
Nesting Probabilistic Inference

Theofrastos Mantadelis and Gerda Janssens

Department of Computer Science, Katholieke Universiteit Leuven
{firstname.lastname}@cs.kuleuven.be

Abstract. When doing inference in ProbLog, a probabilistic extension
of Prolog, we extend SLD resolution with some additional bookkeeping.
This additional information is used to compute the probabilistic results
for a probabilistic query. In Prolog’s SLD, goals are nested very natu-
rally. In ProbLog’s SLD, nesting probabilistic queries interferes with the
probabilistic bookkeeping. In order to support nested probabilistic infer-
ence we propose the notion of a parametrised ProbLog engine. Nesting
becomes possible by suspending and resuming instances of ProbLog en-
gines. With our approach we realise several extensions of ProbLog such
as meta-calls, negation, and answers of probabilistic goals.

1 Introduction

In Prolog, we typically write a program and then we formulate queries in terms
of the program predicates. The program predicates can call new Prolog queries,
affectively nesting them. A Prolog system uses SLD resolution to compute the
failure or success of the queries and in case of success the answer substitutions.
During SLD resolution queries are nested in a very natural way: in order for a
particular query to be proved the conjunction of nested queries must be proved.
Results of queries are always used in the same way: failure causes backtracking
and on success we use the answer substitution. Meta-programming makes it
possible to construct some of the nested queries at run-time, but once the Prolog
system has mapped such a callable term to a query, execution continues as if the
query was known at compilation time.

ProbLog [2] is a probabilistic extension of Prolog: facts can be labelled with
probabilities. Labelling e.g. an edge/2 fact with a probability p indicates that
the edge exists with probability p. The basic query in ProbLog is the com-
putation of the success probability (Result) of a query (Query) for a given
ProbLog program: problog_inference(Inference, Query, Result). As the
ProbLog system supports several inference methods, we also indicate which in-
ference method (Inference) will be used. In order to compute the probability,
the inference methods need to do some bookkeeping about the probabilistic facts
used for proving the query. Current probabilistic logic programming languages
such as PHA [5], PRISM [9], PITA [7], do not support nesting of inference. We
are presenting an approach for nesting inference. Nesting inference in a proba-
bilistic logic programming is required for implementing high order probabilistic
calls. Nesting inference in ProbLog interferes with the necessary bookkeeping

1

performed. Moreover, ProbLog queries can return different kinds of results. For
a ground query, ProbLog can compute its success probability. For a non-ground
query, ProbLog can compute the different answers for the query together with
their respective probabilities.

Instead of computing the probability, ProbLog can also return detailed in-
formation about the annotated facts used during the proofs of the query, for
example the corresponding DNF. Therefore, a more general ProbLog query has
the form problog_inference(Inference, Query, ResultType, Result). All
three kinds of results have their uses as we illustrate in this paper.

The contribution of this paper is a general solution for nesting ProbLog
queries, performing nested inference. Our solution allows to suspend the infer-
ence of a query qc together with its relevant probabilistic information, to start
the inference of a new query qn and to compute its desired result, and then use
the result of qn when resuming the inference of qc. Our approach is based on
ProbLog engines. A ProbLog engine has a set of parameters and a state. Every
different instantiation of these parameters implement a different ProbLog infer-
ence method. By suspending the execution of the current ProbLog engine and
creating a new one, we are able to support nested inference. To suspended and
resume ProbLog engines we use a stack.

We introduce ProbLog in Section 2 and describe some common inference
methods. In Section 3 we present the limitation of the existing system and mo-
tivate the need for probabilistic meta-calls. Then we propose a way to overcome
this limitations by the usage of ProbLog engines in Section 4. Then follows some
new primitives and some examples of their usage in Section 5. The experiments
are in Section 6 and finally, Section 7 concludes.

2 ProbLog

ProbLog is a probabilistic extension of Prolog inspired by typical machine learn-
ing applications. It is developed as a simple but powerful probabilistic logic pro-
gramming language, and can be used e.g. for mining large biological networks
(where nodes represent genes, proteins, and so on), with probability labels on
their edges.

As illustrated in Figure 1, the syntax of a ProbLog program T is similar to
that of a Prolog program: it consists of facts and relations between them, but in
the case of ProbLog a label is attached to some of the facts. That is, the program
can be split into a set of labelled facts, where each pi :: fi defines a fact fi with
probability of occurrence pi, and a Prolog program using those facts, which
encodes the background knowledge (BK). We denote the set of all fi (without
probability label) by LT . Probabilistic facts correspond to mutually independent
random variables (RVs), which together define a probability distribution over all
ground logic programs L ⊆ LT :

P (L|T) =
∏

fi∈L
pi

∏
fi∈LT \L

(1− pi). (1)

2

We use the term possible world to denote the least Herbrand model of such a
subprogram L together with the background knowledge BK and, by slight abuse
of notation, use L to refer to both the set of sampled facts and the corresponding
world.

a

b

d

e

c

f

0.4

0.55

0.2

0.4

0.5

0.8 0.3

h

g

0.7

0.6

0.7

0.40 :: edge(a,b). 0.55 :: edge(a,c).

0.80 :: edge(b,e). 0.20 :: edge(b,d).

0.40 :: edge(c,d). 0.30 :: edge(e,f).

0.50 :: edge(d,f). 0.60 :: edge(d,g).

0.70 :: edge(f,h). 0.70 :: edge(g,h).

path(X, Y) :- edge(X, Y).

path(X, Y) :- edge(X, Z), path(Z, Y).

(a) Probabilistic graph (b) ProbLog program

Fig. 1. An example of a probabilistic graph and the corresponding ProbLog program.

Figure 1 shows a typical example of a probabilistic graph encoded in ProbLog.
One can query the probability that a path exists between two nodes in the graph.
As it can be noticed from the graph of Figure 1, there are several possible paths
between two nodes. For example between nodes b and f , we have two possible
paths: b → e → f and b → d → f . In ProbLog, querying for the probability of
path(b, f) means asking for the probability that a randomly selected subgraph
contains a path from b to f . Such subgraphs can contain the edges of the path
b → e → f or those of the path b → d → f , but also all of them or even many
more. The success probability Ps(q|T) of a query q can now be defined as follows:

Ps(q|T) =
∑

L⊆LT

P (q|L) · P (L|T) (2)

where P (q|L) is 1 if there is a substitution θ such that qθ is entailed by the
union of L and the background knowledge (L ∪ BK |= qθ), and 0 otherwise.
Equation (2) states that the success probability of the query path(b, f) can be
calculated by summing the probabilities of all subgraphs which include at least
one path connecting nodes b and f .

For our example, the success probability as given in Equation (2) is easily
computed even by hand: the success probability is Ps(path(b, f)|T1) = 0.316
(note that it is sufficient to consider the graph restricted to nodes b, e, d and f
when listing subprograms for this query), but for complex problems this could
consume large amounts of time and memory. ProbLog therefore follows different
strategies to obtain success probabilities, which we will briefly discuss next.

2.1 Exact Inference

As iterating over possible subprograms as done in Equation (2) is infeasible
for most programs, ProbLog’s exact inference instead employs a reduction to

3

a propositional formula in disjunctive normal form (DNF). As stated earlier,
probabilistic facts can be seen as RVs, implying that a proof can be represented
as a conjunction of such facts. The set of all proofs can then be represented as a
disjunction, producing a DNF formula. The success probability then corresponds
to the probability of this formula being true. In our example we obtain the
formula (e(b, e)∧e(e, f))∨(e(b, d)∧e(d, f)) where e/2 denotes edge. Each proof’s
probability is calculated as the product of the probabilities of its facts. Following
the simple logic of conjunction and disjunction we could infer that the summation
of all proofs’ probabilities will produce the final result. However, this is only true
under specific conditions, namely if each possible world permits at most one
proof of the query. PRISM [9] requires that programs respect these conditions,
which means that proofs have to be mutually exclusive (w.r.t. occurrence in
possible worlds). In our example, these conditions are not met: we would obtain
0.34, while the correct value is 0.316. One way to deal with this problem is to
consider the conjunctions in the DNF sequentially, and to replace each proof
or conjunction αi by its conjunction with the negation of all the proofs after
it, that is, by αi ∧

∧
j≥i ¬αj . In this way, each possible world permits at most

one such extended proof. Note however that the resulting formula needs further
manipulation to be transformed into a sum of products which can be used for
easy calculation. For the previous example this will produce:

Ps(path(b, f)|T) =P ((e(b, e) ∧ e(e, f)) ∨ (e(b, d) ∧ e(d, f))|T)

=P ((e(b, e) ∧ e(e, f)) ∧ ¬(e(b, d) ∧ e(d, f))) + P (e(b, d) ∧ e(d, f))

=0.8 · 0.3 · (1− (0.2 · 0.5)) + 0.2 · 0.5 = 0.316.

Unfortunately this type of technique is feasible only for small formulae. This
problem is known as the disjoint-sum-problem (as it is concerned with making
the contributions of the different parts of the summation non-overlapping) and
is #P-complete [10]. The ProbLog system deals with it using Reduced Ordered
Binary Decision Diagrams (ROBDDs), which are graphical representations of a
Boolean function over a set of variables, which significantly extends scalability
of inference. We refer to this method as exact.

2.2 Approximate Inference: Program Sampling

Furthermore, there exist different alternative inference methods from exact. One
such approach that uses Monte Carlo methods, is to use the ProbLog program
to generate large numbers of random subprograms and use those to estimate the
probability. More specifically, such a method proceeds by repeating the following
steps:

1. sample a logic (sub)program L from the ProbLog program

2. search for a proof of the initially stated query q in the sample L ∪BK
3. estimate the success probability as the fraction P of samples which hold a

proof of the query

4

The implementation of this approach for ProbLog, as described in [2], takes
advantage of the independence of probabilistic facts to generate samples lazily
while proving the query, that is, sampling and searching for proofs are inter-
leaved. To assess the precision of the current estimate P , the width δ of the 95%
confidence interval is approximated as

δ = 2 ·
√
P · (1− P)

N
(3)

If the total number of samples N is large enough the interval of confidence be-
comes smaller, and the certainty that the estimate is close to the true probability
of the query increases. We refer to this method as program sampling.

2.3 Invoking Inference

Probabilistic inference in ProbLog is invoked through problog_inference/3.
Given the inference method and the query one retrieves the probability that the
query succeeds. When the given query is non-ground, problog_inference/3

computes as success probability the success probability of all the instances of
the query without binding the variables. Later at Section 5.3 we present a new
inference method that returns the answers through backtracking by binding the
non-ground variables.

3 Why Probabilistic Meta-calls

Many real life applications use probabilistic inference to take decisions about a
task. For a probabilistic logic system to fully support decision taking the nesting
of its inference methods is required. Consider for example the problem of inferring
the similarity between two words. While there are many approaches to tackle
this problem, there is no best one. A reasonable approach is to infer the word
similarity in different independent ways and then use a combination model. One
could represent the synonym relation between words as a probabilistic graph and
write a ProbLog program to infer the probability of two words having the same
meaning. This technique does not perform well if spelling errors appear in the
words. One could write another ProbLog program to find the probability of a
spelling error. There are several ways to use these results in a probabilistic model.
The final model that uses probabilistic inference during probabilistic inference,
can be looked at as a higher order model.

The existing ProbLog implementation does not support nested inference.
Moreover, once we start using nested inference we also want to determine at
run-time the actual ProbLog query. We call the proposed extensions probabilistic
meta-calls.

In Prolog, goals are nested all the time as the basic step of SLD resolution
proofs a goal by proving the goals in the body of a unifying clause. Moreover,
goals can be constructed as Prolog terms at run-time and then Prolog’s support
for meta-calls transforms the terms into executable goals.

5

The existing ProbLog system can compute a probabilistic query of the form
problog_inference(Inference, Query, Result) for a given Query, with a
chosen Inference method and returns the success probability at Result. Note
that during this inference no nested calls to problog_inference/3 are allowed
as they interfere with the bookkeeping of the use of probabilistic facts.

In this paper we propose to generalise the problog_inference/3 predicate,
to allow nested inference and to support meta-call features. In addition of deter-
mining at run-time the inference method and the query, we also want to specify
what kind of result we want: the success probability of the query, or a specific
representation of the bookkeeping information on which the probability compu-
tation is based. The generalised ProbLog query will call problog_inference(
Inference, Query, ResultType, Result) and these calls can be nested. We
introduce the notion of a ProbLog engine that allow us to implement the general
problog_inference/4 predicate.

4 ProbLog Engine

Before describing the ProbLog engine, we want to point out that for the exact
inference of Section 2.1, ProbLog collects the probabilistic facts used in a success
branch of the SLD tree of the query in a list (a so-called explanation or proof),
and also collects all explanations as a DNF, which is typically represented by a
trie. This trie is then transformed into a ROBDD in order to compute the correct
success probability. On the other hand program sampling of Section 2.2 samples
a possible world which is kept in a list1 and counts the successful derivations.

Some shortcoming of the previous system are: the lack of intermixing different
inference methods; that each inference method has its own SLD-resolution kernel;
not easy to use alternative data structures; difficult to extend or modify current
functionality. We identified the need for an abstract framework that provides
a common SLD-resolution kernel that can be instantiated to realise different
inference methods and/or different design options.

The ProbLog engine is an abstraction that allows dynamic modifications
of Prolog’s SLD resolution to uniformly implement the different bookkeeping
needed by the different inference methods. By parametrisation of the ProbLog
engine, one parametrises the SLD resolution.

The basic functionality of the parametrised ProbLog engine is the SLD based
execution of the query together with the bookkeeping about the probabilistic
facts that are used during this execution. By setting the parameters of the
ProbLog engine, different instances are created that correspond to different in-
ference methods and to different result types.

The difference with the existing implementations is the parametrised design,
but also the organisation of the data-structures of the ProbLog engine. Each
instance of the ProbLog engine has its own unique identifier, which is used
when working with instance specific data. This instance-based organisation is
necessary for the nested inference.

1 Or an equivalent data structure like an array.

6

In the rest of this section we will explain what are relevant parameters of the
ProbLog engine and how the nesting is supported.

4.1 Parameters of the ProbLog Engine

In order to define an instance of a ProbLog engine that implements an inference
method, we specify two “continuation” predicates that deal with the construction
of the explanations and the construction of the DNF. We also decide about the
kind of data structures that are used to represent the explanations and the DNF.
The instance of the ProbLog engine uses two “registers” to refer to the two data
structures.

More specifically, we use two “continuation” predicates that are used during
the SLD resolution to implement the adequate bookkeeping for the probabilistic
facts, which are called annotated facts in this context: a fact annotated with a
probability is a probabilistic fact. Both predicates are used to perform inference
specific tasks and are different from inference to inference method.

The first dynamic “continuation” predicate is continuation_af/2 which is
called every time a goal is proved by an annotated fact. The first argument is the
unique identifier of the annotated fact and the second argument the annotation of
the fact, typically its probability. The second dynamic “continuation” predicate
is continuation_explanation/0 and is called every time the SLD resolution
reaches a successful derivation. In addition to the two predicates, each instance
of a ProbLog engine has two “registers”. These registers refer to the instance spe-
cific data structures in which the information about the usage of annotated facts
is collected. The first register (actually the referred data structure) is used by
continuation_af/2 and the second by continuation_explanation/0. These
registers will be part of the state of the ProbLog engine that has to be saved
and reset for nested inference.

In figure 2 we present the parametrisations that implement exact and pro-
gram sampling inference methods. For exact, the continuation_af/2 predicate
is responsible for collecting the identifiers of the used annotated facts in a list,
i.e. the ID of the used annotated fact is added to the current explanation (re-
ferred to by the first register). The continuation_explanation/0 predicate is
responsible for collecting the explanations in a trie: it adds the current com-
pleted explanation to the trie (referred to by the second register). The first
register refers to the current (partial) explanation, and the second to the trie
under construction.

For program sampling, the continuation_af/2 predicate is responsible for
checking if the annotated fact or its negation is in the current sampled possible
world, and if not to sample it and add it. The continuation_explanation/0

predicate does not need to do anything special. In this example we represent a
partial possible world by a list but it could be represented by an array or another
data structure. The first register refers to the current partial possible world. The
equivalent bookkeeping for the second register would be the complete possible
world, but because it is not required to sample the complete possible world we
only need and keep a unique identifier which refers to the sample.

7

Continuation_af = (continuation_af(ID, _Probability):-

add_to_explanation(ID)),

Continuation_explanation = (continuation_explanation:-

add_to_trie(completed)),

problog_engine_init(exact,

continuations(Continuation_af,

Continuation_explanation),

state(list, trie)).

Continuation_af = [(continuation_af(ID, _Probability):-

in_possible_world(ID, Result),

!, call(Result)),

(continuation_af(ID, Probability):-

sample(Probability, Result),

add_possible_world(ID, Result),

call(Result))

],

Continuation_explanation = (continuation_explanation),

problog_engine_init(program_sampling,

continuations(Continuation_af,

Continuation_explanation),

state(list, identity)).

Fig. 2. Modifying the SLD resolution for exact, program sampling inference methods.

4.2 Nesting ProbLog engines

The nesting of ProbLog engines, requires a suspension/resumption mechanism
for which we use a stack. The active ProbLog engine is called the current engine.

When a new engine is initialised, it first pushes the current engine on the top
of the stack and then becomes the active engine. When an engine has finished
all its computations, it ends by popping the stack of engines.

When pushing an engine on the stack, we save the engine parameters:
continuation_af/2, continuation_explanation/0, the two registers, and the
unique identifier of the engine. This information is sufficient to implement the
nesting of engines using a stack discipline. Note that the information kept in the
stack is related to the probabilistic bookkeeping. The interference of the nesting
with the SLD resolution needs no special care.

4.3 Calling the ProbLog Engine

An instance of ProbLog engine is used to execute the problog_inference/2,
problog_inference/3, and problog_inference/4 predicates. The four argu-
ments of the predicate problog_inference/4 are Inference, Goal, ResultType,
Result. The argument Inference is used to define which ProbLog inference
method is used and its possible values are pure, exact, program sampling, and
current, where pure denotes that the engine behaves as pure Prolog and current

8

instructs the engine to use the same inference method as was being used. The
argument Goal denotes the goal that needs to be proved by the call. ResultType
denotes that we are interested in the success probability of the goal or in the
explicit representation of the collected information and its possible values are
probability or info. Finally, the argument Result is the returned probability or
the detailed information that the engine returns.

We also use as syntactic sugar the predicates problog_inference/3 and
problog_inference/2.

problog_inference(Inference, Goal, Probability):-

problog_inference(Inference, Goal, probability, Probabilistic).

problog_inference(Goal, Probability):-

problog_inference(current, Goal, probability, Probabilistic).

5 Nested Inference

With our ProbLog engine based approach we can realise several interesting ex-
tensions as is described in the following subsections. Nested inference allows us
to compute the success probability of a new child query that was possibly de-
fined at the run-time, and use the success probability during the execution of the
parent ProbLog query. The nested inference allows us to interleave any combina-
tion of different inference methods or inference tasks. Furthermore, returning the
explicit information instead of the success probability can be used to formulate
the counterpart of the \+/1 predicate of Prolog. Finally, we use our approach to
support non-ground queries.

5.1 Nested Inference Returning Success Probability

Our approach allows us to perform nested inference. The nested inference com-
putes the correct results as every call to problog_inference suspends the pre-
vious ProbLog engine, starts a new one and uses the result when the previous
one is resumed. In the example of figure 3, ProbLog inference is used to decide
which route will be taken.

5.2 Nested Inference Returning Information & ProbLog Negation

The implementation of Negation as failure in Prolog uses a meta-call as shown
in figure 4a. In ProbLog negation [1] is a more complex task due to bookkeeping
issues. In the existing implementation of ProbLog only probabilistic facts could
be easily negated as their integration is very simple. Our approach allows to
negate all probabilistic goals, namely goals that use in their proofs probabilistic
facts.

Different inference methods require different implementations of negation. We
illustrate the difference using exact and program sampling inference methods.

9

?- Input =..., problog_inference(exact, model(Input), Psucc).

model(Input):-

some_computation(Input, From),

decide_route(From).

decide_route(From):-

problog_inference(path(a, From), P),

(P < 0.3 ->

path(From, f)

; P < 0. 6 ->

path(From, g)

;

path(From, h)

).

Fig. 3. An example of inference within inference using the ProbLog program of figure 1.

For exact inference, proving the negation of a probabilistic fact means to
add to the explanation the complementary probabilistic fact2, as probabilistic
facts are represented by Boolean variables, we simply mark them negated. This
negation obviously does not alter the representation of the DNF formula.

The success probability of a probabilistic goal Goal is computed from a repre-
sentation of its corresponding DNF. In order for the negation of a probabilistic
goal problog_not(goal) to succeed, the negation of the corresponding DNF
should hold or the corresponding CNF should hold.

Now consider the contribution of the subgoals to the final DNF: their cor-
responding annotated facts are scattered over the different explanations in the
DNF. If we allow problog_not in ProbLog, we need to do something special
to incorporate the CNFs in a correct way. Moreover the calls to problog_not

can be nested. Our solution uses the suspend/resume mechanism to compute
the DNF for the negated probabilistic goal. We also use a special data structure
to represent the DNF: by collecting the explanations of the subgoals separately
we will store them as is done for tabling [3, 4] and in these nested tries we can
indicate which parts need to be negated.

In the case of program sampling, things are very different. Instead of proof
collection, we count in how many samples the query succeeds. In the process of
constructing a possible world, we sample each probabilistic fact that we need to
prove. At each sample, a probabilistic fact either succeeds or fails. Negating a
probabilistic fact means inverting success with failure and failure with success.
Similarly, a probabilistic goal succeeds or fails depending the possible world
sampled, and its negation again means the invertion of success and failure. For

2 Probabilistic facts are represented as random variables, negating them results to the
complementary random variable with probability 1 − P .

10

that reasons one can use the negation as failure as defined in Prolog for ProbLog
programs when doing program sampling.

’\+’(Goal):- problog_not(exact, Goal):-

call(Goal), !, fail. problog_inference(current,Goal,info,DNF),

’\+’(_) continuation_af(not(DNF), _).

problog_not(program_sampling, Goal):-

\+ Goal.

(a) Negation as Failure in Prolog (b) ProbLog Negation

Fig. 4. Negation

ProbLog negation has many uses in modelling. First of all it can be used to
calculate the probability of a query not succeeding. Further on, it has been used
to model annotated disjunctions which are needed for many probabilistic models
such as a hidden Markov models, Bayesian networks and other. Some example
uses are shown in Figure 5.

5.3 Nested Inference Returning Answers & ProbLog Answers

Finding all the answers of a non-ground query in Prolog is done through back-
tracking. In ProbLog, we also need to calculate the success probability of the
query having a particular answer.

We implemented this task by using Prolog to find the answers of the query.
Once we have an answer, we have a grounding of the query and we can do
probabilistic inference for this ground query. A simplification of the actual code
implementing ProbLog answers is shown in Figure 6. With this extension we
can return answers to non-ground queries tupled with their success probability.
We call this extension ProbLog answers.

The call(Goal) goal is using Prolog’s backtracking mechanism to enumerate
all possible answers by fully ignoring any probabilistic information related with
the query. When an answer is found, problog_inference(Inference,Goal,P)
uses the appropriate inference method to calculate the probability of the answer.

This simplified code calls problog_inference/3 also when a particular an-
swer occurs again. This inefficiency is solved easily by memoizing the calculated
answers.

We need to add some functionality to the stack discipline. After dealing
with one answer, we need to re-activate the parent engine3 for continuing the
previous goal, but when execution backtracks back to call(Goal) we need to
again activate the pure Prolog engine that returns us the answers. To solve
this we implemented a special suspension mechanism which swaps the order of
engines in the stack.

3 The outer engine that called ProbLog answers.

11

% This example encodes a coin toss.

0.50::heads(_Number).

toss(Number, heads) :- heads(Number).

toss(Number, tails) :- problog_not(heads(Number)).

% This example encodes the following Sprinkler/Rain Bayesian network

% from wikipedia.

0.20::rain.

0.01::sprinkler_on(rain).

0.40::sprinkler_on(no_rain).

0.80::grass_wet(rain).

0.90::grass_wet(sprinkler).

0.99::grass_wet(both).

sprinkler :- rain, sprinkler_on(rain).

sprinkler :- problog_not(rain), sprinkler_on(no_rain).

grass_wet :- problog_not(sprinkler), rain, grass_wet(rain).

grass_wet :- sprinkler, problog_not(rain), grass_wet(sprinkler).

grass_wet :- sprinkler, rain, grass_wet(both).

Fig. 5. Example uses of ProbLog negation

12

Finally, the last difficulty is that the different engines need separate garbage
collectors which must be triggered when an engine is not needed anymore, thus
we need a mechanism to tell us when the call(Goal) is completed or the
user commits to an answer4. This problem is solved with the help of YAP’s
setup_call_cleanup/3 built-in predicate.

ProbLog answers has many uses. Non-ground queries are needed to find which
nodes are connected in probabilistic graphs and with which probability. One can
use it in combination with other high order calls such as Prolog’s findall/3,
forall/2, etc. answering even more complex queries such as which node is more
probable to be connected with a node in a probabilistic graph. See example in
figure 7.

problog_answers(Inference, Goal, P):-

init_inference(pure_prolog_engine),

call(Goal),

problog_inference(Inference, Goal, P),

(suspend_engine; (resume_engine, fail)).

Fig. 6. Simplified ProbLog Answers

connected_node(From, To, P):-

problog_answers(path(From, To), P).

find_most_probable_node(From, MaxNodeTo, MaxP):-

findall(To-P, problog_answers(path(From, To), P), Tuples),

findmax(Tuples, MaxNodeTo, MaxP).

Fig. 7. Example uses of ProbLog answers

6 Experiments

Our experiments aim to measure the meta-call overheads. For the experiments
we used a prototype5 implementation of ProbLog that is implemented using the
ProbLog engine approach. All the experiments are performed on an Intel Core 2
Duo CPU at 3.00GHz with 2GB of RAM memory running Ubuntu 8.04.2 Linux
under a usual load using Yap 6.2.0 [8].

4 When for example the choice points are cut.
5 The prototype implementation is available at: http://people.cs.kuleuven.be/

~theofrastos.mantadelis/tools/metaproblog.tar.gz

13

To measure the overhead we used a typical ProbLog application namely an
Alzheimer graph from [2] with a path/2 predicate that defines paths between
nodes; we consider the pair of nodes ’HGNC_582’, ’HGNC_983’ which is a query
that has both many failing and succeeding derivations. We executed three dif-
ferent benchmarks, all of them nested with meta-calls exactly 10 times. The first
benchmark is performing all the nesting first and then the goal is proved. The
query for the first benchmark is of the form: exact((exact((exact((...)), G1)), G1)),
where exact/2 is the abbreviation for problog_inference(exact,Goal,_P).
This benchmark measures the overhead of the created engines.

The second benchmark has the goal before the nesting. In this way, an en-
gine consumes resources before starting a nested engine. To avoid executing
the nested call after each successfull derivation of the goal, path(’HGNC_582’,
’HGNC_983’), we transform the goal into ((path(’HGNC_582’,’HGNC_983’),

fail);true)6. The query for this benchmark is of the form: exact((G2, exact((G2,
exact((...)))))). This benchmark measures the the impact of previously proven
goals to newer engines.

Our final benchmark is the combination of the two above. The query is of
the form: exact((G2, exact((G2, exact((...)), G1)), G1)).

Executing the presented queries with no nested meta-calls we achieve the
following execution times: 19069, 12080, 31191 milliseconds respectively for the
first, second and third query.

The results of our benchmarks are presented in Table 1. The left hand side
of the table presents the average times of 10 executions for each call at each
nesting. The right hand side presents the average time any nested goal took at
each execution. First thing we notice is that the all our averages are very close
and that the standard deviation is low. From this observation we can safely claim
that the depth of nesting does not impose any significant loss of time. On the
other hand we do notice a very small overhead around 1% going from no nested
calls to any nested call.

7 Conclusions, Related and Future Work

In this paper we presented an approach for implementing probabilistic meta-
calls using ProbLog engines. The underlying idea is to abstract the required
information for the probabilistic bookkeeping in a parametrised ProbLog en-
gine. By storing the engines in a stack, we achieve probabilistic meta-calls. We
introduced the general probabilistic query problog_inference/4, which allows
us to perform nested inference and, further more, we presented how to imple-
ment problog_not/1 and problog_answers/3 with meta-calls. We also briefly
illustrated the functionality of meta-calls in probabilistic modeling. To verify
our approach, we performed some experiments and measured an overhead of
approximately 1%.

6 This will also reduce somewhat the work load but still retain it suitable for our
experiment.

14

Query: exact((exact((exact((...)),G1)),G1))

Depth Avg Time Deviation Run Avg. Time Standard
(msec) (msec) Deviation

1 19347.7 191.72 1 19447.2 125.89
2 19281.3 120.29 2 19382.4 312.21
3 19380.7 202.51 3 19287.2 216.96
4 19279.2 114.64 4 19253.2 85.79
5 19318.3 215.61 5 19231.9 144.35
6 19240.1 155.73 6 19226.2 190.78
7 19435.6 175.61 7 19561.5 103.54
8 19268.2 99.21 8 19320.0 140.81
9 19338.0 112.58 9 19285.8 89.11

10 19361.3 340.75 10 19255.0 91.08

Query: exact((G2,exact((G2,exact((...))))))

Depth Avg Time Deviation Run Avg. Time Standard
(msec) (msec) Deviation

1 12202.5 124.22 1 12252.6 154.03
2 12301.2 145.41 2 12269.5 73.19
3 12269.2 130.31 3 12275.9 141.36
4 12294.7 134.93 4 12240.8 108.59
5 12256.9 163.27 5 12218.3 188.52
6 12189.6 152.83 6 12272.3 176.31
7 12169.9 140.61 7 12259.7 196.27
8 12148.4 134.18 8 12234.1 141.92
9 12312.4 119.22 9 12257.6 165.59

10 12346.9 95.93 10 12210.9 76.06

Query: exact((G2,exact((G2,exact((...)),G1)),G1))

Depth Avg Time Deviation Run Avg. Time Standard
(msec) (msec) Deviation

1 31509.1 250.17 1 31494.3 300.57
2 31749.2 362.68 2 31444.8 205.96
3 31667.5 242.61 3 31529.5 138.27
4 31416.1 121.02 4 31406.4 218.04
5 31379.6 145.27 5 31453.1 363.23
6 31331.7 270.83 6 31680.6 433.29
7 31930.7 301.64 7 31562.7 121.24
8 31466.0 322.14 8 31686.2 330.58
9 31588.4 121.49 9 31482.0 203.66

10 31331.8 108.03 10 31630.5 397.61
Table 1. Experimental results.

15

ProbLog is closely related to other probabilistic logic systems such as PHA [5],
PRISM [9], PITA [7], and ICL [6]. However, PRISM and PHA impose additional
assumptions to simplify probability calculation, and the ICL implementation
ailog2 does not scale to larger problems. ProbLog’s implementation is targeted
at overcoming these limitations. Unfortunately none of the existing probabilistic
logic systems has support for probabilistic meta-calls. While PRISM has simpler
bookkeeping (using support graphs) we believe that a similar approach like ours
would be necessary to implement meta-calls, PITA is a specific tabled inference
approach that very much resembles the tabling used by ProbLog [3, 4].

As future work, we are researching in methods for engine sharing. This ap-
proach aims at re-using evaluations among identical ProbLog engines imporving
perfromance. Also, we are investigating the suitability of the ProbLog engine for
other inference methods and we plan to implement them.

Acknowledgements

We want to thank Paulo Moura for his advices on how to avoid nasty hacks in the
implementation and the anonymous reviewers for their constructive comments.
This research is supported by GOA/08/008 “Probabilistic Logic Learning”.

References

1. Kimmig, A., Gutmann, B., Santos Costa, V.: Trading memory for answers: Towards
tabling ProbLog. In: International Workshop on Statistical Relational Learning
(2009), https://lirias.kuleuven.be/handle/123456789/230540

2. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the
efficient execution of ProbLog programs. In: de la Banda, M.G., Pontelli, E. (eds.)
ICLP. Lecture Notes in Computer Science, vol. 5366, pp. 175–189. Springer (2008)

3. Mantadelis, T., Janssens, G.: Tabling relevant parts of SLD proofs for ground
goals in a probabilistic setting. In: International Colloquium on Implementa-
tion of Constraint and LOgic Programming Systems (CICLOPS) (2009), https:
//lirias.kuleuven.be/handle/123456789/231065

4. Mantadelis, T., Janssens, G.: Dedicated tabling for a probabilistic setting. In: Tech-
nical Communications of ICLP. pp. 124–133 (2010), http://drops.dagstuhl.de/
opus/volltexte/2010/2590

5. Poole, D.: Probabilistic horn abduction and bayesian networks. Artif. Intell. 64(1),
81–129 (1993)

6. Poole, D.: Abducing through negation as failure: Stable models within the inde-
pendent choice logic. Journal of Logic Programming 44, 2000 (1995)

7. Riguzzi, F., Swift, T.: Tabling and Answer Subsumption for Reasoning on Logic
Programs with Annotated Disjunctions. In: Technical Communications of ICLP.
pp. 162–171 (2010), http://drops.dagstuhl.de/opus/volltexte/2010/2594/

8. Santos Costa, V., Damas, L., Reis, R., Azevedo, R.: YAP User’s Manual (2002),
http://www.ncc.up.pt/˜vsc/Yap

9. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. J. Artif. Int. Res. 15(1), 391–454 (2001)

10. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Jour-
nal on Computing 8(3), 410–421 (1979)

16

