

How to select the best ionic liquid for a given application?

Koen Binnemans

Catholic University of Leuven (Belgium)

Cations of ionic liquids

Anions of ionic liquids

- $[AlCl_4]^-, [Al_2Cl_7]^-$
- Cl⁻, Br⁻, I⁻
- SCN⁻, [N(CN)₂]⁻
- $[NO_3]^-$, $[SO_4]^{2-}$
- [CH₃COO]⁻, [CF₃COO]⁻
- $[CF_3SO_3]^- (= OTf)$
- $[BF_4]$
- $[PF_6]^-$, $[SbF_6]^-$
- $[(CF_3SO_2)_2N]^- (=Tf_2N)$
- [Co(CO)₄]⁻
- many more other anions

Number of possible ionic liquids?

- By combination of cations, anions, chains lengths, substitution pattern, chirality, ...:
 - About one million (10⁶) simple ionic liquids
 - About one billion (10^{12}) binary ionic liquids
 - About one trillion (10¹⁸) ternary ionic liquids
 According to Ken Seddon (QUILL, Belfast)
- But: until quite recently more than 50% of all publications were about one class of ionic liquids!!! $[C_n mim][PF_6]$ and in particular:

 $[C_4 mim][PF_6]$ $[BMIM][PF_6]$

Why was [BMIM][PF₆] so popular?

- Relatively cheap
- Easy synthesis and purification
- Excellent model compound for fundamental studies (high symmetry of anion, weak hydrogen bonding)
- Hydrophobic: not miscible with water
- Everyone was using it ("me too" mentality)

.... The ionic liquid [BMIM][PF₆] is a strong candidate for use as a recyclable solvent, the Belfast team suggests. It is readily prepared at room temperature, is stable to moisture, and has **no detectable vapor pressure**. Furthermore, it is immiscible with water and hexane but dissolves many organic compounds and transition-metal complexes. And it is a liquid from just above 0 °C to more than 200 °C. "This is my favorite room-temperature ionic liquid since it is **water stable** and water immiscible," comments **Robin Rogers** chemistry professor at the University of Alabama, Tuscaloosa. "The big advantage I see here is product recovery and no solvent loss through evaporation. Seddon's work furthers the idea that room-temperature ionic liquids can be used as replacements for volatile organic compounds. I see an almost infinite variety of potential reactions in these liquids."

(Chemistry and Engineering News, 4 Jan. 1999)

Things can change...

Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate

Richard P. Swatloski, John D. Holbrey and Robin D. Rogers

Green Chemistry, 2003, 5, 361–363

Why is [BMIM][PF₆] problematic?

- [PF₆] is hydrolytically unstable.
- Contact with water above 50°C leads to HF formation Every mole of [BMIM][PF₆] produces 5 moles of HF!!

$$[PF_6]^- + 4H_2O \leftrightarrows 5HF + F^- + H_3PO_4$$

- Measurements above 50°C lead to HF formation.
- High viscosity (371 cP at 25 °C)
- Because of its instability, [BMIM][PF₆] will never be used as a solvent by the chemical industry.
- [BMIM][PF₆] is now considered as the « *Antichrist* » of ionic liquids

Is there still a future for hexafluorophosphate ionic liquids?

- [BMIM][PF₆] must not be used as:
 - solvent for chemical reactions
 - organic phase for solvent extraction
- But: LiPF₆ is still widely used as electrolyte in Li-ion batteries Hexafluorophosphate can be used in electrochemical devices (anhydrous electrolytes)
- PF₆ is a useful ion for the design of **ionic liquid crystals**

1-Alkyl-3-methylimidazolium salts, $[C_n mim][X]$

 $[C_n mim][PF_6]$: liquid-crystalline for C_{14} chain and longer $[C_n mim][Tf_2N]$: not liquid-crystalline

What is a good alternative for [BMIM][PF₆]?

• Bistriflimide ionic liquid [BMIM][Tf₂N]

$$(CF_3SO_2)_2N^{-}$$

• Many names for one and the same anion:

 Bistriflimide 	$(CF_3SO_2)_2N^{-1}$
– Triflimide	PMS
- Bis(trifluoromethylsulfonyl)imide	Tf_2N^-
 Bis(trifluoromethylsulfonyl)amide 	BTA
 Bis(perfluoromethylsulfonyl)imide 	TFSI
 Bis(trifluoromethanesulfonyl)imide 	

Is [BMIM][Tf2N] the ideal ionic liquid?

- [BMIM][Tf₂N] is now often considered as the standard ionic liquid for general use:
 - Solvent for chemical reactions
 - Organic phase in solvent extraction
 - Electrolyte for electrodeposition of metals
- However.....
 - Imidazolium not stable against strong bases (carbene formation)

$$Y = N + N - R$$
 base $N - R$

- Limited cathodic stability (reduction)
- Limited stability against oxidation (ozonolysis)
- Many metal salts and biopolymers (cellulose) are poorly soluble in ionic liquids with Tf₂N⁻ anions

Electrochemical windows of [Tf2N] salts

- 1-butyl-1-methylpyrrolidinium NTF, Cat. No. 491046
- 1-ethyl-3-methylimidazolium NTF, Cat. No. 494189
- N-hexylpyridinium NTF, Cat. No. 490124

Ozonolysis in ionic liquids

- Ozone = interesting alternative for less green oxidants
- Disadvantages ozone:
 - explosive mixtures with organic solvents
 - aerosol formation upon bubbling of ozone through solution
- Ionic liquids offer solution
 - very low vapor pressure
 - high viscosity

Ozonolysis in ionic liquids

- Ozonation stability test
 (0.42 mmol O₃ per minute for 2 hours at 100 °C)
- Ozone resistance evaluated at the molecular level by ¹H and ¹³C NMR and macroscopically by colour and viscosity changes
- Fast degradation of imidazolium ionic liquids sensitivity of double bonds to ozone
- Good ozone stability for pyrrolidinium salts [BMPyr][(CN)₂N] and [BMPyr][Tf₂N]

Selection criteria for ionic liquids

- Miscibility with water or organic solvents (temperature dependent)
- (Electro)chemical stability
- Solubility of solutes
- Melting point
- Viscosity
- Some ionic liquids have wide applicability
 - [BMIM][Tf₂N] for organic synthesis
 - [BMPyr][Tf₂N] for electrodeposition of reactive metals
 - [EMIM][OAc] for dissolution of cellulose
- In other cases, series of ionic liquids have to be screened
- Mixtures of ionic liquids can have unexpected properties

Hydrogenolysis of aromatic ketones to alkylbenzenes

$$\begin{array}{c|c}
O \\
R \\
\hline
 [Pd]
\end{array}$$

$$\begin{array}{c|c}
H^{+} \\
\hline
 [Pd]
\end{array}$$

$$\begin{array}{c|c}
H_{2} \\
\hline
 [Pd]
\end{array}$$

$$\begin{array}{c|c}
R \\
\hline
 [Pd]
\end{array}$$

Alkylbenzenes: intermediates for alkylbenzene sulfonate surfactants

Advantages of ionic liquids in catalytic hydrogenolysis

- improving recyclability Pd catalyst: immobilization of Pd catalyst in IL
- improved product separation by change in polarity aromatic ketone (polar) → alkylbenzene (nonpolar)
- acidic solvent for promoting hydrogenolysis: IL with acidic functional group

Biphase catalysis in ionic liquids

S = substrate P = product Cat = catalyst IL = ionic liquid

Product must be less polar than substrate

Miscibility of ionic liquids with aromatic ketones and alkylbenzenes

- Ideal ionic liquid:
 - homogeneous mixture at reaction temperature (80 °C)
 - phase separation after cooling to RT (product isolation by decantation)

or

- miscible with aromatic ketone substrates at 80 °C
- immiscible with derived alkylbenzene products at RT
- Reaction mixture composition at 70 % conversion was simulated with a 30 mol% ketone/70 mol% alkylbenzene mixture ('30/70')
- Water was added to closely simulate reaction conditions: water generated as by-product in alkylbenzene formation.

Selected ketones and alkylbenzenes

$$C_{2}$$

$$C_{4}$$

$$C_{4}$$

Selected ionic liquids

- Screening of more than 30 different ionic liquids
- Cations:
 - Methyltrioctylammonium (MOct₃N)
 - Choline (Chol)
 - 1-Ethyl-3-methylimidazolium (EMIM)
 - 1-Butyl-3-methylimidazolium(BMIM)
 - 1-Butyl-2,3-dimethylimidazolium (BMMIM)
 - N-butyl-N-methylpyrrolidinium (BMPyr)
 - Different cations functionalized with COOH function
- Anions: Cl⁻, BF₄⁻, Tf₂N⁻, CF₃COO⁻, CH₃COO⁻, CH₃SO₃⁻, CF₃SO₃⁻, Tosylate, EtSO₄⁻, HSO₄⁻, N(CN)₂⁻
- No hexafluorophosphate (PF $_6$) salts: hydrolyze with HF formation in the presence of water at 80 °C

Results of miscibility tests

- Limited number of tests successful.
- Methyltrioctylammonium salts: negative results.
- **Imidazolium salts**: positive results for [BMIM][Tf₂N] and [BMMIM][Tf₂N], but only for tests with octanophenone.
- **Pyrrolidinium salts**: positive results for ([BMPyr][CF₃CO₂] in combination with butyrophenone and for [BMPyr][(CN)₂N] in combination with all ketones.
- Good results for *choline bistriflimide* [Chol][Tf₂N]

$$-N^+$$
 OH Tf_2N

• Good results for most COOH-functionalized ionic liquids and especially for *betainium bistriflimide* [Hbet][Tf₂N]

$$-N^{+} \int_{1}^{COOH} Tf_{2}N$$

Catalytic experiments

1. Reactor

10 mL reactor

2 mL ionic liquid 50 bar H₂ 80 ℃ 2 hours

2. Analysis

> Procedure

Upper layer reaction mixture (diluted in toluene) is injected in GC with FID and apolar column (CB-sil 5)

➤ Identification components
Injection pure components + GC-MS

Product isolation

Phase separation after hydrogenolysis of octanophenone

Product phase: less than 0.01mol% IL leaching (NMR)

No measurable Pd leaching (ICP-AES)

Mixtures of ionic liquids

Reaction conditions: acetophenone (6 mmol), 0.08 g of 5 wt.% Pd-C, [Chol][Tf₂N] (2 mL), [Hbet][Tf₂N] (1 mL), 80 ° C, 50 bar H₂, 2 h; X [%] = conversion of ketone; S [%] = selectivity towards ethylbenzene;

$1+1\neq 2$ Synergism in ionic liquid mixtures

Design your own ionic liquid: Liquid metal salts

- Need for high concentrations of metal ions in electrolytes for electrodeposition
- New approach: make metal part of ionic liquid
 - No longer a need to dissolve metal salts
 - High metal concentrations
- Until now most metal-containing ILs had metal in anion e.g. [AlCl₄]⁻ or [CoCl₄]²⁻ these anions are not electro-active: not interesting for electrodeposition
- **Metal in cation** is attracted toward cathode where electrodeposition takes place.
- Try to design low-melting metal salts (*liquid metal salts*) with the metal an integral part of the cation.

Liquid metal salts

- Tetrahedral metal ions with four ligands are analogues of tetraalkylammonium or phosphonium ions
- For example, copper(I) with four neutral ligands

- Choice of anion important for lowering the melting point
- Metal preferably in lowest available oxidation state

$[Cu(MeCN)_4][Tf_2N]$

• Synthesis:

$$CuO + 2 HTf_2N \rightarrow Cu(Tf_2N)_2 + H_2O$$

$$Cu(Tf_2N)_2 + Cu(s) + 8 CH_3CN \rightarrow 2 [Cu(CH_3CN)_4][Tf_2N]$$

- Melting point: 66 °C
- For comparison:

$- [NMe_4][Tf_2N]$	133 °C
--------------------	--------

$$- [NEt4][Tf2N] 109 °C$$

$$- [NPr_4][Tf_2N]$$
 105 °C

- [Cu(MeCN)₄][OTf] 124 °C

Brooks et al., Chem. Eur. J. 17 (2011) 5054.

Electrochemistry of [Cu(MeCN)₄][Tf₂N]

- Because cathodic decomposition reaction of ionic liquid is the reduction of the metal ion to the metallic state, high current densities can be obtained.
- Anodic reaction is stripping of copper from sacrificial electrode

Brooks et al., Chem. Eur. J. 17 (2011) 5054.

Deposit from [Cu(MeCN)₄][Tf₂N]

- Current density: 25 A.dm⁻²
- Deposit average thickness: 1 μm
- Time for deposit: 5s

• EDX analysis shows no decomposition products included in layer

Brooks et al., Chem. Eur. J. 17 (2011) 5054.

Copper(II)-containing Liquid Metal Salts

$[Cu(MeIz)_6][Tf_2N]_2$	50 °C
-------------------------	-------

 $[Cu(BuIz)_4][Cl]_2$ 55 °C

 $[Cu(BuIz)_4][Tf_2N]_2$ < **RT**

 $[Cu(BuIz)_4][NO_3]_2 126 \, ^{\circ}C$

 $[Cu(HexIz)_4][Cl]_2$ 66 °C

 $[Cu(MeIz)_6][Tf_2N]_2 50 \, ^{\circ}C$

 $[Cu(1,2-DiMeIz)_4][BF_4]_2$ 185 °C

R = Bu, Hex

Melz, Bulz, Hexlz

1,2-DiMelz

2-Melz

4-Melz

Liquid Metal Salts of other transition metals

$[Ni(2-MeIz)_4Cl][Cl]$	83 °C
$[Ni(BuIz)_6][Cl]_2$	124 °C
$[Ni(HexIz)_6][Cl]_2$	69 °C
$[Co(HexIz)_6][Cl]_2$	34 °C
$[Fe(MeIz)_6][NO_3]_2$	60 °C
$[Mn(BuIz)_6][Cl]_2$	58 °C
$[Mn(HexIz)_6][Cl]_2$	45 °C

[Ni(2-Melz)₄Cl][Cl] 83 °C

Melz, Bulz, Hexlz

1,2-DiMelz

2-Melz

4-Melz

Conclusions

- [BMIM][Tf₂N] is preferred over [BMIM][PF₆] as a solvent for organic reactions and extraction studies
- There can be stability issues with imidazolium ILs
 - Stability in alkaline medium
 - Stability against oxidation and reduction
- Pyrrolidinium ionic liquids have higher electrochemical stability
- Screening of ionic liquids can be required to find best system (screening sets are commercially available)
- Mixtures often perform better than pure Ils
- Biopolymers are not soluble in Tf₂N⁻ ILs
- Inorganic salts are often poorly soluble in Tf₂N⁻ ILs
- Liquid metal salts have high metal concentration

Acknowledgments

• K.U.Leuven

- Dr. Peter Nockemann (now at QUILL, Belfast)
- Prof. Dr. Rik Van Deun (now at UGhent, Belgium)
- Dr. Ben Thijs
- Prof. Tatjana Parac-Vogt, Dr. Kris Driesen
- Dr. Neil Brooks, Evert Vanecht, Hasan Mehdi, Lethesh K.C., Dr. Kyra Lunstroot
- Prof. Dr. Luc Van Meervelt, Dr. Kristof Van Hecke
- Dr. Neil Brooks
- Prof. Dr. Dirk De Vos, Prof. Dr. Jan Fransaer, Prof. Dr. Christ Glorieux
- Stijn Schaltin, Charlie Van Doorslaer, Igor Ignatiev, Dr. Jan Leys, Sil Wellens
 Sandra Hojniak, Justyna Szytniewska
- Universität Leipzig (Germany)
 - Stefan Zahn, Prof. Barbara Kirchner
- Université Montpellier (France)
 - Prof. André Vioux, Prof. Jean Le Bideau,
 Dr. Séverine Bellayer, Dr. Lydie Viau

Financial support by K.U.Leuven, FWO-Vlaanderen, IWT

Thank you!

http://www.kuleuven.be/ionic-liquids/