantly more
time-consuming than the dynamic program, making the computation time the bot-
tleneck of this algorithm. On average, the quality of an optimal elementary policy
seems to be quite close to a globally optimal policy. There are instances nevertheless
where a project would not be executed (has a zero objective value) when execution
is restricted to elementary policies, whereas a globally optimal policy with a strictly
positive objective value exists.

For future research, a valid research question is whether a more efficient solution
procedure is achievable for elementary policies. As a more fundamental extension, we
distinguish especially the incorporation into the problem statement of the time value of
money by means of discounting. In this case, adhering to the simple resource structure
that is studied in this paper (a single machine) may no longer be advisable, and other
scheduling policies that allow for parallel processing of activities will probably lead to
better results.

Appendix A. Verification of Observation 3.2. We examine the hypothesis
that for the MP1 instance presented in Section 3 the non-elementary policy Π∗ as
described by Fig. 3.1(b) would yield a higher expected total profit than any elementary
policy. For our analysis, we divide all 56 elementary policies2 that select at least one
job into four classes according to the first job to be executed. Policies in class 1
execute job 1 in the first place, and similarly for classes 2, 3 and 4. Below, we derive a
number of conditions on the parameters c, V and p for policy Π∗ to be strictly better
than the elementary policies. One additional requirement is that the policy have a
strictly positive expected profit, i.e. Π∗ is strictly better than the trivial (elementary)
policy of abandoning the project immediately (represented by the empty list).

Comparison with class 1. We choose p1 = p2 = p3 = p4 = 1
2 and we also

impose

(A.1) c3 < c2

and

(A.2) c3 < c4.

We will represent an elementary policy defined by job list (abcd) as Πabcd. Below, we
establish conditions under which Π∗ is better than each of the 14 policies in class 1.

(i) Inequality E[f(Π∗)] > E[f(Π1234)] holds if −c3 − p3c2 + p2p3V > −c2 −
p2c3 + p2p3V + p2q3p4V − q3p2c4, which leads to

(A.3) c2 +
1

2
c4 > c3 +

1

4
V.

256 =
(2
1

)(2
1

)
2 +

(4
3

)
3! +

(4
4

)
4!
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Table A.1
Comparison between policies Π1432 and Π∗

E[f(Π1432)] E[f(Π∗)] inequalities

−c1 − 1
8 (4c4 + 2c2 − V ) −c1 (A.5)

1
16 (V − 4c3 − 2c2)

1
8 (V − 4c3 − 2c2) (A.6)

− 1
4 (2c4 + c3) +

3
8V −1

4 (2c3 + c4) +
3
8V (A.2)

(ii) E[f(Π∗)] > E[f(Π1243)] due to our findings under 1 and the fact that
E[f(Π1243)] < E[f(Π1234)]. The latter inequality is due to Eq. (A.2).

(iii) E[f(Π∗)] > E[f(Π1324)] if 0 > −c2 − p2c4 + p2p4V , which corresponds to

(A.4) V < 4c2 + 2c4.

(iv) E[f(Π∗)] > E[f(Π1342)] if 0 > −c4 − p4c2 + p2p4V , or

(A.5) V < 4c4 + 2c2.

(v) E[f(Π∗)] > E[f(Π134)] when −c3 − p3c2 + p2p3V > 0, or

(A.6) V > 4c3 + 2c2.

(vi) We compute E[f(Π1432)] =
(

9
16

)
V −

(
c1 +

3
8c2 +

1
2c3 + c4

)
and E[f(Π∗)] =(

1
2

)
V −

(
c1 +

1
4c2 + c3 +

1
4c4
)
. In Table A.1, both policies’ profits are written as a

sum of three terms and each term in the first column is strictly smaller than the
corresponding term in the second column due to the equation referred to in the third
column. We conclude that E[f(Π1432)] < E[f(Π∗)].

(vii) From (A.1) and 6, we have E[f(Π1423)] < E[f(Π1432)] < E[f(Π∗)].
(viii) E[f(Π∗)] > E[f(Π132)] if p4V − c4 > 0, or equivalently if

(A.7) V > 2c4.

(ix) From (A.2) and 5, we have E[f(Π143)] < E[f(Π134)] < E[f(Π∗)].
(x) From (A.1) and 8, we have E[f(Π123)] < E[f(Π132)] < E[f(Π∗)].
(xi) From (A.2) and 8, we have E[f(Π142)] < E[f(Π132)] < E[f(Π∗)].
(xii) From (A.2) and 10, we have E[f(Π124)] < E[f(Π123)] < E[f(Π∗)].
(xiii) From (A.6) and 8, we have E[f(Π13)] < E[f(Π132)] < E[f(Π∗)].
(xiv) From (A.2) and 13, we have E[f(Π14)] < E[f(Π13)] < E[f(Π∗)].

From the above we conclude that policy Π∗ has an expected profit that is greater than
the expected profit of any elementary policy of class 1 when inequalities (A.1)–(A.7)
hold and all success probabilities are equal to 50%.

Comparison with classes 2, 3 and 4. For a policy of class 3, we look at the
policy of class 1 obtained by interchanging job 3 by job 1 and job 2 by job 4 in the
associated decision trees. This results in a one-to-one correspondence between the
policies of class 1 and class 3 with equal corresponding expected profits if we further
impose

c1 = c3,(A.8)

c2 = c4.(A.9)
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Fig. B.1. Modular network of MP1 instance with n = 10 and m = 5

For any elementary policy of class 2, we can look at a corresponding policy of
class 1 by an interchange of jobs 1 and 2 in the associated decision trees. This policy
is clearly better than the corresponding policy of class 2 because c1 < c2 follows from
(A.8) and (A.1). We can develop a similar argument for class 4 by an interchange of
jobs 4 and 3 and the result follows from (A.2).

Conclusion. Policy Π∗ is a non-elementary policy for the example instance with
an expected profit strictly better than any elementary policy if we can find values
for ci (i = 1, 2, 3, 4) and V satisfying (A.1)–(A.9) and with positive expected profit
(we have chosen pi =

1
2 for all i). The choice c1 = c3 = 1 and c2 = c4 = 3 satisfies

Eqs. (A.1), (A.2), (A.8) and (A.9). Eqs. (A.3)–(A.7) impose 10 < V < 14. If we
select V = 13, for example, then E[f(Π∗)] = 3 > 0. Optimal elementary policies, on
the other hand, achieve an expected profit of E[Π(·;L)] = 47/16 = 2.9375, which is
the case, for instance, for the elementary policy defined by job list L = (1, 2, 3, 4).

Appendix B. Verification of Observation 3.3. We verify the observation
that elementary policies can be arbitrarily bad. To this end, we present an in-
stance for which the global optimum has a positive objective value while the op-
timal elementary policy is the empty policy, with zero objective. The instance is
part of our second data set, consisting of general MP1 instances. The instance con-
sists of n = 10 jobs divided over m = 5 modules. Fig. B.1 shows the modular
network. The cost vector is c = (5, 4, 8, 0, 1, 30, 43, 24, 33, 50), the PTS vector is
p = (0.819, 0.963, 0.912, 0.816, 0.840, 0.965, 0.891, 0.870, 0.876, 0.995) and the payoff
V equals 63. The globally optimal policy is non-elementary, with expected profit
equal to 1.18. Every non-empty compatible job list leads to an elementary policy
with a negative expected profit.

Appendix C. Data generation. In the generated data sets, the costs ck of
an activity k are independent samples of a discrete uniform distribution on the set
{0, 1, . . . , 50}, and success probabilities pk are independent samples of a continuous
uniform distribution on the interval [0.8; 1]. For the first data set with n:n-systems,
the end-of-project payoff V is an integer randomly selected from the interval [0.5a; 2a],
with a the value of the payoff such that the elementary policy π( · ;L) produced by
Algorithm 2 has zero expected profit, i.e. a = (1/an)

∑n
k=1 ak−1cL(k), with a0 = 1

and ak =
∏k

l=1 pL(l), k = 1, . . . , n.
For the second data set, for given n and OS , we generate five instances with

m = ⌈n/4⌉ non-dummy modules and another five instances with m = ⌈n/2⌉ non-
dummy modules. The module network consisting of the m+ 2 modules is generated
with RanGen; a discussion of the determination of the order strength OS ′ of the
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module network is postponed to the next paragraph. Each module receives at least one
activity, and the remaining n−m activities are randomly allocated to the m modules.
This results in a modular network with Bi = ∅ for all i ∈ M . If the order strength
of the induced network is greater than or equal to OS , we stop. Otherwise, let B′

i =
{(k, l) | k, l ∈ Ni, k < l} and repetitively choose an intermodular precedence constraint
(k, l) from B′ = ∪i∈MB′

i at random and add it, together with any corresponding
transitive elements, to the modular network until the order strength of the induced
network exceeds or equals OS . Note that at each step of this process, set B′ is updated
by removing the newly added elements. The costs and probabilities are generated in
the same way as for the first data set. The payoff V is chosen randomly in [0.5b; 2b],
where b is the value of the payoff such that the elementary policy π( · ;L) produced
by Algorithm 3 has zero expected profit.

The value of OS ′ is chosen such that a generated instance contains about half of
the total number of possible intermodular precedence constraints on average. To this
end, let t be the numerator of the order strengthOS ′, i.e. t = OS ′(m

2

)
, and let n̄ = n/m

be the average number of jobs per module. In case all modules contained exactly
n̄ activities, the order strength of the induced network without any intermodular
precedence constraints would equal tn̄2/

(
n
2

)
. Furthermore, there are m

(
n̄
2

)
possible

elements in B′ such that aiming for half of the elements of B′ leads to an instance
with an order strength OS of its induced network equal to

(
OS ′(m

2

)
n̄2+m

(
n̄
2

)
/2
)
/
(
n
2

)
.

Solving this equation for OS ′ finally leads to the formula

OS ′ =
m(n− 1)OS − (n−m)/2

n(m− 1)
.

The actual number of jobs in a module can sometimes significantly differ from the
average n̄. Moreover, RanGen also approximates the order strength OS ′ of the gen-
erated networks. These uncertainties lead to a data set in which the total number
of intermodular constraints of the instances is nicely spread between zero and the
maximum value, where the intermodule precedence network is a chain.

Appendix D. Implementation of the hash table for the SDP. We imple-
ment the hash table by means of two different arrays A1 and A2. The key-value pairs
are stored in array A1 from left to right, complemented with an integer for dealing
with collisions. This integer refers to the previous element of A1 with the same hash
value. More concretely, an element A1(i) = (A1(i)(0), A1(i)(1), A1(i)(2)) is a triple
(Y,G(Y ), k) for i = 0, . . . , |S| − 1, with k the largest integer smaller than i such that
the key Y ′ of A1(k) maps to the same table entry, i.e. g(Y ) = g(Y ′). If no such integer
exists, k equals −1. In this way, the keys of A1 that map to the same table entry
constitute a linked list. The linked list evolves from right to left in A1 and halts at an
element A1(i) with A1(i)(2) = −1. The array A2 is of size L and A2(i) is the index
of array A1 that holds the head of the linked list containing the elements hashed onto
table entry i for i = 0, . . . , L− 1. If this list is empty then we set A2(i) = −1. When
k elements are already present, a new element is added to the hash table following
Algorithm 4. Note that elements are added to the front instead of to the end of the
linked list, which offers two advantages compared to adding to the end. First, a new
element can be included very quickly without running through the entire linked list.
Second, to retrieve an element, the linked list is scanned from head to end; see Algo-
rithm 5 for a description of the retrieval of a value function of a key. Since recently
added elements are more likely to appear in further calculations, adding to the front
of the list will also retrieve elements faster.
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Algorithm 4 Insert new element (Y,G(Y )) in the hash table; assume k items are
already stored

1: i← g(Y )
2: A1(k)← (Y,G(Y ), A2(i))
3: A2(i)← k

Algorithm 5 Retrieve the value function of state Y

1: i← A2(g(Y ))
2: if (A1(i)(0) == Y ) then
3: return A1(i)(1)
4: else
5: i← A1(i)(2)
6: end if
7: if (i == −1) then
8: item is not in list
9: else

10: Go to line 2
11: end if

-1 -1

10

0 1 2 3

A1

A2

Fig. C.1. Contents of arrays A1 and A2 when the hash table is empty
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(a) One item in hash table

1 0
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(b) Two items in hash table

2 0

Y1

G(Y1)

-1

Y2

G(Y2)
-1

Y3

G(Y3)
1

0 1 2 3

10
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(c) Three items in hash table

2 3

Y1

G(Y1)

-1

Y2

G(Y2)
-1

Y3

G(Y3)
1

0 1 2 3
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G(Y4)
Y4

0
A1

A2

(d) Four items in hash table

Fig. C.2. Contents of arrays A1 and A2 when new item i is added to the table, i = 1, 2, 3, 4
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To illustrate the foregoing, consider an example involving the storage of four
key-value pairs (Yi, G(Yi)), i = 1, 2, 3, 4. Assume L = 2 and g(Y1) = g(Y4) = 1,
g(Y2) = g(Y3) = 0. Fig. C.1 depicts an empty hash table. Fig. C.2 illustrates the
status of the lists A1 and A2 each time an item is added. At the end we obtain two
linked lists, namely 3→ 2 and 4→ 1, corresponding to bucket entry 0 and 1.
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