
Complexity results and exact algorithms
for robust knapsack problems

Fabrice Talla Nobibon and Roel Leus

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Business and Economics

KBI 1118

Complexity results and exact algorithms

for robust knapsack problems

Fabrice Talla Nobibon∗‡, Roel Leus†

Abstract. This paper studies the robust knapsack problem, for which solutions are, up to a certain point,
immune to data uncertainty. We complement the works found in the literature where uncertainty affects
only the profits or only the weights of the items by studying the complexity and approximation of the
general setting with uncertainty regarding both the profits and the weights, for three different objective
functions. Furthermore, we develop a scenario-relaxation algorithm for solving the general problem and
present computational results.

Keywords: knapsack problem; robustness; scenario-relaxation algorithm; NP-hard; approximation.

1. Introduction

Many real-life problems can be modeled either as a knapsack problem or as one of its variants,
we refer to [1–3] for more details. The outputs of these deterministic models, however,
suffer from imprecisions that make their practical implementation almost impossible in some
cases [4, 5]. The imprecisions of the deterministic models usually stem from the lack of full
information about the parameters of the problem and/or the dependence of these parameters
on some uncontrolled events [4,6]. Recently, a number of models have been built to capture
such uncertainty, either by including random variables and solving a stochastic model [7,8],
or by considering all possible scenarios affecting the parameters of the problem [4, 9, 10].
The former approach requires additional study for the determination of the appropriate
probability distributions. The latter, on the other hand, can be chosen even when complete
information on the probability of occurrence of the individual scenarios is not available,
which is also the setting in which we work in this article.

In this paper we examine robust solution procedures for knapsack problems, meaning
that the produced solutions are, up to a certain point, immune to data uncertainty [11]. For
short, we will speak of robust knapsack problems. We consider the case where uncertainty
can affect both the profits and the weights of the items, and thus complement the works
found in the literature where uncertainty affects only the profits of the items [4, 6, 12, 13] or
only the weights of the items [14]. We investigate both discrete scenarios as well as interval
scenarios – in the former case, the possible values for the profits and the weights are in a
discrete set [4], whereas the latter case assumes the values to be in a given interval [15–17].
For evaluation of the quality of a solution, three different criteria are considered: the absolute
robustness criterion, the min-max regret criterion and the min-max relative regret criterion.
For more details about these criteria and their practical interpretation, we refer to [4, 16].
In the next section, we will provide formal definitions for these three types of objective
functions.

∗QuantOM, HEC-Management School, University of Liège, Rue Louvrex 14, Building N1, B-4000 Liège,
Belgium. E-mail: Fabrice.TallaNobibon@ulg.ac.be
‡KULeuven, research group ORSTAT, Naamsestraat 69, B-3000 Leuven, Belgium.
†KULeuven, research group ORSTAT, Naamsestraat 69, B-3000 Leuven, Belgium. E-mail:

Roel.Leus@econ.kuleuven.be

1

Over the last decade, a number of robust knapsack problems have been studied, mainly
with uncertainty affecting only the profits of the items. The results include the complexity
and the approximation of the absolute robustness and the min-max regret criterion [4,12,13,
16, 18]. More details will be provided in the section devoted to the review of the literature.
The aim of this paper is to complement these references by studying the complexity and
approximation of the remaining cases. The results are extended to the general setting with
uncertainty affecting both the profits and the weights. We also develop a scenario-relaxation
algorithm and a heuristic for solving the general problem and present computational results.

The remainder of this article is structured as follows. First, we provide a formal de-
scription of the problems to be studied in Section 2. In Section 3, we survey the existing
literature. Section 4 looks into the knapsack problem with absolute robustness criterion,
Section 5 is devoted to the study of the min-max regret criterion and in Section 6 we deal
with min-max relative regret, each time for discrete scenarios. Section 7 reviews the interval-
scenario case. We comment the results of our computational experiments in Section 8 and
conclude in Section 9.

2. Problem statement

Given is a set N = {1, . . . , n} of n items, a set S of scenarios affecting the items and a
capacity b of the knapsack. We assume that S 6= ∅. Each scenario s ∈ S is a 2n-vector
(V s, As), where V s = (vs1, . . . , v

s
n) is the vector of profits and As = (as1, . . . , a

s
n) the vector of

weights. The quantity vsi (respectively asi) is the profit (respectively the weight) of item i
under scenario s. We assume that for every scenario s ∈ S, 0 ≤ asi ≤ b for i = 1, . . . , n and
there exists at least one s ∈ S with

∑n
i=1 a

s
i > b. With each scenario s ∈ S corresponds a

(classic) knapsack problem defined by:

(KPs) max
X

Fs(X) =
n∑
i=1

vsixi

s.t.
n∑
i=1

asixi ≤ b,

xi ∈ {0, 1} i = 1, . . . , n.

Let F ∗s be the optimal objective value of KPs. For a given solution X = (x1, . . . , xn) ∈ {0, 1}n
satisfying

∑n
i=1 a

s
ixi ≤ b, the regret of X under the scenario s is the value F ∗s − Fs(X).

For a specific scenario s ∈ S and solution X ∈ {0, 1}n, if
∑n

i=1 a
s
ixi > b we adopt the

convention Fs(X) = −∞. For a given X ∈ {0, 1}n, we define the maximum regret Z(X) =
maxs∈S {F ∗s − Fs(X)}. Note that if there exists s ∈ S with

∑n
i=1 a

s
ixi > b then Z(X) = +∞.

Let K be the set of feasible solutions for all scenarios, i.e., K = {X ∈ {0, 1}n :∑n
i=1 a

s
ixi ≤ b, ∀s ∈ S}. In this paper, we examine robust knapsack problems with the

following three objective functions:

(1) maximization of the absolute robustness:

max
X∈K

min
s∈S

Fs(X);

2

(2) minimization of the maximum regret (or the worst-case regret), which corresponds with

min
X∈K

Z(X) = min
X∈K

max
s∈S
{F ∗s − Fs(X)} ;

and

(3) minimization of the maximum relative regret (or min-max relative regret):

min
X∈K

max
s∈S

{
F ∗s − Fs(X)

F ∗s

}
.

Our objectives are to study for each of the above criteria the complexity and the approxima-
bility of the problem and to present an algorithm to solve the general setting. We consider
separately the case with discrete scenarios and the case with interval scenarios.

3. Literature review

The deterministic knapsack problem is a well studied problem, we refer to [1, 2] for an
overview. This review will therefore only discuss the most closely related articles on the
subject of robust knapsack problems.

There are a handful of existing articles that explicitly deal with robust knapsack problems.
Yu [19] and Kouvelis and Yu [4] consider a special case of the absolute robustness criterion
where uncertainty affects only the profits of items in a discrete manner. They prove that
the problem is strongly NP-hard when the number of scenarios is unbounded and devise
a pseudo-polynomial-time algorithm for solving the problem when the number of scenarios
is bounded by a constant. Lida [6] describes exact algorithms able to solve instances with
up to 60 items. Taniguchi et al. [13] study the same problem and present a fast heuristic
and an exact branch-and-bound algorithm. Recently, Sbihi [12] has presented a local-search
algorithm able to provide solutions for instances with up to 10 000 items and 100 scenarios.
Aissi et al. [18] study the approximability of the problem and find that there exists a fully-
polynomial-time approximation algorithm (FPTAS) for this problem when S is bounded.
They also prove that when S is unbounded there is no FPTAS unless P = NP , but there
still exists a polynomial-time approximation algorithm (PTAS).

For the min-max regret criterion, Kouvelis and Yu [4] provide a pseudo-polynomial al-
gorithm for solving the problem when S is bounded and Aissi et al. [18] show that there is
no approximation scheme unless P = NP . When S is unbounded, the problem is strongly
NP-hard and there is no approximation scheme [16, 18]. Kress et al. [20] consider a robust
multi-dimensional knapsack problem where the objective is to minimize the maximum re-
gret. They show that the problem is NP-hard and develop a practically efficient algorithm
for solving it.

Kalai and Vanderpooten [21] introduce a new notion of absolute robustness for the knap-
sack problem, called the lexicographic α-robustness criterion. Here, a profit vector containing
the lowest profits is associated with every feasible solution, and two profit vectors are com-
pared by considering the first distinct coordinates of these vectors. They show that the
complexity of the lexicographic α-robust knapsack problem does not increase compared to

3

the absolute robustness version and present a pseudo-polynomial algorithm in the case of a
bounded number of scenarios.

Bertsimas and Sim [11] propose a new approach to robust optimization: they look into
the trade-off between the probability of violation of constraints and the effect on the objective
function of the deterministic problem, which is what they call the price of robustness. This
approach is applied to the knapsack problem for the case where uncertainty affects only the
weights. Klopfenstein and Nace [14] define a robust chance-constrained knapsack problem
following the approach of Bertsimas and Sim and propose an approximation algorithm.

Finally, we mention that Deineko and Woeginger [22] prove that the robust knapsack
problem with interval scenarios is complete for the second level of the polynomial hierarchy.
We refer to [23] for more details about the polynomial hierarchy approach in computational
complexity.

4. Absolute robustness

In this section, we study the robust knapsack problem with the absolute robustness criterion
when the scenario set is discrete. Explicitly, the problem is given by:

(AbKP) max
X

min
s∈S

n∑
i=1

vsixi

s.t.
n∑
i=1

asixi ≤ b ∀s ∈ S,

xi ∈ {0, 1} i = 1, . . . , n,

with S a discrete set of distinct scenarios. The results below reduce the set S to be considered.

Definition 4.1. Given two scenarios s, u ∈ S, we say that scenario s dominates scenario u
if both of the following sets of inequalities are satisfied:

(i) asi ≥ aui , i = 1, . . . , n; (ii) vsi ≤ vui , i = 1, . . . , n.

A scenario u is non-dominated if there exists no s ∈ S such that (i) and (ii) are true. A
non-dominated scenario is called a maximal scenario. Let S̄ ⊆ S be the set of maximal
scenarios. The next result states that it suffices to consider S̄ instead of S in the definition
of AbKP.

Proposition 4.2. An optimal solution to AbKP can be obtained by solving a reduced problem
in which the set of scenarios S is replaced by S̄.

Proof: Let Z and Z̄ be defined by:

Z = max
X

{
min
s∈S

n∑
i=1

vsixi

}
Z̄ = max

X

{
min
s∈S̄

n∑
i=1

vsixi

}

s.t.

n∑
i=1

asixi ≤ b ∀s ∈ S, s.t.

n∑
i=1

asixi ≤ b ∀s ∈ S̄,

xi ∈ {0, 1} i = 1, . . . , n. xi ∈ {0, 1} i = 1, . . . , n.

4

We want to show that Z = Z̄. If S = S̄, the equality is true. Suppose now that S 6= S̄. The
inclusion S̄ ⊆ S implies that Z ≤ Z̄.

On the other hand, let X0 ∈ {0, 1}n be a feasible solution for the reduced problem and
s0 ∈ S̄ such that Z̄ =

∑n
i=1 v

s0

i x
0
i . For each scenario s ∈ S \ S̄ there exists a scenario u ∈ S̄

such that s is dominated by u. We have:

u ∈ S̄ implies that
n∑
i=1

aui x
0
i ≤ b, (?)

u dominates s implies that
n∑
i=1

asix
0
i ≤

n∑
i=1

aui x
0
i . (??)

(?) and (??) imply that X0 is feasible for any scenario s ∈ S \ S̄. Consequently, X0 is feasible
for the unreduced problem and we have Z̄ =

∑n
i=1 v

s0

i x
0
i ≤ Z. Because Z ≤ Z̄ and Z̄ ≤ Z,

we conclude that Z = Z̄. �

In the remainder of this section, we present some special cases of AbKP before looking at
the general setting.

4.1 S is a Cartesian product

For each item i ∈ {1, . . . , n}, we distinguish a set Svi of possible values for vi, defined as
follows: Svi = {vsi : s ∈ S}; set Sai similarly contains the possibilities for ai. Notice that
|Sai | and |Svi | can be significantly less than |S|, where | · | denotes the cardinality. We
define the Cartesian product Π = (

∏n
i=1 S

v
i)× (

∏n
i=1 S

a
i); each element of Π is also called a

scenario. Remark that S ⊆ Π. Consider the scenario s̄ ∈ Π defined as follows: for each item
i ∈ {1, . . . , n}, the profit and the weight of item i under scenario s̄ are given by vs̄i = minSvi
and as̄i = maxSai . It is easy to see that s̄ is the only maximal scenario of Π.

Lemma 4.3. If s̄ ∈ S then it is the only maximal scenario of S.

Proof: This follows from the fact that S ⊆ Π and s̄ is the only maximal scenario of Π. �

Note that s̄ ∈ S if S = Π.

Lemma 4.4. If s̄ ∈ S then the problem AbKP can be solved in pseudo-polynomial time.

Proof: As a direct consequence of Proposition 4.2 and Lemma 4.3, the problem is then
equivalent to a deterministic knapsack problem. �

4.2 Uncertainty affects only the profits of items

This is a special case where As = A for each scenario s ∈ S. This special case has been
studied by Yu [19] and Taniguchi et al. [13]. Yu proves that if S is unbounded then the
problem is strongly NP-hard. He also provides a pseudo-polynomial-time algorithm based
on dynamic programming (DP) by weight for solving the problem when |S| is bounded by a
constant. Recently, Taniguchi et al. [13] have presented a heuristic and an exact algorithm

5

for solving the robust knapsack problem when uncertainty affects only the profits of items
and Sbihi [12] has described an efficient local-search algorithm for solving the same problem.
Aissi et al. [18] prove that there exists a FPTAS for solving the problem when S is bounded.
When S is unbounded, however, they show that there is no approximation scheme.

4.3 Uncertainty affects only the weights of items

In this case, V s = V for each scenario s ∈ S. The problem AbKP reduces to:

(AbKP−W) max
n∑
i=1

vixi

s.t.

n∑
i=1

asixi ≤ b ∀s ∈ S,

xi ∈ {0, 1} i = 1, . . . , n.

If the size of the scenario set S is bounded by a constant, the problem AbKP−W is a
special case of the multi-dimensional knapsack problem [1] because the right-hand sides of
the constraints are identical; the latter is solved in pseudo-polynomial time. We obtain the
following approximation result.

Proposition 4.5. When the set S of scenarios is bounded, the problem AbKP−W has a
PTAS but does not have a FPTAS unless P = NP .

Proof: The fact that AbKP−W has a PTAS follows from Theorem 9.4.3 in [1] while the
proof of the non-existence of a FPTAS is obtained via a slight modification of Theorem 9.4.1
in [1]. �

When S is unbounded, on the other hand, the next theorem shows that the problem
AbKP−W is strongly NP-hard. The proof uses a reduction from the 3-Dimensional Matching
(3DM) problem defined as follows:

Instance: Set M ⊆ W × X × Y , where W , X and Y are disjoint sets having the same
number q of elements.
Question: Does M contain a matching, i.e., a subset M ′ ⊆ M such that |M ′| = q and no
two elements of M ′ agree in any coordinate?

The 3DM problem is proved to be strongly NP-complete by Garey and Johnson [24].

Theorem 4.6. The problem AbKP−W is strongly NP-hard for an unbounded scenario set S.

Proof: Consider an arbitrary instance of 3DM. We describe a polynomial transformation
into an instance of AbKP−W.

The set of scenarios S = W ∪ X ∪ Y , therefore |S| = 3q. We have n = |M | items and
we write M = {M1,M2, . . . ,Mn}. The capacity of the knapsack is b = 1 and for each item
i ∈ {1, . . . , n}, the profit vi = 1. For a given scenario s and item i, the weight of item i
under scenario s is defined by asi = 1 if s ∈ Mi and 0 otherwise. In every scenario there are

6

three unit-weight items. Clearly, this transformation can be done in polynomial time. We
will show that the instance of 3DM is a YES instance if and only if the AbKP−W instance
has a solution with an objective value greater than or equal to q.

If the 3DM instance is a YES instance then there exists M ′ ⊆M with |M ′| = q and M ′

is a matching. We set xi = 1 if Mi ∈M ′ and xi = 0 otherwise. This is a feasible solution to
AbKP−W and it achieves an objective value of q.

Conversely, suppose that the constructed AbKP−W instance has a feasible solution with
an objective value greater than or equal to q. If there were a solution with objective value
strictly greater than q then there would be Mi and Mj in M ′ such that Mi ∩Mj 6= ∅, and
for a scenario s ∈ Mi ∩Mj the capacity b would be exceeded. Consequently, the objective
value is equal to q. Let M ′ = {Mi ∈ M : xi = 1}. Because the objective value is exactly q,
we have |M ′| = q. The fact that (x1, . . . , xn) is a feasible solution to AbKP−W implies that
M ′ is a matching. �

4.4 General case

We now consider the general problem AbKP with uncertainty regarding both the weights and
the profits. We assume that S = S̄; if this is not the case, S̄ can be identified in polynomial
time via the following procedure. Given a set S of scenarios, let M = maxs∈S max1≤i≤n v

s
i .

The quantity M is a maximum over a set of n× |S| elements. We associate a 2n-vector T s

with each scenario s ∈ S, with T s =
(
ts1, . . . , t

s
n, t

s
n+1, . . . , t

s
2n

)
where tsi = M − vsi if 1 ≤ i ≤ n

and tsi = asi−n if n + 1 ≤ i ≤ 2n. Given two scenarios s and u, s dominates u if and only
if tsi ≥ tui , i = 1, . . . , 2n. Efficient algorithms for identifying dominated scenarios with the
latter input data are available in the literature, see [25], for instance.

The next result states that the problem can be solved in pseudo-polynomial time when
S is bounded.

Lemma 4.7. If |S| is bounded by a constant then AbKP can be solved in pseudo-polynomial
time.

We describe a pseudo-polynomial-time algorithm based on DP. We use the following value
function:

Fk
(
α1, . . . , α|S|; b1, . . . , b|S|

)
=

max
X

min
s∈S

{
n∑
i=k

vsixi + αs

∣∣∣∣∣
n∑
i=k

asixi ≤ bs, s ∈ S and xi ∈ {0, 1}, i = k, . . . , n

}
,

i.e., Fk
(
α1, . . . , α|S|; b1, . . . , b|S|

)
is the max-min value when the optimal selection is made

among the items k, k + 1, . . . , n under the knapsack capacity bs for scenario s, and having
already collected a profit αs for scenario s ∈ S in the items 1, 2, . . . , k − 1. The initial
condition is:

Fn
(
α1, . . . , α|S|; b1, . . . , b|S|

)
=

{
min

{
α1 + v1

n, . . . , α|S| + v
|S|
n

}
if bs ≥ asn, ∀s ∈ S,

min
{
α1, . . . , α|S|

}
otherwise.

7

We have the recursive relation (for k = n− 1, n− 2, . . . , 2):

Fk−1

(
α1, . . . , α|S|; b1, . . . , b|S|

)
=

Fk
(
α1, . . . , α|S|; b1, . . . , b|S|

)
if ∃s ∈ S : bs < ask−1,

max
{
Fk
(
α1, . . . , α|S|; b1, . . . , b|S|

)
,

Fk

(
α1 + v1

k, . . . , α|S| + v
|S|
k ; b1 − a1

k, . . . , b|S| − a
|S|
k

)}
otherwise.

The optimal objective value is F1 (0, . . . , 0; b, . . . , b). The time complexity of the DP algo-
rithm is O

(
nb|S|L|S|

)
, with L = maxs∈S

∑n
i=1 v

s
i . Thus, if |S| is bounded by a constant,

this algorithm runs in pseudo-polynomial time. Example 1 illustrates the application of the
above DP algorithm.

Example 1. Consider the following instance of AbKP with |S| = 2 scenarios, a knapsack
capacity b = 8 and n = 4 items.

max
X

min {3x1 + 7x2 + 4x3 + 5x4, 5x1 + 4x2 + 2x3 + 3x4}
s.t. 3x1 + 6x2 + 2x3 + 4x4 ≤ 8

2x1 + 5x2 + 4x3 + 3x4 ≤ 8

xi ∈ {0, 1}, i = 1, . . . , 4.

We find that F1(0, 0; 8, 8) = F2(3, 5; 5, 6) = F3(3, 5; 5, 6) = F4(3, 5; 5, 6) = 8 and an optimal
solution is x1 = x4 = 1, x2 = x3 = 0.

Observe that the number of states in the above DP is strongly affected by the order of
magnitude of the profit and the weight of the items, the number of scenarios and the value
of the budget. More concretely, the DP is expected to be efficient if the profit and the weight
of the items are small, and there are few scenarios. Because our experiments in Section 8
focus on instances with many scenarios (up to 10 000) and items having profit and weight
between 1 and 190, running the above DP does not seem practical and hence the algorithm
has not been implemented. A different algorithm will be proposed further in this section.

The next proposition contains the approximation results for the general setting.

Proposition 4.8. If the set S is bounded, the problem AbKP has a PTAS but not a FPTAS.

Proof: The existence of a PTAS for AbKP follows from the application of Theorem 1
in [18] since the multi-objective version of the multi-dimensional knapsack problem has a
PTAS [26]. On the other hand, there is no FPTAS for AbKP because AbKP−W does not
have a FPTAS. �

We will next study the case where |S| is unbounded. In this case, the problem is strongly
NP-hard since it contains the special cases studied in the previous subsections. The negative
results obtained for the above cases are also valid for this general setting. As a result, we
infer that there is no approximation scheme when |S| is unbounded.

8

A linear formulation for AbKP is:

(M1) max y

s.t. y ≤
n∑
i=1

vsixi ∀s ∈ S,

n∑
i=1

asixi ≤ b ∀s ∈ S,

xi ∈ {0, 1} i = 1, . . . , n,

y ≥ 0.

As mentioned above, we may assume that S = S̄, where S̄ is the set of maximal scenarios.
Note that this assumption is not necessary for the application of the algorithm described
below.

The cardinality of S guides the choice of the algorithm for solving AbKP. On the one
hand, if S contains only few scenarios, then it is practical to directly solve M1 using any
mixed-integer programming (MIP) solver. If the cardinality of S is large, on the other hand,
we follow the idea of Assavapokee et al. [15,27] and propose a scenario-relaxation algorithm

Algorithm 1 Scenario-relaxation algorithm for AbKP

1: Choose a subset Ω ⊆ S and set UB = +∞, LB = 0 and ε = mins,i v
s
i

2: Solve the relaxation of model (M1) by considering only the scenario set Ω instead of S
3: Let x? and y? be an optimal solution to the relaxation
4: xΩ := x? and UB := y?

5: if |UB − LB| < ε then
6: stop
7: else
8: W1 :=

{
s ∈ S1 \ Ω |

∑n
i=1 a

s
ix

Ω
i > b

}
9: if W1 6= ∅ then

10: Select a non-empty subset W ′
1 ⊆ W1 and update Ω← Ω ∪W ′

1; goto 2
11: else
12: For all s ∈ S2 \ Ω, compute δs :=

∑n
i=1 v

s
ix

Ω
i ; W2 := {s ∈ S2 \ Ω | δs < y?}

13: if W2 = ∅ then
14: LB := y?, stop
15: else
16: δ := mins∈W2 δ

s, LB := max {LB, δ}
17: if |UB − LB| < ε then
18: stop
19: else
20: Select a non-empty subset W ′

2 ⊆ W2 and update Ω← Ω ∪W ′
2; goto 2

21: end if
22: end if
23: end if
24: end if

9

for solving AbKP. We distinguish two (not necessarily disjoint) subsets of S: S1 ⊂ S is the
set of scenarios required to ensure that a given solution is feasible for all possible scenarios
and S2 ⊂ S contains the scenarios required to establish that a given feasible solution is
optimal.

Definition 4.9. Given two scenarios s and u in S, u is weight-dominated by s if aui ≤ asi
for i = 1, . . . , n; and u is value-dominated by s if vui ≥ vsi for i = 1, . . . , n.

Using Definition 4.9, S1 and S2 are explicitly defined as follows: S1 = {s ∈ S | s is not weight-
dominated} and S2 = {s ∈ S | s is not value-dominated} and we have the following straight-
forward result.

Lemma 4.10. The set S̄ of maximal scenarios is the union of S1 and S2; that is S̄ = S1∪S2.

A scenario-relaxation algorithm for solving (M1) follows the structure of Algorithm 1.
This algorithm solves a relaxed version of (M1) that contains only the constraints corre-
sponding to a subset Ω ⊆ S1 ∪ S2 of scenarios and iteratively adds scenarios until it is
guaranteed that the solution obtained is (feasible and) optimal to the full model (M1).
Notice that adding one scenario involves adding two constraints to the restricted version
of (M1), one constraint for the feasibility and the other to enforce the optimality. Adding a
single constraint is an option that we have not considered because the scenario corresponding
with that constraint may have to be generated again later in the course of the algorithm to
ensure either the feasibility or the optimality. The correctness of Algorithm 1 follows from
Proposition 4.2 and Lemma 4.10.

5. Min-max regret robust knapsack problem

This section is devoted to the study of the robust knapsack problem with the min-max regret
criterion. We still consider the set S of scenarios to be discrete. The problem formulation is
given by:

(RgKP) min
X

max
s∈S

F ∗s −
n∑
i=1

vsixi

s.t.
n∑
i=1

asixi ≤ b ∀s ∈ S,

xi ∈ {0, 1} i = 1, . . . , n.

We first study two special cases, namely the case where uncertainty affects only the profits
of items and the case where it affects only the weights. Subsequently, we look at the general
setting with uncertainty about both the profits and the weights.

5.1 Uncertainty affects only the profits of items

This special case occurs when As = A for each scenario s ∈ S. Kouvelis and Yu [4] study
this problem when the size of S is bounded and provide a pseudo-polynomial-time algorithm

10

based on DP by weight for solving the problem. Aissi et al. [18] show that it is impossible that
an approximation scheme exists for that problem when S is bounded, unless P = NP . When
|S| is unbounded, the problem is strongly NP-hard and does not have any approximation
scheme unless P = NP [16, 18].

5.2 Uncertainty affects only the weights of items

In this case, V s = V for each scenario s ∈ S. The problem RgKP reduces to:

max
X

n∑
i=1

vixi − F ∗

s.t.

n∑
i=1

asixi ≤ b ∀s ∈ S,

xi ∈ {0, 1} i = 1, . . . , n,

where F ∗ = maxs∈S F
∗
s ; this value F ∗ is a constant and can therefore be removed from the

objective function. This leaves us with the problem AbKP−W studied in Section 4.3.

5.3 General case

We now consider the general problem RgKP with uncertainty both on the weights and on the
profits. If the size of the set S of scenarios is bounded by a constant then the problem can be
solve in pseudo-polynomial time since the |S| values F ∗s for s ∈ S are computed in pseudo-
polynomial time and an adapted version of the DP algorithm devised for the case of the
absolute robustness criterion (see Section 4.4) can be applied to find an optimal solution.
The negative results obtained for the special cases imply that there is no approximation
scheme for the general case even when the set S is bounded, unless P = NP .

Let us now assume that S is unbounded. Clearly, the problem is strongly NP-hard
and does not have an approximation scheme. To solve the problem, we again develop a
scenario-relaxation algorithm. A linear formulation associated with RgKP is:

(M2) min y

s.t. F ∗s −
n∑
i=1

vsixi ≤ y ∀s ∈ S,

n∑
i=1

asixi ≤ b ∀s ∈ S,

xi ∈ {0, 1} i = 1, . . . , n,

y ≥ 0.

A scenario-relaxation algorithm for solving (M2) can follow the same structure as Algo-
rithm 1. The main differences with the previous algorithm are threefold: (1) at the start of
the algorithm, we need to compute F ∗s by solving KPs for every scenario s in Ω; (2) each solu-
tion of the relaxation now yields a lower bound, while each feasible solution evaluated against
all scenarios produces an upper bound; (3) δs := F ∗s −

∑n
i=1 v

s
ix

Ω
i and δ := maxs∈W2 δ

s.

11

6. Min-max relative regret robust knapsack problem

This section is devoted to the study of the robust knapsack problem with the min-max
relative regret criterion with discrete scenario set, defined by:

(ReKP0) min
X

max
s∈S

F ∗s −
∑n

i=1 v
s
ixi

F ∗s

s.t.
n∑
i=1

asixi ≤ b ∀s ∈ S,

xi ∈ {0, 1} i = 1, . . . , n.

We note that the problem is well defined only if F ∗s 6= 0 for every s ∈ S; throughout this
section we assume this to be true. The objective function can be rewritten as follows:

min
X

max
s

F ∗s −
∑n

i=1 v
s
ixi

F ∗s
= 1 + min

X
max
s
− 1

F ∗s

n∑
i=1

vsixi = 1−max
X

min
s

1

F ∗s

n∑
i=1

vsixi .

Therefore, solving the robust knapsack problem with the min-max relative regret criterion
is equivalent to solving the following problem.

(ReKP) max
X

min
s

1

F ∗s

n∑
i=1

vsixi

s.t.
n∑
i=1

asixi ≤ b ∀s ∈ S,

xi ∈ {0, 1} i = 1, . . . , n.

In the rest of this section, we study the complexity of and algorithms for ReKP and resort
to ReKP0 only for the study of approximation. As before, we distinguish two special cases
before proceeding with the general setting.

6.1 Uncertainty affects only the profits of items

In this case, As = A for each scenario s ∈ S. If S is bounded then the |S| values F ∗s for
s ∈ S can be computed in pseudo-polynomial time. Let δ be the least common multiple of
the |S| values F ∗s for s ∈ S and δs = δ

F ∗
s

for s ∈ S. ReKP is then equivalent to the following
problem:

max
X

min
s∈S

n∑
i=1

δsv
s
ixi

s.t.
n∑
i=1

aixi ≤ b

xi ∈ {0, 1} i = 1, . . . , n.

The latter problem is a robust knapsack problem with absolute robustness criterion as pre-
sented in Section 4.2, and can be solved in pseudo-polynomial time. The following result
shows that there is no approximation algorithm for (ReKP0).

12

Theorem 6.1. The problem (ReKP0) has no approximation algorithm even for two scenar-
ios, unless P = NP .

Proof: The proof of Theorem 6 in [18] for the min-max regret objective, which uses a
gap-introducing reduction from PARTITION, is valid for proving this result. �

When the set S of scenarios is unbounded, we have the following result.

Theorem 6.2. The problem (ReKP0) with an unbounded set S of scenarios is strongly NP-
hard.

Proof: The proof of Theorem 7 in [18], which uses a reduction from VERTEX COVER, is
easily adapted to prove this result. �

6.2 Uncertainty affects only the weights of items

When only the weights are uncertain then we have V s = V for each s ∈ S. In this case,
the robust knapsack problem with min-max relative regret criterion reduces to the problem
AbKP−W studied in Section 4.3.

6.3 General case

In this subsection, we consider the min-max relative regret knapsack problem with uncer-
tainty both on the weights and the profits. If |S| is bounded, the problem is solvable in
pseudo-polynomial time since the |S| values F ∗s are computed in pseudo-polynomial time
and an adapted version of the DP algorithm for the case of absolute robustness can be used
to find an optimal solution. The negative results obtained for the special cases imply that
there is no approximation scheme for the general case even when the set S is bounded.

Let us now assume that S is unbounded. Clearly, the problem is strongly NP-hard and
does not have an approximation scheme. An appropriate linear formulation is:

(M3) min y

s.t. F ∗s −
n∑
i=1

vsixi ≤ F ∗s y ∀s ∈ S,

n∑
i=1

asixi ≤ b ∀s ∈ S,

xi ∈ {0, 1} i = 1, . . . , n,

y ≥ 0.

The scenario-relaxation algorithm previously described for absolute robustness and min-max
regret can be modified to also solve this problem.

Tables 1 and 2 summarize the complexity and the approximability results obtained for
the robust knapsack problem with discrete scenario set.

13

Uncertainty profit weight both

Absolute robustness

Bounded NP-hard [4] NP-hard [1] NP-hard

Unbounded Strongly NP-hard [4] Strongly NP-hard Strongly NP-hard

Maximum regret

bounded NP-hard [4] NP-hard NP-hard

Unbounded Strongly NP-hard [18] Strongly NP-hard Strongly NP-hard

Maximum relative regret

bounded NP-hard NP-hard NP-hard

Unbounded Strongly NP-hard Strongly NP-hard Strongly NP-hard

Table 1: Summary of the complexity results of the robust knapsack problem with discrete
set of scenarios.

Uncertainty profit weight both

Absolute robustness

bounded FPTAS [18] PTAS and no FPTAS PTAS and no FPTAS

Unbounded No approx.∗ [18] No FPTAS No approx.

Maximum regret

bounded No approx. [18] PTAS No approx.

Unbounded No approx. [18] No FPTAS No approx.

Maximum relative regret

bounded No approx. PTAS No approx.

Unbounded No approx. No FPTAS No approx.
∗ ‘No approx.’ means that there is no constant-factor approximation algorithm.

Table 2: Summary of the approximability results of the robust knapsack problem with
discrete set of scenarios, assuming P 6= NP .

7. Interval scenarios

In this section we briefly study the robust knapsack problem with interval scenarios. For
each item i ∈ {1, . . . , n}, the profit (respectively weight) of i can take any value between a
lower bound vLi (respectively aLi) and an upper bound vUi (respectively aUi). Our findings
in Section 4.1 lead us to conclude that the absolute robust knapsack problem with interval
scenarios is equivalent to the deterministic knapsack problem.

For the min-max regret and relative regret criteria, on the other hand, we consider the
feasible set given by: K = {X ∈ {0, 1}n :

∑n
i=1 aixi ≤ b, ∀ai ∈ [aLi , a

U
i] for i = 1, . . . , n}.

Let KU = {X ∈ {0, 1}n :
∑n

i=1 a
U
i xi ≤ b}. It is not difficult to see that K = KU . In the

remainder of this section, we replace K by KU and use ai instead of aUi . Therefore, we
can consider that uncertainty affects only the profit of items. We define a discrete set S ′

of scenarios as the set of all ‘extreme’ scenarios for the profits: for all s ∈ S ′ and for all
item i, we have vsi ∈ {vLi , vUi }. Notice that S ′ contains at most 2n scenarios. We obtain the
following outcome:

Lemma 7.1. The interval-scenario robust knapsack problem with the min-max (relative)
regret criterion is equivalent to the robust knapsack problem with the same objective for the

14

discrete set of scenarios S ′.

Proof: 1. min-max regret criterion
Let X ∈ KU . By definition, we have Z(X) = max{F ∗s − Fs(X) : s ∈ S} and we want
to prove that Z(X) = Z ′(X) = max{F ∗s − Fs(X) : s ∈ S ′}.
Clearly, we have Z(X) ≥ Z ′(X) since S ′ ⊆ S. Let s0 ∈ S such that Z(X) = F ∗s0 −
Fs0(X). If s0 ∈ S ′ then Z(X) = Z ′(X); otherwise (s0 /∈ S ′) let X0 ∈ KU such that
F ∗s0 =

∑n
i=1 v

s0
i x

0
i ; then consider the scenario s1 ∈ S ′ defined as follows. If x0

i = 1 then
vs1i = vUi , else vs1i = vLi . We have F ∗s0 ≤

∑n
i=1 v

s1
i x

0
i ≤ F ∗s1 . Moreover,

Z ′(X) ≥ F ∗s1 −
n∑
i=1

vs1i xi ≥
n∑
i=1

vs1i x
0
i −

n∑
i=1

vs1i xi

≥
n∑
i=1

vs1i
(
x0
i − xi

)
≥

n∑
i=1

vs0i
(
x0
i − xi

)
≥

n∑
i=1

vs0i x
0
i −

n∑
i=1

vs0i xi = Z(X).

We conclude that Z(X) = Z ′(X). By taking the minimum over X ∈ KU we obtain
the equivalence result for the min-max regret criterion.

2. min-max relative regret criterion
Let X ∈ KU and

Z ′′(X) = max
s∈S

F ∗s − Fs(X)

F ∗s
= max

s∈S

{
1− Fs(X)

F ∗s

}
= 1−min

s∈S

Fs(X)

F ∗s
= 1− Z̃(X).

Notice that given Z̃(X) we can easily compute Z ′′(X). Further, for any X ∈ KU , we
have Z̃(X) ≤ 1 and

Z̃(X) = min
s∈S

Fs(X)

F ∗s
= min

s∈S

Fs(X)

maxY ∈KU Fs(Y)
= min

s∈S
min
Y ∈KU

Fs(X)

Fs(Y)
.

Observe that to compute Z̃(X), we can consider only the sets Y ∈ KU satisfying
Fs(X)
Fs(Y)

≤ 1. For any X, Y ∈ KU , we define the scenario s(X, Y) as follows: the ith value

component of s(X, Y) is vUi if i ∈ Y \X; otherwise, it is vLi .

Notice that s(X, Y) ∈ S ′ for any X, Y ∈ KU . Let s∗ ∈ S, Y ∗ ∈ KU such that

Z̃(X) = Fs∗ (X)
Fs∗ (Y ∗)

. We want to show that Z̃(X) =
Fs(X,Y ∗)(X)

Fs(X,Y ∗)(Y ∗)
. In fact, we have

Fs(X,Y ∗)(X)

Fs(X,Y ∗)(Y ∗)
=

∑
i∈X v

L
i∑

i∈Y ∗\X v
U
i +

∑
i∈X∩Y ∗ vLi

≤ Fs(X)

Fs(Y ∗)

for all scenarios s ∈ S; the last inequality follows from the fact that Fs(X)
Fs(Y)

≤ 1. In

particular for s = s∗ we obtain Z̃(X) =
Fs(X,Y ∗)(X)

Fs(X,Y ∗)(Y ∗)
. �

15

Results similar to Lemma 7.1 are shown in [28] for subset-type combinatorial optimization
when there is uncertainty only in the objective function. Observe that the above result
implies that the scenario-relaxation algorithm derived earlier can be used to solve the problem
with interval scenarios. Note, however, that Lemma 7.1 does not imply straightforward
complexity results for the interval-scenario case because its scenario set is always a Cartesian
product.

8. Computational results

All algorithms have been coded in C using Visual Studio C++ 2005; all the experiments were
run on a Dell Optiplex 760 personal computer with Pentium R processor with 3.16 GHz clock
speed and 3.21 GB RAM, equipped with Windows XP. CPLEX 12.2 was used for solving the
linear formulations. Below, we first provide some details on the generation of the datasets
and subsequently, we discuss the computational results.

8.1 Data generation

The scenario-relaxation algorithms developed in this paper are tested on randomly generated
instances with n items, for n = 1 000, 5 000 and 10 000. For each item i and each scenario s,
an integer profit vsi and an integer weight asi are generated.

We extend the generation process used by Sbihi [12] and Taniguchi et al. [13] to generate
instances with scenarios affecting both the profits and the weights of the items. To the
best of our knowledge, there is no library of robust knapsack instances and we have tried
to access the instances used by the above mentioned authors without success. Furthermore,
their instances are generated with uncertainty affecting only the profit of the items and
contain few scenarios. For these reasons, we have chosen to generate our own instances1.
The problem instances are generated as follows: for each item i = 1, . . . , n, the initial
weight a0

i and the initial value v0
i are integers randomly generated from the interval [1, 100]

(assuming independent uniform distributions). For a given scenario s, the weight asi of each
item i is a random integer selected from the interval

[
(1 − σa)a

0
i , (1 + σa)a

0
i

]
(uniformly

distributed), where σa ∈ {0.3, 0.6, 0.9} is a parameter to determine the variability level of
the weights in the different scenarios. For the value vsi , we apply the same process with
interval

[
(1 − σv)v

0
i , (1 + σv)v

0
i

]
and σv ∈ {0.3, 0.6, 0.9}. The closer σa and σv are to 0,

the more the scenarios (and consequently the profits and/or the weights) are similar to one
another. The knapsack capacity is set to b = θmins∈S

∑
1≤i≤n a

s
i with θ ∈ {0.4, 0.8}. The

parameter θ indicates whether the capacity b is tight or rather loose.
For each value of n, b, σa and σv, we generate nine instances with |S| = 100, 1 000 and

10 000 scenarios. In total, we have 3× 2× 3× 9 = 162 instances.

8.2 Computational results

In this section, computation time is referred to as Time and is expressed in seconds. We
first consider the application of the scenario-relaxation algorithm for solving the generated

1The instances can be found at http://www.econ.kuleuven.be/public/ndbac96/robustKP.htm

16

instances with the absolute robustness criterion. Next, we focus on the min-max regret
criterion and subsequently, we consider the problem with the min-max relative regret crite-
rion. For every objective function, we also present heuristics based on the scenario-relaxation
algorithm.

8.2.1 Absolute robustness

We first present different implementations of the scenario-relaxation algorithm, followed by
the description of a heuristic based on the scenario-relaxation algorithm. We compare all
these algorithms to CPLEX used as a MIP solver, applied to formulation (M1).

Different implementations and heuristics

We have investigated three different implementations of the scenario-relaxation algorithm.
The first implementation, identified by SC-Ab1, is the implementation as described by the
pseudocode of Algorithm 1. We start the algorithm with a set Ω containing two scenarios
in S1 as follows. The two initial scenarios are selected such that the set of items for which
there is at least one scenario with the highest weight is maximal. At each iteration after
solving the restricted MIP, two additional scenarios are added if necessary (cf. lines 10 and
line 20 in the pseudocode); this number (two) was chosen after preliminary experiments.
The two scenarios added are chosen among the scenarios under which the current solution
performs worst. The second implementation, SC-Ab2, follows the main steps of Algorithm 1,
but here at each iteration, we solve the LP relaxation of the restricted problem instead of
solving the MIP formulation. We use the variables whose values equal one to update the
lower bound. To ensure the optimality, the stopping criteria are adapted as follows. When
the set of scenarios to be added is empty, the LP relaxation of the full problem is solved to
optimality and we solve the restricted MIP obtained by considering the constraints added
so far. If its solution does not lead to the identification of new scenarios to be added to the
restricted problem, then the algorithm stops. Otherwise, two scenarios are added and the
algorithm continues by solving the LP relaxation of the current problem. This procedure is
executed until the algorithm stops. The rationale behind the second implementation is the
following empirical observation: the time spent at each iteration of SC-Ab1 is dominated by
the time CPLEX needs to solve the restricted MIP problem.

The third implementation, SC-Ab3, is similar to SC-Ab2; the main difference occurs
when there is no scenario to be added after the LP relaxation is solved to optimality. In
this implementation, we consider all the variables whose values equal one in the current LP
solution as fixed and we solve the corresponding constrained MIP problem (notice that this
may substantially reduce the number of variables in the problem). Hence, the full restricted
MIP problem is solved only when the solution to the constrained MIP does not lead to an
improvement over the current best solution. The rationale for this implementation is again
the desire to reduce the number of times that the full MIP problem is solved throughout the
algorithm. For each of these implementations, we use a time limit of 30 minutes to interrupt
the algorithm. When this happens, we say that the instance was not solved to optimality.
A fourth implementation has also been investigated. In that implementation, once we have
solved the LP relaxation to optimality, instead of solving the (constrained) MIP problem,
we add a cut that forbids the variables whose values are one in the LP solution to be all

17

selected in any subsequent solution. The results of this last implementation are not reported
because they were not better than the results obtained using previous implementations.

The scenario-relaxation algorithm is converted into a heuristic, denoted Heur, as follows.
We consider the implementation SC-Ab2 and halt the algorithm when the LP relaxation of
the problem is solved to optimality for the first time. At each iteration, the solution to the
restricted LP is used to derive an integer solution by selecting only items whose corresponding
variables take the value 1 in the LP solution. This solution is kept only if it is better than
the current best solution. The best integer solution is then output by the heuristic.

Comparison of the efficiency of the algorithms

In Table 3, in addition to the results of the scenario-relaxation algorithms and the heuristic
described above, we also report the results obtained using CPLEX (see Full) to solve the
MIP formulation (M1). Each cell in the column Stat contains a pair of numbers between 0
and 9, the first (respectively the second) one representing the number of instances solved
to optimality (respectively the number of instances for which the algorithm produces a
non-trivial solution) within the time limit. The pair 2 / 4, for instance, means that the
considered algorithm solves two instances out of nine to optimality and produces a non-
trivial solution for four instances out of nine; by ‘non-trivial solution’ we mean a feasible
solution that selects at least one item. The column Gap reports the average gap (expressed
in %) computed with respect to the lower bound produced by the algorithm and the best
(smallest) upper bound amongst the upper bounds produced by the four algorithms, this by
considering only instances for which the algorithm produces non-trivial solutions. Each cell
in the table corresponds with the analysis of nine instances. When the algorithm fails to
produce a non-trivial solution for at least one instance out of nine associated with a given
cell, we use −− in the cell corresponding with Gap to express the fact that the gap is not
computed.

Table 3 shows that instances with restricted budget (θ = 0.4) are substantially more
difficult to solve than those with large budget (θ = 0.8); the difficulty also increases with
the number of scenarios. The full model (M1) solved using CPLEX (see Full) has a good
performance when there are few scenarios (|S| = 100) and a large budget. In this case,
CPLEX always solves all the instances regardless of the value of n. When the budget
remains large and there are more scenarios (|S| = 1 000), CPLEX solves all the instances
when n = 1 000, seven out of nine when n = 5 000 and none when n = 10 000 while when
|S| = 10 000, CPLEX fails to produce any non-trivial solution within the time limit. The
results obtained using the full model (M1) for restricted budget (θ = 0.4) show that three
instances are solved optimally, all with few scenarios (|S| = 100). The gap in this case
increases with n from 0.04% to more than 57% when n = 10 000. For |S| = 1 000, the gap
is 0.28% for n = 1 000 and 43.25% for n = 5 000, while no feasible solution with non-zero
objective value is found when n = 10 000. Finally for |S| = 10 000, the full model does not
find a non-trivial solution to any instance.

When looking at the results produced by the three implementations of the scenario-
relaxation algorithm, we find that the third implementation SC-Ab3 performs better than
the two others. Indeed, for any group of instances, SC-Ab3 optimally solves at least as
many instances (and usually more) as any other exact algorithm (including the full model),

18

F
u
ll

S
C
-A

b1
S
C
-A

b2
S
C
-A

b3
H
eu
r

n
θ

|S
|

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

1
00

0

0
.4

10
0

18
01
.1

6
1
/

9
0.

0
4

2
4
2
6.

6
3

0
/

9
7
8
.3

1
2
3
9
1.

9
3

0
/

9
2
.2

0
1
1
7
6.

8
3

5
/

9
1
.1

5
0.

5
3

0
/

9
2.

7
1

1
00

0
18

01
.0

3
0
/

9
0.

2
8

2
5
5
5.

3
2

0
/

9
8
8
.9

2
1
8
5
1.

7
8

0
/

9
2
.9

8
1
9
5
4.

7
5

1
/

9
2
.6

9
2.

8
8

0
/

9
3.

8
5

10
00

0
18

05
.0

9
0
/

0
−
−

2
4
3
2.

5
0

0
/

0
−
−

1
8
1
5.

2
5

0
/

9
1
4
.3

0
2
0
5
7.

8
9

1
/

9
3
.1

2
1
4.

9
9

0
/

9
1
5
.2

3

0
.8

10
0

55
.7

9
9
/

9
0.

0
0

3
2.

7
9

9
/

9
0.

0
0

3
2
.8

9
9
/

9
0
.0

0
3
0
.6

8
9
/

9
0
.0

0
0.

1
3

0
/

9
0.

2
9

1
00

0
67

9
.4

2
9
/

9
0.

0
0

5
5
5
.3

6
8
/

8
0.

0
0

5
5
1
.2

8
/

9
0
.1

2
3
3
.2

2
9
/

9
0
.0

0
0.

5
2

0
/

9
1.

4
6

10
00

0
18

06
.4

0
0
/

0
−
−

9
5
5
.4

8
5
/

9
2
2
.6

7
1
0
1
5.

3
5

5
/

9
0
.3

6
2
3
6
.9

3
8
/

9
0
.0

2
3.

0
6

0
/

9
1.

5
0

5
00

0

0
.4

10
0

16
28
.7

5
1
/

9
17
.9

4
2
5
3
1.

3
9

1
/

9
7
8
.0

2
1
6
9
1.

9
7

1
/

9
0
.8

6
1
4
5
9.

1
7

1
/

9
0
.8

6
4
1.

2
8

0
/

9
1.

4
4

1
00

0
18

01
.8

8
0
/

9
43
.2

5
2
5
9
5.

7
6

0
/

0
−
−

1
8
7
8.

4
4

0
/

9
1
.2

5
1
8
7
5.

7
3

0
/

9
1
.2

5
5
2.

3
2

0
/

9
1.

4
9

10
00

0
18

08
.8

9
0
/

0
−
−

2
6
2
7.

3
8

0
/

0
−
−

2
2
1
8.

9
5

0
/

9
1
2
.4

3
2
1
6
7.

1
8

0
/

9
1
2
.4

3
1
0
4
.9

9
0
/

9
1
3
.3

9

0
.8

10
0

60
.5

8
9
/

9
0.

0
0

3
5.

0
7

9
/

9
0.

0
0

3
7
.6

5
9
/

9
0
.0

0
3
4
.1

3
9
/

9
0
.0

0
3.

4
6

0
/

9
0.

3
0

1
00

0
86

1
.2

9
7
/

9
0.

4
5

6
1
6
.8

9
9
/

9
0.

0
0

6
9
3
.2

8
8
/

9
0
.0

2
1
3
5
.1

3
8
/

9
0
.0

2
4
0.

3
0

0
/

9
0.

3
0

10
00

0
18

11
.1

2
0
/

0
−
−

9
3
3
.8

1
8
/

8
0.

0
0

9
7
0
.1

9
8
/

9
0
.0

4
3
6
2
.1

3
8
/

9
0
.0

3
4
3.

8
6

0
/

9
0.

3
2

10
00

0

0
.4

10
0

16
40
.7

6
1
/

9
57
.1

1
2
4
4
2.

2
9

1
/

1
0.

0
0

1
6
7
6.

7
5

1
/

9
0
.6

2
1
6
8
5.

4
1

1
/

9
0
.6

2
4
2.

9
8

0
/

9
0.

9
6

1
00

0
18

05
.0

2
0
/

0
−
−

2
3
5
1.

4
2

0
/

0
−
−

2
1
9
2.

8
5

0
/

9
0
.9

6
2
1
5
2.

4
2

0
/

9
0
.9

5
3
4
4
.2

1
0
/

9
2.

1
2

10
00

0
18

09
.2

4
0
/

0
−
−

2
7
8
5.

4
4

0
/

0
−
−

2
2
9
1.

5
7

0
/

9
1
0
.2

0
2
2
7
4.

1
1

0
/

9
1
2
.8

3
4
6
6
.2

9
0
/

9
1
5
.4

6

0
.8

10
0

86
.5

5
9
/

9
0.

0
0

4
1.

3
3

9
/

9
0.

0
0

3
9
.6

6
9
/

9
0
.0

0
3
7
.0

2
9
/

9
0
.0

0
6.

0
1

0
/

9
0.

0
5

1
00

0
18

19
.0

6
0
/

0
−
−

6
6
4
.4

2
9
/

9
0.

0
0

6
4
1
.6

9
9
/

9
0
.0

0
2
2
8
.3

8
9
/

9
0
.0

0
2
0.

3
8

0
/

9
0.

0
6

10
00

0
18

94
.5

2
0
/

0
−
−

9
7
9
.9

8
9
/

9
0.

0
0

9
7
0
.6

8
9
/

9
0
.0

0
3
2
1
.5

7
9
/

9
0
.0

0
8
4.

4
0

0
/

9
0.

0
8

T
ab

le
3
:

C
o
m

p
a
ri

so
n

of
th

e
re

su
lt

s
fo

r
ro

b
u

st
k
n

ap
sa

ck
p

ro
b

le
m

s
w

it
h

ab
so

lu
te

ro
b

u
st

n
es

s
cr

it
er

io
n

.

19

using the lowest average CPU time. SC-Ab3 also solves all the instances with few scenarios
(|S| = 100) and a large budget. When the budget remains large and there are more scenarios
(|S| = 1000), SC-Ab3 solves all instances except one (with 5000 items) and when |S| = 10000
with large budget, there are only two that are not solved to optimality within the time limit
(one with 1000 items and one with 5000 items). For restricted budget (θ = 0.4), SC-Ab3
optimally solves nine instances out of 81. For the remaining instances, SC-Ab3 always
produces solutions with non-zero objective value and achieves a gap of at most 12.83%.

Finally, although the scenario-relaxation-based heuristic (Heur) does not solve any in-
stance to optimality, the CPU time is very low compared to the exact algorithms. Heur
always outputs solutions with non-zero objective value that are close to optimal, with a
maximum gap of 15.46%, obtained for n = 10 000 when the budget is restricted. The dif-
ferences between the heuristic and the exact algorithms (both with respect to CPU times
as well as to the gap) highlight that the scenario-relaxation framework quickly produces a
good non-trivial solution, but subsequently spends a considerable amount of time to find an
optimal solution.

To summarize the comparison between the four exact algorithms and the heuristic re-
ported in Table 3, we formulate the following advice. If the solution quality is the only
criterion to be taken into account, the use of the scenario-relaxation algorithm with the
third implementation (SC-Ab3) is advised. If both the computation time and the solution
quality are relevant, however, we strongly recommend the use of the scenario-relaxation-
based heuristic.

8.2.2 Min-max regret

For this objective function, we have considered the three implementations of the scenario-
relaxation algorithm described in the previous section as well as the use of CPLEX for
solving (M2) and the heuristic based on the scenario-relaxation algorithm. The results are
reported in Table 4 using the same notations as in Table 3 with the same definitions, except
for Gap, which is still the average gap but now computed with respect to the upper bound
produced by the considered algorithm and the best (highest) lower bound amongst the lower
bounds produced by the four algorithms.

Table 4 confirms that also for the min-max regret objective, the instances with restricted
budget (θ = 0.4) are more difficult to solve than those with large budget (θ = 0.8) and the
difficulty increases with n and with the cardinality of S. CPLEX (see Full) produces non-
trivial solutions only for 11 instances (out of 162), all with large budget for n = 1 000. Six
(respectively five) instances are solved optimally when |S| = 100 (respectively |S| = 1 000).

Amongst the three implementations of the scenario-relaxation algorithm, similarly to the
case of absolute robustness, SC-Ab3 performs better than SC-Ab1 and SC-Ab2. It provides
a non-trivial solution to each instance and optimally solves 38 instances out of 162, which
is more than any other exact algorithm. Also, SC-Ab3 always produces the smallest gap,
ranging from 0.06% to at most 14.47%, regardless of the value of n and the cardinality of
S. The heuristic produces non-trivial solutions with good objective value to each instance
within a low CPU time. Indeed, the average CPU time is less than ten minutes and the
average gap is at most 26.06%. We conclude that the heuristic strikes a convenient tradeoff
between the CPU time and the gap.

20

F
u
ll

S
C
-A

b1
S
C
-A

b2
S
C
-A

b3
H
eu
r

n
θ

|S
|

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

1
00

0

0
.4

1
00

0
18

01
.4

8
0
/

0
−
−

2
1
4
0.

0
7

0
/

0
−
−

1
8
0
1.

6
7

0
/

9
1
0
.3

7
1
8
6
1.

4
3

2
/

9
8
.7

0
1.

6
7

0
/

9
1
1
.7

3
5

00
0

18
16
.7

8
0
/

0
−
−

2
1
9
1.

3
0

0
/

0
−
−

1
8
1
9.

4
8

0
/

9
1
2
.4

9
1
9
2
7.

0
6

0
/

9
9
.8

7
1
9.

4
3

0
/

9
1
4
.9

3
10

00
0

18
94
.3

5
0
/

9
−
−

2
2
0
9.

9
5

0
/

1
1
6
.9

6
1
9
0
0.

9
0

0
/

9
1
3
.8

1
1
9
0
1.

0
1

0
/

9
1
3
.8

1
1
0
0
.9

2
0
/

9
1
8
.1

8

0
.8

1
00

0
46

8
.3

0
6
/

8
12
.4

0
5
5
2
.0

1
7
/

8
2.

1
0

4
0
0
.2

6
8
/

9
2
.1

7
3
1
1
.3

7
8
/

9
0
.0

6
0.

5
4

0
/

9
5.

1
4

5
00

0
12

97
.0

0
5
/

5
0.

0
0

1
3
4
2.

6
3

5
/

8
3.

1
9

8
2
3
.2

8
6
/

9
4
.8

7
6
6
3
.2

0
7
/

9
3
.2

9
3.

4
6

0
/

9
8.

5
1

10
00

0
15

30
.8

6
0
/

0
−
−

1
5
1
4.

2
2

3
/

6
2.

7
9

9
9
9
.9

0
5
/

9
7
.7

4
1
1
2
4.

3
1

5
/

9
6
.1

1
1
8.

6
4

0
/

9
1
0
.6

1

5
00

0

0
.4

1
00

0
18

07
.5

7
0
/

0
−
−

2
3
3
9.

8
5

0
/

0
−
−

1
8
2
9.

4
1

0
/

9
1
0
.2

3
1
7
7
4.

6
0

1
/

9
5
.3

2
2
8.

7
3

0
/

9
1
2
.0

3
5

00
0

18
88
.8

2
0
/

0
−
−

2
3
5
1.

8
2

0
/

0
−
−

2
3
7
7.

3
0

0
/

9
1
0
.2

0
2
3
7
9.

0
4

0
/

9
1
0
.2

0
5
7
6
.7

1
0
/

9
1
3
.0

2
10

00
0

18
73
.4

5
0
/

0
−
−

2
1
3
8.

0
3

0
/

0
−
−

2
0
2
9.

5
2

0
/

9
1
4
.4

1
2
0
2
4.

1
8

0
/

9
1
4
.4

1
2
1
8
.2

7
0
/

9
1
9
.3

8

0
.8

1
00

0
18

07
.5

6
0
/

0
−
−

2
6
4
9.

6
7

0
/

1
1
9
.2

3
1
5
6
9.

3
1

3
/

9
6
.1

9
1
6
2
4.

9
7

3
/

9
5
.1

5
7.

4
1

0
/

9
1
0
.6

6
5

00
0

18
74
.8

1
0
/

0
−
−

2
0
6
2.

1
7

1
/

1
0.

0
0

1
8
5
6.

4
8

0
/

9
1
2
.3

3
1
9
7
0.

0
5

1
/

9
9
.9

5
5
5.

4
7

0
/

9
1
3
.2

6
10

00
0

18
81
.0

0
0
/

0
−
−

2
2
4
6.

9
3

0
/

1
8.

0
8

2
1
2
5.

1
2

0
/

9
1
4
.4

1
2
1
2
7.

7
5

0
/

9
1
2
.7

8
3
2
1
.1

0
0
/

9
1
6
.1

4

10
00

0

0
.4

1
00

0
18

20
.9

4
0
/

0
−
−

2
3
3
3.

8
3

0
/

0
−
−

1
9
0
1.

5
1

0
/

9
1
0
.3

9
1
9
0
2.

6
0

0
/

9
8
.9

9
1
0
1
.7

4
0
/

9
1
3
.9

0
5

00
0

18
39
.2

2
0
/

0
−
−

2
2
8
9.

1
4

0
/

0
−
−

2
0
4
4.

9
3

0
/

9
1
6
.8

1
2
0
4
3.

6
9

0
/

9
1
0
.9

0
2
3
3
.7

0
0
/

9
1
8
.2

3
10

00
0

18
03
.0

7
0
/

0
−
−

2
3
6
8.

2
3

0
/

0
−
−

2
0
0
1.

8
7

0
/

9
2
4
.7

4
2
0
0
1.

6
1

0
/

9
1
4
.4

7
1
9
2
.2

5
0
/

9
2
6
.0

6

0
.8

1
00

0
18

18
.8

0
0
/

0
−
−

1
9
9
4.

5
2

0
/

1
1
9
.8

3
1
7
6
4.

3
3

2
/

9
7
.8

9
1
5
3
8.

5
8

5
/

9
6
.0

1
2
1.

7
9

0
/

9
9.

8
7

5
00

0
18

69
.6

3
0
/

0
−
−

2
1
6
9.

3
7

1
/

1
0.

0
0

1
9
9
4.

1
0

0
/

9
9
.7

6
1
9
0
6.

7
6

3
/

9
8
.2

3
1
9
2
.1

5
0
/

9
1
0
.7

9
10

00
0

18
85
.8

1
0
/

0
−
−

1
9
3
9.

7
8

3
/

3
0.

0
0

2
2
1
6.

5
2

0
/

9
1
1
.4

8
2
2
1
4.

8
2

3
/

9
1
0
.8

4
4
1
3
.8

9
0
/

9
1
3
.8

2

T
ab

le
4
:

C
o
m

p
a
ri

so
n

of
th

e
re

su
lt

s
fo

r
ro

b
u

st
k
n

ap
sa

ck
p

ro
b

le
m

s
w

it
h

m
in

-m
ax

re
gr

et
cr

it
er

io
n

.

21

F
u
ll

S
C
-A

b1
S
C
-A

b2
S
C
-A

b3
H
eu
r

n
θ

|S
|

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

T
im

e
S
ta

t
G
a
p

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

(s
ec

)
(9

/
9
)

(%
)

1
00

0

0
.4

1
00

0
17

76
.0

1
0
/

0
−
−

2
2
7
6.

4
2

0
/

0
−
−

1
8
7
9.

9
7

0
/

9
1
8
.8

3
1
9
0
1.

8
4

1
/

9
1
2
.2

4
4
5
4
.1

1
0
/

9
2
2
.8

7
5

00
0

18
18
.0

9
0
/

0
−
−

2
1
6
5.

6
3

0
/

1
2
5
.2

1
2
4
0
7.

1
9

0
/

9
1
9
.3

4
2
4
4
0.

5
9

0
/

9
1
5
.1

1
5
9
8
.7

7
0
/

9
2
3
.5

6
10

00
0

19
27
.1

1
0
/

0
−
−

2
2
7
7.

6
2

0
/

1
3
6
.3

3
1
8
0
5.

7
7

0
/

9
2
5
.3

6
1
8
0
5.

9
8

0
/

9
1
9
.4

1
6
0
2
.3

5
0
/

9
2
8
.7

4

0
.8

1
00

0
12

47
.2

9
3
/

7
20
.1

0
1
3
6
9.

0
0

3
/

9
3
9
.2

6
4
7
4
.6

2
6
/

9
9
.7

2
5
0
2
.9

5
7
/

9
5
.7

6
9
8.

2
4

0
/

9
1
4
.2

9
5

00
0

12
59
.6

9
1
/

2
34
.0

8
1
9
4
0.

9
8

1
/

7
3
1
.0

6
1
6
4
2.

5
8

2
/

9
1
1
.9

7
1
7
3
0.

1
0

3
/

9
9
.1

2
1
0
6
.5

8
0
/

9
1
5
.2

7
10

00
0

19
09
.3

1
0
/

0
−
−

2
1
8
1.

1
0

1
/

5
3
9
.2

6
1
8
0
7.

4
7

1
/

9
1
5
.2

3
1
8
0
6.

0
4

2
/

9
1
0
.2

2
3
9
0
.7

6
0
/

9
1
7
.6

9

5
00

0

0
.4

1
00

0
18

08
.9

0
0
/

0
−
−

2
2
0
1.

0
7

0
/

0
−
−

1
8
4
7.

2
5

0
/

9
1
5
.8

2
1
8
4
4.

6
2

0
/

9
8
.2

6
1
4
3
.8

9
0
/

9
1
7
.5

3
5

00
0

18
88
.7

4
0
/

0
−
−

2
1
9
7.

4
0

0
/

0
−
−

1
8
1
2.

4
9

0
/

9
2
1
.3

3
1
8
1
2.

6
0

0
/

9
1
2
.9

8
3
6
4
.3

1
0
/

9
2
4
.0

4
10

00
0

18
78
.3

7
0
/

0
−
−

2
1
6
4.

5
5

0
/

0
−
−

1
8
0
4.

2
7

0
/

9
2
8
.1

3
1
8
0
6.

6
2

0
/

9
1
6
.1

4
4
7
5
.1

5
0
/

9
2
9
.1

7

0
.8

1
00

0
18

07
.8

7
0
/

0
−
−

2
3
3
5.

9
2

0
/

1
3
4
.1

8
1
8
2
4.

3
6

1
/

9
1
2
.9

4
1
9
3
4.

4
4

2
/

9
9
.5

3
1
2
3
.1

8
0
/

9
1
6
.5

4
5

00
0

18
90
.7

7
0
/

0
−
−

2
0
9
2.

9
3

0
/

0
−
−

1
8
5
3.

2
1

0
/

9
1
9
.4

1
1
8
5
2.

7
6

1
/

9
1
3
.8

2
3
6
5
.7

2
0
/

9
2
1
.6

6
10

00
0

18
41
.7

6
0
/

0
−
−

2
0
1
5.

9
4

0
/

0
−
−

2
0
2
5.

4
5

0
/

9
2
7
.1

0
2
0
2
2.

8
3

0
/

9
1
4
.3

9
5
6
4
.2

8
0
/

9
3
1
.2

4

10
00

0

0
.4

1
00

0
18

24
.8

7
0
/

0
−
−

2
3
8
4.

9
1

0
/

0
−
−

1
9
5
4.

9
2

0
/

9
1
8
.7

1
1
9
5
0.

5
8

0
/

9
1
0
.8

2
1
4
7
.2

2
0
/

9
2
1
.6

9
5

00
0

18
19
.3

1
0
/

0
−
−

2
2
8
6.

1
0

0
/

0
−
−

1
9
1
5.

6
6

0
/

9
2
1
.3

3
1
9
1
3.

7
1

0
/

9
1
7
.8

8
3
2
6
.4

7
0
/

9
2
3
.9

6
10

00
0

18
03
.2

7
0
/

0
−
−

2
1
9
9.

0
5

0
/

0
−
−

1
8
1
9.

2
2

0
/

8
2
7
.3

1
1
8
1
8.

7
3

0
/

8
2
0
.0

8
6
9
4
.5

2
0
/

9
3
5
.6

7

0
.8

1
00

0
18

18
.5

0
0
/

0
−
−

2
2
0
9.

8
7

0
/

0
−
−

1
8
9
6.

4
2

1
/

9
1
2
.8

5
1
9
1
1.

9
4

2
/

9
1
0
.9

2
1
9
5
.8

1
0
/

9
1
8
.5

9
5

00
0

18
07
.1

6
0
/

0
−
−

2
2
6
0.

4
9

0
/

0
−
−

2
0
0
7.

4
5

0
/

9
1
4
.8

2
2
0
0
6.

1
4

1
/

9
1
2
.7

6
5
1
9
.2

3
0
/

9
2
0
.5

6
10

00
0

18
85
.7

9
0
/

0
−
−

2
2
2
4.

2
6

0
/

0
−
−

1
9
5
0.

8
9

0
/

9
2
0
.3

1
1
9
4
4.

6
4

1
/

9
1
5
.8

7
7
4
1
.9

8
0
/

9
2
3
.6

7

T
a
b

le
5:

C
om

p
ar

is
o
n

o
f

th
e

re
su

lt
s

fo
r

ro
b

u
st

k
n

ap
sa

ck
p

ro
b

le
m

s
w

it
h

m
in

-m
ax

re
la

ti
ve

re
gr

et
cr

it
er

io
n
.

22

8.2.3 Min-max relative regret

Using the definitions and notations of the previous section, we report in Table 5 the re-
sults of the three implementations of the scenario-relaxation algorithm as well as the use of
CPLEX for solving (M3) and the scenario-relaxation-based heuristic for solving the generated
instances with the min-max relative regret objective function.

Table 5 confirms the observations made for Table 4 regarding the evolution of the dif-
ficulty of the problem. CPLEX is able to solve optimally only four instances out of 162,
and provides non-trivial solutions to only nine instances. The third implementation of the
scenario-relaxation algorithm (SC-Ab3) displays the best performance also for this objective.
It provides a non-trivial solution to each instance and optimally solves 20 instances out of
162, with a largest average gap of 20.08%. The heuristic based on scenario relaxation outputs
non-trivial solutions with good objective value to each instance after at most 12 minutes,
with a largest average gap of 35.67%.

9. Summary and conclusions

In this paper, we have studied the robust knapsack problem with three different criteria,
namely the absolute robustness criterion, the min-max regret criterion and the min-max
relative regret criterion. We consider the general case where uncertainty affects both the
profit and the weight of the items and is represented either by a discrete set of scenarios
or by interval scenarios. We have studied the complexity and the approximability of the
problem and some of its subproblems, for each of the above objective functions when the
set of scenarios is discrete. We have described a scenario-relaxation algorithm for solving
the problem with a discrete set of scenarios and show that the solution to the problem with
interval scenarios can be obtained by solving the problem with discrete scenario set where
each item can take only one of the two values representing the bounds of its interval. We
have also converted the scenario-relaxation algorithm into a heuristic for producing good
solutions within reasonable running times.

Our experimental results demonstrate the efficiency of the scenario-relaxation algorithm.
In our best implementation, the LP relaxation of the restricted problem is first solved in an
attempt to identify new scenarios to be added. When no scenario can be identified, all the
variables equal to one in the current LP solution are fixed and the corresponding constrained
MIP problem is run. Only when this constrained MIP does not lead to new scenarios,
the full MIP with all scenarios added up to that point, is computed. The full benefit of
the scenario-relaxation algorithm is observed when the set of scenarios is very large. The
scenario-relaxation-based heuristic presents a convenient tradeoff between computation time
and solution quality. We have reported results for instances with up to 10 000 items and
10 000 scenarios, using both CPLEX, the scenario-relaxation algorithm and the heuristic.
Globally, we observe that the difficulty of the instances increases with the number of items,
with the number of scenarios and with the tightness of the budget. We have also found the
necessary running times to be dependent on the particular objective function studied: the
absolute robustness criterion is usually easier than the min-max regret criterion with the
same parameters, which in turn is easier than the min-max relative regret.

23

Acknowledgements

The authors thank Frits Spieksma (KULeuven) for useful comments.

References

[1] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[2] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. J. Wiley, 1990.

[3] S. Eilon. Application of the knapsack model for budgeting. OMEGA the International
Journal of Management Science, 15(6):489–494, 1987.

[4] P. Kouvelis and G. Yu. Robust Discrete Optimization and its Applications. Kluwer
Academic Publishers, Norwell, MA, 1997.

[5] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems con-
taminated with uncertain data. Mathematical Programming, Series A, 88:411–424, 2000.

[6] H. Lida. A note on the max-min 0-1 knapsack problem. Journal of Combinatorial
Optimization, 3:99–94, 1999.

[7] A.J. Kleywegt and J.D. Papastavrou. The dynamic and stochastic knapsack problem.
Operations Research, 46:17–35, 1998.

[8] G.Y. Lin, Y. Lu, and D.D. Yao. The stochastic knapsack revisited: Switch-over policies
and dynamic pricing. Operations Research, 56:945–957, 2008.

[9] I. Averbakh. On the complexity of a class of combinatorial optimization problems with
uncertainty. Mathematical Programming, Series A, 90:263–272, 2001.

[10] D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathemat-
ical Programming, Series B, 98:49–71, 2003.

[11] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52:35–53,
2004.

[12] A. Sbihi. A cooperative local search-based algorithm for the multiple-scenario max-min
knapsack problem. European Journal of Operational Research, 202:339–346, 2010.

[13] F. Taniguchi, T. Yamada, and S. Kataoka. Heuristic and exact algorithms for the max-
min optimization of the multi-scenario knapsack problem. Computers & Operations
Research, 35:2034–2048, 2008.

[14] O. Klopfenstein and D. Nace. A robust approach to the chance-constrained knapsack
problem. Operations Research Letters, 36:628–632, 2008.

24

[15] T. Assavapokee, M.J. Realff, and J.C. Ammons. A new min-max regret robust opti-
mization approach for interval data uncertainty. Journal of Optimization Theory and
Applications, 137:297–316, 2008.

[16] H. Aissi, C. Bazgan, and D. Vanderpooten. Min-max and min-max regret versions
of combinatorial optimization problems: A survey. European Journal of Operational
Research, 197:427–438, 2009.

[17] E. Conde. On the complexity of the continuous unbounded knapsack problem with
uncertain coefficients. Operations Research Letters, 33:481–485, 2005.

[18] H. Aissi, C. Bazgan, and D. Vanderpooten. Approximation of min-max and min-max
regret versions of some combinatorial optimization problems. European Journal of Op-
erational Research, 179:281–290, 2007.

[19] G. Yu. On the max-min 0-1 knapsack problem with robust optimization applications.
Operations Research, 44:407–415, 1996.

[20] M. Kress, M. Penn, and M. Polukarov. The minmax multidimensional knapsack problem
with application to a chance-constrained problem. Naval Research Logistics, 54:656–666,
2007.

[21] R. Kalai and D. Vanderpooten. Lexicographic α-robust knapsack problem : Complexity
results. International Transactions in Operational Research, 18:103–113, 2011.

[22] V.G. Deineko and G.J. Woeginger. Pinpointing the complexity of the interval minmax
regret knapsack problem. Discrete Optimization, 7:191–196, 2010.

[23] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[24] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Co., 1979.

[25] G. Chen, H. Hwang, and T. Tsai. Efficient maxima-finding algorithms for random
planar samples. Discrete Mathematics and Theoretical Computer Science, 6:107–122,
2003.

[26] T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multiobjective knapsack
problems. Management Science, 12:1603–1612, 2002.

[27] T. Assavapokee, M.J. Realff, J.C. Ammons, and I.-H. Hong. Scenario relaxation al-
gorithm for finite scenario-based minmax regret and minmax relative regret robust
optimization. Computers & Operations Research, 35:2093–2102, 2008.

[28] I. Averbakh. Computing and minimizing the relative regret in combinatorial optimiza-
tion with interval data. Discrete Optimization, 2:273–287, 2005.

25

	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	robust_KP

