
Controlling excessive waiting times in emergency departments:
an extension of the ISA algorithm

Mieke Defraeye and Inneke Van Nieuwenhuyse

DEPARTMENT OF DECISION SCIENCES AND INFORMATION MANAGEMENT (KBI)

Faculty of Business and Economics

KBI 1115

Controlling excessive waiting times in emergency

departments: an extension of the ISA algorithm

Mieke Defraeye and Inneke Van Nieuwenhuyse
Research Center for Operations Management

Department of Decision Sciences and Information Management

K.U. Leuven, Belgium

mieke.defraeye@econ.kuleuven.be

inneke.vannieuwenhuyse@econ.kuleuven.be

June 28, 2011

Abstract

In an emergency department (ED), the demand for service is not con-
stant over time. This cannot be accounted for by means of waiting lists or
appointment systems, so capacity decisions are the most important tool
to influence patient waiting times. Additional complexities result from
the relatively small system size that characterizes an ED (i.e. a small
number of physicians or nurses) and the presence of customer impatience.
Assuming a single-stage multiserver M(t)/G/s(t) + G queueing system
with general abandonment and service times and time-varying demand
for service, we suggest a method inspired by the simulation-based Itera-
tive Staffing Algorithm (ISA) proposed by Feldman and others (2008) as
a method to set staffing levels throughout the day. The main advantage
of our extension is that it enables the use of performance measures based
on the probability of experiencing an excessive waiting time, instead of
the common focus on delay probability as a performance metric.

Keywords: emergency department, personnel planning, time-varying ar-
rival rate

1 Introduction

In many service systems, the demand for service is not constant over time.
Fluctuations on a daily, monthly, weekly or yearly basis can be present, which
complicates the process of determining appropriate staffing levels. Our partic-
ular focus lies on emergency departments (ED’s): in these systems, capacity is
the main lever to control waiting times, as customer service cannot be guar-
anteed by means of waiting lists or appointment systems. In an ED, service
is mainly related to the length of the customer’s waiting time (in particular

1

the longest waits), and hence, controlling excessive waiting times is usually a
primary goal. However, most approaches proposed in the literature focus on
delay probabilities or expected waiting times. This paper presents a simulation-
based staffing method that enables to stabilize the probability of excessive wait-
ing (i.e., the probability that the waiting time exceeds a maximum acceptable
value) throughout the day. The suggested method is inspired by the Iterative
Staffing Algorithm (ISA), proposed by Feldman et al. [2], which focuses on
stabilizing the delay probability throughout the day (note that this corresponds
to a maximum acceptable wait of zero). The use of discrete-event simulation
provides distinct advantages over analytical methods, such as increased flexi-
bility in modeling assumptions and the ability to control the precision of the
results. The downside is that evaluation through simulation tends to be more
time-consuming. In addition, the focus on performance measures which are re-
lated to the length of the waiting times complicates the derivation of appropriate
staffing levels based on the simulation’s performance outcome.

This research proposes a computationally efficient way to evaluate the proba-
bility of excessive waiting, and adjusts the staffing update function of the original
ISA algorithm to account for the relatively small system size that characterizes
an ED. In our approach, we represent the ED by a single-stage multiserver sys-
tem with customer abandonments. Our experiments indicate that the proposed
method (which we call ISA(τ)) succeeds in finding a staffing vector that meets
the performance constraint, in a variety of problem settings. Large systems (for
which the number of servers required is in the order of 100) and extremely small
instances (requiring only 1-2 servers) can be solved, although the computation
time increases severely with the problem size. A solution can be obtained for
exponential as well as general service and abandonment time distributions, and
staffing intervals are taken into consideration.

The remainder of the paper is organized as follows: in Section 2 we zoom in
on the problem that will be addressed. A limited overview of related literature
is given in Section 3: Section 3.1 discusses how stationary models can be used
to set staffing levels in a nonstationary system, whereas Section 3.2 describes
the Iterative Staffing Algorithm as proposed in [2] (which can be considered as
the starting point of the approach we suggest). A more detailed description of
ISA(τ) follows in Section 4, which includes both a performance evaluation and
a staffing updating procedure. Computational results of ISA(τ) are reported in
Section 5 and compared to the staffing results obtained by applying stationary
approximation techniques available in the literature.

2 Problem description

A single-stage multiserver M(t)/G/s(t) + G queue1 is considered, with time-
varying arrivals and customer impatience (a schematic representation is given

1Note that in reality, an ED rather resembles a multiserver queueing network in which
patients move through several process steps to receive treatment. However, here we focus on
single-stage queues.

2

in Figure 1). Customers enter the system according to a Markovian time-varying
pattern with arrival rate λ(t) over the time horizon [0, T]. Only fluctuations on
a daily basis are considered, as these tend to be most outspoken [11]. Customers
may leave the system prematurely: the abandonment rate is denoted by θ. Let
µ denote the service rate of the service process, i.e. the rate at which one
server (or physician) can treat customers (or patients). Contrary to the arrival
process, the service and abandonment rates are assumed to be time-invariant
and no assumptions are placed on the distribution of these. The main goal is to
determine an appropriate staffing requirement function s(t̃), which defines the
number of servers (or physicians) to be assigned in each staffing interval t̃, in
view of stabilizing the probability of excessive wait (defined as the probability
that waiting time of a customer exceeds some “maximum acceptable wait”). The
resulting staffing level function should guarantee that the excess wait probability
is sufficiently low at all time instants. This performance requirement can be
expressed as:

Pr(W (t) > τ) ≤ α 0 ≤ t < T (1)

where W (t) represents the virtual waiting time2 of a customer arriving at time
t, τ indicates the maximum acceptable waiting time, and α denotes the targeted
(i.e. the maximum allowed) excess wait probability. We assume that τ is never
larger than the expected time-to-abandon (otherwise τ would probably be mis-
specified, especially in the context of an ED). Note that, by controlling excess
wait probabilities, the number of abandoning customers is influenced as well
(albeit implicitly). As in reality, the number of servers is only allowed to change
at fixed points in time, the planning period over which the number of servers is
assumed to remain unchanged will be referred to as the staffing interval (hence
the distinction in notation between time t and staffing interval t̃).

SERVICE

PROCESS

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23

A
rr

iv
al

 r
at

e

Hour of day

Abandonment rate

0

1

2

3

4

5

0 2 4 6 8 10 12 14 16 18 20 22 24

S
er

v
ic

e
 r

at
e

Hour of day

ARRIVAL

Customers arrive

ABANDONMENT

Customers leave

without being seen

SERVICE

COMPLETION

Customers leave, service

is completed

Arrival rate Service rate

POISSON GENERAL

GENERAL

�(t) s(t) �

�

Figure 1: Schematic representation a single-stage queueing system with
time-varying demand

2The virtual waiting time W (t) is defined as the time that a customer would have to spend
in queue if he were to arrive at time t (cf. [9], pp. 13-14).

3

Note that Expression 1 reduces to a constraint on the delay probability for
τ = 0. Consequently, our performance requirement is more general than the
(commonly used) delay probability. Measuring performance based on excess
wait probabilities gives more leeway to the staffing level function, while at the
same time preserving patient service, as the decision maker can decide on the
value of τ .

3 Related literature

3.1 Stationary approximations

When considering time-varying arrival rates, assessing system performance be-
comes severely more complex, as the available stationary results are no longer
valid. Nonetheless, stationary models are often relied upon to approximate the
performance on the nonstationary system. An overview of these so-called sta-
tionary approximations (and others) can be found in [8] and [22]. Here, a partial
overview of the literature concerning stationary approximations is given, with
a main emphasis on 4 easy-to-implement methods which are compared to the
proposed algorithm in Section 5.2.3.

Firstly, the system characteristics of the nonstationary model need to be
translated into appropriate input parameters for the stationary model(s). In
doing so, one has to keep in mind that capacity remains constant within each
staffing interval. Often, a stationary model is defined in each staffing interval
and hence the continuously varying arrival rate has to be transformed into one
single parameter per staffing interval. In the SIPPmax approach (introduced in
[6]), the arrival rate is set equal to the maximum3 arrival rate over the staffing
interval. Equivalently, one can determine the required staffing level for each
time instant based on a stationary model that uses the arrival rate prevailing
at that moment, and set the staffing level in each staffing interval equal to the
maximum required capacity over the considered staffing interval afterwards (this
is referred to as a Segmented PSA approach [8]).

However, the insertion of the arrival rate (prevailing at each time or over an
interval) into a stationary model often leads to poor results [8]. In this respect,
Green and Kolesar [5] pointed out that due to the nonstationarity of the system,
peaks in the arrival rate are usually not reflected immediately in the system’s
offered load. A time lag between the actual offered load and the arrival rate is
present and the magnitude of this lag is often approximated by the expected
service time. As a result, a lagged variant of the previously described SIPPmax
approach can be defined (denoted as lagSIPPmax), by adding a lag to the arrival
rate (λlagSIPPmax(t̃) ≡ max{λ(t− 1/µ) : t ∈ t̃}).

Although in [7], it was shown that accounting for this time lag always leads
to better staffing vectors, the lagged methods are outperformed by the Modified
Offered Load (MOL) approach (introduced by Jagerman [15] and explored fur-

3The average arrival rate can be used instead of the maximum. However, we preferred the
latter as this results in a higher amount of safety capacity (yet more elevated labor costs).

4

ther by Massey and Whitt [18], [19]). Better staffing vectors can be obtained if a
modified arrival rate is plugged into each stationary model, which is derived from
the infinite server offered load prevailing at that time (denoted asm∞(t) in what
follows, and equivalent to the number of customers in system if infinitely many
servers would be available). The infinite server offered load usually reflects the
time-dependence better than the stationary approximation of the offered load,
and moreover, a tractable expression for m∞(t) exists [1]. The arrival rate to
be inserted into the stationary models then equals λMOL(t) ≡ m∞(t)µ.

Once the nonstationary system has been transformed into one or more sta-
tionary models, the performance corresponding to a certain staffing vector can
be assessed. For the M/M/s model, the delay probability and excess wait prob-
ability can be calculated explicitly in a straightforward way, using the available
closed form formulas (applied to each staffing interval, cf. [9] pp. 66-72):

Pr(W > 0) =

(sρ)s

s!(1−ρ)(
(sρ)s

s!(1−ρ) +
∑s−1

n=0
(ρs)n

n!

) (2)

Pr(W > τ) = Pr(W > 0)e−(sµ−λ)τ (3)

Where ρ ≡ λ/
(
sµ
)
represents the traffic intensity, with stationary arrival rate

λ and s the number of available servers. The staffing level can then be chosen
as the smallest amount of capacity satisfying the performance constraint.

Unfortunately, closed form expressions for the stationary performance are not
always available and approximations are often necessary for obtaining the steady
state performance measures that are needed to determine appropriate staffing
requirements (this particularly holds for the difficult M/G/s+G model, which
we focus on). Approximations of performance measures for stationary models
can be found in the literature: e.g. methods focusing on M/M/s +M models
can be found in Garnett et al. [4] and Mandelbaum and Zeltyn [17], whereas
for the M/G/s+G model the interested reader is referred to [14] and [21].

Explicit performance calculations can often be avoided, however, by using a
simple rule of thumb: the square-root staffing rule (SRS), often also referred
to as square root safety staffing (general background on SRS is provided in [3],
[20] and [16]). The main benefit of SRS lies in its simplicity and robustness:
at each time instant, staffing is determined as the offered load augmented with
an amount of safety capacity, which is related to the performance target α (cf.
Expression 4). The required amount of safety capacity is proportional to the
offered load (denoted m), and depends on the desired quality of service (which
is reflected in the quality of service parameter β).

s = m+ β
√
m (4)

5

However, a key difficulty lies in establishing the link between the desired perfor-
mance target and the corresponding β that is needed to determine the desired
staffing requirements. To obtain the appropriate β, the inverse of the Halfin-
Whitt delay function (for M/M/s models, cf.[10]) and the Garnett delay func-
tion (for M/M/s +M models, cf. [4]) are used most commonly; an extension
towards M/M/s+G models can be found in [23]. These functions are derived
for many-server heavy-traffic regimes, but should work for small system sizes as
well [8]. Important to note, however, is that the SRS rule is a rule of thumb
and therefore provides no guarantee for the performance constraint being met.

In Section 5.2.3, the proposed ISA(τ) approach is compared to staffing vec-
tors obtained through 4 stationary approximations: SIPPmax, lagSIPPmax and
MOL are used to obtain the input parameters for the stationary models, and
capacity levels are determined based on the closed form M/M/s formula as well
as the SRS rule for M/M/s + M models (for a more elaborate discussion we
refer to Section 5.2.3).

3.2 The Iterative Staffing Algorithm (ISA)

In [2], a promising simulation-based technique for determining staffing require-
ments in time-varying queues is proposed. As the name suggests, the Itera-
tive Staffing Algorithm (ISA) repeatedly evaluates and alters several staffing
functions, until the desired performance is attained. For each staffing function
considered, system performance is evaluated by means of simulation and the
staffing level is updated based on the observed performance. This sequence of
evaluating performance and updating staffing levels is called an iteration.

Performance is expressed in terms of a constraint on the delay probability, that
is, the delay probability must lie below a target value α at all time instants:

Pr(W (t) > 0) ≤ α 0 ≤ t ≤ T (5)

Equivalently, the delay probability equals the probability that the number of
customers in the system N(t̃) surpasses the available capacity s(t̃), leading to
the following constraint:

Pr(N(t̃) ≥ s(t̃)) ≤ α ∀t̃ (6)

The ISA does not explicitly account for the length of staffing intervals and
assumes staffing changes can be made almost continuously (or, equivalently,
staffing intervals are very small). The planning horizon T is divided into small
intervals: staffing changes are only allowed at the start of each interval and the
number in system is evaluated once every staffing interval. ISA then proceeds as
follows. Initially, all staffing levels are set equal to an arbitrarily large number.
Subsequently, system performance is simulated by performing a fixed number
of independent replications, which results in a distribution of the number of
customers in system at each moment in time. Then, staffing levels are improved

6

(simultaneously for all staffing intervals) such that at each staffing interval t̃, the
staffing level corresponds to the smallest value of s(t̃) satisfying the performance
requirement in Expression 6. Formally, the evaluation of the distribution of the
number of patients in system at the start of staffing interval t̃ in iteration i
(Ni(t̃)) determines the staffing level in interval t̃ in iteration i+ 1 (si+1(t̃)):

si+1(t̃) = argmin{k ∈ N : Pr(Ni(t̃) ≥ k) ≤ α} ∀t̃ (7)

The algorithm stops when the staffing changes in subsequent iterations become
sufficiently small for all staffing intervals (i.e., staffing levels differ by at most 1,
for all t̃).

In [2], the performance of ISA is illustrated by means of two examples: a
theoretical example using a sinusoidal arrival pattern and a more realistic ex-
ample, using the arrival rate of a medium-sized call center (with hourly call
volumes varying between less than 100 to over 2000). The service rate equals
the abandonment rate in both examples, and consequently the distribution of
the number in system in the M(t)/M/s(t)+M is identical to the infinite server
equivalent [22]. In addition, both examples are characterized by relatively high
average arrival rates (e.g. 100 customers per hour for the sinusoidal example).
The performance corresponding to the final ISA staffing levels is simulated us-
ing 5000 independent replications. Some other performance measures, such as
abandonment probabilities, average queue lengths and average waiting times
were evaluated as well. Performance measures (in each staffing interval) were
measured and averaged over all replications; no confidence intervals w.r.t. these
variables were considered. The results reveal that ISA performs well for both
examples, as all delay probabilities are close to the targeted value and more or
less stable over time.

The major advantage of the ISA lies in the use of simulation to evaluate
system performance. As a result, the appropriateness of the staffing function
generated by ISA is validated automatically (that is, under the assumption that
the simulation model is adequate). Moreover, this method has potential to be
applied to much more general settings, for which analytical results are no longer
available. However, some aspects make the traditional ISA less appropriate in
an ED context:

• Firstly, an ED is commonly characterized by a rather small system size;
arrival rates tend to be much lower than in the examples provided in [2].
As discussed in the original publication, the delay probabilities obtained
by the original ISA tend to be less stable in periods with low demand, as
even a small change in capacity has a substantial impact on performance.
Moreover, the conventional stopping rule of the ISA might pose problems:
the algorithm stops when the change in staffing requirements is at most
1 unit in all staffing intervals and thus staffing changes of +/- 1 server
are disregarded. In small systems however, the addition or removal of one
server can result in substantial differences in performance.

7

• Secondly, the ISA does not explicitly deal with the length of the staffing
intervals, i.e. the time period over which capacity remains constant (all
examples used in [2] assume small staffing intervals with a length of 0.1/µ).
It can be expected that increasing the length of the staffing interval has
a negative impact on the algorithm’s performance, as the number of cus-
tomers in system is measured only once every interval (so increasing in-
terval length obviously leads to a reduction in accuracy). In the method
we present in Section 4, this problem is addressed by making a distinction
between staffing intervals and (smaller) calculation intervals.

• Finally, the results in [2] indicated that a staffing function that stabi-
lizes delay probability does not automatically stabilize other performance
measures (such as abandonment probabilities, average queue lengths and
average waiting times). Moreover, the delay probability appears not to
be the most appropriate performance measure in an ED environment, as
it seems natural that most patients are able to tolerate a (small) waiting
time. Consequently, it appears more practical to control the probability of
excessive waiting. This allows more flexibility, as the decision maker can
decide both on the maximum acceptable waiting time that should be met,
and on the service level (i.e., the probability that this maximum waiting
time is met). In the original ISA algorithm, using the delay probability
is advantageous because of the clear link between the distribution of the
number in system (which is an outcome of the simulation model) and the
staffing levels needed to achieve the desired performance (cf. Expression
6). Controlling the probability of excessive waiting implies that the length
of the waiting time has to be accounted for. Consequently, as discussed
in Section 4.1, the distribution of the number in system no longer suffices
to determine the appropriate staffing levels. Indeed, for any customer,
the waiting time is influenced not only by the number in system (and
queue length) upon arrival, but also by the rate at which patients leave
the system (i.e. the speed at which the queue decreases).

This justifies the search for a method which (1) is suitable for very small system
sizes such as an ED, (2) is capable of dealing with staffing intervals over which
the capacity remains constant and (3) emphasizes low probabilities of exces-
sive wait rather than delay probabilities. In the next sections, a more detailed
description of the ISA(τ) method is given.

4 ISA(τ): procedure

4.1 Evaluation of the excess wait probability

Measuring the excess wait probabilities (Pr(W (t) > τ), for all t) in a com-
putationally efficient way poses a challenge. One could simply try to obtain
Pr(W (t) > τ) from the simulation, by splitting the time horizon in successive
intervals, and evaluating the probability that a customer arriving in an inter-
val experiences an excessive wait. A detailed observation of performance over

8

time requires these evaluation intervals to be small. This approach may, how-
ever, require a prohibitively large number of replications if the analyst wishes
to obtain accurate estimates. Indeed, as the intervals over which performance is
measured become smaller, the probability that no customers arrive during the
interval increases, which implies that many replications are needed to obtain
precise estimates. In this section, we propose a performance assessment method
that is computationally efficient while still providing reasonably accurate per-
formance estimates.

Intuitively, for a customer arriving at time t, the excess wait probability at
that time corresponds to the probability that the number of previously arrived
patients which actually leave the system over the interval [t, t+ τ] (this will be
referred to as the number of departures) is smaller than or equal to the queue
length the customer encounters upon arrival. A departure can result from a
service completion, or an abandonment.

Consequently, the excess wait probability can be expressed in terms of the num-
ber in system at time t and the number of departures over interval [t, t + τ].
Let πn(t) represent the probability that a customer arriving at time t finds n
customers in the system (i.e. in queue and in service). The queue length q is
then determined as max{n − s(t̃|t ∈ t̃), 0}). When no capacity change occurs
during interval [t, t+ τ], the excess wait probability can be expressed as

P (t) =
∞∑

n=si(t̃|t∈t̃)

πn(t)
(
Pr(dn ≤ q)

)
0 ≤ t ≤ T (8)

where dn refers to the number of departures given that n customers are present
at time t. In case of a capacity change during interval [t, t + τ], a distinc-
tion should be made between the intervals preceding and following the capacity
shock4. Let t′ denote the time at which a capacity increase (∆C > 0) or de-
crease (∆C < 0) occurs. Let d1,n and d2,n represent the number of departures
over the time periods [t, t′] and]t′, t+ τ] respectively, given n customers in the
system at time t. Then, given a queue length q, the excess wait probability P (t)
equals the probability that the patient is unable to start service both in interval
[t, t′] and in interval [t′, t+ τ]. Or, equivalently:

P (t) =

∞∑
n=si(t̃|t∈t̃)

πn(t)

(
Pr(d1,n ≤ q)Pr(d1,n + d2,n ≤ q −∆C|d1,n ≤ q)

)
0 ≤ t ≤ T

(9)

As results in Section 5.1 indicate, this performance evaluation method provides
reasonably accurate results, even when only a small number of replications is
performed.

Note that Expression 9 assumes that ∆C takes effect immediately (i.e., at time

4Here, we assume at most one capacity shock over the time interval [t, t + τ], but the
method generalizes easily towards a higher number of capacity shocks.

9

t′). While this is realistic for a capacity increase, it is unlikely to hold in case
of a capacity decrease: the doctor will presumably finish the treatment of the
current patient before leaving. This is referred to as an exhaustive policy in the
literature (see e.g. [13] and [12]). Given its practical relevance, the exhaustive
service policy is used in the simulation model. This implies that Expression 9
is likely to overestimate the excess wait probability in the intervals preceding a
capacity decrease, as the number of busy servers is likely to surpass the number
of scheduled servers.

4.2 Update of the staffing level function

Initially, the capacity in each staffing interval is set equal to the offered load that
would prevail if the system was stationary, namely the ratio of the average arrival
rate over the time horizon to the service rate. A first stage in the algorithm
(referred to as Phase I, and summarized in Algorithm 1) aims at quickly finding
a staffing vector for which performance is close to the target (but not necessarily
below the target value at all times). To this purpose, the current staffing level
function si(t̃) is altered iteratively, based on the simulation output. In general,
capacity is increased if performance is unsatisfactory and decreased otherwise.
An important remark should be made concerning the time period over which
the capacity level in a given staffing interval impacts performance. Due to the
focus on excessive waiting times, this interval does not coincide with the staffing
interval. If a capacity shock occurs at ts, then the excess wait probabilities are
affected for all arrivals after (ts − τ), as τ represents the time window within
which these patients should start service in order to have a waiting time below
the maximum wait (as illustrated in Figure 2).

staffing interval

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

C
ap

ac
it

y

2

ts - 2

ts

tf - 2

tf

Figure 2: Interval over which capacity impacts performance

10

Algorithm 1 ISA(τ): Phase I

Initial staffing vector: s0(t̃) =
λ̄
µ

∀t̃
Define SCVi the squared coefficient of variation of Pmax,i

for all Iterations i do
Simulate staffing vector si (result: performance vector Pmax,i)

Update I
(
SCVi

)
=

{
1 if SCVi ≤ SCVi−1

0 otherwise

Update capacity in all t̃:

Ai(t̃) = 1 +
Pmax,i(t̃)−α

αi

si+1(t̃) =

{
⌈si(t̃)Ai(t̃)⌉ if Ai(t̃) ≥ 1, ∀t̃
⌊si(t̃)Ai(t̃)⌋ if Ai(t̃) < 1, ∀t̃

if ∃j < i|∀t : sj(t̃) = si+1(t̃) then
Repetition in staffing levels: proceed to Phase II

else if Alternating behavior in I
(
SCVi

)
and SCVi ≤ 1 then

SCV performance is stabilizing: proceed to Phase II
end if

end for

Thus, the capacity in a staffing interval t̃ starting at ts and ending at tf has a
direct5 effect on the performance of patients arriving during interval [ts−τ, tf −
τ [. In this respect, in every iteration i, the staffing level in interval t̃ is altered
based on vector Pmax,i(t̃) = max

{
Pi(t) : t ∈ [ts−τ, tf −τ [

}
, which represents

the maximum excess wait probability over the interval in which performance is
impacted by the capacity in staffing interval t̃. More specifically, during each
iteration i of the algorithm, si(t̃) is updated as follows:

si+1(t̃) =

{
⌈si(t̃)Ai(t̃)⌉ if Ai(t̃) ≥ 1, ∀t̃
⌊si(t̃)Ai(t̃)⌋ if Ai(t̃) < 1, ∀t̃ (10)

where Ai(t̃) refers to an amplification factor, which is determined based on the
deviation from the target (in percent) and the number of iterations performed
so far:

Ai(t̃) = 1 +
Pmax,i(t̃)− α

αi
∀t̃ (11)

where Pmax,i(t̃) is derived from the simulation results, and α denotes the target
w.r.t. the excess wait probability. Excess wait probabilities below (above) target
will result in an Ai(t̃) below (above) 1 and thus an decrease (increase) in capacity
in the corresponding interval (note that due to the rounding in Expression 10,
capacity is always increased or decreased with at least one unit).

Expression 11 ensures that Ai(t̃) approaches 1 (∀t̃) as the number of itera-
tions increases, forcing the algorithm to decrease the size of the staffing changes

5It is clear that an indirect effect is present as well; i.e. the capacity level in any staffing
interval also has an impact on the performance in all later time instants, through the number
of customers in system.

11

as it progresses, eventually switching to unit-size changes (and, in the limit,
converging to a final staffing vector despite the fact that possible deviations
from the target may still remain). The aim of Phase I is to quickly zoom in
on a number of staffing vectors which are close to the target (hence the term
“exploration phase”); these are then further fine-tuned for feasibility in Phase
II (exploitation phase). Note that, in fact, the choice of the factor i in the
denominator of Expression 11 is rather arbitrary; other factors may be consid-
ered, such as i/2 or i2. Especially in large systems, high values for the factor
should be used with caution: they may lead the algorithm to switch to unit-size
capacity changes too soon, causing the number of iterations in the exploration
phase to increase substantially. In Appendix A, the impact of a change in the
factor, for the small and large system studied in this paper is shown. As evident
from the Appendix, the number of iterations in the exploration phase increases
drastically for the large system when a factor i2 is used. Moreover, there is no
evidence that this decrease in efficiency in the exploration phase pays off in the
exploitation phase, nor does it seem to impact the quality of the final solution
(both in terms of excess wait probability and staffing cost).

We allow the algorithm to stop exploring when either (1) cycling occurs (mean-
ing that the staffing level vector put forward in the current iteration has already
been assessed during a previous iteration), or (2) when the excess wait probabil-
ity is stabilizing6. To check condition (2), we keep track of the squared coefficient
of variation of the excess wait probability over the time horizon in each iteration
i (denoted as SCVi), and record whether it increases or decreases with respect
to the previous iteration (denoted as I

(
SCVi

)
= 1 if SCVi <= SCVi−1, 0 oth-

erwise). The algorithm stops when SCVi is sufficiently low (we obtained good
results with the criterion SCVi ≤ 1 in our experiments) and a cycle occurs in
I
(
SCVi

)
, signaling that SCVi starts alternating between increase and decrease

for subsequent iterations without any significant improvement. Though condi-
tion (2) is more ad hoc, it is particularly useful in large systems: we observed
that although many iterations are needed before cycling in the staffing levels oc-
curs (i.e. before condition (1) is met), SCVi usually stabilizes far more quickly.
An illustration of the typical evolution of SCVi throughout the algorithm in a
large problem setting is given in Figure 3. As such, criterion (2) can substan-
tially lower the computational time in Phase I for large systems.
Note that the exploration phase does not necessarily result in a feasible staffing
vector. Consequently, an additional fine-tuning procedure (Phase II or “ex-
ploitation phase”, detailed in Algorithm 2) is needed. The aim of Phase II is
to deduce feasible solutions from the infeasible staffing levels obtained in Phase
I, in hope of finding a solution which outperforms the best feasible solution found
so far (if any) in terms of labor cost. To that end, all infeasible solutions are
first sorted based on increasing maximum excess wait probability over the time

6Recall that the original ISA utilizes a different terminating condition: it stops when the
staffing level changes at most with one unit in each interval, compared to the previous iteration.
We opt not to use this stop criterion due to the focus on small system sizes, where one unit
capacity changes may occur more frequently (causing the algorithm to stop prematurely).

12

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35 40 45 50

SC
V

Iteration

0,00

0,05

0,10

0,15

0,20

0,25

20 25 30 35 40 45 50

SC
V

Iteration

SCV starts alternating
between increase and

decrease: STOP

Figure 3: Evolution SCVi

horizon. Indeed, a lower value indicates smaller deviations from the target,
which makes the corresponding solution more promising to explore. In case of
a tie, the projected staffing cost (expressed in man-hours) is considered, i.e. the
staffing cost that would result when adding 1 unit of capacity to each staffing
interval that causes the excess wait probability to surpass the target. Indeed,
if this target is exceeded in just a limited number of intervals, a small number
of capacity increases may be sufficient to obtain a feasible staffing level vector,
which is appealing from a labor cost perspective. All infeasible solutions are
improved one by one (in sorted order), each time adding capacity in all inter-
vals where performance is unsatisfactory and assessing the new staffing vector’s
performance through simulation. This is repeated until either:

• The performance constraint is satisfied at all times; in this case a new
feasible solution is found, which is stored if it is less costly than the current
best feasible solution in terms of labor cost.

• The performance constraint is not yet met, but further increasing capacity
would result in a staffing cost that surpasses the cost of the best feasible
solution found so far. In this case, further exploiting the current infeasible
solution is futile.

Note that the procedures described in Phase I and Phase II are suitable
for small system sizes, largely avoid cyclic behavior and moreover guarantee
that the algorithm yields a staffing vector meeting the performance constraint.

13

Algorithm 2 ISA(τ): Phase II

Define ci the cost of a staffing vector si
Define c∗ the cost of the cheapest feasible solution found so far
Initialize c∗ = cost of best feasible solution found during Phase I (if any),
∞ otherwise

Sort all infeasible solutions considered in Phase I, based on
1) increasing maxt̃

{
Pmax(t̃)

}
2) cost + number of staffing intervals with Pmax(t̃) > α

for all infeasible solutions j (in sorted order) do

s′j(t̃) =

{
s′j(t̃) + 1 if Pmax,j(t̃) > α ∀t̃
s′j(t̃) if Pmax,j(t̃) ≤ α ∀t̃

Determine cj = cost of s′j(t̃)

while cj < c∗ do
Simulate s′j(t̃)

if maxt̃
{
Pmax,j(t̃)

}
> α then

s′j(t̃) =

{
s′j(t̃) + 1 if Pmax,j(t̃) > α ∀t̃
s′j(t̃) if Pmax,j(t̃) ≤ α ∀t̃

Determine cj = cost of s′j(t̃)
else
if cj < c∗ then
Better feasible solution found: store s′j(t̃)
Store c∗ = cj

end if
end if

end while
end for

5 Computational results

5.1 Evaluation of the performance measurement method

First, the performance calculation method presented in Section 4.1 is evaluated.
For a given staffing level function (shown in the top pane of Figure 4), the bot-
tom pane of Figure 4 represents on the one hand the excess wait probability
(and delay probability) calculated by means of Expression 9, using 2500 repli-
cations7. On the other hand, it shows the average excess wait probability (and
delay probability) determined by means of a simple simulation, i.e. based on
the waiting times observed in each calculation interval, during a simulation run

7The results shown pertain to a simulation model using the arrival pattern, abandonment
rate and service rates of the small sized example shown in Table 1. The maximum acceptable
wait was set to τ = 10 minutes.

14

consisting of 50 000 replications. Figure 4 clearly indicates that the excess wait
probability calculation method suggested in Expression 9 corresponds closely to
the simulated values. Also, the method suggested in Expression 9 requires far
less replications to obtain a “smooth” performance curve, which is due to the
absence of missing observations that would prevail if performance would be mea-
sured based on the waiting times observed during each replication8. Moreover,
Figure 4 indicates that the delay probability and the excess wait probability
move in sync. Obviously, the delay probability always exceeds the excess wait
probability.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of day

Staffing level Hourly arrival rate

0,00

0,05

0,10

0,15

0,20

0,25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of day

Target

Average excess wait probability (50000 replications)

Average delay probability (50000 replications)

Excess wait probability (2500 replications)

Delay probability (2500 replications)

Figure 4: Evaluation performance calculation method

Similar conclusions hold for the large system (a plot is given in Appendix B).
There however, both performance methods almost coincide, as the calculation
which is based on 10 000 instead of 50 000 replications, is far more accurate
compared to the small system (“unobserved” waiting times occur less frequently,
due to the large system size).

8Important to note here is that the excess wait probability is only observed if an arrival
occurs during the considered interval, so in certain intervals the number of observations used
in the calculation of this average excess wait probability might be substantially less than 50
000.

15

5.2 Evaluation of ISA(τ)

The method proposed in Section 4 was tested for two settings: the first is sim-
ilar to the example used in [2] (we added the assumption of 15 minute staffing
intervals), the second setting was determined based on real-life arrival data ob-
tained from a Belgian hospital. Table 1 summarizes the main characteristics
for both examples; in Figure 5 the corresponding arrival rates are plotted (note
that the example derived from [2] represents a large scale system, with arrival
rates varying between 80 and 120 customers per hour). For both examples,
a 24-hour time horizon is considered and performance was calculated quasi-
continuously, i.e. once every minute (this will be referred to as the length of the
calculation interval). The length of the staffing interval equals 15 minutes and
the maximum acceptable waiting time τ is set to 10 minutes. Per iteration of
the algorithm, 2500 replications are performed. The algorithm’s performance
for the 2 examples is first evaluated in a M(t)/M/s(t) +M context in Section
5.2.1. However, the algorithm remains applicable in a M(t)/G/s(t)+G context,
as the experiments in Section 5.2.2 indicate. In Section 5.2.3, we compare the
proposed ISA(τ) method with some heuristics available in the literature.

Belgian hospital Example based on [2]

Service rate (customers/hour) 2 1
Abandonment rate (customers/hour) 0.25 1

Time horizon 24 hours

Calculation interval 1 minute

Staffing interval 15 minutes

Maximum acceptable wait τ 10 minutes

Target excess wait probability α 0.1

Performance constraint Pr(W (t) > τ) ≤ α ∀t
Number of replications (per iteration) 2500

Table 1: System parameters

0

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20 22 24

H
o
u

rl
y
 a

rr
iv

al
 r

at
e

Hour of day

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20 22 24

H
o
u

rl
y

 a
rr

iv
al

 r
at

e

Hour of day

(a) (b)

Figure 5: Arrival rate (a) Belgian hospital (b) example based on [2]

16

5.2.1 ISA(τ): Exponential service and abandonment times

A comparison of the results for both small and large settings in anM(t)/M/s(t)+
M setting (see Table 2), leads to the conclusion that our algorithm results in
staffing levels that indeed meet the desired performance targets in relatively
few iterations. That is, a staffing vector is found for which the probability of
excessive wait lies below the chosen acceptable waiting time threshold and does
not depend on the customer’s arrival time. However, the number of iterations
needed is proportional to the system size: small systems (which we focus on)
require less iterations than large systems. Moreover, as the capacity shocks are
more frequent and larger in size in the large scale system (see Figure 7), so are
the performance shocks (for both excess wait probability and delay probabil-
ity). Finally, the performance graphs in Figures 6 and 7 clearly indicate that the
delay probability is indeed a more restrictive performance measure and, there-
fore, overstaffing might occur if the delay probability is used as a performance
constraint (assuming that customers tolerate a waiting time of τ > 0).

Belgian hospital Example based on [2]

Number iterations
6 (no feasible) 17 (no feasible)

Phase I

Number iterations
5 (3 feasible) 6 (2 feasible)

Phase II

maxt

{
P (t)

}
0.090 0.100

Staffing cost 74 2257.25

Table 2: Results ISA(τ): exponential service and abandonment times

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S
ta

ff
in

g
 l

ev
el

Hour of day

0,00

0,05

0,10

0,15

0,20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of day

Target

Delay probability (2500 replications)

Excess wait probability (2500 replications)

Figure 6: Small system: staffing vector and resulting performance

17

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S
ta

ff
in

g
 l

ev
el

Hour of day

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of day

Target

Delay probability (2500 replications)

Excess wait probability (2500 replications)

Figure 7: Large system: staffing vector and resulting performance

To gain insight in the part of the solution space unexplored by the ISA(τ)
algorithm and the quality of the solution obtained, better solutions were sought
by means of implicit enumeration, for the test setting of the Belgian hospital. To
keep the solution space fairly small, we assume only 6 staffing intervals (which
can be interpreted as 4-hour shifts). The capacity in each interval is bounded
below by 1, as at least one server should be present at each moment in time.
A reasonable estimate of the upper bound on capacity in each staffing interval
is derived based on three overly restrictive assumptions: the upper bound rep-
resents the capacity needed to guarantee a delay probability below the target
in a stationary M/M/s model (i.e. without abandonments) where the arrival
rate equals the maximum arrival rate over the time horizon. Following this
reasoning, each staffing interval requires at most 5 units of capacity, resulting
in 15625 possible staffing vectors. For this simplified setting, ISA(τ) yields the
optimal solution (i.e. the lowest-cost solution which is feasible with respect
to the performance constraint). In addition, for a setting with only 3 staffing
intervals (or, 8-hour shifts), complete enumeration was used in view of visualiz-
ing the solution space. A graphical representation of the solution space can be
found in Figure 8: for each staffing vector, the cost and the maximal excess wait
probability are plotted (the performance constraint is met if the maximal excess
wait probability of a staffing vector lies below the target). The staffing vectors
explored by ISA(τ) are indicated as well. Again, the optimal solution can be
obtained by means of ISA(τ). Though these results cannot be generalized (ad
hoc experimentations on the problems with 96 staffing intervals described in Ta-
ble 1 showed that better solutions can be found there), they give an indication
of the solution quality of ISA(τ).

18

1

23

4

5

6

7

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 50 100 150 200

M
ax

im
al

 e
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Cost

Target

Enumeration

ISA(2��- Phase I

ISA(2��- Phase II

ISA(2��- FINAL STAFFING

Figure 8: Comparison ISA(τ) staffing vs. complete enumeration (small system
size, 3 staffing intervals)

5.2.2 Lognormal service and abandonment times

One of the major advantages of the proposed method consists in its general
applicability (due to the use of a simulation model to assess performance). To
this end, experiments were repeated assuming an M(t)/G/s(t) +G setting, as-
suming a lognormal distribution for the service and abandonment times. Two
cases were examined, in which service and abandonment times are lognormally
distributed with squared coefficient of variation (SCV) equal to 1.5 and 0.5. As
the results in Table 3 indicate, the algorithm’s effectiveness does not change
when departing from the exponential service time and abandonment time dis-
tributions. Also, the number of iterations needed by the algorithm does not
change substantially.

Small system Large system
(µ = 2) (µ = 1)

SCV = 0.5 SCV = 1.5 SCV = 0.5 SCV = 1.5

Number iterations Phase I 6 5 13 22

Number iterations Phase II 5 4 16 6

maxt

{
P (t)

}
0.090 0.083 0.099 0.099

Staffing cost 73.25 74.5 2492.25 2363.4

Table 3: Results ISA(τ): Lognormal service and abandonment times

5.2.3 Comparison to other staffing heuristics

In this section, the staffing vector obtained by the algorithm proposed in Section
4 is compared to some readily implementable staffing heuristics available in the
literature. These are all so-called stationary approximations, which implies that

19

a stationary model is used in each separate staffing interval to determine the
desired capacity level. The key features of the selected heuristics are summarized
in Table 4; for a more elaborate description we refer to Section 3.1.
Each of the four heuristics was applied to both the small and large system
discussed in Section 5.2. Figures 9 and 10 show the corresponding staffing level
vectors and the resulting excess wait probabilities for the large system; Figures
11 and 13 show the results for the small system. In each case, the results are
compared to those of ISA(τ).

Abbreviation Staffing by means of Applied to
Used arrival rate
or offered load

CF MOL Closed form formula M/M/s
each time

λMOL(t) ≡ m∞(t)µ
instant t

SRS SIPPmax
SRS formula M/M/s + M each staffing λ(t̃) ≡ maximum λ(t)

(using Garnett delay function) interval t̃ over staffing interval t̃

SRS lagSIPPmax
SRS formula M/M/s + M each staffing λ(t̃) ≡ maximum λ(t − 1/µ)

(using Garnett delay function) interval t̃ over staffing interval t̃

SRS MOL
SRS formula M/M/s + M each time

m(t) = m∞(t)
(using Garnett delay function) instant t

Table 4: Other heuristics available in the literature

The obtained staffing levels for the large system (represented in Figure 9)
clearly illustrate the importance of the time lag between the arrival rate and the
offered load. For SRS SIPPmax, which utilizes a simple stationary approxima-
tion of the arrival rate and does not account for this time lag, the peak staffing
levels clearly occur earlier than the peaks in offered load, leading to extremely
poor performance. The time-varying nature of the offered load is captured bet-
ter if a time lag is added (cf. SRS lagSIPPmax) or if the MOL-approximation
is used (cf. CF MOL and SRS MOL). The observed performance for CF MOL
in the large system (represented in Figure 10) indicates that it leads to over-
staffing, a result that can be explained by the fact that the underlying closed
form M/M/s formula ignores the presence of abandonments.

For the large system, the SRS MOL heuristic performs pretty well. This is

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S
ta

ff
in

g
 l

ev
el

Hour of day

P���W�

CF_MOL

SRS_SIPPmax

SRS_lagSIPPmax

SRS_MOL

ISA(2�

Figure 9: Comparison ISA(τ) staffing vs. other heuristics: Staffing (large
system)

20

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Hour of day

Target

CF_MOL

ISA(2�

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Hour of day

Target

SRS_SIPPmax

ISA(2�

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Hour of day

Target

SRS_lagSIPPmax

ISA(2�

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Hour of day

Target

SRS_MOL

ISA(2�

Figure 10: Comparison ISA(τ) staffing vs. other heuristics: Performance
(large system)

not surprising, as the offered load used in the SRS MOL heuristic is exact9 and
in addition the conditions for the Garnett delay function are met (i.e., exponen-
tial service and abandonment times and a sufficiently large number of servers).
For the large system, the SRS MOL staffing vector yields the best results among
all approximations. The excess wait probability occasionally exceeds the target
though, which might be explained in part by the presence of staffing intervals,
and by the fact that the SRS rule is a rule of thumb and therefore provides
no guarantee for the performance constraint being met. The excess wait prob-
abilities obtained through ISA(τ) closely resemble those of SRS MOL, yet for

9The distribution of number in system in any M(t)/G/s(t) +G system is identical to that
of the infinite server model, if the specific condition holds that the abandonment rate is equal
to the service rate [22], as is the case in this setting.

21

ISA(τ) the performance constraint is met at all times.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

S
ta

ff
in

g
 l

ev
el

Hour of day

P���W�

CF_MOL

SRS_SIPPmax

SRS_lagSIPPmax

SRS_MOL

ISA(2�

Figure 11: Comparison ISA(τ) staffing vs. other heuristics: Staffing (small
system)

The results for the small example setting (given in Figures 11 and 13) show
that none of the SRS-based heuristics result in adequate staffing. This might be
addressed to the SRS rule performing best for moderate to large offered loads
[4], whereas we applied it to a very small system. The closed-form formula
results in slightly better staffing vectors, although again, it has the tendency
to overstaff as the presence of abandonments is ignored (for this example, the
overstaffing is limited due to the low abandonment rate).

Figures 12 and 14 reveal a key advantage of ISA(τ). Whereas in a Markovian
setting, the SRS MOL heuristic yielded performance comparable to ISA(τ) for
the large system, this no longer holds when general service and abandonment
times prevail: the excess wait probability is considerably above target. For the
remaining heuristics, the insights from the Markovian setting largely remain
valid: i.e., performance is poor. Consequently, we may conclude that ISA(τ)
is the only heuristic that yields consistent and satisfactory performance, both
for small and large systems, and in particular in settings where the Markovian
assumptions do not hold.

0,00

0,20

0,40

0,60

0,80

1,00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Hour of day

Target

SRS_MOL

ISA(2�

Figure 12: Comparison ISA(τ) staffing vs. other heuristics: Performance
(large system, SCV = 0.5)

22

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Hour of day

Target

CF_MOL

ISA(2�

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Hour of day

Target

SRS_SIPPmax

ISA(2�

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Hour of day

Target

SRS_lagSIPPmax

ISA(2�

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Hour of day

Target

SRS_MOL

ISA(2�

Figure 13: Comparison ISA(τ) staffing vs. other heuristics: Performance
(small system)

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
x

ce
ss

 w
ai

t
p

ro
b

ab
il

it
y

Hour of day

Target

SRS_MOL

ISA(2�

Figure 14: Comparison ISA(τ) staffing vs. other heuristics: Performance
(large system, SCV = 1.5)

23

6 Conclusions and future research

This paper suggests an extension of the simulation-based Iterative Staffing Al-
gorithm (ISA) proposed by Feldman and others [2] as a method to set staffing
levels throughout the day. This extension (called ISA(τ)) enables the use of
performance measures based on the probability of an excessive wait, instead
of the common focus on delay probability as a performance metric. Moreover,
it takes into account the sensitivity of small scale systems to changes in the
staffing levels, and the presence of staffing intervals. Meanwhile, the advantages
of the traditional ISA (namely general applicability, automatic validation) re-
main valid.

Experiments on two settings (a large system with sinusoidal arrival pattern
on the one hand, and a more realistic small ED system on the other hand)
illustrate that ISA(τ) is effective in numerous contexts, and consistently out-
performs heuristics based on stationary approximations in particular for settings
in which the service and abandonment processes are not Markovian. In every
test setting, ISA(τ) succeeds in detecting a staffing vector that meets target
performance, within a limited number of iterations. In general, the efficiency
of the algorithm tends to depend on its parameters (the amplification factor in
Expression 11 and the SCV-based stop criterion can be tuned), and the size of
the system (larger systems require more computation time).

Future research will focus on including shift constraints in the algorithm and
improving the capacity updating function. In addition, further improvements
to the algorithm, in view of reducing the computation time and number of
iterations needed to obtain a solution, will be explored. Moreover, testing the
algorithm on a more elaborate set of problem instances is advisable.

Acknowledgments

This research was supported by the Research Foundation-Flanders (FWO) (grant
no G.0547.09).

24

Appendix A: Impact of i in A(t̃)

Small system Large system

i/2 i 2i i2 i/2 i 2i i2

Number
2 6 5 7 17 17 18 79iterations

Phase I

Number
3 5 5 5 10 6 7 10iterations

Phase II

maxt

{
P (t)

}
0.090 0.090 0.090 0.086 0.100 0.100 0.099 0.100

Staffing cost 74 74 74 74 2999.75 2257.25 2325.25 2258

Table 5: Impact of i in A(t̃)

Appendix B: Evaluation performance calculation
method for the large system

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of day

Staffing level Hourly arrival rate

0,00

0,20

0,40

0,60

0,80

1,00

1,20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour of day

Target

Average excess wait probability (10000 replications)

Average delay probability (10000 replications)

Excess wait probability (2500 replications)

Delay probability (2500 replications)

25

References

[1] S.G. Eick,W.A. Massey, W. Whitt, 1993, The Physics of the Mt/G/∞
Queue, Operations Research 41(4) (1993) 731–742.

[2] Z. Feldman, A. Mandelbaum, W.A. Massey, W. Whitt, Staffing of Time-
Varying Queues to Achieve Time-Stable Performance, Management Science
54(2) (2008) 324–338.

[3] N. Gans, G. Koole, A. Mandelbaum, Telephone Call Centers: Tutorial, Re-
view, and Research Prospects, Manufacturing & Service Operations Man-
agement 5(2) (2003) 79–141.

[4] O. Garnett, A. Mandelbaum, M. Reiman, Designing a Call Center with
Impatient Customers, Manufacturing & Service Operations Management
4(3) (2002) 208–227.

[5] L.V. Green, P.J. Kolesar, On the Accuracy of the Simple Peak Hour
Approximation for Markovian Queues, Management Science 41(8) (1995)
1353–1370.

[6] L.V. Green, P.J. Kolesar, J. Soares, Improving the SIPP Approach for
Staffing Service Systems That Have Cyclic Demands, Operations Research
49(4) (2001) 549–564.

[7] L. V. Green, P.J. Kolesar, J. Soares, An Improved Heuristic for Staffing
Telephone Call Centers with Limited Operating Hours, Production and
Operations Management 12(1) (2003) 46–61.

[8] L. V. Green, P.J. Kolesar, W. Whitt, Coping with Time-Varying Demand
When Setting Staffing Requirements for a Service System, Production and
Operations Management 16(1) (2007) 13–39.

[9] D. Gross, J.F. Shortle, J.M. Thompson, C.M. Harris, Fundamentals of
Queueing Theory (4th Edition), Wiley Series in Probability and Statistics,
Wiley-Blackwell, 2008.

[10] S. Halfin, W. Whitt, Heavy-Traffic Limits for Queues with Many Exponen-
tial Servers, Operations Research 29(3) (1981) 567–588.

[11] R. Hall, D. Belson, P. Murali, M. Dessouky, Modeling Patient Flows
Through the Healthcare System, in: R. W. Hall, (Ed.), Patient Flow: Re-
ducing Delay in Healthcare Delivery, Springer US, 2006, 91, pp. 1–44.

[12] A. Ingolfsson, Modeling the M(t)/M/s(t) Queue with an Ex-
haustive Discipline, University of Alberta, Alberta, available at:
http://www.business.ualberta.ca/aingolfsson/publications.htm, 2005.

26

[13] A. Ingolfsson, E. Akhmetshina, S. Budge, L. Yongyue, W. Xudong, A Sur-
vey and Experimental Comparison of Service-Level-Approximation Meth-
ods for Nonstationary M(t)/M/s(t) Queueing Systems with Exhaustive
Discipline, INFORMS Journal on Computing 19 (2007) 201–214.

[14] F. Iravani, B. Balcioglu, Approximations for the M/GI/N +GI Type Call
Center, Queueing Systems 58(2) (2008) 137–153.

[15] D.L. Jagerman, Nonstationary Blocking in Telephone Traffic, Bell System
Technical Journal 54(3) (1975) 625–661.

[16] G. Koole, A. Mandelbaum, Queueing Models of Call Centers: An Intro-
duction, Annals of Operations Research 113(1-4) (2002) 41–59.

[17] A. Mandelbaum, S. Zeltyn, Service Engineering in Action: The
Palm/Erlang-A Queue, with Applications to Call Centers, in: D. Spath,
K.-P. Fähnrich, (Eds.), Advances in Services Innovations, Springer Berlin
Heidelberg, 2007, pp. 17–45.

[18] W.A. Massey, W. Whitt, An Analysis of the Modified Offered-Load Ap-
proximation for the Nonstationary Erlang Loss Model, The Annals of ap-
plied probability 4(4) (1994) 1145–1160.

[19] W.A. Massey, W. Whitt, Peak Congestion in Multi-Server Service Systems
with Slowly Varying Arrival Rates, Queueing Systems 25(1-4) (1997) 157–
172.

[20] W. Whitt, Understanding the Efficiency of Multiserver Service Systems,
Management Science 38(5) (1992) 708–723.

[21] W. Whitt, Engineering Solution of a Basic Call-Center Model, Management
Science 51(2) (2005) 221–235.

[22] W. Whitt, What You Should Know About Queueing Models to Set Staffing
Requirements in Service Systems, Naval Research Logistics 54(5) (2007)
476–484.

[23] S. Zeltyn, A. Mandelbaum, Call Centers with Impatient Customers: Many-
Server Asymptotics of the M/M/n+G Queue, Queueing Systems 51(3-4)
(2005) 361–402.

27

	FEB_KBI-voorblad onderzoeksrapport-sharepoint.pdf
	RESEARCH PAPER Mieke Defraeye

