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Abstract

Factor construction methods are widely used to summarize a large panel of variables by means of a

relatively small number of representative factors. We propose a novel factor construction procedure that

enjoys the properties of robustness to outliers and of sparsity; that is, having relatively few nonzero factor

loadings. Compared to the traditional factor construction method, we find that this procedure leads to

a favorable forecasting performance in the presence of outliers and to better interpretable factors. We

investigate the performance of the method in a Monte Carlo experiment and in an empirical application to

a large data set from macroeconomics.
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1 Introduction

Empirical researchers in a wide variety of fields face the problem of summarizing large data sets by a small

number of representative factors, which can then be used for either descriptive or predictive purposes. In

particular, the econometrics literature of the last decade contains successful applications of factor models to

forecasting macroeconomic time series (Stock and Watson, 2002; Bai and Ng, 2008) and excess returns in

stock and bond markets (Ludvigson and Ng, 2007, 2009).

Principal component analysis (PCA) is the classical tool for extracting such factors. In recent years,

however, two major drawbacks of PCA have received attention. First, PCA lacks robustness to outliers.

Even a very small proportion of data contamination results in inaccurate factors. This problem has been

alleviated by explicitly downweighting such observations (Croux and Haesbroeck, 2000; Pison et al., 2003),

by employing more robust loss functions than the usual sum of squares (De la Torre and Black, 2001), or by

a combination of both approaches (Croux et al., 2003; Maronna and Yohai, 2008).

Second, in standard PCA all variables generally load on all extracted factors; that is, every original vari-

able is represented as a linear combination of all factors. This feature leads to difficulties in giving an inter-

pretation to the factors, as well as to a loss of degrees of freedom and large estimation uncertainties. Penalized

variants of standard PCA to overcome this problem have recently been developed by Jolliffe et al. (2003) and

Witten et al. (2009), among others.

In this paper, we propose a factor construction method that unifies both approaches, yielding robust fac-

tors with sparse loadings. Our procedure is a combination of the robust estimation methods from Maronna

and Yohai (2008) and the penalization technique introduced by Witten et al. (2009). We provide a relatively

simple alternating algorithm to solve the resulting optimization problem, and we document the good inter-

pretability and forecasting properties of our method in a Monte Carlo study and in an empirical application.

The simulation results show that ignoring the presence of outlying observations, which are often overlooked

in empirical econometric studies, has important consequences for forecast accuracy. The application concerns

forecasting key U.S. macroeconomic variables, as in Stock and Watson (2002).

To the best of our knowledge, our proposed method is the first to combine robustness and sparsity in the

context of factor modelling. Moreover, while factors models are common in the macroeconomic forecasting
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literature, little attention has been given to robustness issues in this context. Outlier-resistant estimators

have typically only been applied to econometric models with a smaller number of variables (e.g. Fagiolo

et al., 2008; Dehon et al., 2009). Sparsity is not commonly studied either, although a related approach using

reduced-rank vector autoregressions was recently found to improve macroeconomic forecasts by Carriero

et al. (2011). The remainder of this article is structured as follows. We describe the methodology in Section 2

and test it in a simulation study in Section 3. An empirical application to macroeconomic forecasting follows

in Section 4, and Section 5 concludes.

2 Methodology

2.1 Robust Data Matrix Approximation

We consider the problem of approximating an n × p data matrix X by a rank-q matrix X̂ = FA′, where F

has dimensions n× q and A is p× q. The standard way to proceed is to apply principal component analysis

(PCA), in which F and A are estimated by minimizing

QL2 (F,A;X) =
1

2n

p∑
j=1

n∑
i=1

(
xij − f ′iaj

)2
, (1)

where fi and aj denote rows of F and A, respectively. Although it is well-known that QL2 can be minimized

using the singular value decomposition of X , we note that an alternating least squares regression approach

(due to Wold, 1966) is also possible. Given an initial estimates for F , we iterate until convergence:

• For a given F , minimize (1) with respect to A by solving p ordinary least squares (OLS) problems: the

jth row of A is aj = (F ′F )−1 F ′xj , where xj denotes the jth column of X .

• For a given A, minimize (1) with respect to F by solving n OLS problems: the ith row of F is

fi = (A′A)−1A′xi, where xi denotes the ith row of X .

As all least-squares procedures, PCA is very sensitive to outlying observations (see e.g. Maronna et al.,

2006). A more robust alternative to (1) is to replace the sums of squared deviations by sums of absolute

deviations; that is, to minimize
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QL1 (F,A;X) =
1

2n

p∑
j=1

n∑
i=1

∣∣xij − f ′iaj∣∣ . (2)

This L1 minimization problem can be solved using a similar alternating algorithm as in the L2 case, replacing

OLS regressions by least absolute deviations (LAD) regressions. This procedure was advocated by Croux

et al. (2003), among others, who labelled it Alternating L1 Regressions.

Maronna and Yohai (2008) propose to replace the squared or absolute deviations by an even more robust

error measure, using the Tukey biweight loss function

ρ (r) = min

{
1,
(
1− (r/c)2

)3}
. (3)

This loss function is bounded, which makes it very robust to large outliers. The constant c is fixed at 3.4437,

so that an 85% statistical efficiency at the normal distribution is attained. Because the Tukey loss function

downweights large residuals, it is essential that the columns are appropriately scaled to decide what “large”

means. Thus, for every variable j, let σ̂j denote an estimate of the scale of the n residuals xij − f ′iaj . Then,

Maronna and Yohai (2008) propose to minimize

QTukey (F,A;X) =
1

2n

p∑
j=1

σ̂2j

n∑
i=1

ρ

(
xij − f ′iaj

σ̂j

)
. (4)

As a robust scale estimate, they consider the median absolute deviation

σ̂j = 1.48 median
i

{∣∣xij − f ′iaj∣∣} , (5)

where the factor 1.48 ensures consistent scale estimation at normal distributions.

If we would set ρ (r) = r2, criterion (4) reduces to the classical PCA criterion (1). In order to be able

to apply the alternating algorithm to minimize (4), we rewrite it as an iteratively reweighted least squares

problem. Defining weights

wij =

(
xij − f ′iaj

σ̂j

)−2
ρ

(
xij − f ′iaj

σ̂j

)
, (6)
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the objective in equation (4) can be rewritten as

QTukey (F,A;X) =
1

2n

p∑
j=1

n∑
i=1

wij
(
xij − f ′iaj

)2
. (7)

This means that, given initial estimates of F and of the weights, we can solve (4) by iterating the following

scheme until convergence:

• For a given F and given weights, minimize (7) with respect to A by solving p weighted least squares

(WLS) problems: the jth row is aj = (F ′DjF )
−1 F ′Djxj , where Dj is a diagonal matrix containing

w1j , w2j , . . . , wnj .

• Update σ̂j for j = 1, 2 . . . , p using (5) and compute all weights wij using (6).

• For a given A and given weights, minimize (7) with respect to F by solving n WLS problems: the ith

row is fi = (A′DiA)
−1A′Dixi, where Di is a diagonal matrix containing wi1, wi2, . . . , wip.

• Update the scale estimates σ̂j and the weights wij again.

We shall consider all three different criteria introduced above. All columns of X are standardized before

the estimation procedure. For the L2 criterion (1) we standardize all columns to mean zero and variance one;

for the L1 criterion (2), to median zero and mean absolute deviation one; and for the Tukey criterion (4),

to median zero and median absolute deviation one. Initial estimates for F and the weights are obtained as

described in Maronna and Yohai (2008).

2.2 A Sparsity Condition

In factor-model terminology, the columns of F represent factors and A is the loading matrix. In order to

improve the interpretability of the estimated factors, it may be desirable to impose a sparsity condition on the

loading matrix; that is, to limit the number of nonzero factor loadings. In addition to improving interpretabil-

ity, another interesting effect of such a condition is reducing the estimation uncertainty, which is an important

consideration for forecasting. In the spirit of Witten et al. (2009), we implement this sparsity condition by

adding an L1 penalty to (1), (2), or (4): for some positive scalar λ, called the penalty parameter, we aim to
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minimize

Q (F,A;X) + λ

p∑
j=1

q∑
k=1

|ajk| , (8)

where Q denotes either QL2 , QL1 , or QTukey. As it stands, objective (8) does not attain a minimum value.

Although the linear subspace spanned by the columns of F is identified, we observe that for any candidate

minimum point
(
F̂ , Â

)
, the equivalent factorization

(
cF̂ , 1c Â

)
leads to a smaller objective value for any

c > 1. To remove this unwanted feature, we restrict the magnitude of F by adding another penalty term to

(8). As our purpose is not to impose sparsity on F , this additional term will be an L2 penalty: we minimize

Q (F,A;X) + λ

p∑
j=1

q∑
k=1

|ajk|+ ν

n∑
i=1

q∑
k=1

f2ik. (9)

Finally, we note that Problem (9) is overparameterized: if the factorization
(
F̂ , Â

)
solves (9) for the penalty

parameters (λ∗, ν∗), then the equivalent factorization
(
cF̂ , 1c Â

)
is a solution for

(
cλ∗, ν

∗

c2

)
for any c > 0.

Therefore, we lose no generality in fixing either λ or ν at a specific positive value. We set ν = 1/ (2n), so

that only λ measures the degree of sparsity.

The alternating procedures in Section 2.1 can be adapted for problem (9). First, given F and (in the Tukey

case) the weights wij , finding the jth row of A amounts to minimizing

Q (F,A;X) + λ

q∑
k=1

|ajk| . (10)

For the L2 criterion function, we recognize (10) as a Lasso problem (Tibshirani, 1996). For the robust Tukey

criterion, we need to perform a weighted Lasso regression, i.e. a Lasso with dependent variable
(√
wij
)
xij

and regressors
(√
wij
)
fi, instead of a weighted least squares regression. Efficient algorithms to compute the

Lasso solution are known; see Friedman et al. (2010). For the L1 criterion, minimizing (10) is a LAD-Lasso

problem (Wang et al., 2007).

Second, given A (and the weights), finding the ith row of F is equivalent to minimizing

Q (F,A;X) +
1

2n

q∑
k=1

f2ik. (11)
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For the L2 and Tukey criteria, (11) is a ridge regression problem and can be solved analytically, resulting in

fi =
(
A′DiA+ Iq

)−1
A′Dixi. (12)

Here Iq in the identity matrix of size q, and Di is a diagonal matrix containing the weights wi1, . . . , wip. In

the L2 case, we have Di = Ip. For the L1 criterion, we use a standard numerical minimization routine.

2.3 Tuning Parameters

The sparse and robust factor extraction procedure that we developed in Sections 2.1 and 2.2 is characterized

by two tuning parameters: the number of factors (q) and the penalty parameter (λ). To specify values for q

and λ, we minimize the Bayesian Information Criterion

BICq,λ = 2

p∑
j=1

log σ̂j;q,λ + dfq,λ ·
log n

n
. (13)

As argued by Zou et al. (2007), the “degrees of freedom” dfq,λ can be approximated by the number of

nonzero entries in the estimated loadings matrix A. Further, we approximate the determinant of the residual

covariance matrix by the product of estimates of the p residual variances. This amounts to discarding all

covariances between columns of the residual matrix. We feel that this is a reasonable choice, as most of the

correlation structure in X should be captured by the factors. The scale estimate σ̂j;q,λ is given by (5) when

using the QTukey criterion, by the mean absolute deviation when using QL1 , and by the standard deviation

when using QL2 .

3 Monte Carlo Simulation

To evaluate the potential of the sparse robust factor extraction procedure described in Section 2, we assess its

performance through a Monte Carlo study. As n ≈ p is typical for situations to which factor modelling is

applied, we simulate data sets with n = p = 100. The number of latent factors is q = 2. We generate data

from a factor model X = FA′ + E. Here, the matrix A contains the factor loadings, and we impose that its

true structure is sparse. The loading matrix has 100 rows and two columns:
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A =



10 rows (+1, +1 )

10 rows (+1, −1 )

10 rows (−1, +1 )

10 rows (−1, −1 )

60 rows ( 0, 0 )


.

For the 100 × 2 matrix of latent factors F and the 100 × 100 matrix of noise E, we consider the following

four data-generating processes:

• Normal: the entries of F and E are independent draws from the N (0, 1) distribution.

• Heavy tails: the entries of F are drawn from the N (0, 1) distribution, those of E from Student’s t

distribution with two degrees of freedom.

• Vertical outliers: like the “Normal” DGP, but a random selection of 10% of the entries ofE are replaced

by the value 20.

• Bad leverage rows: like the “Normal” DGP, but a random selection of 10% of the rows of F are

replaced by (+20,+40), and the corresponding rows of E are replaced by (−20,−40)A′.

Note the difference between the last two DGPs. If an observation is a vertical outlier, the latent factors behave

normally but the observed variable is contaminated. For a bad leverage row both the factor variables and the

noise term are outlying. The bad leverage rows are such that observed variables do not show any outlying

value, making it difficult to detect them. Bad leverage points are considered to be the most dangerous, as is

well documented in regression analysis (e.g. Verardi and Croux, 2009).

In Tables 1 and 2 we report average results over 1000 simulation runs for each of these DGPs. We consider

the L2, L1, and Tukey loss functions. For each of these, we report results using both the unpenalized criteria

(1)-(4) and the penalized criterion (9). In the latter case, the penalty parameter λ is selected by minimizing the

BIC given in (13) over the grid log10 λ ∈ {−4,−3,−2,−1, 0}. We treat the true number of factors (q = 2)

as known in this simulation, to keep the computation time within limits.
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Table 1: Estimated structure of the loading matrix in the Monte Carlo simulation.

Number of rows Number of rows
correct correct correct correct

DGP Criterion zero nonzero DGP Criterion zero nonzero
Normal L2, λ = 0 0 40 Vertical outliers L2, λ = 0 0 40

L2, λ > 0 8.781 40 L2, λ > 0 11.957 34.872
L1, λ = 0 0 40 L1, λ = 0 0 40
L1, λ > 0 27.326 40 L1, λ > 0 37.977 40
Tukey, λ = 0 0 40 Tukey, λ = 0 0 40
Tukey, λ > 0 6.377 40 Tukey, λ > 0 6.995 40

Heavy tails L2, λ = 0 0 40 Bad leverage rows L2, λ = 0 0 40
L2, λ > 0 11.314 39.860 L2, λ > 0 5.266 40
L1, λ = 0 0 40 L1, λ = 0 0 40
L1, λ > 0 29.902 40 L1, λ > 0 30.791 40
Tukey, λ = 0 0 40 Tukey, λ = 0 0 40
Tukey, λ > 0 5.710 40 Tukey, λ > 0 14.603 40

Notes: This table reports average results over 1000 replications of each of the four data-generating processes described in the text.
The numbers indicate how many of the rows of the loading matrix A were correctly estimated to be zero/nonzero; the true loading
matrix contains 60 zero and 40 nonzero rows.

Sparsity: Table 1 reports on the structure of the estimated loading matrix A. Specifically, it shows how many

of the 60 zero rows and 40 nonzero rows of the trueAwere correctly identified as zero or nonzero. From these

results, it is clear that unpenalized estimation methods (where λ = 0) cannot succeed in exactly estimating

zero loadings. The results for the penalized methods, on the other hand, are better. The penalized L1 criterion

performs best in identifying the zero rows. Moreover, except for the penalized L2 criterion, there are no false

zero rows in the estimated loading matrix; thus, all variables that load on the factors are correctly identified.

Forecast performance: An important application of factor models is forecasting a variable y, which is as-

sumed to be driven by (a subset of) the same factors that drive X; say, y = Fβ + η, where η is an error term.

After F̂ is obtained as above, we would estimate β using a form of regression (either ordinary least squares or

a more robust variant) on the observations for which yi is known, and then construct a forecast ŷi = f̂ ′i β̂ for

the remaining observations. Instead of forecasting a specific linear combination of the factors, we consider

the problem of forecasting any linear combination of the factors. The quality of such forecasts is assessed

by computing the angle between the two-dimensional linear subspaces of R100 spanned by the columns of F

and F̂ , respectively; the smaller this angle is, the more suitable F̂ is for forecasting variables of the form Fβ.
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Table 2: Simulated average angle between estimated and true factor space.

DGP Criterion Angle DGP Criterion Angle
Normal L2, λ = 0 0.225 Vertical outliers L2, λ = 0 1.314

L2, λ > 0 0.219 L2, λ > 0 1.332
L1, λ = 0 0.259 L1, λ = 0 0.286
L1, λ > 0 0.256 L1, λ > 0 0.288
Tukey, λ = 0 0.233 Tukey, λ = 0 0.300
Tukey, λ > 0 0.228 Tukey, λ > 0 0.291

Heavy tails L2, λ = 0 0.435 Bad leverage rows L2, λ = 0 1.264
L2, λ > 0 0.412 L2, λ > 0 1.289
L1, λ = 0 0.295 L1, λ = 0 0.344
L1, λ > 0 0.291 L1, λ > 0 0.388
Tukey, λ = 0 0.326 Tukey, λ = 0 0.325
Tukey, λ > 0 0.311 Tukey, λ > 0 0.320

Notes: This table reports average results over 1000 replications of each of the four data-generating processes described in the text.
We report the angle between the linear subspaces spanned by the columns of F and F̂ , in radians. For each DGP, the smallest angle
is printed in boldface.

The average values of this angle, again over 1000 simulation runs, are reported in Table 2. Let us start

comparing the unpenalized estimators (λ = 0). For the normal DGP the L2 approach is the best, as expected.

But the loss in precision by using the Tukey or L1 approach remains limited. Under heavy tails the L2

approach loses its optimality, and it gives the worst performance of all considered estimators. It becomes

even more dramatic when outliers, either vertical or bad leverage rows, are present in the data. Then the

L2 approach, so using standard PCA, gives completely unreliable results, with an average angle close to

π/2 ≈ 1.571. This means that in the presence of outliers the factor space estimated by standard PCA is

almost orthogonal to the true factor space, clearly showing its lack of robustness. The Tukey and L1 approach

continue to perform well, also in presence of outliers. In particular the Tukey criterion performs remarkably

well in the case of bad leverage rows.

Let us now study the impact of adding a penalty parameter in the objective function. We first study the

results for the DGP with normal or heavy tailed errors, reported in Table 2. We see that for this simulation

design where the true factor structure is rather sparse, the sparse estimators improve on the unpenalized ones.

This happens for the three criteria we considered. The gain in efficiency remains rather limited, however, and

one would need an even stronger sparse structure of the true factors to make the advantage of the penalization
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become more apparent. For the settings with outliers, either vertical or bad leverage rows, adding the penalty

term only improves the performance of the most robust procedure, based on the Tukey criterion.

To summarize, we can state that both the L1 and the Tukey criterion give good results, and outperform

the standard L2 approach by large margins if we deviate from the normal model. The gains in performance

are mainly coming from the use of the robust loss functions, since adding the sparsity penalty term only

slightly increases estimation precision further. One should not forget, however, that sparse solutions have the

advantage of an easier interpretability of the loadings matrix.

4 Application: Macroeconomic Forecasting

4.1 Data and Forecasting Model

To evaluate the forecast performance of robustly and sparsely estimated factor models in an empirical ap-

plication, we consider forecasting four key macroeconomic variables. The data set consists of monthly ob-

servations on 132 U.S. macroeconomic variables, including various measures of production, consumption,

income, sales, employment, monetary aggregates, prices, interest rates, and exchange rates. All series have

been transformed to stationarity by taking logarithms and/or differences, as described in Stock and Watson

(2002). We use an updated version of their data set, covering the period from January 1959 until (and includ-

ing) January 2010, taken from Exterkate et al. (2011). Some of the 132 time series start later than January

1959, while a few other variables have been discontinued before the end of the sample period. For each month

under consideration, observations on at most five variables are missing. Stock and Watson (2002) define a

partitioning of the data set into 11 economically meaningful groups of related variables.

We focus on forecasting four key measures of real economic activity: Industrial Production, Personal

Income, Manufacturing & Trade Sales, and Employment. For each of these variables, we produce out-

of-sample forecasts for the annualized h-month percentage growth rate, which is computed as yht+h =

(1200/h) ln (vt+h/vt), where vt is the untransformed observation on the level of each variable in month

t. We consider growth rate forecasts for h = 1, 3, 6 months.

The most widely used approach to forecasting in this setup is the diffusion index (DI) approach of Stock
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and Watson (2002), who document its good performance for forecasting these four macroeconomic variables.

The DI methodology extends the standard principal component regression by including autoregressive lags

as well as lags of the principal components in the forecast equation. Specifically, using `y autoregressive lags

and `f lags of q factors, at time t, this “extended” principal-components method produces the forecast

ŷht+h|t = α̂+

`y−1∑
s=0

β̂sy
1
t−s +

`f−1∑
s=0

q∑
k=1

γ̂ksf̂k,t−s. (14)

The lags of the dependent variable in equation (14) are one-month growth rates, irrespective of the forecast

horizon h, because using h-month growth rates for h > 1 would lead to highly correlated regressors. In

Stock and Watson (2002), the factors f̂kt are standard principal components extracted from all 132 predictor

variables, and α̂, β̂s and γ̂ks are OLS estimates.

In this study, we retain the forecast equation (14), but we change the estimation methods for the factors

f̂kt and the regression coefficients. In addition to standard principal components, which corresponds to the

L2 criterion (1), we use the L1 and Tukey variants of this criterion to estimate the factors. Moreover, we

also estimate factors using the penalized criterion (9) for these three loss functions. After the f̂kt have been

obtained, we estimate the coefficient vector
(
α, β0, . . . , β`y−1, γ10, . . . , γq0, γ11, . . . , γq,`f−1

)′ in (14) using

either OLS, L1 regression, or Tukey regression1, with the same loss functions as used to extract the factors.

Indeed, if there is a risk that outliers are present in the data, the forecast equation (14) needs to be estimated

using robust regression. As the number of parameters in (14) is relatively small, we do not consider penalized

regression estimation in this equation.

In each case, the lag lengths `y and `f , the number of factors q, and (if applicable) the penalty parameter

λ are selected by minimizing the Bayesian Information Criterion (BIC). As our primary concern in this

exercise is forecasting, we do not use expression (13) for the BIC, which measures how well the factors F̂ fit

X . Instead, we minimize

BIC`y ,`f ,q,λ = 2 log σ̂`y ,`f ,q,λ + (1 + `y + `f · q)
log n

n
,

1Tukey regression is better known as S-estimation of regression, and minimizes a robust scale estimator of the residuals, instead
of the sum of squared residuals as for OLS. This robust scale estimator is defined using the Tukey biweight loss function in (3). S-
estimators are resistant to vertical outliers and leverage points. See Maronna et al. (2006) for a complete description of S-estimators.
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Table 3: Summary statistics for the in-sample fit in the macroeconomic data set.

Approximation quality Nonzero Approximation quality Nonzero
Criterion RMSE MnAE MdAE loadings Criterion RMSE MnAE MdAE loadings
L2, λ = 0 1.068 0.663 0.454 1320 L2, λ > 0 1.061 0.656 0.447 753
L1, λ = 0 1.246 0.616 0.364 1320 L1, λ > 0 1.258 0.622 0.365 842
Tukey, λ = 0 1.081 0.626 0.422 1320 Tukey, λ > 0 1.213 0.643 0.424 296

Notes: This table reports the root mean squared error and mean and median absolute error for the approximation X ≈ F̂ Â′, after
standardizing all variables to median zero and median absolute deviation one, together with the number of nonzero entries in the
estimated 132× 10 loading matrix Â.

where (1 + `y + `f · q) is the number of parameters in Equation (14), and where σ̂`y ,`f ,q,λ is an estimate of

the scale of the residuals yht+h − ŷht+h|t. As in Section 2.3, this scale estimate is either the standard deviation,

the mean absolute deviation, or the median absolute deviation, depending on which loss function is used. As

Stock and Watson (2002) find that allowing for multiple lags of the factors does not substantially improve

the forecasting performance, we fix `f = 1. For the other parameters, we allow 0 ≤ `y ≤ 6, 0 ≤ q ≤ 4,

and log10 λ ∈ {−4,−3,−2,−1, 0}. Note that `y = 0 and q = 0 correspond to using no autoregressive

information and no information from factors, respectively.

4.2 In-Sample Fit

Before turning to forecasting, we first consider the ability of estimated factor models to summarize the data

set. We extracted q = 10 factors using each of the three different loss functions. We selected the penalization

parameter λ by minimizing the BIC (13), and estimate the factor and loading matrix. The residual matrix is

then given by X − F̂ Â′. Table 3 summarizes the quality of the fit by computing the root mean squared error

(RMSE), the mean absolute error (MnAE), and the median absolute error (MdAE) from the n× p residuals.

The L2 approach gives the best in-sample RMSE, by construction. But if the quality of the fit is measured

by other criteria, other methods do better. For the mean and median absolute error, the L1 method gives the

best results. For all considered goodness of fit measures, the Tukey method yields results between the L1 and

the L2 approach.

Another interesting observation from Table 3 is that setting a positive penalty term does not substantially

change the approximation quality. The gained sparsity comes at almost no loss in goodness of fit. The table
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also reports the number of estimated nonzero loadings. We see that the sparse methods deliver a substantial

number of zero estimated loadings, with an almost negligible effect on the quality of the in-sample fit.

Finally, note that the RMSE for the unpenalized L2 criterion is slightly larger than for λ > 0, with a

difference in the fourth significant digit. Mathematically, this is not possible, since the unconstrained L2

method minimizes RMSE. The observed difference is due to numerical approximation error, the estimates

being computed with the iterative alternating regression algorithm described in Section 2.1. Since the data set

contains missing values, theL2 method could not be computed using a standard singular value decomposition.

The alternating regression scheme, however, can cope with missing data.

4.3 Robustness and Sparsity

In this section we focus on the estimates obtained by the Tukey criterion with penalization. Similar results

are obtained using the L1 criterion (not shown). We show two types of graphical displays useful for (i) outlier

detection (ii) factor interpretation. The first display requires robustness of the method, the second one requires

sparsity.

Outlier detection: An outlier is an observation that is unlikely to follow the factor model. A large value

of the residual indicates a potential outlier. As an outlier detection tool we propose to make a heat map of the

standardized residuals (xij− f̂ ′i âj)/σ̂j , with 1 ≤ i ≤ 120 and 1 ≤ j ≤ 132. The heat map is shown in Figure

1, with on the horizontal axis the time index i, and on the vertical axis the variable index j. The grouping

of the variables in the 11 categories given by Stock and Watson (2002) is indicated as well. If an entry of

the matrix of standardized residuals is larger than five in absolute value, it is indicated in black on the heat

map, flagging the outlier. It is crucial to diagnose outliers starting from a robust fit. Otherwise, the present

outliers may substantially affect the (non-robust) estimates of factors and loadings, potentially resulting in

outliers with small residuals (masking effect) or good observations with large residuals (swamping effect).

The masking and swamping effect are avoided when the residuals are computed form a robust fit.

From the heat map in Figure 1 one sees that a relatively large number of outliers shows up. One discovers

outliers in various time series, mainly in interest rates series during the monetarist experiment in 1979-82,

and in money and credit series in the recessions of 2000-01 and (especially) 2008-09.
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Real Output & Income

Employment & Hours

Housing

Orders & Inventories

Money & Credit
Stock Prices

Interest Rates & Spreads
Exchange Rates

Price Indices
WagesConsumer Expectations

Jan 1960 Jan 1970 Jan 1980 Jan 1990 Jan 2000 Jan 2010

Figure 1: Heat map of the standardized residuals for the factor model using the Tukey criterion with λ = 0.1. Outliers
are indicated in black.

Factor interpretation: Table 3 shows the sparsity effect of choosing λ > 0, leading to as few as 296

(out of 1320) nonzero factor loadings for the Tukey criterion. Figure 2 shows how sparsity aids in the inter-

pretation of the factors. In this figure, the variable number is on the horizontal axis, with the 11 groups of

variables separated by vertical lines. The factor loadings are on the vertical axis; the top panel contains the

values of the loadings on the first 5 factors, each of them indicated by a different symbol, and the lower panel

pictures the loadings on the last 5 factors. If the value of a loading is zero symbols are omitted, improving the

legibility of the figure. A similar figure is made for a non-sparse method, see Figure 3, but this plot is much

more difficult to interpret; we have more than four times as many symbols.
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Figure 2: Nonzero factor loadings for the variables in the macroeconomic data set, using the Tukey criterion with
λ = 0.1.
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Figure 3: Nonzero factor loadings for the variables in the macroeconomic data set, using the L2 criterion with λ = 0.
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Figure 2 allows for a reasonable interpretation of the factors extracted using the penalized Tukey criterion.

For example, the pattern of nonzero loadings on the first component (circles in the top panel of Figure 2)

suggests that this component is mostly associated with employment-related series. Continuing in this manner,

we can assign labels to all ten factors as follows:

1. employment; 6. housing;

2. interest rates; 7. producer price inflation;

3. production; 8. exchange rates;

4. interest rate spreads; 9. monetary policy; and

5. consumer price inflation; 10. stock prices.

Obviously, the interpretation of the factors remains subjective and often difficult. Nevertheless, sparsity helps.

This is well illustrated for the variables in the group “Stock prices”. Figure 2 shows that these variables only

load on the 10th factor, all other factor loadings being zero. Using a non-sparse approach yields a much more

diffuse pattern of loadings for this group, as we can see in Figure 3.

4.4 Forecasting Results

Using the 132 time series from the macroeconomic data set we forecast four key macroeconomic series;

Industrial Production, Personal Income, Manufacturing & Trade Sales, and Employment. To quantify the

forecast performance, we use a rolling window with a fixed length of 120 months, such that the first forecast

is produced for the growth rate during the first h months of 1970. For each window, the tuning parameter

values are re-selected and the regression coefficients are re-estimated. That is, all of the tuning parameters

(`y, q, λ) are allowed to differ over time and across methods. For each series to forecast, the RMSE, the mean

and median absolute forecast error are computed. The results are reported in Table 4.

First, we compare the forecast performance of the sparse methods (λ > 0) to their non-sparse counterparts

(λ = 0). We see that there is hardly any difference in forecast performance. Adding sparsity does not yield

a loss, but neither a gain in forecasting performance in this example. The simulation study already showed

that the gain in forecasting precision, if the forecasting model is well specified, is modest. A first conclusion

is that, while sparse factors are easier to interpret, they do not lose forecast performance.
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Table 4: Forecasting Industrial Production, Personal Income, Manufacturing & Trade Sales, and Employment from the
macroeconomic data set.

Horizon Criterion RMSE MnAE MdAE Horizon Criterion RMSE MnAE MdAE

Industrial Production Personal Income
h = 1 L2, λ = 0 8.258 5.917 4.395 h = 1 L2, λ = 0 5.723 3.703 2.716

L2, λ > 0 8.368 5.961 4.357 L2, λ > 0 5.932 3.706 2.786
L1, λ = 0 7.889 5.717 4.161 L1, λ = 0 5.416 3.550 2.628
L1, λ > 0 8.023 5.742 4.238 L1, λ > 0 5.430 3.563 2.587
Tukey, λ = 0 7.944 5.720 4.322 Tukey, λ = 0 5.390 3.505 2.642
Tukey, λ > 0 7.969 5.768 4.422 Tukey, λ > 0 5.414 3.537 2.563

h = 3 L2, λ = 0 5.811 4.352 3.350 h = 3 L2, λ = 0 3.369 2.521 1.945
L2, λ > 0 5.834 4.347 3.338 L2, λ > 0 3.387 2.539 2.038
L1, λ = 0 5.792 4.305 3.455 L1, λ = 0 3.403 2.541 1.923
L1, λ > 0 5.750 4.300 3.347 L1, λ > 0 3.364 2.513 1.981
Tukey, λ = 0 5.927 4.346 3.171 Tukey, λ = 0 3.515 2.575 1.997
Tukey, λ > 0 5.927 4.351 3.243 Tukey, λ > 0 3.415 2.547 2.101

h = 6 L2, λ = 0 4.933 3.682 2.760 h = 6 L2, λ = 0 2.775 2.141 1.689
L2, λ > 0 4.875 3.617 2.756 L2, λ > 0 2.792 2.148 1.728
L1, λ = 0 4.867 3.758 3.080 L1, λ = 0 2.880 2.100 1.598
L1, λ > 0 4.925 3.802 3.115 L1, λ > 0 2.841 2.081 1.545
Tukey, λ = 0 5.281 3.820 2.672 Tukey, λ = 0 3.025 2.209 1.625
Tukey, λ > 0 4.965 3.684 2.673 Tukey, λ > 0 3.011 2.235 1.697

Manufacturing & Trade Sales Employment
h = 1 L2, λ = 0 11.463 8.680 7.040 h = 1 L2, λ = 0 2.980 2.227 1.708

L2, λ > 0 11.540 8.774 6.990 L2, λ > 0 3.045 2.277 1.779
L1, λ = 0 11.779 8.963 7.246 L1, λ = 0 2.991 2.226 1.710
L1, λ > 0 11.819 9.021 7.449 L1, λ > 0 2.983 2.229 1.771
Tukey, λ = 0 12.072 9.028 6.795 Tukey, λ = 0 3.072 2.307 1.778
Tukey, λ > 0 12.108 9.066 6.669 Tukey, λ > 0 3.071 2.293 1.761

h = 3 L2, λ = 0 6.205 4.689 3.648 h = 3 L2, λ = 0 1.765 1.322 0.984
L2, λ > 0 6.363 4.781 3.747 L2, λ > 0 1.773 1.336 1.025
L1, λ = 0 6.201 4.719 3.787 L1, λ = 0 1.733 1.296 0.987
L1, λ > 0 6.074 4.660 3.705 L1, λ > 0 1.757 1.323 1.015
Tukey, λ = 0 6.297 4.763 3.625 Tukey, λ = 0 1.770 1.343 1.044
Tukey, λ > 0 6.345 4.802 3.672 Tukey, λ > 0 1.780 1.338 1.038

h = 6 L2, λ = 0 4.663 3.406 2.509 h = 6 L2, λ = 0 1.422 1.076 0.820
L2, λ > 0 4.757 3.448 2.567 L2, λ > 0 1.435 1.093 0.827
L1, λ = 0 5.127 3.695 2.605 L1, λ = 0 1.456 1.108 0.837
L1, λ > 0 4.920 3.603 2.728 L1, λ > 0 1.444 1.107 0.845
Tukey, λ = 0 4.922 3.538 2.367 Tukey, λ = 0 1.524 1.143 0.823
Tukey, λ > 0 4.868 3.494 2.467 Tukey, λ > 0 1.525 1.137 0.839

Notes: This table reports the root mean squared forecast error and mean and median absolute forecast error for the macroeconomic
forecasting example. For each series, the smallest RMSE, MeanAE, and MedianAE are printed in boldface.
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Secondly, we want to compare the relative performance of the three different criteria, L2, L1 and Tukey.

For Industrial Production and Personal Income (Table 4), we find that robust methods often perform better

than the benchmark of standard PCA, irrespective of which measure we use to evaluate the performance. The

results for the other two series, Manufacturing & Trade Sales and Employment show that standard PCA fore-

casts perform well for these series. We can conclude that the presence of the outliers in this macroeconomic

data set does not affect the performance of the standard PCA forecasts too much. Even if the estimated factors

may be strongly influenced by the outliers, they still provide a diffusion index performing well for forecast-

ing. However, as documented in the simulation study, there may be types of outliers where the L2 approach

is more vulnerable to outliers. While the robust estimators provide a safeguard with respect to outliers, they

perform, on the whole, at least as well as the forecasting procedure based on standard PCA.

5 Conclusion

We propose a novel factor extraction method that unifies two recent strands in the factor modelling literature,

robustness and sparsity. This method leads to a sparse factor loading matrix and to factors that are robust

to outlying observations in the original data. We are the first to combine these two issues in the context

of factor modelling, and to investigate their potential for macroeconomic forecasts. Compared to standard

principal component analysis, our proposed method gives a much closer approximation to the true factor

space for heavy tailed error distributions or if outliers are present in the data. Imposing sparsity further

reduces estimation error if the true factor structure is sparse, but, more importantly, provides easier to interpret

loading matrices.

We considered two robust estimation criteria: a least absolute deviation loss function and the bounded

Tukey biweight loss function. While the Tukey method provides even more protection with respect to outliers,

in particular bad leverage rows, the L1 approach preformed well in the empirical application. For the Tukey

method, the loadings and factor scores are computed using a simple alternating iteratively reweighted least

squares scheme. Alternating regression schemes have the advantage that they can cope easily with missing

values in the data matrix.
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If prior knowledge on a sparse factor structure is available, it is of course possible to impose a priori that

certain elements of the loading matrix are zero. Also, if a natural grouping is present in the data, as is the case

in the macroeconomic data set analyzed in Section 4 of this paper, the block structure of the variables can be

taken into account in the factor construction procedure, as in Hallin and Liška (2011). The sparsity approach

put forward in this paper does not require prior knowledge, but sets factor loadings to zero in a data-driven

way. It can be used as an informal test to check whether prior assumptions are reasonable.

To conclude, we find that robust and sparse estimation of factor models has a great potential for improving

both the interpretability of the estimated factors and the statistical accuracy in presence of model deviation.

Developing robust estimators for related models, such as the dynamic factor model of Forni et al. (2005) or

the Bayesian VAR model of Bańbura et al. (2010), is an open area for future research.
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M. Hallin and R. Liška. Dynamic factors in the presence of blocks. Journal of Econometrics, 163:29–41,

2011.

I.T. Jolliffe, N.T. Trendafilov, and M. Uddin. A modified principal component technique based on the Lasso.

Journal of Computational and Graphical Statistics, 12:531–547, 2003.

S.C. Ludvigson and S. Ng. The empirical risk-return relation: A factor analysis approach. Journal of Finan-

cial Economics, 83:171–222, 2007.

S.C. Ludvigson and S. Ng. Macro factors in bond risk premia. Review of Financial Studies, 22:5027–5067,

2009.

R.A. Maronna and V.J. Yohai. Robust low-rank approximation of data matrices with elementwise contami-

nation. Technometrics, 50:295–304, 2008.

R.A. Maronna, D.R. Martin, and V.J. Yohai. Robust statistics: Theory and methods. Wiley, New York, 2006.

G. Pison, P.J. Rousseeuw, P. Filzmoser, and C. Croux. Robust factor analysis. Journal of Multivariate

Analysis, 84:145–172, 2003.

21



J.H. Stock and M.W. Watson. Macroeconomic forecasting using diffusion indexes. Journal of Business and

Economic Statistics, 20:147–162, 2002.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society:

Series B, 58:267–288, 1996.

V. Verardi and C. Croux. Robust regression in Stata. Stata Journal, 9:439–453, 2009.

H. Wang, G. Li, and G. Jiang. Robust regression shrinkage and consistent variable selection through the

LAD-Lasso. Journal of Business and Economic Statistics, 25:347–355, 2007.

D.M. Witten, R. Tibshirani, and T. Hastie. A penalized matrix decomposition, with applications to sparse

principal component analysis and canonical correlation analysis. Biostatistics, 10:515–534, 2009.

H. Wold. Nonlinear estimation by iterative least squares procedures. In F. David, editor, Research papers in

statistics: Festschrift for J. Neyman, pages 411–444. Wiley, New York, 1966.

H. Zou, T. Hastie, and R. Tibshirani. On the “degrees of freedom” of the Lasso. Annals of Statistics, 35:

2173–2192, 2007.

22


	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	robust and sparse factor modelling 20110725 JAE
	Introduction
	Methodology
	Robust Data Matrix Approximation
	A Sparsity Condition
	Tuning Parameters

	Monte Carlo Simulation
	Application: Macroeconomic Forecasting
	Data and Forecasting Model
	In-Sample Fit
	Robustness and Sparsity
	Forecasting Results

	Conclusion


