SASHA: A Distributed Protocol for Secure Application Deployment in Shared
Ad-hoc Wireless Sensor Networks

Jef Maerien, Sam Michiels, Christophe Huygens, Wouter Joosen
IBBT-DistriNet
Department of Computer Science
Katholieke Universiteit Leuven
B-3001, Leuven, Belgium
Email: firsthame.lastname @ cs.kuleuven.be

Abstract—Wireless ad-hoc sensor networks in industrial
settings often consist of multiple independent parties, each
owning a subset of the nodes. In order to reduce costs, mini-
mize time to market and increase coverage and functionality,
these parties must share the capabilities of their individual
sensor nodes; this creates a multi-owner and multi-application
environment that requires advanced and secure mechanisms to
control the deployment and operation of sensor applications.
Although there is clear demand like in transport & logistics,
state-of-the-art on secure application deployment in WSNs is
lacking support for this sharing of sensor nodes. This paper
presents SASHA: a proof-of-concept protocol that enables
lightweight and secure deployment of multiple applications on
heterogeneously owned sensor nodes.

Keywords-Code Distribution, Wireless Sensor Networks, Se-
curity, Shared Infrastructure

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have many applica-
tions in a wide array of fields such as logistics, health-
care and agriculture. As more real-world applications are
being developed and deployed, new use cases and challenges
are being discovered. WSNs are moving away from static
single-owner single-application platforms toward dynamic
multi-owner multi-application environments where long-
lived mobile nodes form ad-hoc networks and adapt based
on evolving requirements. Many platform owners (POs) each
own part of the network and want to share their sensor
node capabilities [5] in order to reduce cost or to increase
coverage and functionality of the network. The application
owners (AOs) want to deploy applications on these shared
networks, while not necessarily owning part of the network.
Clearly security is a primary concern in this multi-actor
setting as requirements such as node integrity, application
confidentiality, and resource control need to be maintained.

Much research has been done on secure management
of WSNs. Several protocols have been proposed to deploy
code updates efficiently and securely. However, most of this
research assumes a static sensor network where a single
owner has total control of both objectives and platform.

The security challenge tackled in this paper is to enable
an AO to securely install a distributed application across a

WSN made up of nodes that are owned by many different
POs. The AO must be able to deploy applications on the
WSN while the POs must be certain that only approved
applications can be installed and that the capabilities and
lifetime of these applications are limited.

The contribution of this paper is the definition and real-
isation of SASHA: a light weight distributed protocol for
Secure Application deployment in SHared Ad-hoc wireless
sensor networks, which provides this necessary multi-actor
support by using node specific tokens. These tokens also
contain deployment parameters and runtime limitations for
the deployed application.

The remainder of this paper is structured as follows: Sec-
tion II details the use case this paper employs and lists the
functional and security requirements. Section III gives a brief
overview of related work. Section IV proposes the SASHA
protocol. Section V evaluates the prototype implementation.
Section VI summarizes the main contributions of this paper
and highlights future work.

II. CONTEXT AND REQUIREMENTS
A. Use Case

This section presents a case study in logistics. The two
main actors present are (1) the logistics providers and (2)
the infrastructure provider as shown in figure 1.

A logistics provider (LP) transports goods using contain-
ers. Some goods, such as pharmaceuticals and electronics,
are valuable and sensitive to damage. The LP wants to
monitor these goods to ensure that the conditions of the
transport are within limits. Thus he equips his containers
with sensor nodes and runs a monitoring application. He is
both a platform owner (PO) and an application owner (AO).
Depending on the type of transport, the LP might install a
different application that checks different variables.

In a harbor or on a ship multiple LPs are present who
each have their own containers and sensor nodes. The LPs
need to work together to form an ad-hoc wireless network
so messages of all nodes can be routed toward the gateway.
Further cooperation is desired in order to provide additional

Back-end
Logistics Provider B:
Platform Owner +
Application Owner

Back-end
Logistics Provider A%
Platform Owner +
Application Owner

Back-end
Infrastructure Provider:
Application Owner +

Network Owner

- Apps Logistics Provider A
D Apps Logistics Provider B
- Apps Infrastructure Provider

. Nodes Logistics Provider A
O Nodes Logistics Provider B

Figure 1. Network representation of the logistics use case.

functions for example to check whether reactive chemicals
are stored at a safe distance apart.

The infrastructure provider (IP) provides the infrastructure
for the containers and Internet gateways for the nodes. Some
examples are the operators of harbors, ships and warehouses.
The IP also wants to monitor container attributes while
present on his site. He can either deploy a costly private
sensor network or reuse the devices of the LPs. This paper
assumes that the LPs present on the site of the IP allow
the IP limited use of their sensor nodes. The IP is another
example of an AO.

In the above scenario security is clearly of vital impor-
tance. LPs want that only trusted parties can install verified
applications onto the sensor nodes and that the resource
usage and lifetime of these applications is limited. An
application deployed by an IP should only remain on the
node as long as a node is located in the site of the IP. Once
it leaves the site, the application should be removed.

B. Requirements

This section lists the five main requirements of the secure
deployment protocol.

Light weight: Any protocol in WSNs must be light
weight since nodes only have a limited amount of energy,
processing and communication resources. This is especially
important in logistics since containers are often far away
from their owners.

Per node permissions: The PO wants to have a clear
view of which applications run on each node. By giving
permission on a per use and per node basis, the PO keeps
the overview of the current state of his sensor nodes.

Multiple nodes: Applications must be deployed onto
multiple sensor nodes of different companies. If each PO
wants to deploy the application onto his sensor nodes
separately, the application would have to be sent over the

network several times, causing significant communication
overhead. Transmitting the application to all relevant sensor
nodes at once brings less overhead and is thus preferred.

Resource usage limits: The PO needs to be able to deploy
and enforce some limitations on the resource consumption of
the applications of the sensor nodes, for example restricting
the number of times an application runs and the frequency
and amount of data it sends.

Lifetime limitations: In ad-hoc network scenarios appli-
cations should only live as long as a node is a part of the
network or only for a limited amount of time.

C. Attacker model

This paper considers 2 types of attackers.

The external attacker is a malicious outsider. He can
intercept, modify and inject messages into the WSN. This
paper considers 2 types of attacks: (1) a DOS attack, where
the attacker attempts to use the deployment protocol to force
the node in spending unnecessary energy, and (2) a man in
the middle attack where an attacker intercepts and alters the
communication between the AO and the node.

The internal attacker is a malicious application owner.
He has been granted the right to deploy an application onto
a sensor node. He wants to exploit this permission to deploy
other applications, or redeploy the same application after it
has been removed.

D. Security requirements

This section lists the security requirements for the secure
deployment of applications based on the attacker model.

Confidentiality: The AO must be able to confidentially
deploy an application. Since this requires additional band-
width and computing power, this should be optional.

Authenticity: The node must be able to verify that the
permission for deployment is created by its PO.

Integrity: The node must be able to verify that the appli-
cation it received is the application that the PO approved.

Freshness: The approval of the deployment should only
remain valid for a certain amount of time.

Limited use: A permission to deploy an application
should only apply to one application for single use.

Survivability: Due to a lack of physical security in
WSNs, an external attacker can break open and probe a
node, revealing all the key material contained in the node.
The consequences of such node capture must be minimal.

III. RELATED WORK

This section evaluates and compares the related work in
the area of secure code dissemination protocols and secure
service access protocols (see Table I).

Many protocols have proposed security measures for the
Deluge code dissemination protocol [4]. Deluge is delivered
as a part of the TinyOS operating system, making it the de
facto programming standard. Most propose a variation of

[[[SASHA T Sluice [Tan2009 [Kerberos |

Light weight + + + -

Multi-party support + - - +

Confidentiality + - + T

Service parameters + - - +

Temporary lifetime + - - +
Table 1

COMPARISON OF THE FEATURES OF SASHA, KERBEROS AND A
SELECTION OF DEPLOYMENT PROTOCOLS FROM THE RELATED WORK.

a series of hash chains or hash trees where the start of the
chain is signed with the base-station’s private key to provide
integrity and authenticity. Some examples are Sluice [7] and
Seluge [6]. Tan et al. [9] also proposed to use the first L bytes
of the hash to encrypt the binary to provide confidentiality.

While these works address the problem of securing the
application deployment, none of these offer multi-party
support. This paper identifies 4 points that are missing: (1)
support for multiple parties deploying applications, (2) op-
tional support for confidentiality, (3) resource consumption
limitations, and (4) time-limited deployment.

SASHA is inspired by the Kerberos authentication scheme
[8]. In Kerberos, the requester of a service first logs into an
Authentication Service and receives a Ticket Granting Ticket
(TGT). When the user wants to access a service, he contacts
the Ticket Granting Server (TGS) using his TGT. The TGS
then returns a service token with which the user can interact
with the service. While Kerberos provides secure service
access, it is too heavy for usage in WSN due to the ticket
size: hundreds to even thousand of bytes.

IV. PrROTOCOL

This section presents the secure code deployment proto-
col. SASHA identifies three roles: the Network Operator, the
Platform Owner and the Application Owner.

The Network Operator (NO) operates the network: he
ensures the security of communication between nodes. He
also provides a gateway for nodes to communicate with the
Internet and a registry which lists the nodes currently in the
network.

The Platform Owner (PO) offers the resources of his
nodes to be used by the AOs.

The Application Owner (AO) wants to deploy distributed
applications onto the WSN.

SASHA is based on the following assumptions:

o Each node has a symmetric encryption algorithm and
a hashing algorithm installed.

o Each node shares a unique secret symmetric key with its
owner. Since each node starts in the physical possession
of the owner, the owner can securely deploy this key.

e« The SASHA protocol assumes a component based
architecture for the applications running in the WSN.

Platform
Application Phase 1.: Planning Owner
1.1) send components
Owner request permissions >
< 1.2) component permissions
) Phase 2 : Request Tokens
}\t 2.1) request token >
Q < 2.2) token r(ﬂ/
NN
NS
Phase 3 : Deployment
3.1) send token >
3.2) send aEEIication .

Sensor Node

Figure 2. Overview of the SASHA application deployment protocol.

« When a node enters a network, it registers itself with
the NO.

« A component uses the resources of a platform. This
paper divides these resources into two kinds: energy
consuming resources and data resources.

« Energy consuming resources are those resources which
cause significant energy usage such as the amount
of CPU time a component uses, and the rate and
frequency with which it sends. This paper assumes that
the node middleware allows for parametrization of these
resources.

o Data resources provide access to live data or data
logs. Not all components should have access to all
data resources. This paper assumes that a node cannot
perform the access control because it does not provide
memory protection but it can be enforced by code
verification on a back-end server.

The SASHA deployment protocol exists out of 3 phases
as shown in figure 2 and discussed in the following sections
: (1) planning the deployment, (2) requesting the tokens, and
(3) enacting the deployment.

A. Phase 1: Planning the deployment

Multiple applications are active in a WSN at the same
time. In order to efficiently use the network, it is impor-
tant that the deployment of these applications is carefully
planned. In a multi-owner environment, this planning has
an additional layer of complexity due to the limitations that
are enforced by the different POs.

The planning phase can be divided into three steps: (1)
The AO sends a request to each PO in the WSN stating
which components he wants to deploy. He can acquire the
identities of the POs in the network from the NO. (2)
The POs analyse the components and send back a contract
stating which nodes can run which components with which
parameters. (3) The AO plans the actual deployment given
the limitations received by the different POs.

B. Phase 2: Requesting the deployment

Once the deployment plan is created, the AO has to
request and receive the tokens necessary to deploy the
components on the nodes. The POs have to provide this
token request service.

This phase has two steps: the request and the reply step.

Step 1: The AO sends a deployment request. The
AO sends a request to the POs stating which components
the AO wants to deploy on which nodes and with which
parameters. The parameters currently supported are: (1)
must the component be sent confidential, (2) the maximum
component transmission frequency, (3) the maximum send
rate, (4) the wake-up interval, (5) delete component when
leaving the network, and (6) delete component after a certain
time.

It is clear that the AO has to contact the PO securely.
The SASHA protocol uses an SSL connection with mutual
authentication to ensure the confidentiality and authenticity
of the communication between the AO and the POs.

Step 2: The PO sends the deployment reply. The PO
checks whether or not the AO has received permission to
deploy the component with the requested parameters. If the
component or parameters do not match the contract agreed
in phase 1, the deployment fails.

Because each component has to be approved by the PO
and has clearly defined parameters, the PO can create an
accurate view of the load on his nodes and have a good
estimate of their lifetime.

If the AO is allowed to deploy the component on the
requested node, the PO generates a token which the AO can
use to access the component deployment service. The token
consists out of the following fields (see figure 3):

o Application Hash - 32B: SHA-2 hash of the component.
o Tokenld - 4B: A unique id for each token.

o Timestamp - 4B: From when the token is valid.

o Timeout - 2B: Lifetime of the token.

o ComponentLength - 2B: Length of the component.

o Flags - 1B: A list of the following binary flags:

— Confidential: Is the component sent confidential.

— DeleteOnTimeOut: Delete the component once the
token times out.

— DeleteOnLeaving: Delete the component once the
nodes leaves the current network.

— 5 flags are currently unused.

o SendFrequencyLimit - 1B: Number of messages a
component can send in an hour.

o SendDatalimit - 1B: Rate with which a component can
send data.

o WakeupTime - 1B: Time between when a component
wake-ups.

o Deployment Key - optional - 16B: Deployment specific
AES-128 encryption key.

ComponentHash

Tokenld
Timeout Length | Flags

Timestamp
SendFreq | SendAm [Wakeup

Key

|:|Optional field

Figure 3. Representation of the token byte format.

The token is 48 (not confidential) or 64 bytes (confiden-
tial). It is encrypted with the symmetric key known only to
the specific node and his PO. This ensures only the PO and
the node can read or modify the token. The PO returns the
token to the requesting AO.

If the AO wants to deploy the same component to multiple
nodes, he must request a unique token for each node. This
process however requires only Internet communication that
does not burden the WSN.

C. Phase 3: Enacting the deployment

The third and last phase is enacting the deployment. This
phase contains 3 steps: (1) sending the token, (2) sending
the component and (3) installing the component.

Step 1: AO sends tokens to nodes. When the AO is ready
to deploy (when he has all the necessary tokens), he sends
the tokens to the nodes. Since each node requires a unique
token, it has to be sent to each node directly. Each node then
verifies that the token is valid by decrypting it and checking
the timestamp, timeout and tokenld field. Once the node
verified the token, it saves the deployment parameters and
the hash. If the token shows that the binary is confidential,
it decrypts the deployment key and prepares to decrypt the
binary. Finally, it listens to further communication to receive
the component it needs to install.

Step 2: AO sends component to nodes. Each node
receives the component, decrypts if needed and checks the
hash. The security protocol is independent of the exact
means of code distribution: the component can be multi-
casted over the network, forwarded from one node to the
next or send directly to each node.

At this time, the node calculates the hash over the entire
binary. The protocol could work as proposed in previous
research and use a per page hash. The token would then
contain the first hash of the hash chain, encrypted with the
secret key. However this paper focuses on securing the code
deployment process in a multi-actor environment, rather than
optimizing the code distribution process.

Step 3: Nodes install component Once the entire com-
ponent is received and the hash has been verified, the nodes
can install the component. The token is saved in a token
store for as long as the token is valid.

D. Removing deployed components

Depending on the Delete flags of the token, the node will
remove the components either when the node leaves the
current network or when the timeout value has been reached.
It is of course possible to not set these flags, resulting in
component removal only when a remove command is sent
to the node.

V. EVALUATION

This section evaluates the implementation and revisits the
requirements.

A. Implementation

We implemented the protocol on AVR Ravens [1] running
the Contiki OS [2] and the LooCI middleware [3]. Contiki is
a modular and light weight OS. LooCI is a component based
middleware platform and allows for easy development and
deployment of new application components. Since neither
Contiki nor LooCI support multi-casting or hop by hop code
deployment, the current implementation works by sending
each component directly to the node over a TCP connection.
The planning phase and the enforcement of the limitations
are currently not implemented.

SASHA uses the AES-128 for encryption and SHA-2 for
hashing. These algorithms are chosen for their security and
standardisation.

This section evaluates the implementation and compares
it with Sluice [7] (see table II). A comparison with the
Tan2009 protocol cannot be made due to absence of im-
plementation details.

Communication overhead: The only extra communica-
tion overhead is the token that has to be transmitted before
the actual code deployment. The token has a size of 48 to
64 bytes, which is sufficiently small for use in WSNs. The
token used by Sluice has a similar size of 44 bytes.

ROM overhead: The binary for the AVR raven is 68.6kB
large and contains 4 parts: (1) Contiki OS: 40kB, (2) LooCI
platform: 21.4kB, (3) crypto libraries: AES 3kB - SHA-
2 1.8kB, and (4) deployment protocol: 2.3kB. The total
protocol overhead is ca 7.1kB. A significant part of the
overhead is caused by the implementation of the crypto
libraries. Sluice has a comparable ROM overhead of 9kB.

RAM overhead: Only the additional RAM overhead
of using the secure deployment protocol instead of the
unsecured protocol is considered. The protocol requires: (a)
buffers for AES (200B) and SHA-2 (40B), (b) buffers to
store the token and the secret key (100B), (c) list of recently
used tokens (84B), (d) deployment buffers (80B).

This sums up to a total additional RAM overhead of
ca 510B over an unsecured deployment protocol. This is
comparable to Sluice which has a RAM overhead of 2kB.

Delay: The additional deployment delay is minimal. The
ticket request is done over the wired Internet between
servers, so this poses no WSN overhead. The SASHA

SASHA | Sluice
Comm overhead (bytes) 48 44
ROM (kB) 28 9
RAM (bytes) 510 2000
Computational delay (s) 0.160 30

Table 1T
COMPARISON OF THE PROPOSED PROTOCOL WITH SLUICE.

protocol further requires the additional transmission of a
message of 48B. Since most applications are several hun-
dreds to thousands of bytes, the increase in time is small.
No measurements were performed of these delays. Note
however that SASHA requires a unique token for each node,
which significantly increases overhead if each node requires
the component. However this paper argues that many use
cases require that components are only deployed on a very
limited subset of nodes, thus not requiring network wide
flooding.

Next the time overhead of the computation on the node
is considered. The AES decryption operation of one 64B
block takes 3.5ms. Adding a 64B block to the total hash
takes 6.5 ms. A small component update of 1kB takes
1024/64*(3.5+6.5) ms = 160ms. In comparison, Sluice takes
30 to 35 seconds to verify a program due to the ECDSA
verification.

The PO’s server (which manages and grants the tokens)
and the AO’s server (which requests the tokens and deploys
the applications) are both implemented in Java. The planning
service is currently unimplemented.

B. Discussion

This section briefly discusses the different security aspects
of the deployment protocol.

Confidentiality: By setting the confidentiality flag in the
token and adding a deployment key, a component can be
confidentially deployed. If this is not necessary the flag can
be set to off and the additional resources can be saved.

Authenticity: A node can verify that the PO created the
token for the specific node since the node has to decrypt the
token with a symmetric key that is unique for each sensor
node and only known by the PO and the node.

Integrity: Only a component with the same hash as
the PO approved and stated in the token can be installed.
Assuming that SHA-2 is collision resistant, only the exact
component that the PO approved can be installed.

Freshness: Because the token contains a timestamp and
a timeout, the sensor can verify that the token is valid.
This requires a level of synchronisation, which is likely also
needed for other applications such as logging.

Limited use: Every token contains a tokenld. Since the
node verifies that a tokenld has not been used before, the
token can only be used once. This requires that the sensor
node keeps a list of tokens that have recently been used.

However, it is only needed to keep the tokenld as long as
the timeout has not passed.

Survivability: If a malicious party manages to capture
one node, he only knows the key for that particular node.
He cannot influence any other node using that key.

C. Discussion of potential attacks

This section briefly discusses potential attacks on the
protocol and how the protocol can counter these attacks.

Denial of service attacks: The protocol can undergo de-
nial of service attacks by an attacker sending invalid tokens
or hijacking a session and sending more data than required.
The main operation to verify a token only requires one
symmetrical decryption operation. Because the component
length is stated in the token, the node knows how many
bytes it should receive, and closes the connection after it
has received the expected amount of bytes.

Man in the middle attacks: Entities in the network
can try to alter the token or the binary to install malicious
components. Modifications in the token will be detected
through invalid tokenlds and timestamps. Modifications in
the binary will be detected when the hash is calculated and
a mismatch occurs. The deployment process will fail, but
node integrity remains assured.

VI. FUTURE WORK AND CONCLUSION
A. Future work

This paper presented a basic protocol for the secure
deployment of applications onto a shared WSN. We envision
two extensions: (1) extend the enforcement infrastructure:
add more parameters to the deployment token such as
RAM usage, file system usage or sensor usage, and (2)
research the first phase of the deployment protocol: planning
a deployment given a heterogeneous set of owners each with
their own associated policies, parameters and costs.

B. Conclusion

It is clear that WSNs are moving toward multi-party multi-
application ad-hoc environments where several parties have
a need to share their sensor node infrastructure. In order to
share the infrastructure, it needs to be possible to deploy new
applications on sensor nodes owned by others. Naturally, in
such use cases, security is of vital importance.

This paper presents SASHA: a light weight distributed
protocol for the secure deployment of applications on a
shared multi-party WSN. The protocol requires an Applica-
tion Owner (AO) to request permission from all the Platform
Owners (POs) on whose infrastructure he wishes to install an
application. Each PO validates this request and, if approved,
grants a token with which the AO can use to deploy his
application. This token also contains parameters to limit the
amount and frequency a component can send and the CPU
time it can use.

We developed a prototype using the AVR Raven and
the LooCI middleware. The prototype demonstrates that the
overhead of this protocol is limited and comparable to other
protocols, whilst offering multi-actor support and supporting
resource consumption policies.

ACKNOWLEDGEMENTS

This research is partially funded by the Interuniversity
Attraction Poles Programme Belgian State, Belgian Science
Policy, IBBT and the Research Fund K.U. Leuven. This
work was conducted in the context of the ITEA2 “Do-it-
Yourself Smart Experiences” project, ITEA2 08005, and is
supported by funding from the Flemish agency for Innova-
tion by Science and Technology (IWT).

REFERENCES

[1] Atmel. Avr raven, sep 2010. Available as http://www.atmel.
com/dyn/Products/tools_card.asp?tool_id=4291.

[2] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In
LCN ’04: Proceedings of the 29th Annual IEEE International
Conference on Local Computer Networks, pages 455-462,
Washington, DC, USA, 2004. IEEE Computer Society.

[3] D. Hughes, K. Thoelen, W. Horré, N. Matthys, J. D. Cid,
S. Michiels, C. Huygens, W. Joosen, and J. Ueyama. Building
wireless sensor network applications with looci. In Interna-
tional Journal of Mobile Computing and Multimedia Commu-
nications vol:2 issue:4, pages 38—-64, Hershey, PA 17033, USA,
Oct 2010. IGI Global.

[4] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
Proceedings of the 2nd international conference on Embedded
networked sensor systems, SenSys ’04, pages 81-94, New
York, NY, USA, 2004. ACM.

[5] C. Huygens and W. Joosen. Federated and shared use of
sensor networks through security middleware. In ITNG ’09:
Proceedings of the 2009 Sixth International Conference on
Information Technology: New Generations, pages 1005-1011,
Washington, DC, USA, 2009. IEEE Computer Society.

[6] S. Hyun, P. Ning, A. Liu, and W. Du. Seluge: Secure and dos-
resistant code dissemination in wireless sensor networks. In
Information Processing in Sensor Networks, 2008. IPSN ’08.
International Conference on, pages 445 —456, Apr. 2008.

[7] P. E. Lanigan, R. Gandhi, and P. Narasimhan. Sluice: Secure
dissemination of code updates in sensor networks. In ICDCS
'06: Proceedings of the 26th IEEE International Conference
on Distributed Computing Systems, page 53, Washington, DC,
USA, 2006. IEEE Computer Society.

[8] B. Neuman and T. Ts’o. Kerberos: an authentication service
for computer networks. Communications Magazine, IEEE,
32(9):33 -38, sep 1994.

[9] H. Tan, D. Ostry, J. Zic, and S. Jha. A confidential and dos-
resistant multi-hop code dissemination protocol for wireless
sensor networks. In WiSec ’09: Proceedings of the second
ACM conference on Wireless network security, pages 245-252,
New York, NY, USA, 2009. ACM.

